code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections.abc import Callable class __magic_name__ : def __init__( self , _lowercase = None )-> None: UpperCamelCase_ = [] # Stores indexes of each item for supporting updates and deletion. UpperCamelCase_ = {} # Stores current size of heap. UpperCamelCase_ = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. UpperCamelCase_ = key or (lambda _lowercase : x) def UpperCAmelCase_ ( self , _lowercase )-> int | None: return int((i - 1) / 2 ) if i > 0 else None def UpperCAmelCase_ ( self , _lowercase )-> int | None: UpperCamelCase_ = int(2 * i + 1 ) return left if 0 < left < self.size else None def UpperCAmelCase_ ( self , _lowercase )-> int | None: UpperCamelCase_ = int(2 * i + 2 ) return right if 0 < right < self.size else None def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> None: UpperCamelCase_ , UpperCamelCase_ = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. UpperCamelCase_ , UpperCamelCase_ = self.arr[j], self.arr[i] def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> bool: return self.arr[i][1] < self.arr[j][1] def UpperCAmelCase_ ( self , _lowercase )-> int: UpperCamelCase_ = self._left(_UpperCAmelCase ) UpperCamelCase_ = self._right(_UpperCAmelCase ) UpperCamelCase_ = i if left is not None and not self._cmp(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ = left if right is not None and not self._cmp(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ = right return valid_parent def UpperCAmelCase_ ( self , _lowercase )-> None: UpperCamelCase_ = self._parent(_UpperCAmelCase ) while parent is not None and not self._cmp(_UpperCAmelCase , _UpperCAmelCase ): self._swap(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = parent, self._parent(_UpperCAmelCase ) def UpperCAmelCase_ ( self , _lowercase )-> None: UpperCamelCase_ = self._get_valid_parent(_UpperCAmelCase ) while valid_parent != index: self._swap(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = valid_parent, self._get_valid_parent(_UpperCAmelCase ) def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> None: if item not in self.pos_map: return UpperCamelCase_ = self.pos_map[item] UpperCamelCase_ = [item, self.key(_UpperCAmelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_UpperCAmelCase ) self._heapify_down(_UpperCAmelCase ) def UpperCAmelCase_ ( self , _lowercase )-> None: if item not in self.pos_map: return UpperCamelCase_ = self.pos_map[item] del self.pos_map[item] UpperCamelCase_ = self.arr[self.size - 1] UpperCamelCase_ = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_UpperCAmelCase ) self._heapify_down(_UpperCAmelCase ) def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> None: UpperCamelCase_ = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_UpperCAmelCase )] ) else: UpperCamelCase_ = [item, self.key(_UpperCAmelCase )] UpperCamelCase_ = self.size self.size += 1 self._heapify_up(self.size - 1 ) def UpperCAmelCase_ ( self )-> tuple | None: return self.arr[0] if self.size else None def UpperCAmelCase_ ( self )-> tuple | None: UpperCamelCase_ = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCAmelCase( )-> Tuple: """simple docstring""" pass if __name__ == "__main__": import doctest doctest.testmod()
628
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Union[str, Any]=8 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Dict=36 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Optional[Any]=None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int ) -> Dict: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = 300 return config def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = self.prepare_config_and_inputs() UpperCAmelCase_ = True UpperCAmelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase__ ( self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ = MraModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> int: '''simple docstring''' UpperCAmelCase_ = True UpperCAmelCase_ = MraModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MraForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = MraForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MraForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MraForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = MraForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = () def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MraModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MraModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason="MRA does not output attentions" ) def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' return @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) UpperCAmelCase_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ = model(_UpperCAmelCase )[0] UpperCAmelCase_ = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) UpperCAmelCase_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ = model(_UpperCAmelCase )[0] UpperCAmelCase_ = 50265 UpperCAmelCase_ = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) UpperCAmelCase_ = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ = model(_UpperCAmelCase )[0] UpperCAmelCase_ = 50265 UpperCAmelCase_ = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
82
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Dict = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class SCREAMING_SNAKE_CASE: def __init__( self , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase = str(id_ ) __lowercase = None __lowercase = None __lowercase = [] __lowercase = {} # {vertex:distance} def __lt__( self , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" return self.key < other.key def __repr__( self ) -> Any: """simple docstring""" return self.id def snake_case__ ( self , lowerCamelCase__ ) -> List[Any]: """simple docstring""" self.neighbors.append(lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" __lowercase = weight def snake_case_ ( a__ : Optional[int] ,a__ : List[str] ,a__ : Dict ,a__ : List[str] ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] ,a__ ) graph[b - 1].add_edge(graph[a - 1] ,a__ ) def snake_case_ ( a__ : list ,a__ : Vertex ): """simple docstring""" __lowercase = [] for u in graph: __lowercase = math.inf __lowercase = None __lowercase = 0 __lowercase = graph[:] while q: __lowercase = min(a__ ) q.remove(a__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __lowercase = u __lowercase = u.edges[v.id] for i in range(1 ,len(a__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case_ ( a__ : list ,a__ : Vertex ): """simple docstring""" for u in graph: __lowercase = math.inf __lowercase = None __lowercase = 0 __lowercase = list(a__ ) hq.heapify(a__ ) while h: __lowercase = hq.heappop(a__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __lowercase = u __lowercase = u.edges[v.id] hq.heapify(a__ ) for i in range(1 ,len(a__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
163
0
class UpperCamelCase_ : """simple docstring""" def __init__( self ): __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = {} def lowerCamelCase_ ( self , UpperCAmelCase ): if vertex not in self.adjacency: __lowerCamelCase = {} self.num_vertices += 1 def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): self.add_vertex(UpperCAmelCase ) self.add_vertex(UpperCAmelCase ) if head == tail: return __lowerCamelCase = weight __lowerCamelCase = weight def lowerCamelCase_ ( self ): __lowerCamelCase = self.get_edges() for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge edges.remove((tail, head, weight) ) for i in range(len(UpperCAmelCase ) ): __lowerCamelCase = list(edges[i] ) edges.sort(key=lambda UpperCAmelCase : e[2] ) for i in range(len(UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __lowerCamelCase = edges[i][2] + 1 for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge __lowerCamelCase = weight __lowerCamelCase = weight def __str__( self ): __lowerCamelCase = """""" for tail in self.adjacency: for head in self.adjacency[tail]: __lowerCamelCase = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase_ ( self ): __lowerCamelCase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase_ ( self ): return self.adjacency.keys() @staticmethod def lowerCamelCase_ ( UpperCAmelCase=None , UpperCAmelCase=None ): __lowerCamelCase = Graph() if vertices is None: __lowerCamelCase = [] if edges is None: __lowerCamelCase = [] for vertex in vertices: g.add_vertex(UpperCAmelCase ) for edge in edges: g.add_edge(*UpperCAmelCase ) return g class UpperCamelCase_ : """simple docstring""" def __init__( self ): __lowerCamelCase = {} __lowerCamelCase = {} def __len__( self ): return len(self.parent ) def lowerCamelCase_ ( self , UpperCAmelCase ): if item in self.parent: return self.find(UpperCAmelCase ) __lowerCamelCase = item __lowerCamelCase = 0 return item def lowerCamelCase_ ( self , UpperCAmelCase ): if item not in self.parent: return self.make_set(UpperCAmelCase ) if item != self.parent[item]: __lowerCamelCase = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.find(UpperCAmelCase ) __lowerCamelCase = self.find(UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __lowerCamelCase = roota return roota if self.rank[roota] < self.rank[roota]: __lowerCamelCase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __lowerCamelCase = roota return roota return None @staticmethod def lowerCamelCase_ ( UpperCAmelCase ): __lowerCamelCase = graph.num_vertices __lowerCamelCase = Graph.UnionFind() __lowerCamelCase = [] while num_components > 1: __lowerCamelCase = {} for vertex in graph.get_vertices(): __lowerCamelCase = -1 __lowerCamelCase = graph.get_edges() for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge edges.remove((tail, head, weight) ) for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge __lowerCamelCase = union_find.find(UpperCAmelCase ) __lowerCamelCase = union_find.find(UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowerCamelCase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowerCamelCase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = cheap_edge[vertex] if union_find.find(UpperCAmelCase ) != union_find.find(UpperCAmelCase ): union_find.union(UpperCAmelCase , UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) __lowerCamelCase = num_components - 1 __lowerCamelCase = Graph.build(edges=UpperCAmelCase ) return mst
479
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _a : int = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _a : Tuple = concatenate_datasets _a : Optional[int] = DownloadConfig _a : Any = DownloadManager _a : Dict = DownloadMode _a : str = DownloadConfig _a : int = DownloadMode _a : Tuple = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
479
1
'''simple docstring''' from __future__ import annotations A : Optional[Any] = list[list[int]] # assigning initial values to the grid A : int = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution A : Optional[int] = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowercase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) ->int: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowercase_ ( lowercase__ ) ->Tuple: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowercase_ ( lowercase__ ) ->List[str]: if location := find_empty_location(lowercase__ ): _snake_case , _snake_case: Union[str, Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _snake_case: Dict = digit if sudoku(lowercase__ ) is not None: return grid _snake_case: List[Any] = 0 return None def lowercase_ ( lowercase__ ) ->Union[str, Any]: for row in grid: for cell in row: print(lowercase__ , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') A : Any = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
711
'''simple docstring''' A : str = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } A : Union[str, Any] = {value: key for key, value in encode_dict.items()} def lowercase_ ( lowercase__ ) ->str: _snake_case: Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase_ ( lowercase__ ) ->str: if set(lowercase__ ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) _snake_case: List[Any] = '' for word in coded.split(): while len(lowercase__ ) != 0: decoded += decode_dict[word[:5]] _snake_case: Optional[int] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
273
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class _snake_case ( a__ ): @staticmethod @abstractmethod def snake_case__ ( _lowerCamelCase): raise NotImplementedError() @abstractmethod def snake_case__ ( self): raise NotImplementedError()
407
'''simple docstring''' # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __A =2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __A ={ # fairseq: 'wmt19-ru-en': {'length_penalty': 1.1}, 'wmt19-en-ru': {'length_penalty': 1.1_5}, 'wmt19-en-de': {'length_penalty': 1.0}, 'wmt19-de-en': {'length_penalty': 1.1}, # allenai: 'wmt16-en-de-dist-12-1': {'length_penalty': 0.6}, 'wmt16-en-de-dist-6-1': {'length_penalty': 0.6}, 'wmt16-en-de-12-1': {'length_penalty': 0.8}, 'wmt19-de-en-6-6-base': {'length_penalty': 0.6}, 'wmt19-de-en-6-6-big': {'length_penalty': 0.6}, } # this remaps the different models to their organization names __A ={} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __A ='facebook' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __A ='allenai' def _UpperCamelCase ( UpperCamelCase__ ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCAmelCase__ : Union[str, Any] = dict((re.sub(R"""@@$""" , """""" , UpperCamelCase__ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , UpperCamelCase__ ), v) for k, v in d.items() ) UpperCAmelCase__ : Optional[int] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] UpperCAmelCase__ : str = d[k] # restore return da def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): # prep assert os.path.exists(UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models UpperCAmelCase__ : str = basename(UpperCamelCase__ ) UpperCAmelCase__ : Optional[int] = dirname(UpperCamelCase__ ) UpperCAmelCase__ : List[str] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel UpperCAmelCase__ : Optional[int] = cls.hub_models() UpperCAmelCase__ : Optional[int] = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} UpperCAmelCase__ : Union[str, Any] = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) UpperCAmelCase__ : int = hub_utils.from_pretrained( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , archive_map=UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = vars(chkpt["""args"""]["""model"""] ) UpperCAmelCase__ : Dict = args["""source_lang"""] UpperCAmelCase__ : int = args["""target_lang"""] UpperCAmelCase__ : Dict = dirname(UpperCamelCase__ ) UpperCAmelCase__ : Any = basename(UpperCamelCase__ ) # dicts UpperCAmelCase__ : Any = os.path.join(UpperCamelCase__ , f'''dict.{src_lang}.txt''' ) UpperCAmelCase__ : List[str] = os.path.join(UpperCamelCase__ , f'''dict.{tgt_lang}.txt''' ) UpperCAmelCase__ : str = Dictionary.load(UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase__ : List[Any] = len(UpperCamelCase__ ) UpperCAmelCase__ : Tuple = os.path.join(UpperCamelCase__ , """vocab-src.json""" ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab UpperCAmelCase__ : List[str] = True for k in src_vocab.keys(): if not k.islower(): UpperCAmelCase__ : Optional[int] = False break UpperCAmelCase__ : Tuple = Dictionary.load(UpperCamelCase__ ) UpperCAmelCase__ : Any = rewrite_dict_keys(tgt_dict.indices ) UpperCAmelCase__ : Tuple = len(UpperCamelCase__ ) UpperCAmelCase__ : Any = os.path.join(UpperCamelCase__ , """vocab-tgt.json""" ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # merges_file (bpecodes) UpperCAmelCase__ : List[str] = os.path.join(UpperCamelCase__ , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" UpperCAmelCase__ : int = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): break with open(UpperCamelCase__ , encoding="""utf-8""" ) as fin: UpperCAmelCase__ : int = fin.read() UpperCAmelCase__ : Union[str, Any] = re.sub(R""" \d+$""" , """""" , UpperCamelCase__ , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as fout: fout.write(UpperCamelCase__ ) # model config UpperCAmelCase__ : Tuple = os.path.join(UpperCamelCase__ , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' UpperCAmelCase__ : int = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with UpperCAmelCase__ : List[Any] = 5 UpperCAmelCase__ : str = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: UpperCAmelCase__ : Any = best_score_hparams[model_dir]["""length_penalty"""] else: UpperCAmelCase__ : Dict = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # tokenizer config UpperCAmelCase__ : List[Any] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1_0_2_4, """do_lower_case""": do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # model UpperCAmelCase__ : Dict = chkpt["""models"""][0] UpperCAmelCase__ : int = model.state_dict() # rename keys to start with 'model.' UpperCAmelCase__ : List[Any] = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys UpperCAmelCase__ : Dict = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = FSMTConfig.from_pretrained(UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = FSMTForConditionalGeneration(UpperCamelCase__ ) # check that it loads ok model_new.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) # save UpperCAmelCase__ : Optional[int] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A =parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
407
1
"""simple docstring""" import warnings from functools import wraps from typing import Callable def lowerCamelCase__ ( _lowerCamelCase : Callable ) -> Callable: @wraps(_lowerCamelCase ) def _inner_fn(*_lowerCamelCase : int , **_lowerCamelCase : List[Any] ): warnings.warn( (F'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , _lowerCamelCase , ) return fn(*_lowerCamelCase , **_lowerCamelCase ) return _inner_fn
137
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a ( __snake_case ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Distribution , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> Optional[Any]: lowerCamelCase_ = 1.0 if scale is None else scale lowerCamelCase_ = 0.0 if loc is None else loc super().__init__(__SCREAMING_SNAKE_CASE , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__SCREAMING_SNAKE_CASE )] ) @property def UpperCamelCase ( self : Optional[Any] ) -> Tuple: return self.base_dist.mean * self.scale + self.loc @property def UpperCamelCase ( self : int ) -> Any: return self.base_dist.variance * self.scale**2 @property def UpperCamelCase ( self : List[Any] ) -> str: return self.variance.sqrt() class a ( nn.Module ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : Callable[..., Tuple[torch.Tensor]] , **__SCREAMING_SNAKE_CASE : str ) -> None: super().__init__(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = args_dim lowerCamelCase_ = nn.ModuleList([nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for dim in args_dim.values()] ) lowerCamelCase_ = domain_map def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> Tuple[torch.Tensor]: lowerCamelCase_ = [proj(__SCREAMING_SNAKE_CASE ) for proj in self.proj] return self.domain_map(*__SCREAMING_SNAKE_CASE ) class a ( nn.Module ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: super().__init__() lowerCamelCase_ = function def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , *__SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]: return self.function(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) class a : SCREAMING_SNAKE_CASE : type SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Dict[str, int] def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int = 1 ) -> None: lowerCamelCase_ = dim lowerCamelCase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]: if self.dim == 1: return self.distribution_class(*__SCREAMING_SNAKE_CASE ) else: return Independent(self.distribution_class(*__SCREAMING_SNAKE_CASE ) , 1 ) def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , ) -> Distribution: lowerCamelCase_ = self._base_distribution(__SCREAMING_SNAKE_CASE ) if loc is None and scale is None: return distr else: return AffineTransformed(__SCREAMING_SNAKE_CASE , loc=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , event_dim=self.event_dim ) @property def UpperCamelCase ( self : int ) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCamelCase ( self : Optional[Any] ) -> int: return len(self.event_shape ) @property def UpperCamelCase ( self : List[Any] ) -> float: return 0.0 def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> nn.Module: return ParameterProjection( in_features=__SCREAMING_SNAKE_CASE , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def UpperCamelCase ( self : List[str] , *__SCREAMING_SNAKE_CASE : torch.Tensor ) -> List[str]: raise NotImplementedError() @staticmethod def UpperCamelCase ( __SCREAMING_SNAKE_CASE : torch.Tensor ) -> torch.Tensor: return (x + torch.sqrt(torch.square(__SCREAMING_SNAKE_CASE ) + 4.0 )) / 2.0 class a ( __snake_case ): SCREAMING_SNAKE_CASE : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} SCREAMING_SNAKE_CASE : type = StudentT @classmethod def UpperCamelCase ( cls : str , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> Optional[Any]: lowerCamelCase_ = cls.squareplus(__SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps ) lowerCamelCase_ = 2.0 + cls.squareplus(__SCREAMING_SNAKE_CASE ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a ( __snake_case ): SCREAMING_SNAKE_CASE : Dict[str, int] = {"loc": 1, "scale": 1} SCREAMING_SNAKE_CASE : type = Normal @classmethod def UpperCamelCase ( cls : Dict , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> Tuple: lowerCamelCase_ = cls.squareplus(__SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a ( __snake_case ): SCREAMING_SNAKE_CASE : Dict[str, int] = {"total_count": 1, "logits": 1} SCREAMING_SNAKE_CASE : type = NegativeBinomial @classmethod def UpperCamelCase ( cls : Dict , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> Optional[Any]: lowerCamelCase_ = cls.squareplus(__SCREAMING_SNAKE_CASE ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Distribution: lowerCamelCase_ , lowerCamelCase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE ) else: return Independent(self.distribution_class(total_count=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE ) , 1 ) def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None ) -> Distribution: lowerCamelCase_ , lowerCamelCase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
137
1
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _lowerCamelCase ( A__ ): '''simple docstring''' A_ : Optional[Any] = ["""image_processor""", """tokenizer"""] A_ : Union[str, Any] = """BlipImageProcessor""" A_ : int = """AutoTokenizer""" def __init__( self : str , _A : int , _A : int , _A : Optional[Any] ) -> int: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __magic_name__ : Optional[int] = qformer_tokenizer def __call__( self : Optional[Any] , _A : ImageInput = None , _A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _A : bool = True , _A : Union[bool, str, PaddingStrategy] = False , _A : Union[bool, str, TruncationStrategy] = None , _A : Optional[int] = None , _A : int = 0 , _A : Optional[int] = None , _A : Optional[bool] = None , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = True , _A : Optional[Union[str, TensorType]] = None , **_A : Union[str, Any] , ) -> BatchFeature: if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) __magic_name__ : int = BatchFeature() if text is not None: __magic_name__ : Tuple = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __magic_name__ : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __magic_name__ : Dict = qformer_text_encoding.pop('input_ids' ) __magic_name__ : Tuple = qformer_text_encoding.pop('attention_mask' ) if images is not None: __magic_name__ : List[Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def __lowerCAmelCase ( self : Optional[int] , *_A : str , **_A : Union[str, Any] ) -> List[str]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def __lowerCAmelCase ( self : str , *_A : Dict , **_A : Tuple ) -> Union[str, Any]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: __magic_name__ : Dict = self.tokenizer.model_input_names __magic_name__ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __lowerCAmelCase ( self : str , _A : Optional[Any] , **_A : Dict ) -> Optional[Any]: if os.path.isfile(__lowerCamelCase ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __magic_name__ : Optional[Any] = os.path.join(__lowerCamelCase , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def __lowerCAmelCase ( cls : Tuple , _A : Optional[int] , **_A : List[Any] ) -> List[str]: __magic_name__ : List[str] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder='qformer_tokenizer' ) __magic_name__ : Optional[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
561
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = TransfoXLTokenizer a = False a = False def lowercase_ ( self : List[str] ) -> List[Any]: super().setUp() SCREAMING_SNAKE_CASE__ = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase_ ( self : int , **__lowerCamelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : Dict ) -> str: SCREAMING_SNAKE_CASE__ = '''<unk> UNwanted , running''' SCREAMING_SNAKE_CASE__ = '''<unk> unwanted, running''' return input_text, output_text def lowercase_ ( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(__lowerCamelCase , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [0, 4, 8, 7] ) def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = TransfoXLTokenizer(lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def lowercase_ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = TransfoXLTokenizer(lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase_ ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TransfoXLTokenizer(lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' SCREAMING_SNAKE_CASE__ = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowerCamelCase ) , __lowerCamelCase ) def lowercase_ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = len(__lowerCamelCase ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowerCamelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
493
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _UpperCamelCase : Tuple = logging.get_logger(__name__) class a ( a_ ): UpperCAmelCase_ : List[Any] =["pixel_values"] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = 1 / 2_5_5 , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) lowercase = size if size is not None else {'shortest_edge': 2_2_4} lowercase = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) lowercase = crop_size if crop_size is not None else {'height': 2_5_6, 'width': 2_5_6} lowercase = get_size_dict(_lowerCamelCase , param_name='crop_size' ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_rescale lowercase = rescale_factor lowercase = do_center_crop lowercase = crop_size lowercase = do_flip_channel_order def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PIL.Image.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): lowercase = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' ) lowercase = get_resize_output_image_size(_lowerCamelCase , size=size['shortest_edge'] , default_to_square=_lowerCamelCase ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): lowercase = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowerCamelCase , size=(size['height'], size['width']) , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ): return flip_channel_order(_lowerCamelCase , data_format=_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): lowercase = do_resize if do_resize is not None else self.do_resize lowercase = resample if resample is not None else self.resample lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowercase = size if size is not None else self.size lowercase = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(_lowerCamelCase , param_name='crop_size' ) lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) # All transformations expect numpy arrays. lowercase = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: lowercase = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_center_crop: lowercase = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images] if do_rescale: lowercase = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowercase = [self.flip_channel_order(image=_lowerCamelCase ) for image in images] lowercase = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] lowercase = {'pixel_values': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ): lowercase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowerCamelCase ): lowercase = target_sizes.numpy() lowercase = [] for idx in range(len(_lowerCamelCase ) ): lowercase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowerCamelCase ) lowercase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowerCamelCase ) else: lowercase = logits.argmax(dim=1 ) lowercase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
134
"""simple docstring""" import math import unittest def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class a ( unittest.TestCase ): def UpperCamelCase_ ( self ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def UpperCamelCase_ ( self ): with self.assertRaises(_lowerCamelCase ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
134
1
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
76
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
560
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : int = 1 snake_case_ : List[str] = 2 while i * i <= n: snake_case_ : int = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[int] = 1 snake_case_ : str = 1 while True: i += 1 t_num += i if count_divisors(SCREAMING_SNAKE_CASE__ ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
48
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__: Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self,*__lowerCamelCase,**__lowerCamelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''',__lowerCamelCase,) super().__init__(*__lowerCamelCase,**__lowerCamelCase )
190
import pytest import datasets # Import fixture modules as plugins a__: Dict = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple )->List[str]: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def UpperCamelCase__( UpperCamelCase__ : Dict )->List[Any]: config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int )->Union[str, Any]: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? A__ = tmp_path_factory.getbasetemp() / '''cache''' A__ = test_hf_cache_home / '''datasets''' A__ = test_hf_cache_home / '''metrics''' A__ = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(UpperCamelCase__ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(UpperCamelCase__ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(UpperCamelCase__ ) ) A__ = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(UpperCamelCase__ ) ) A__ = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(UpperCamelCase__ ) ) @pytest.fixture(autouse=UpperCamelCase__ , scope='''session''' ) def UpperCamelCase__( )->int: datasets.disable_progress_bar() @pytest.fixture(autouse=UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : str )->Tuple: # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , UpperCamelCase__ ) @pytest.fixture def UpperCamelCase__( UpperCamelCase__ : List[Any] )->Optional[Any]: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , UpperCamelCase__ )
190
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( __lowercase): """simple docstring""" snake_case__ : torch.FloatTensor class A__ ( nn.Module): """simple docstring""" def __init__( self: Dict , __a: Optional[Any]=3 , __a: Any=3 , __a: List[str]=("DownEncoderBlock2D",) , __a: List[str]=(64,) , __a: Union[str, Any]=2 , __a: Union[str, Any]=32 , __a: Union[str, Any]="silu" , __a: List[str]=True , )-> Dict: super().__init__() lowerCamelCase : Dict = layers_per_block lowerCamelCase : List[Any] = torch.nn.Convad( __a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowerCamelCase : str = None lowerCamelCase : str = nn.ModuleList([] ) # down lowerCamelCase : List[str] = block_out_channels[0] for i, down_block_type in enumerate(__a ): lowerCamelCase : Optional[int] = output_channel lowerCamelCase : Optional[Any] = block_out_channels[i] lowerCamelCase : List[str] = i == len(__a ) - 1 lowerCamelCase : str = get_down_block( __a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , ) self.down_blocks.append(__a ) # mid lowerCamelCase : int = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # out lowerCamelCase : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 ) lowerCamelCase : int = nn.SiLU() lowerCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels lowerCamelCase : List[str] = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 ) lowerCamelCase : str = False def a__ ( self: List[Any] , __a: Dict )-> Union[str, Any]: lowerCamelCase : Tuple = x lowerCamelCase : Optional[int] = self.conv_in(__a ) if self.training and self.gradient_checkpointing: def create_custom_forward(__a: Tuple ): def custom_forward(*__a: int ): return module(*__a ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: lowerCamelCase : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , use_reentrant=__a ) # middle lowerCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , use_reentrant=__a ) else: for down_block in self.down_blocks: lowerCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a ) # middle lowerCamelCase : List[Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a ) else: # down for down_block in self.down_blocks: lowerCamelCase : Tuple = down_block(__a ) # middle lowerCamelCase : Optional[int] = self.mid_block(__a ) # post-process lowerCamelCase : Tuple = self.conv_norm_out(__a ) lowerCamelCase : Optional[Any] = self.conv_act(__a ) lowerCamelCase : List[Any] = self.conv_out(__a ) return sample class A__ ( nn.Module): """simple docstring""" def __init__( self: Union[str, Any] , __a: Dict=3 , __a: Dict=3 , __a: Union[str, Any]=("UpDecoderBlock2D",) , __a: List[Any]=(64,) , __a: List[Any]=2 , __a: List[str]=32 , __a: Dict="silu" , __a: int="group" , )-> Union[str, Any]: super().__init__() lowerCamelCase : Dict = layers_per_block lowerCamelCase : List[str] = nn.Convad( __a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowerCamelCase : Optional[Any] = None lowerCamelCase : Optional[Any] = nn.ModuleList([] ) lowerCamelCase : Any = in_channels if norm_type == """spatial""" else None # mid lowerCamelCase : List[str] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # up lowerCamelCase : str = list(reversed(__a ) ) lowerCamelCase : List[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(__a ): lowerCamelCase : Optional[Any] = output_channel lowerCamelCase : str = reversed_block_out_channels[i] lowerCamelCase : int = i == len(__a ) - 1 lowerCamelCase : str = get_up_block( __a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , ) self.up_blocks.append(__a ) lowerCamelCase : Tuple = output_channel # out if norm_type == "spatial": lowerCamelCase : int = SpatialNorm(block_out_channels[0] , __a ) else: lowerCamelCase : str = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 ) lowerCamelCase : int = nn.SiLU() lowerCamelCase : Optional[int] = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 ) lowerCamelCase : Union[str, Any] = False def a__ ( self: List[Any] , __a: List[Any] , __a: List[str]=None )-> List[Any]: lowerCamelCase : List[str] = z lowerCamelCase : str = self.conv_in(__a ) lowerCamelCase : str = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__a: str ): def custom_forward(*__a: List[str] ): return module(*__a ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle lowerCamelCase : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a ) lowerCamelCase : Dict = sample.to(__a ) # up for up_block in self.up_blocks: lowerCamelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , __a , use_reentrant=__a ) else: # middle lowerCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a ) lowerCamelCase : Any = sample.to(__a ) # up for up_block in self.up_blocks: lowerCamelCase : List[str] = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a ) else: # middle lowerCamelCase : Tuple = self.mid_block(__a , __a ) lowerCamelCase : Union[str, Any] = sample.to(__a ) # up for up_block in self.up_blocks: lowerCamelCase : str = up_block(__a , __a ) # post-process if latent_embeds is None: lowerCamelCase : Union[str, Any] = self.conv_norm_out(__a ) else: lowerCamelCase : Optional[Any] = self.conv_norm_out(__a , __a ) lowerCamelCase : Optional[int] = self.conv_act(__a ) lowerCamelCase : List[Any] = self.conv_out(__a ) return sample class A__ ( nn.Module): """simple docstring""" def __init__( self: Tuple , __a: str , __a: Any , __a: str , __a: List[str]=None , __a: Optional[Any]="random" , __a: List[str]=False , __a: Optional[Any]=True )-> Optional[int]: super().__init__() lowerCamelCase : str = n_e lowerCamelCase : str = vq_embed_dim lowerCamelCase : int = beta lowerCamelCase : Union[str, Any] = legacy lowerCamelCase : List[Any] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowerCamelCase : int = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) lowerCamelCase : str = self.used.shape[0] lowerCamelCase : Dict = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCamelCase : Tuple = self.re_embed lowerCamelCase : Optional[int] = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: lowerCamelCase : Tuple = n_e lowerCamelCase : List[Any] = sane_index_shape def a__ ( self: int , __a: List[Any] )-> Tuple: lowerCamelCase : str = inds.shape assert len(__a ) > 1 lowerCamelCase : Optional[Any] = inds.reshape(ishape[0] , -1 ) lowerCamelCase : str = self.used.to(__a ) lowerCamelCase : Optional[Any] = (inds[:, :, None] == used[None, None, ...]).long() lowerCamelCase : Optional[Any] = match.argmax(-1 ) lowerCamelCase : Tuple = match.sum(2 ) < 1 if self.unknown_index == "random": lowerCamelCase : Dict = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowerCamelCase : Optional[int] = self.unknown_index return new.reshape(__a ) def a__ ( self: Union[str, Any] , __a: Optional[int] )-> Optional[Any]: lowerCamelCase : List[Any] = inds.shape assert len(__a ) > 1 lowerCamelCase : Any = inds.reshape(ishape[0] , -1 ) lowerCamelCase : Optional[Any] = self.used.to(__a ) if self.re_embed > self.used.shape[0]: # extra token lowerCamelCase : int = 0 # simply set to zero lowerCamelCase : Dict = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a ) return back.reshape(__a ) def a__ ( self: Any , __a: Optional[int] )-> Dict: # reshape z -> (batch, height, width, channel) and flatten lowerCamelCase : Dict = z.permute(0 , 2 , 3 , 1 ).contiguous() lowerCamelCase : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCamelCase : Union[str, Any] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 ) lowerCamelCase : Any = self.embedding(__a ).view(z.shape ) lowerCamelCase : Union[str, Any] = None lowerCamelCase : Union[str, Any] = None # compute loss for embedding if not self.legacy: lowerCamelCase : Optional[int] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowerCamelCase : Tuple = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowerCamelCase : List[str] = z + (z_q - z).detach() # reshape back to match original input shape lowerCamelCase : List[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowerCamelCase : Dict = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowerCamelCase : int = self.remap_to_used(__a ) lowerCamelCase : Optional[int] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowerCamelCase : Tuple = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def a__ ( self: Tuple , __a: List[str] , __a: List[str] )-> Union[str, Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: lowerCamelCase : List[Any] = indices.reshape(shape[0] , -1 ) # add batch axis lowerCamelCase : str = self.unmap_to_all(__a ) lowerCamelCase : List[str] = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowerCamelCase : Dict = self.embedding(__a ) if shape is not None: lowerCamelCase : List[str] = z_q.view(__a ) # reshape back to match original input shape lowerCamelCase : Optional[int] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( __lowercase): """simple docstring""" def __init__( self: Dict , __a: Optional[Any] , __a: List[Any]=False )-> str: lowerCamelCase : Optional[Any] = parameters lowerCamelCase , lowerCamelCase : List[Any] = torch.chunk(__a , 2 , dim=1 ) lowerCamelCase : Optional[int] = torch.clamp(self.logvar , -30.0 , 20.0 ) lowerCamelCase : Dict = deterministic lowerCamelCase : Tuple = torch.exp(0.5 * self.logvar ) lowerCamelCase : Union[str, Any] = torch.exp(self.logvar ) if self.deterministic: lowerCamelCase : Dict = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def a__ ( self: Any , __a: Optional[torch.Generator] = None )-> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype lowerCamelCase : Optional[Any] = randn_tensor( self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype ) lowerCamelCase : Optional[Any] = self.mean + self.std * sample return x def a__ ( self: Optional[Any] , __a: Tuple=None )-> Optional[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def a__ ( self: Optional[Any] , __a: Any , __a: List[Any]=[1, 2, 3] )-> str: if self.deterministic: return torch.Tensor([0.0] ) lowerCamelCase : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a ) def a__ ( self: List[Any] )-> Dict: return self.mean
42
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase :Tuple = logging.get_logger(__name__) __lowerCamelCase :Any = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class A__ ( __lowercase): """simple docstring""" snake_case__ : Tuple ='''glpn''' def __init__( self: Dict , __a: List[str]=3 , __a: Optional[int]=4 , __a: Dict=[2, 2, 2, 2] , __a: str=[8, 4, 2, 1] , __a: Optional[int]=[32, 64, 160, 256] , __a: Dict=[7, 3, 3, 3] , __a: Dict=[4, 2, 2, 2] , __a: Optional[Any]=[1, 2, 5, 8] , __a: Tuple=[4, 4, 4, 4] , __a: int="gelu" , __a: Union[str, Any]=0.0 , __a: str=0.0 , __a: Union[str, Any]=0.02 , __a: str=0.1 , __a: Union[str, Any]=1e-6 , __a: Any=64 , __a: Dict=10 , __a: Union[str, Any]=-1 , **__a: Optional[Any] , )-> Dict: super().__init__(**__a ) lowerCamelCase : Dict = num_channels lowerCamelCase : Any = num_encoder_blocks lowerCamelCase : Dict = depths lowerCamelCase : List[str] = sr_ratios lowerCamelCase : Dict = hidden_sizes lowerCamelCase : Tuple = patch_sizes lowerCamelCase : Optional[int] = strides lowerCamelCase : Optional[Any] = mlp_ratios lowerCamelCase : Union[str, Any] = num_attention_heads lowerCamelCase : List[str] = hidden_act lowerCamelCase : Any = hidden_dropout_prob lowerCamelCase : Optional[int] = attention_probs_dropout_prob lowerCamelCase : List[Any] = initializer_range lowerCamelCase : Dict = drop_path_rate lowerCamelCase : Any = layer_norm_eps lowerCamelCase : Optional[Any] = decoder_hidden_size lowerCamelCase : Tuple = max_depth lowerCamelCase : Optional[Any] = head_in_index
42
1
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = torch.nn.Linear(2 , 4 ) __SCREAMING_SNAKE_CASE = torch.optim.AdamW(model.parameters() , lr=1.0 ) __SCREAMING_SNAKE_CASE = torch.optim.lr_scheduler.OneCycleLR(a__ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __SCREAMING_SNAKE_CASE = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __SCREAMING_SNAKE_CASE = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def a__ ( a__ ): """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(a__ ) class lowerCAmelCase__ ( a ): """simple docstring""" @require_cuda def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = Accelerator(cpu=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE = GradientState() assert state.num_steps == 1 __SCREAMING_SNAKE_CASE = 4 assert state.num_steps == 4 assert state.sync_gradients is True __SCREAMING_SNAKE_CASE = False assert state.sync_gradients is False GradientState._reset_state() def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = create_components() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = accelerator.prepare(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def UpperCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = create_components() accelerator.prepare(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : int ): pass with patch("""torch.cuda.set_device""" , __SCREAMING_SNAKE_CASE ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): __SCREAMING_SNAKE_CASE = Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = create_components() accelerator.prepare(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = get_signature(__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__SCREAMING_SNAKE_CASE ) # make sure random weights don't match load_random_weights(__SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(__SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) < 1E-3 ) def UpperCAmelCase__ ( self : int ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = create_components() accelerator.prepare(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = get_signature(__SCREAMING_SNAKE_CASE ) # saving hook def save_config(__SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ): __SCREAMING_SNAKE_CASE = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(__SCREAMING_SNAKE_CASE , """data.json""" ) , """w""" ) as f: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # loading hook def load_config(__SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): with open(os.path.join(__SCREAMING_SNAKE_CASE , """data.json""" ) , """r""" ) as f: __SCREAMING_SNAKE_CASE = json.load(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = config["""class_name"""] __SCREAMING_SNAKE_CASE = accelerator.register_save_state_pre_hook(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = accelerator.register_load_state_pre_hook(__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__SCREAMING_SNAKE_CASE ) # make sure random weights don't match with hooks load_random_weights(__SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) > 1E-3 ) # random class name to verify correct one is loaded __SCREAMING_SNAKE_CASE = """random""" # make sure loaded weights match with hooks accelerator.load_state(__SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__SCREAMING_SNAKE_CASE ) # make sure random weights don't match with hooks removed load_random_weights(__SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) > 1E-3 ) # random class name to verify correct one is loaded __SCREAMING_SNAKE_CASE = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(__SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def UpperCAmelCase__ ( self : Dict ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = create_components() __SCREAMING_SNAKE_CASE = None # This should work __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertTrue(dummy_obj is None ) def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = create_components() __SCREAMING_SNAKE_CASE = [1, 2, 3] # This should work __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual( getattr(__SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(__SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" from transformers import AutoModelForCausalLM __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__SCREAMING_SNAKE_CASE , device_map={"""""": 0} , ) __SCREAMING_SNAKE_CASE = Accelerator() # This should work __SCREAMING_SNAKE_CASE = accelerator.prepare(__SCREAMING_SNAKE_CASE ) @slow @require_bnb def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" from transformers import AutoModelForCausalLM __SCREAMING_SNAKE_CASE = Accelerator() with init_empty_weights(): __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() __SCREAMING_SNAKE_CASE = infer_auto_device_map(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=__SCREAMING_SNAKE_CASE , load_in_abit=__SCREAMING_SNAKE_CASE , llm_inta_enable_fpaa_cpu_offload=__SCREAMING_SNAKE_CASE ) # This should not work and get value error with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = accelerator.prepare(__SCREAMING_SNAKE_CASE ) @slow @require_bnb @require_multi_gpu def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" from transformers import AutoModelForCausalLM __SCREAMING_SNAKE_CASE = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() __SCREAMING_SNAKE_CASE = infer_auto_device_map(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__SCREAMING_SNAKE_CASE , device_map=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = Accelerator() # This should not work and get value error with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = accelerator.prepare(__SCREAMING_SNAKE_CASE ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) __SCREAMING_SNAKE_CASE = infer_auto_device_map(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__SCREAMING_SNAKE_CASE , device_map=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = Accelerator() # This should work __SCREAMING_SNAKE_CASE = accelerator.prepare(__SCREAMING_SNAKE_CASE ) @require_cuda def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = torch.nn.Linear(10 , 10 ) __SCREAMING_SNAKE_CASE = torch.optim.SGD(model.parameters() , lr=0.01 ) __SCREAMING_SNAKE_CASE = Accelerator(cpu=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = accelerator.prepare(__SCREAMING_SNAKE_CASE )
627
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = tokenizer(example["""content"""] , truncation=a__ )["""input_ids"""] __SCREAMING_SNAKE_CASE = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments) UpperCAmelCase : Optional[Any] = parser.parse_args() if args.num_workers is None: UpperCAmelCase : List[Any] = multiprocessing.cpu_count() UpperCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase : Optional[int] = time.time() UpperCAmelCase : Any = load_dataset(args.dataset_name, split='train') print(f"""Dataset loaded in {time.time()-t_start:.2f}s""") UpperCAmelCase : List[str] = time.time() UpperCAmelCase : List[str] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(f"""Dataset tokenized in {time.time()-t_start:.2f}s""") UpperCAmelCase : List[Any] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
627
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = ["pixel_values"] def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Dict[str, int]] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None: super().__init__(**__SCREAMING_SNAKE_CASE ) a_ : Tuple = size if size is not None else {'''shortest_edge''': 256} a_ : str = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) a_ : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} a_ : str = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) a_ : Tuple = do_resize a_ : str = size a_ : Any = resample a_ : Optional[Any] = do_center_crop a_ : Union[str, Any] = crop_size a_ : List[Any] = do_rescale a_ : Dict = rescale_factor a_ : Tuple = do_normalize a_ : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a_ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: a_ : List[Any] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) a_ : str = get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=__SCREAMING_SNAKE_CASE ) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> np.ndarray: a_ : Dict = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(__SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : str ) -> np.ndarray: return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> np.ndarray: return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[float] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : List[str] , ) -> Union[str, Any]: a_ : Optional[int] = do_resize if do_resize is not None else self.do_resize a_ : Tuple = size if size is not None else self.size a_ : List[Any] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) a_ : str = resample if resample is not None else self.resample a_ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop a_ : Optional[int] = crop_size if crop_size is not None else self.crop_size a_ : List[str] = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) a_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale a_ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize a_ : str = image_mean if image_mean is not None else self.image_mean a_ : Union[str, Any] = image_std if image_std is not None else self.image_std a_ : Dict = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. a_ : Union[str, Any] = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: a_ : List[str] = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: a_ : List[Any] = [self.center_crop(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: a_ : List[Any] = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: a_ : Dict = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] a_ : Optional[Any] = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] a_ : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Tuple] = None ) -> Dict: a_ : List[str] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__SCREAMING_SNAKE_CASE ): a_ : Tuple = target_sizes.numpy() a_ : str = [] for idx in range(len(__SCREAMING_SNAKE_CASE ) ): a_ : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) a_ : List[str] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__SCREAMING_SNAKE_CASE ) else: a_ : List[str] = logits.argmax(dim=1 ) a_ : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
666
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
74
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowercase_ = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Tuple , *_A : Optional[int] , **_A : Tuple ): """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
74
1
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def UpperCAmelCase ( A__: Tuple ) -> List[str]: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowercase( _A ): '''simple docstring''' @staticmethod def snake_case_ ( __a ): __lowerCamelCase : Any = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=__a , default=__a , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=__a , help='Name of the model to download' ) download_parser.set_defaults(func=__a ) def __init__( self , __a , __a , __a , __a ): __lowerCamelCase : List[Any] = model __lowerCamelCase : int = cache __lowerCamelCase : Union[str, Any] = force __lowerCamelCase : Dict = trust_remote_code def snake_case_ ( self ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
713
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : List[Any] = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } a_ : Tuple = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } a_ : Optional[Any] = '''</w>''' a_ : Dict = '''@@ ''' def UpperCAmelCase ( A__: Optional[Any] ) -> Optional[int]: __lowerCamelCase : Any = set() __lowerCamelCase : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase : Optional[int] = char return pairs # Speech2Text2 has no max input length a_ : Union[str, Any] = {'''facebook/s2t-wav2vec2-large-en-de''': 10_24} class __lowercase( lowercase__ ): '''simple docstring''' __a : List[str] = VOCAB_FILES_NAMES __a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Dict = ['input_ids', 'attention_mask'] def __init__( self , __a , __a="<s>" , __a="<pad>" , __a="</s>" , __a="<unk>" , __a=False , __a=None , **__a , ): super().__init__( unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , do_lower_case=__a , **__a , ) __lowerCamelCase : List[Any] = do_lower_case with open(__a , encoding='utf-8' ) as vocab_handle: __lowerCamelCase : str = json.load(__a ) __lowerCamelCase : int = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) __lowerCamelCase : str = None __lowerCamelCase : Optional[int] = None else: with open(__a , encoding='utf-8' ) as merges_handle: __lowerCamelCase : Optional[int] = merges_handle.read().split('\n' )[:-1] __lowerCamelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] __lowerCamelCase : Any = dict(zip(__a , range(len(__a ) ) ) ) __lowerCamelCase : List[str] = {} @property def snake_case_ ( self ): return len(self.decoder ) def snake_case_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self , __a ): __lowerCamelCase : Optional[Any] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __lowerCamelCase : Union[str, Any] = get_pairs(__a ) if not pairs: return token while True: __lowerCamelCase : Dict = min(__a , key=lambda __a : self.bpe_ranks.get(__a , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase : Optional[Any] = bigram __lowerCamelCase : Tuple = [] __lowerCamelCase : Union[str, Any] = 0 while i < len(__a ): try: __lowerCamelCase : Union[str, Any] = word.index(__a , __a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase : Any = j if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase : List[str] = tuple(__a ) __lowerCamelCase : Any = new_word if len(__a ) == 1: break else: __lowerCamelCase : Tuple = get_pairs(__a ) __lowerCamelCase : Optional[int] = ' '.join(__a ) if word == "\n " + BPE_TOKEN_MERGES: __lowerCamelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(__a ): __lowerCamelCase : Tuple = word.replace(__a , '' ) __lowerCamelCase : Optional[Any] = word.replace(' ' , __a ) __lowerCamelCase : Union[str, Any] = word return word def snake_case_ ( self , __a ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: __lowerCamelCase : Any = text.lower() __lowerCamelCase : Union[str, Any] = text.split() __lowerCamelCase : str = [] for token in text: if token: split_tokens.extend(list(self.bpe(__a ).split(' ' ) ) ) return split_tokens def snake_case_ ( self , __a ): return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def snake_case_ ( self , __a ): __lowerCamelCase : int = self.decoder.get(__a , self.unk_token ) return result def snake_case_ ( self , __a ): __lowerCamelCase : Any = ' '.join(__a ) # make sure @@ tokens are concatenated __lowerCamelCase : Union[str, Any] = ''.join(string.split(__a ) ) return string def snake_case_ ( self , __a , __a = None ): if not os.path.isdir(__a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase : int = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : Any = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + '\n' ) __lowerCamelCase : Optional[int] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__a , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) __lowerCamelCase : Optional[int] = token_index writer.write(' '.join(__a ) + '\n' ) index += 1 return (vocab_file, merges_file)
263
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowercase = get_tests_dir("""fixtures""") class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = mock.Mock() _lowerCAmelCase = 500 _lowerCAmelCase = {} _lowerCAmelCase = HTTPError _lowerCAmelCase = {} # Download this model to make sure it's in the cache. _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=_lowercase ) as mock_head: _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json""" ) @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def _lowercase ( cls ): """simple docstring""" _lowerCAmelCase = TOKEN HfFolder.save_token(_lowercase ) @classmethod def _lowercase ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-feature-extractor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-feature-extractor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-feature-extractor""" ) except HTTPError: pass def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_lowercase ) feature_extractor.push_to_hub("""test-feature-extractor""" , use_auth_token=self._token ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowercase , repo_id="""test-feature-extractor""" , push_to_hub=_lowercase , use_auth_token=self._token ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_lowercase ) feature_extractor.push_to_hub("""valid_org/test-feature-extractor""" , use_auth_token=self._token ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowercase , repo_id="""valid_org/test-feature-extractor-org""" , push_to_hub=_lowercase , use_auth_token=self._token ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor-org""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) def _lowercase ( self ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() _lowerCAmelCase = CustomFeatureExtractor.from_pretrained(_lowercase ) feature_extractor.push_to_hub("""test-dynamic-feature-extractor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor"""} , ) _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=_lowercase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , """CustomFeatureExtractor""" )
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Optional[Any] ={ '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict =['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] =[ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys A_ : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
274
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = "▁" __lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : str = BigBirdTokenizer __SCREAMING_SNAKE_CASE : str = BigBirdTokenizerFast __SCREAMING_SNAKE_CASE : Tuple = True __SCREAMING_SNAKE_CASE : List[Any] = True def UpperCAmelCase__ ( self : int ): super().setUp() _UpperCAmelCase = self.tokenizer_class(__UpperCamelCase , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = "<s>" _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(__UpperCamelCase ) , 1_004 ) def UpperCAmelCase__ ( self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def UpperCAmelCase__ ( self : Union[str, Any] ): if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = "I was born in 92000, and this is falsé." _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = BigBirdTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) _UpperCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [285, 46, 10, 170, 382] , ) _UpperCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def UpperCAmelCase__ ( self : Any ): return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def UpperCAmelCase__ ( self : Any ): _UpperCAmelCase = "Hello World!" _UpperCAmelCase = [65, 18_536, 2_260, 101, 66] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @slow def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off _UpperCAmelCase = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @require_torch @slow def UpperCAmelCase__ ( self : Optional[int] ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _UpperCAmelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCAmelCase = " ".join(__UpperCamelCase ) _UpperCAmelCase = self.big_tokenizer.encode_plus(__UpperCamelCase , return_tensors="pt" , return_token_type_ids=__UpperCamelCase ) _UpperCAmelCase = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__UpperCamelCase ) _UpperCAmelCase = BigBirdConfig(attention_type="original_full" ) _UpperCAmelCase = BigBirdModel(__UpperCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCamelCase ) model(**__UpperCamelCase ) @slow def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) _UpperCAmelCase = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): # fmt: off _UpperCAmelCase = {"input_ids": [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
129
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __lowerCAmelCase = "sshleifer/bart-tiny-random" __lowerCAmelCase = "patrickvonplaten/t5-tiny-random" @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : Tuple ): return AutoConfig.from_pretrained(__UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=__UpperCamelCase ) def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=__UpperCamelCase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def UpperCAmelCase__ ( self : str ): with self.assertRaises(__UpperCamelCase ): create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=__UpperCamelCase , d=__UpperCamelCase )
129
1
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = 42 snake_case_ = None snake_case_ = None def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" def is_valid_tree(a_ ) -> bool: if node is None: return True if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(lowerCamelCase_ ): raise ValueError( "Each node should be type of TreeNode and data should be float." ) def is_binary_search_tree_recursive_check( a_ , a_ , a_ ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , lowerCamelCase_ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , lowerCamelCase_ ) ) return is_binary_search_tree_recursive_check(lowerCamelCase_ , -float("inf" ) , float("inf" ) ) if __name__ == "__main__": import doctest doctest.testmod()
55
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : List[str] = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] _lowercase : Tuple = True if 'large' in model_name or 'huge' in model_name else False _lowercase : Any = True if 'large' in model_name or 'huge' in model_name else False _lowercase : Dict = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _lowercase : Any = [3, 3, 3, 3] _lowercase : Any = [5, 5, 5, 5] elif "fl4" in model_name: _lowercase : Dict = [4, 4, 4, 4] _lowercase : Tuple = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _lowercase : str = [3, 3, 3, 3] if "lrf" in model_name: _lowercase : Optional[int] = [3, 3, 3, 3] else: _lowercase : Dict = [2, 2, 2, 2] if "tiny" in model_name: _lowercase : List[str] = 96 elif "small" in model_name: _lowercase : Dict = 96 elif "base" in model_name: _lowercase : Optional[int] = 128 elif "large" in model_name: _lowercase : List[Any] = 192 elif "xlarge" in model_name: _lowercase : Optional[Any] = 256 elif "huge" in model_name: _lowercase : Dict = 352 # set label information _lowercase : int = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: _lowercase : str = 'imagenet-22k-id2label.json' else: _lowercase : Tuple = 'imagenet-1k-id2label.json' _lowercase : Union[str, Any] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) _lowercase : int = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} _lowercase : Any = {v: k for k, v in idalabel.items()} _lowercase : Optional[Any] = FocalNetConfig( embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , focal_levels=lowerCamelCase_ , focal_windows=lowerCamelCase_ , use_conv_embed=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , use_post_layernorm=lowerCamelCase_ , use_layerscale=lowerCamelCase_ , ) return config def UpperCamelCase_( lowerCamelCase_ ) -> Any: if "patch_embed.proj" in name: _lowercase : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : str = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _lowercase : Any = 'encoder.' + name if "encoder.layers" in name: _lowercase : int = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: _lowercase : Tuple = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: _lowercase : str = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _lowercase : List[str] = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _lowercase : int = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _lowercase : Any = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": _lowercase : Any = 'layernorm.weight' if name == "norm.bias": _lowercase : Tuple = 'layernorm.bias' if "head" in name: _lowercase : Optional[int] = name.replace('head' , 'classifier' ) else: _lowercase : Optional[int] = 'focalnet.' + name return name def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ) -> str: # fmt: off _lowercase : Dict = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on _lowercase : Dict = model_name_to_url[model_name] print('Checkpoint URL: ' , lowerCamelCase_ ) _lowercase : List[str] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): _lowercase : Dict = state_dict.pop(lowerCamelCase_ ) _lowercase : Optional[int] = val _lowercase : Union[str, Any] = get_focalnet_config(lowerCamelCase_ ) _lowercase : Optional[Any] = FocalNetForImageClassification(lowerCamelCase_ ) model.eval() # load state dict model.load_state_dict(lowerCamelCase_ ) # verify conversion _lowercase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase : Any = BitImageProcessor( do_resize=lowerCamelCase_ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCamelCase_ , crop_size=224 , do_normalize=lowerCamelCase_ , image_mean=lowerCamelCase_ , image_std=lowerCamelCase_ , ) _lowercase : List[str] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) _lowercase : List[Any] = processor(images=lowerCamelCase_ , return_tensors='pt' ) _lowercase : str = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) _lowercase : List[str] = image_transforms(lowerCamelCase_ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , lowerCamelCase_ , atol=1e-4 ) _lowercase : Dict = model(**lowerCamelCase_ ) _lowercase : int = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _lowercase : Optional[Any] = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": _lowercase : int = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": _lowercase : str = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": _lowercase : Any = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": _lowercase : List[Any] = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": _lowercase : int = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
89
0
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
364
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = {"tokenizer_file": "tokenizer.json"} _lowerCAmelCase : Tuple = { "tokenizer_file": { "bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json", "bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json", }, } class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = ["""input_ids""", """attention_mask"""] UpperCAmelCase_ = None def __init__( self :List[Any] , lowerCamelCase :Union[str, Any]=None , lowerCamelCase :Optional[Any]=None , lowerCamelCase :List[Any]=None , lowerCamelCase :Union[str, Any]="<unk>" , lowerCamelCase :Union[str, Any]="<s>" , lowerCamelCase :Union[str, Any]="</s>" , lowerCamelCase :str="<pad>" , lowerCamelCase :Any=False , lowerCamelCase :Optional[Any]=False , **lowerCamelCase :Optional[Any] , ) -> Any: super().__init__( lowerCamelCase , lowerCamelCase , tokenizer_file=lowerCamelCase , unk_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , pad_token=lowerCamelCase , add_prefix_space=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase , **lowerCamelCase , ) UpperCAmelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase ) != add_prefix_space: UpperCAmelCase__ = getattr(lowerCamelCase , pre_tok_state.pop("type" ) ) UpperCAmelCase__ = add_prefix_space UpperCAmelCase__ = pre_tok_class(**lowerCamelCase ) UpperCAmelCase__ = add_prefix_space def UpperCAmelCase_ ( self :int , *lowerCamelCase :Any , **lowerCamelCase :int ) -> BatchEncoding: UpperCAmelCase__ = kwargs.get("is_split_into_words" , lowerCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' " pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase , **lowerCamelCase ) def UpperCAmelCase_ ( self :Any , *lowerCamelCase :List[Any] , **lowerCamelCase :Union[str, Any] ) -> BatchEncoding: UpperCAmelCase__ = kwargs.get("is_split_into_words" , lowerCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' " pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase , **lowerCamelCase ) def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :str , lowerCamelCase :Optional[str] = None ) -> Tuple[str]: UpperCAmelCase__ = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :"Conversation" ) -> List[int]: UpperCAmelCase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) + [self.eos_token_id] ) if len(lowerCamelCase ) > self.model_max_length: UpperCAmelCase__ = input_ids[-self.model_max_length :] return input_ids
364
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __A : int = None __A : str = logging.get_logger(__name__) __A : Optional[int] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __A : Tuple = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } __A : Dict = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } __A : Tuple = "▁" class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = BigBirdTokenizer __magic_name__ = ['input_ids', 'attention_mask'] __magic_name__ = [] def __init__( self , snake_case_=None , snake_case_=None , snake_case_="<unk>" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="[SEP]" , snake_case_="[MASK]" , snake_case_="[CLS]" , **snake_case_ , ): _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( snake_case_ , tokenizer_file=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , ) _A = vocab_file _A = False if not self.vocab_file else True def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _A = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
27
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def __UpperCAmelCase ( a_ , a_): snake_case_ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' snake_case_ = Image.open(requests.get(snake_case__ , stream=snake_case__).raw).convert('RGB') snake_case_ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11)), ]) snake_case_ = transform(snake_case__).unsqueeze(0).to(snake_case__) return image def __UpperCAmelCase ( a_): if "visual_encoder" in key: snake_case_ = re.sub('visual_encoder*' , 'vision_model.encoder' , snake_case__) if "blocks" in key: snake_case_ = re.sub(R'blocks' , 'layers' , snake_case__) if "attn" in key: snake_case_ = re.sub(R'attn' , 'self_attn' , snake_case__) if "norm1" in key: snake_case_ = re.sub(R'norm1' , 'layer_norm1' , snake_case__) if "norm2" in key: snake_case_ = re.sub(R'norm2' , 'layer_norm2' , snake_case__) if "encoder.norm" in key: snake_case_ = re.sub(R'encoder.norm' , 'post_layernorm' , snake_case__) if "encoder.patch_embed.proj" in key: snake_case_ = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , snake_case__) if "encoder.pos_embed" in key: snake_case_ = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , snake_case__) if "encoder.cls_token" in key: snake_case_ = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , snake_case__) if "self_attn" in key: snake_case_ = re.sub(R'self_attn.proj' , 'self_attn.projection' , snake_case__) return key @torch.no_grad() def __UpperCAmelCase ( a_ , a_=None): if config_path is not None: snake_case_ = BlipConfig.from_pretrained(snake_case__) else: snake_case_ = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={}) snake_case_ = BlipForConditionalGeneration(snake_case__).eval() snake_case_ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' snake_case_ = blip_decoder(pretrained=snake_case__ , image_size=3_84 , vit='base') snake_case_ = pt_model.eval() snake_case_ = pt_model.state_dict() for key in modified_state_dict.copy(): snake_case_ = modified_state_dict.pop(snake_case__) snake_case_ = rename_key(snake_case__) snake_case_ = value hf_model.load_state_dict(snake_case__) snake_case_ = 3_84 snake_case_ = load_demo_image(image_size=snake_case__ , device='cpu') snake_case_ = BertTokenizer.from_pretrained('bert-base-uncased') snake_case_ = tokenizer(['a picture of']).input_ids snake_case_ = hf_model.generate(snake_case__ , snake_case__) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] snake_case_ = hf_model.generate(snake_case__) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(snake_case__) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' snake_case_ = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) snake_case_ = blip_vqa(pretrained=snake_case__ , image_size=snake_case__ , vit='base') vqa_model.eval() snake_case_ = vqa_model.state_dict() for key in modified_state_dict.copy(): snake_case_ = modified_state_dict.pop(snake_case__) snake_case_ = rename_key(snake_case__) snake_case_ = value snake_case_ = BlipForQuestionAnswering(snake_case__) hf_vqa_model.load_state_dict(snake_case__) snake_case_ = ['How many dogs are in this image?'] snake_case_ = tokenizer(snake_case__ , return_tensors='pt').input_ids snake_case_ = hf_vqa_model.generate(snake_case__ , snake_case__) print(tokenizer.decode(answer[0])) assert tokenizer.decode(answer[0]) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa') snake_case_ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' snake_case_ = blip_itm(pretrained=snake_case__ , image_size=snake_case__ , vit='base') itm_model.eval() snake_case_ = itm_model.state_dict() for key in modified_state_dict.copy(): snake_case_ = modified_state_dict.pop(snake_case__) snake_case_ = rename_key(snake_case__) snake_case_ = value snake_case_ = BlipForImageTextRetrieval(snake_case__) snake_case_ = ['A picture of a woman with a dog sitting in a beach'] snake_case_ = tokenizer( snake_case__ , return_tensors='pt' , padding='max_length' , truncation=snake_case__ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(snake_case__) hf_itm_model.eval() snake_case_ = hf_itm_model(snake_case__ , snake_case__ , use_itm_head=snake_case__) snake_case_ = hf_itm_model(snake_case__ , snake_case__ , use_itm_head=snake_case__) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1)[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm') if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowercase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
717
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowercase = get_tests_dir("fixtures") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down snake_case_ = mock.Mock() snake_case_ = 5_00 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Download this model to make sure it's in the cache. snake_case_ = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=a ) as mock_head: snake_case_ = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def _UpperCamelCase ( self ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 snake_case_ = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def _UpperCamelCase ( self ) -> Optional[int]: with self.assertRaises(a ): # config is in subfolder, the following should not work without specifying the subfolder snake_case_ = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) snake_case_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' ) self.assertIsNotNone(a ) @is_staging_test class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def _UpperCamelCase ( cls ) -> int: snake_case_ = TOKEN HfFolder.save_token(a ) @classmethod def _UpperCamelCase ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' ) except HTTPError: pass def _UpperCamelCase ( self ) -> Dict: snake_case_ = ViTImageProcessor.from_pretrained(a ) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( a , repo_id='test-image-processor' , push_to_hub=a , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(a , getattr(a , a ) ) def _UpperCamelCase ( self ) -> int: snake_case_ = ViTImageProcessor.from_pretrained(a ) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( a , repo_id='valid_org/test-image-processor-org' , push_to_hub=a , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(a , getattr(a , a ) ) def _UpperCamelCase ( self ) -> int: CustomImageProcessor.register_for_auto_class() snake_case_ = CustomImageProcessor.from_pretrained(a ) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) snake_case_ = AutoImageProcessor.from_pretrained( F'''{USER}/test-dynamic-image-processor''' , trust_remote_code=a ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
607
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _A ( UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str=0 ) -> Any: __UpperCAmelCase =floats_tensor((1, 3, 128, 128) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase =np.random.RandomState(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : Optional[Any] ) -> int: __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.get_dummy_inputs() __UpperCAmelCase =pipe(**__SCREAMING_SNAKE_CASE ).images __UpperCAmelCase =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __UpperCAmelCase =np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _a ( self : Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.get_dummy_inputs() __UpperCAmelCase =pipe(**__SCREAMING_SNAKE_CASE ).images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase =np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _a ( self : Optional[Any] ) -> Dict: __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) # warmup pass to apply optimizations __UpperCAmelCase =pipe(**self.get_dummy_inputs() ) __UpperCAmelCase =self.get_dummy_inputs() __UpperCAmelCase =pipe(**__SCREAMING_SNAKE_CASE ).images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase =np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _a ( self : List[Any] ) -> List[str]: __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.get_dummy_inputs() __UpperCAmelCase =pipe(**__SCREAMING_SNAKE_CASE ).images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase =np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _a ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.get_dummy_inputs() __UpperCAmelCase =pipe(**__SCREAMING_SNAKE_CASE ).images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase =np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _a ( self : Union[str, Any] ) -> Dict: __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.get_dummy_inputs() __UpperCAmelCase =pipe(**__SCREAMING_SNAKE_CASE ).images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase =np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" @property def _a ( self : List[str] ) -> Optional[int]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Dict ) -> int: __UpperCAmelCase =ort.SessionOptions() __UpperCAmelCase =False return options def _a ( self : Dict ) -> Any: __UpperCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __UpperCAmelCase =init_image.resize((768, 512) ) # using the PNDM scheduler by default __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase ="""A fantasy landscape, trending on artstation""" __UpperCAmelCase =np.random.RandomState(0 ) __UpperCAmelCase =pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , ) __UpperCAmelCase =output.images __UpperCAmelCase =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __UpperCAmelCase =np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _a ( self : List[str] ) -> str: __UpperCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __UpperCAmelCase =init_image.resize((768, 512) ) __UpperCAmelCase =LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase ="""A fantasy landscape, trending on artstation""" __UpperCAmelCase =np.random.RandomState(0 ) __UpperCAmelCase =pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , ) __UpperCAmelCase =output.images __UpperCAmelCase =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __UpperCAmelCase =np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
68
from __future__ import annotations def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> int: if len(lowercase ) < k or k < 0: raise ValueError("Invalid Input" ) __snake_case : Tuple = sum(array[:k] ) for i in range(len(lowercase ) - k ): __snake_case : str = current_sum - array[i] + array[i + k] __snake_case : List[str] = max(lowercase , lowercase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() _UpperCamelCase = [randint(-1000, 1000) for i in range(100)] _UpperCamelCase = randint(0, 110) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
243
0
def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ): """simple docstring""" UpperCAmelCase__ :List[Any] = right or len(__A ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__A , __A , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
708
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase__ ( UpperCAmelCase__): '''simple docstring''' __a : Optional[int] = ["""image_processor""", """tokenizer"""] __a : int = """OwlViTImageProcessor""" __a : Optional[int] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , A=None , A=None , **A ) ->str: UpperCAmelCase__ :str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , A , ) UpperCAmelCase__ :List[Any] = kwargs.pop('feature_extractor' ) UpperCAmelCase__ :Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A , A ) def __call__( self , A=None , A=None , A=None , A="max_length" , A="np" , **A ) ->Tuple: if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A , A ) or (isinstance(A , A ) and not isinstance(text[0] , A )): UpperCAmelCase__ :Optional[Any] = [self.tokenizer(A , padding=A , return_tensors=A , **A )] elif isinstance(A , A ) and isinstance(text[0] , A ): UpperCAmelCase__ :Dict = [] # Maximum number of queries across batch UpperCAmelCase__ :Dict = max([len(A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A ) != max_num_queries: UpperCAmelCase__ :List[str] = t + [' '] * (max_num_queries - len(A )) UpperCAmelCase__ :List[str] = self.tokenizer(A , padding=A , return_tensors=A , **A ) encodings.append(A ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": UpperCAmelCase__ :Any = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :int = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase__ :int = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :Optional[Any] = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase__ :List[str] = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) UpperCAmelCase__ :int = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase__ :List[str] = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :List[str] = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) UpperCAmelCase__ :Optional[int] = BatchEncoding() UpperCAmelCase__ :Any = input_ids UpperCAmelCase__ :str = attention_mask if query_images is not None: UpperCAmelCase__ :Optional[int] = BatchEncoding() UpperCAmelCase__ :Tuple = self.image_processor( A , return_tensors=A , **A ).pixel_values UpperCAmelCase__ :str = query_pixel_values if images is not None: UpperCAmelCase__ :Optional[int] = self.image_processor(A , return_tensors=A , **A ) if text is not None and images is not None: UpperCAmelCase__ :Optional[int] = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase__ :int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def A__ ( self , *A , **A ) ->Tuple: return self.image_processor.post_process(*A , **A ) def A__ ( self , *A , **A ) ->Tuple: return self.image_processor.post_process_object_detection(*A , **A ) def A__ ( self , *A , **A ) ->Any: return self.image_processor.post_process_image_guided_detection(*A , **A ) def A__ ( self , *A , **A ) ->Optional[int]: return self.tokenizer.batch_decode(*A , **A ) def A__ ( self , *A , **A ) ->Dict: return self.tokenizer.decode(*A , **A ) @property def A__ ( self ) ->Dict: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , A , ) return self.image_processor_class @property def A__ ( self ) ->Dict: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , A , ) return self.image_processor
433
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: create_state_space_tree(lowercase ,[] ,0 ,[0 for i in range(len(lowercase ) )] ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,) -> None: if index == len(lowercase ): print(lowercase ) return for i in range(len(lowercase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case : List[Any] = True create_state_space_tree(lowercase ,lowercase ,index + 1 ,lowercase ) current_sequence.pop() snake_case : str = False lowerCamelCase : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCamelCase : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
587
def _a ( UpperCAmelCase = 1000000 ) -> int: """simple docstring""" lowerCamelCase__ : int = set(range(3 , UpperCAmelCase , 2 ) ) primes.add(2 ) for p in range(3 , UpperCAmelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCAmelCase , UpperCAmelCase ) ) ) lowerCamelCase__ : List[Any] = [float(UpperCAmelCase ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCAmelCase , limit + 1 , UpperCAmelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
315
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer UpperCAmelCase_ : Optional[Any] = logging.getLogger(__name__) def _lowerCAmelCase ( ) -> Any: lowerCAmelCase_ : int = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=lowerCAmelCase_ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=lowerCAmelCase_ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=lowerCAmelCase_ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=lowerCAmelCase_ , default=10_00 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=lowerCAmelCase_ , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=lowerCAmelCase_ , default=5_12 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=lowerCAmelCase_ , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) lowerCAmelCase_ : Union[str, Any] = parser.parse_args() return args def _lowerCAmelCase ( _a : Tuple ) -> Union[str, Any]: def fn(_a : int ): return tokenizer(examples["""text"""] ) return fn def _lowerCAmelCase ( _a : Any ) -> Union[str, Any]: lowerCAmelCase_ : Optional[Any] = [] for i in range(len(tokenized_data["""input_ids"""] ) ): lowerCAmelCase_ : Tuple = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } lowerCAmelCase_ : List[Any] = tf.train.Features(feature=lowerCAmelCase_ ) lowerCAmelCase_ : str = tf.train.Example(features=lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = example.SerializeToString() records.append(lowerCAmelCase_ ) return records def _lowerCAmelCase ( _a : List[Any] ) -> Optional[Any]: lowerCAmelCase_ : List[Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase_ : str = min(len(lowerCAmelCase_ ) , args.limit ) lowerCAmelCase_ : Optional[Any] = dataset.select(range(lowerCAmelCase_ ) ) print(F'Limiting the dataset to {args.limit} entries.' ) lowerCAmelCase_ : int = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase_ : Dict = os.path.join(args.output_dir , args.split ) if not os.path.exists(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) else: lowerCAmelCase_ : Optional[int] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase_ : List[str] = tokenize_function(lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = dataset.map(lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_a : str ): # Concatenate all texts. lowerCAmelCase_ : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase_ : Optional[Any] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase_ : int = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase_ : int = { k: [t[i : i + args.max_length] for i in range(0 , lowerCAmelCase_ , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase_ : Tuple = dataset_tokenized.map(lowerCAmelCase_ , batched=lowerCAmelCase_ , batch_size=10_00 , num_proc=4 ) lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : Union[str, Any] = 0 for shard in range(0 , len(lowerCAmelCase_ ) , args.shard_size ): lowerCAmelCase_ : Union[str, Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase_ : Union[str, Any] = len(dataset_snapshot["""input_ids"""] ) lowerCAmelCase_ : Any = os.path.join(lowerCAmelCase_ , F'dataset-{shard_count}-{records_containing}.tfrecord' ) lowerCAmelCase_ : int = get_serialized_examples(lowerCAmelCase_ ) with tf.io.TFRecordWriter(lowerCAmelCase_ ) as out_file: for i in range(len(lowerCAmelCase_ ) ): lowerCAmelCase_ : int = serialized_examples[i] out_file.write(lowerCAmelCase_ ) print("""Wrote file {} containing {} records""".format(lowerCAmelCase_ , lowerCAmelCase_ ) ) shard_count += 1 total_records += records_containing with open(F'split-{args.split}-records-count.txt' , """w""" ) as f: print(F'Total {args.split} records: {total_records}' , file=lowerCAmelCase_ ) if __name__ == "__main__": UpperCAmelCase_ : int = parse_args() main(args)
703
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowercase__ : @staticmethod def UpperCAmelCase__ ( *_lowercase , **_lowercase ): pass def _lowerCAmelCase ( _a : List[str] ) -> Any: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. UpperCAmelCase_ : Optional[Any] = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class lowercase__ ( unittest.TestCase ): __UpperCamelCase = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ): lowerCAmelCase_ : Optional[int] = pipeline( """document-question-answering""" , model=_lowercase , tokenizer=_lowercase , image_processor=_lowercase ) lowerCAmelCase_ : List[str] = INVOICE_URL lowerCAmelCase_ : str = list(zip(*apply_tesseract(load_image(_lowercase ) , _lowercase , """""" ) ) ) lowerCAmelCase_ : int = """What is the placebo?""" lowerCAmelCase_ : str = [ { """image""": load_image(_lowercase ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def UpperCAmelCase__ ( self , _lowercase , _lowercase ): lowerCAmelCase_ : List[str] = dqa_pipeline(_lowercase , top_k=2 ) self.assertEqual( _lowercase , [ [ {"""score""": ANY(_lowercase ), """answer""": ANY(_lowercase ), """start""": ANY(_lowercase ), """end""": ANY(_lowercase )}, {"""score""": ANY(_lowercase ), """answer""": ANY(_lowercase ), """start""": ANY(_lowercase ), """end""": ANY(_lowercase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Tuple = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) lowerCAmelCase_ : str = INVOICE_URL lowerCAmelCase_ : int = """How many cats are there?""" lowerCAmelCase_ : List[Any] = [ {"""score""": 0.0001, """answer""": """oy 2312/2019""", """start""": 38, """end""": 39}, {"""score""": 0.0001, """answer""": """oy 2312/2019 DUE""", """start""": 38, """end""": 40}, ] lowerCAmelCase_ : Optional[Any] = dqa_pipeline(image=_lowercase , question=_lowercase , top_k=2 ) self.assertEqual(nested_simplify(_lowercase , decimals=4 ) , _lowercase ) lowerCAmelCase_ : Any = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(_lowercase , decimals=4 ) , _lowercase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCAmelCase_ : List[Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowerCAmelCase_ : Any = dqa_pipeline(image=_lowercase , question=_lowercase , top_k=2 ) self.assertEqual(_lowercase , [] ) # We can optionnally pass directly the words and bounding boxes lowerCAmelCase_ : int = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowerCAmelCase_ : int = [] lowerCAmelCase_ : List[Any] = [] lowerCAmelCase_ : List[Any] = dqa_pipeline(image=_lowercase , question=_lowercase , words=_lowercase , boxes=_lowercase , top_k=2 ) self.assertEqual(_lowercase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Optional[Any] = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) lowerCAmelCase_ : Dict = INVOICE_URL lowerCAmelCase_ : int = """What is the invoice number?""" lowerCAmelCase_ : Union[str, Any] = dqa_pipeline(image=_lowercase , question=_lowercase , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowerCAmelCase_ : List[Any] = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowerCAmelCase_ : List[str] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Optional[int] = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=50 , ) lowerCAmelCase_ : List[str] = INVOICE_URL lowerCAmelCase_ : Optional[int] = """What is the invoice number?""" lowerCAmelCase_ : List[Any] = dqa_pipeline(image=_lowercase , question=_lowercase , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowerCAmelCase_ : Optional[Any] = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowerCAmelCase_ : List[Any] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase__ ( self ): lowerCAmelCase_ : int = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=_lowercase ) lowerCAmelCase_ : Any = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=_lowercase , revision="""3dc6de3""" , ) lowerCAmelCase_ : int = INVOICE_URL lowerCAmelCase_ : Union[str, Any] = """What is the invoice number?""" lowerCAmelCase_ : Optional[Any] = dqa_pipeline(image=_lowercase , question=_lowercase , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) lowerCAmelCase_ : int = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) lowerCAmelCase_ : Union[str, Any] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] ] * 2 , ) lowerCAmelCase_ : int = list(zip(*apply_tesseract(load_image(_lowercase ) , _lowercase , """""" ) ) ) # This model should also work if `image` is set to None lowerCAmelCase_ : List[Any] = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase__ ( self ): lowerCAmelCase_ : int = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=_lowercase ) lowerCAmelCase_ : Optional[Any] = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=_lowercase , revision="""3dc6de3""" , max_seq_len=50 , ) lowerCAmelCase_ : Tuple = INVOICE_URL lowerCAmelCase_ : Tuple = """What is the invoice number?""" lowerCAmelCase_ : Optional[int] = dqa_pipeline(image=_lowercase , question=_lowercase , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowerCAmelCase_ : int = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) lowerCAmelCase_ : Union[str, Any] = list(zip(*apply_tesseract(load_image(_lowercase ) , _lowercase , """""" ) ) ) # This model should also work if `image` is set to None lowerCAmelCase_ : List[str] = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) @slow @require_torch def UpperCAmelCase__ ( self ): lowerCAmelCase_ : int = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) lowerCAmelCase_ : Union[str, Any] = INVOICE_URL lowerCAmelCase_ : int = """What is the invoice number?""" lowerCAmelCase_ : str = dqa_pipeline(image=_lowercase , question=_lowercase , top_k=2 ) self.assertEqual(nested_simplify(_lowercase , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def UpperCAmelCase__ ( self ): pass
440
0
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any]=7 , lowerCAmelCase : int=3 , lowerCAmelCase : int=18 , lowerCAmelCase : Union[str, Any]=30 , lowerCAmelCase : Dict=400 , lowerCAmelCase : Any=True , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=[0.5, 0.5, 0.5] , lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , ): lowerCAmelCase = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_normalize lowerCAmelCase = image_mean lowerCAmelCase = image_std def __lowercase ( self : Optional[int] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): _a = DPTImageProcessor if is_vision_available() else None def __lowercase ( self : List[str] ): lowerCAmelCase = DPTImageProcessingTester(self ) @property def __lowercase ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : List[Any] ): lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """size""" ) ) def __lowercase ( self : Any ): lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __lowercase ( self : int ): # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __lowercase ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __lowercase ( self : List[Any] ): # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
169
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : str=13 , lowerCAmelCase : List[Any]=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : Optional[int]=5 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Union[str, Any]=37 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=50 , lowerCAmelCase : List[str]=0.02 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Union[str, Any]=None , ): lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = initializer_range lowerCAmelCase = use_labels lowerCAmelCase = scope def __lowercase ( self : int ): lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = self.get_config() return config, input_ids, input_mask, token_labels def __lowercase ( self : List[str] ): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowercase ( self : Dict ): ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowercase ( self : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any] , ): lowerCAmelCase = BertGenerationEncoder(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) lowerCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple , ): lowerCAmelCase = True lowerCAmelCase = BertGenerationEncoder(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , ) lowerCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int] , ): lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = BertGenerationDecoder(config=lowerCAmelCase ).to(lowerCAmelCase ).eval() # first forward pass lowerCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )["""hidden_states"""][0] lowerCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )["""hidden_states"""][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) ) def __lowercase ( self : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , *lowerCAmelCase : Union[str, Any] , ): lowerCAmelCase = BertGenerationDecoder(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : List[Any] ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _a , _a , _a , unittest.TestCase ): _a = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _a = (BertGenerationDecoder,) if is_torch_available() else () _a = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def __lowercase ( self : Optional[Any] ): lowerCAmelCase = BertGenerationEncoderTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def __lowercase ( self : Dict ): self.config_tester.run_common_tests() def __lowercase ( self : Tuple ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def __lowercase ( self : List[str] ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() lowerCAmelCase = """bert""" self.model_tester.create_and_check_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : str ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase ) def __lowercase ( self : List[str] ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCAmelCase ) def __lowercase ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase = None self.model_tester.create_and_check_model_as_decoder( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) def __lowercase ( self : List[str] ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase ) @slow def __lowercase ( self : int ): lowerCAmelCase = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def __lowercase ( self : Dict ): lowerCAmelCase = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) lowerCAmelCase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowerCAmelCase = model(lowerCAmelCase )[0] lowerCAmelCase = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , lowerCAmelCase ) lowerCAmelCase = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=1e-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def __lowercase ( self : Tuple ): lowerCAmelCase = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) lowerCAmelCase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowerCAmelCase = model(lowerCAmelCase )[0] lowerCAmelCase = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape , lowerCAmelCase ) lowerCAmelCase = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=1e-4 ) )
169
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCamelCase : """simple docstring""" def __init__( self : Dict , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any]=13 , __magic_name__ : Optional[Any]=32 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=16 , __magic_name__ : Optional[Any]=[1, 2, 1] , __magic_name__ : int=[2, 2, 4] , __magic_name__ : List[Any]=2 , __magic_name__ : Optional[Any]=2.0 , __magic_name__ : Any=True , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Any=0.1 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : Any=False , __magic_name__ : int=True , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=1e-5 , __magic_name__ : Union[str, Any]=True , __magic_name__ : List[Any]=None , __magic_name__ : List[Any]=True , __magic_name__ : int=10 , __magic_name__ : List[Any]=8 , __magic_name__ : List[str]=["stage1", "stage2", "stage3"] , __magic_name__ : Any=[1, 2, 3] , ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = patch_norm SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = encoder_stride SCREAMING_SNAKE_CASE_ = out_features SCREAMING_SNAKE_CASE_ = out_indices def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def __A ( self : List[Any] ) -> int: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __A ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : str ) -> int: SCREAMING_SNAKE_CASE_ = MaskFormerSwinModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) SCREAMING_SNAKE_CASE_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = MaskFormerSwinBackbone(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = ["stem"] SCREAMING_SNAKE_CASE_ = MaskFormerSwinBackbone(config=__magic_name__ ) def __A ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase__ = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : Any ) -> int: SCREAMING_SNAKE_CASE_ = MaskFormerSwinModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def __A ( self : Optional[int] ) -> List[Any]: pass def __A ( self : Optional[int] ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : Any ) -> Optional[int]: return def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __A ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__magic_name__ ) @unittest.skip("Swin does not use inputs_embeds" ) def __A ( self : Optional[int] ) -> str: pass @unittest.skip("Swin does not support feedforward chunking" ) def __A ( self : Union[str, Any] ) -> str: pass def __A ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def __A ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __magic_name__ ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def __A ( self : str ) -> int: pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def __A ( self : Optional[Any] ) -> Union[str, Any]: pass def __A ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) SCREAMING_SNAKE_CASE_ = outputs.hidden_states SCREAMING_SNAKE_CASE_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # Swin has a different seq_length SCREAMING_SNAKE_CASE_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self : Dict ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def __A ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def __A ( self : Tuple ) -> Optional[int]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def __A ( self : str ) -> Tuple: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def __A ( self : int ) -> Any: pass def __A ( self : Any ) -> Any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__magic_name__ : Dict ): SCREAMING_SNAKE_CASE_ = 0 return t def check_equivalence(__magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str]={} ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ , return_dict=__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ , return_dict=__magic_name__ , **__magic_name__ ).to_tuple() def recursive_check(__magic_name__ : Optional[Any] , __magic_name__ : Any ): if isinstance(__magic_name__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__magic_name__ , __magic_name__ ): recursive_check(__magic_name__ , __magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__magic_name__ , __magic_name__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__magic_name__ ) , set_nan_tensor_to_zero(__magic_name__ ) , atol=1e-5 ) , msg=( "Tuple and dict output are not equal. Difference:" F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(__magic_name__ ).any()} and `inf`: {torch.isinf(__magic_name__ )}. Dict has''' F''' `nan`: {torch.isnan(__magic_name__ ).any()} and `inf`: {torch.isinf(__magic_name__ )}.''' ) , ) recursive_check(__magic_name__ , __magic_name__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ , {"output_hidden_states": True} ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ , {"output_hidden_states": True} ) @require_torch class lowerCamelCase (unittest.TestCase , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase__ = MaskFormerSwinConfig def __A ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ = MaskFormerSwinModelTester(self ) def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = backbone_class(__magic_name__ ) backbone.to(__magic_name__ ) backbone.eval() SCREAMING_SNAKE_CASE_ = backbone(**__magic_name__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __magic_name__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True SCREAMING_SNAKE_CASE_ = backbone(**__magic_name__ , output_hidden_states=__magic_name__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE_ = backbone(**__magic_name__ , output_attentions=__magic_name__ ) self.assertIsNotNone(outputs.attentions )
356
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowercase = logging.get_logger(__name__) lowercase = { '''artists_file''': '''artists.json''', '''lyrics_file''': '''lyrics.json''', '''genres_file''': '''genres.json''', } lowercase = { '''artists_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json''', }, '''genres_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json''', }, '''lyrics_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json''', }, } lowercase = { '''jukebox''': 5_1_2, } class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_LYRIC_TOKENS_SIZES SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self : str , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : int=["v3", "v2", "v2"] , __UpperCamelCase : List[Any]=5_1_2 , __UpperCamelCase : Tuple=5 , __UpperCamelCase : Optional[int]="<|endoftext|>" , **__UpperCamelCase : Optional[Any] , ): lowerCamelCase_ = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else unk_token super().__init__( unk_token=__UpperCamelCase , n_genres=__UpperCamelCase , version=__UpperCamelCase , max_n_lyric_tokens=__UpperCamelCase , **__UpperCamelCase , ) lowerCamelCase_ = version lowerCamelCase_ = max_n_lyric_tokens lowerCamelCase_ = n_genres with open(__UpperCamelCase , encoding="""utf-8""" ) as vocab_handle: lowerCamelCase_ = json.load(__UpperCamelCase ) with open(__UpperCamelCase , encoding="""utf-8""" ) as vocab_handle: lowerCamelCase_ = json.load(__UpperCamelCase ) with open(__UpperCamelCase , encoding="""utf-8""" ) as vocab_handle: lowerCamelCase_ = json.load(__UpperCamelCase ) lowerCamelCase_ = R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: lowerCamelCase_ = oov.replace(R"""\-'""" , R"""\-+'""" ) lowerCamelCase_ = regex.compile(__UpperCamelCase ) lowerCamelCase_ = {v: k for k, v in self.artists_encoder.items()} lowerCamelCase_ = {v: k for k, v in self.genres_encoder.items()} lowerCamelCase_ = {v: k for k, v in self.lyrics_encoder.items()} @property def lowercase__ ( self : List[str] ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def lowercase__ ( self : List[str] ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): lowerCamelCase_ = [self.artists_encoder.get(__UpperCamelCase , 0 ) for artist in list_artists] for genres in range(len(__UpperCamelCase ) ): lowerCamelCase_ = [self.genres_encoder.get(__UpperCamelCase , 0 ) for genre in list_genres[genres]] lowerCamelCase_ = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) lowerCamelCase_ = [[self.lyrics_encoder.get(__UpperCamelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def lowercase__ ( self : Tuple , __UpperCamelCase : Optional[int] ): return list(__UpperCamelCase ) def lowercase__ ( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , **__UpperCamelCase : Any ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self.prepare_for_tokenization(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self._tokenize(__UpperCamelCase ) return artist, genre, lyrics def lowercase__ ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : bool = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": lowerCamelCase_ = artists[idx].lower() lowerCamelCase_ = [genres[idx].lower()] else: lowerCamelCase_ = self._normalize(artists[idx] ) + """.v2""" lowerCamelCase_ = [ self._normalize(__UpperCamelCase ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": lowerCamelCase_ = regex.compile(R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) lowerCamelCase_ = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" lowerCamelCase_ = {vocab[index]: index + 1 for index in range(len(__UpperCamelCase ) )} lowerCamelCase_ = 0 lowerCamelCase_ = len(__UpperCamelCase ) + 1 lowerCamelCase_ = self.vocab lowerCamelCase_ = {v: k for k, v in self.vocab.items()} lowerCamelCase_ = """""" else: lowerCamelCase_ = regex.compile(R"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) lowerCamelCase_ = self._run_strip_accents(__UpperCamelCase ) lowerCamelCase_ = lyrics.replace("""\\""" , """\n""" ) lowerCamelCase_ = self.out_of_vocab.sub("""""" , __UpperCamelCase ), [], [] return artists, genres, lyrics def lowercase__ ( self : Optional[Any] , __UpperCamelCase : List[Any] ): lowerCamelCase_ = unicodedata.normalize("""NFD""" , __UpperCamelCase ) lowerCamelCase_ = [] for char in text: lowerCamelCase_ = unicodedata.category(__UpperCamelCase ) if cat == "Mn": continue output.append(__UpperCamelCase ) return "".join(__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : str ): lowerCamelCase_ = ( [chr(__UpperCamelCase ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(__UpperCamelCase ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(__UpperCamelCase ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) lowerCamelCase_ = frozenset(__UpperCamelCase ) lowerCamelCase_ = re.compile(R"""_+""" ) lowerCamelCase_ = """""".join([c if c in accepted else """_""" for c in text.lower()] ) lowerCamelCase_ = pattern.sub("""_""" , __UpperCamelCase ).strip("""_""" ) return text def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : List[str] ): return " ".join(__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : int , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : bool = False ): # Convert to TensorType if not isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCamelCase_ = TensorType(__UpperCamelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf lowerCamelCase_ = tf.constant lowerCamelCase_ = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch lowerCamelCase_ = torch.tensor lowerCamelCase_ = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 lowerCamelCase_ = jnp.array lowerCamelCase_ = _is_jax else: lowerCamelCase_ = np.asarray lowerCamelCase_ = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: lowerCamelCase_ = [inputs] if not is_tensor(__UpperCamelCase ): lowerCamelCase_ = as_tensor(__UpperCamelCase ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any]="" , __UpperCamelCase : List[Any]="pt" ): lowerCamelCase_ = [0, 0, 0] lowerCamelCase_ = [artist] * len(self.version ) lowerCamelCase_ = [genres] * len(self.version ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self.tokenize(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._convert_token_to_id(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = [-INFINITY] * len(full_tokens[-1] ) lowerCamelCase_ = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__UpperCamelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__UpperCamelCase ) ) lowerCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__UpperCamelCase ) ) lowerCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__UpperCamelCase ) ) return (artists_file, genres_file, lyrics_file) def lowercase__ ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : Dict ): lowerCamelCase_ = self.artists_decoder.get(__UpperCamelCase ) lowerCamelCase_ = [self.genres_decoder.get(__UpperCamelCase ) for genre in genres_index] lowerCamelCase_ = [self.lyrics_decoder.get(__UpperCamelCase ) for character in lyric_index] return artist, genres, lyrics
272
import os import sys lowercase = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : List[str] ) -> List[str]: return AutoConfig.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[Any] ) -> Any: return AutoTokenizer.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Dict ) -> Union[str, Any]: return AutoModel.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[Any] ) -> Optional[Any]: return AutoModelForCausalLM.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Dict ) -> int: return AutoModelForMaskedLM.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Dict ) -> Dict: return AutoModelForSequenceClassification.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : Any , **UpperCAmelCase__ : List[str] ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ )
272
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ : def __init__( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : Optional[Any]=24 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Any]=1000 , ): SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = range_bbox def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE__ = bbox[i, j, 3] SCREAMING_SNAKE_CASE__ = bbox[i, j, 1] SCREAMING_SNAKE_CASE__ = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE__ = bbox[i, j, 2] SCREAMING_SNAKE_CASE__ = bbox[i, j, 0] SCREAMING_SNAKE_CASE__ = t SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def A_ ( self : Dict ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A_ ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , ): SCREAMING_SNAKE_CASE__ = LiltModel(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowercase , bbox=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase ) SCREAMING_SNAKE_CASE__ = model(__lowercase , bbox=__lowercase , token_type_ids=__lowercase ) SCREAMING_SNAKE_CASE__ = model(__lowercase , bbox=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , ): SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = LiltForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model( __lowercase , bbox=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , ): SCREAMING_SNAKE_CASE__ = LiltForQuestionAnswering(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model( __lowercase , bbox=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , start_positions=__lowercase , end_positions=__lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowercase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): A__ : str =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A__ : Optional[int] =( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) A__ : Any =False A__ : Dict =False def A_ ( self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str ): return True def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = LiltModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def A_ ( self : Optional[int] ): self.config_tester.run_common_tests() def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ = type self.model_tester.create_and_check_model(*__lowercase ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowercase ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowercase ) @slow def A_ ( self : Optional[int] ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = LiltModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_torch @slow class lowercase__ ( unittest.TestCase ): def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(__lowercase ) SCREAMING_SNAKE_CASE__ = torch.tensor([[1, 2]] , device=__lowercase ) SCREAMING_SNAKE_CASE__ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__lowercase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(input_ids=__lowercase , bbox=__lowercase ) SCREAMING_SNAKE_CASE__ = torch.Size([1, 2, 768] ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__lowercase , ) self.assertTrue(outputs.last_hidden_state.shape , __lowercase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __lowercase , atol=1e-3 ) )
715
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __snake_case = { """configuration_layoutlmv3""": [ """LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv3Config""", """LayoutLMv3OnnxConfig""", ], """processing_layoutlmv3""": ["""LayoutLMv3Processor"""], """tokenization_layoutlmv3""": ["""LayoutLMv3Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""LayoutLMv3TokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv3ForQuestionAnswering""", """LayoutLMv3ForSequenceClassification""", """LayoutLMv3ForTokenClassification""", """LayoutLMv3Model""", """LayoutLMv3PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLayoutLMv3ForQuestionAnswering""", """TFLayoutLMv3ForSequenceClassification""", """TFLayoutLMv3ForTokenClassification""", """TFLayoutLMv3Model""", """TFLayoutLMv3PreTrainedModel""", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""LayoutLMv3FeatureExtractor"""] __snake_case = ["""LayoutLMv3ImageProcessor"""] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
400
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class __magic_name__ ( _a ): _lowerCAmelCase = '''falcon''' _lowerCAmelCase = ['''past_key_values'''] def __init__( self : List[Any] , lowerCamelCase__ : Tuple=6_5_0_2_4 , lowerCamelCase__ : List[str]=4_5_4_4 , lowerCamelCase__ : Optional[Any]=3_2 , lowerCamelCase__ : str=7_1 , lowerCamelCase__ : List[str]=1E-5 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Dict=0.0 , lowerCamelCase__ : int=0.0 , lowerCamelCase__ : int=None , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : int=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Optional[int]=1_1 , lowerCamelCase__ : int=1_1 , **lowerCamelCase__ : Dict , ): lowerCAmelCase : Optional[Any] = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase : Dict = kwargs.pop('''n_embed''' , lowerCamelCase__ ) lowerCAmelCase : Optional[int] = hidden_size if n_embed is None else n_embed lowerCAmelCase : List[str] = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Optional[Any] = layer_norm_epsilon lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : List[str] = use_cache lowerCAmelCase : Optional[int] = hidden_dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : Any = bos_token_id lowerCAmelCase : Dict = eos_token_id lowerCAmelCase : Optional[Any] = num_attention_heads if num_kv_heads is None else num_kv_heads lowerCAmelCase : Optional[Any] = alibi lowerCAmelCase : Optional[int] = new_decoder_architecture lowerCAmelCase : str = multi_query # Ignored when new_decoder_architecture is True lowerCAmelCase : List[str] = parallel_attn lowerCAmelCase : List[str] = bias super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) @property def _A ( self : str ): return self.hidden_size // self.num_attention_heads @property def _A ( self : int ): return not self.alibi
348
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__="uniform_average" , __magic_name__=True ) -> Any: '''simple docstring''' snake_case_ : List[Any] = mean_squared_error( __magic_name__ , __magic_name__ , sample_weight=__magic_name__ , multioutput=__magic_name__ , squared=__magic_name__ ) return {"mse": mse}
60
0
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , lowercase__ , ) class __magic_name__ ( lowercase__ ): _SCREAMING_SNAKE_CASE : List[Any] = RobertaConfig _SCREAMING_SNAKE_CASE : List[Any] = 'roberta' def __init__( self : Any , snake_case_ : Any ): super().__init__(snake_case_ ) __snake_case = RobertaEmbeddings(snake_case_ ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , lowercase__ , ) class __magic_name__ ( lowercase__ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = RobertaConfig _SCREAMING_SNAKE_CASE : Optional[Any] = 'roberta' def __init__( self : Tuple , snake_case_ : Dict ): super().__init__(snake_case_ ) __snake_case = config.num_labels __snake_case = config.num_hidden_layers __snake_case = DeeRobertaModel(snake_case_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(snake_case_ ) def lowerCAmelCase ( self : Any , snake_case_ : str=None , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=None , snake_case_ : Dict=None , snake_case_ : Optional[int]=None , snake_case_ : List[Any]=None , snake_case_ : Any=None , snake_case_ : Optional[int]=-1 , snake_case_ : Union[str, Any]=False , ): __snake_case = self.num_layers try: __snake_case = self.roberta( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , position_ids=snake_case_ , head_mask=snake_case_ , inputs_embeds=snake_case_ , ) __snake_case = outputs[1] __snake_case = self.dropout(snake_case_ ) __snake_case = self.classifier(snake_case_ ) __snake_case = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __snake_case = e.message __snake_case = e.exit_layer __snake_case = outputs[0] if not self.training: __snake_case = entropy(snake_case_ ) __snake_case = [] __snake_case = [] if labels is not None: if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __snake_case = [] for highway_exit in outputs[-1]: __snake_case = highway_exit[0] if not self.training: highway_logits_all.append(snake_case_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(snake_case_ ) if train_highway: __snake_case = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __snake_case = (loss,) + outputs if not self.training: __snake_case = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __snake_case = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
614
"""simple docstring""" def __UpperCamelCase ( SCREAMING_SNAKE_CASE = 10 , SCREAMING_SNAKE_CASE = 10_00 , SCREAMING_SNAKE_CASE = True ) -> int: """simple docstring""" assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((number_a + number_a) / 2 ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(SCREAMING_SNAKE_CASE ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) __snake_case = lower __snake_case = higher __snake_case = [] while True: __snake_case = get_avg(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) last_numbers.append(SCREAMING_SNAKE_CASE ) if answer(SCREAMING_SNAKE_CASE ) == "low": __snake_case = number elif answer(SCREAMING_SNAKE_CASE ) == "high": __snake_case = number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def __UpperCamelCase ( ) -> None: """simple docstring""" __snake_case = int(input("Enter lower value : " ).strip() ) __snake_case = int(input("Enter high value : " ).strip() ) __snake_case = int(input("Enter value to guess : " ).strip() ) guess_the_number(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
614
1
"""simple docstring""" from math import factorial def __snake_case ( UpperCamelCase__ = 100 ) -> int: """simple docstring""" return sum(int(UpperCamelCase__ ) for x in str(factorial(UpperCamelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
690
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
1
class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" UpperCamelCase : Optional[Any] = {} def _lowercase ( self ): """simple docstring""" print(self.vertex ) for i in self.vertex: print(lowercase_ , ''' -> ''' , ''' -> '''.join([str(lowercase_ ) for j in self.vertex[i]] ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(lowercase_ ) else: # else make a new vertex UpperCamelCase : Union[str, Any] = [to_vertex] def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowercase_ , lowercase_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = True print(lowercase_ , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowercase_ , lowercase_ ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
716
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase : Dict = False class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' pass @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase : str = torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = pipe( image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCamelCase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
643
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : List[str] = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
def _UpperCamelCase ( ) ->list[list[int]]: return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] __a = generate_large_matrix() __a = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _UpperCamelCase ( lowerCAmelCase_ ) ->None: assert all(row == sorted(lowerCAmelCase_ , reverse=lowerCAmelCase_ ) for row in grid ) assert all(list(lowerCAmelCase_ ) == sorted(lowerCAmelCase_ , reverse=lowerCAmelCase_ ) for col in zip(*lowerCAmelCase_ ) ) def _UpperCamelCase ( lowerCAmelCase_ ) ->int: UpperCAmelCase = 0 UpperCAmelCase = len(lowerCAmelCase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCAmelCase = (left + right) // 2 UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCAmelCase = mid + 1 else: UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowerCAmelCase_ ) def _UpperCamelCase ( lowerCAmelCase_ ) ->int: UpperCAmelCase = 0 UpperCAmelCase = len(grid[0] ) for i in range(len(lowerCAmelCase_ ) ): UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(lowerCAmelCase_ ) * len(grid[0] )) - total def _UpperCamelCase ( lowerCAmelCase_ ) ->int: return len([number for row in grid for number in row if number < 0] ) def _UpperCamelCase ( lowerCAmelCase_ ) ->int: UpperCAmelCase = 0 for row in grid: for i, number in enumerate(lowerCAmelCase_ ): if number < 0: total += len(lowerCAmelCase_ ) - i break return total def _UpperCamelCase ( ) ->None: from timeit import timeit print("""Running benchmarks""" ) UpperCAmelCase = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCAmelCase = timeit(F"""{func}(grid=grid)""" , setup=lowerCAmelCase_ , number=5_0_0 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
377
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=True , lowerCamelCase=1 / 255 , lowerCamelCase=True , ) -> Any: """simple docstring""" lowercase__ : int = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : str = num_channels lowercase__ : Optional[int] = min_resolution lowercase__ : Optional[Any] = max_resolution lowercase__ : Dict = do_resize lowercase__ : Optional[int] = size lowercase__ : Dict = do_normalize lowercase__ : Tuple = image_mean lowercase__ : int = image_std lowercase__ : Optional[Any] = do_rescale lowercase__ : str = rescale_factor lowercase__ : Optional[int] = do_pad def __a ( self ) -> Optional[int]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __a ( self , lowerCamelCase , lowerCamelCase=False ) -> Dict: """simple docstring""" if not batched: lowercase__ : Optional[int] = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): lowercase__ , lowercase__ : List[str] = image.size else: lowercase__ , lowercase__ : Dict = image.shape[1], image.shape[2] if w < h: lowercase__ : Dict = int(self.size["shortest_edge"] * h / w ) lowercase__ : Optional[Any] = self.size["shortest_edge"] elif w > h: lowercase__ : Optional[int] = self.size["shortest_edge"] lowercase__ : List[str] = int(self.size["shortest_edge"] * w / h ) else: lowercase__ : Dict = self.size["shortest_edge"] lowercase__ : int = self.size["shortest_edge"] else: lowercase__ : List[str] = [] for image in image_inputs: lowercase__ , lowercase__ : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ : Optional[int] = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] lowercase__ : Dict = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase( snake_case_ , unittest.TestCase ): """simple docstring""" a : Union[str, Any] = ConditionalDetrImageProcessor if is_vision_available() else None def __a ( self ) -> Optional[Any]: """simple docstring""" lowercase__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def __a ( self ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) lowercase__ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCamelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) def __a ( self ) -> List[Any]: """simple docstring""" pass def __a ( self ) -> str: """simple docstring""" lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input lowercase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : int = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ , lowercase__ : List[str] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) lowercase__ : List[str] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : Any = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Dict = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : Any = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input lowercase__ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Union[str, Any] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __a ( self ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowercase__ : Any = json.loads(f.read() ) lowercase__ : Optional[int] = {"image_id": 39769, "annotations": target} # encode them lowercase__ : Optional[int] = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) lowercase__ : Optional[Any] = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , return_tensors="pt" ) # verify pixel values lowercase__ : Optional[int] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) lowercase__ : Dict = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area lowercase__ : Union[str, Any] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes lowercase__ : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) lowercase__ : Union[str, Any] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id lowercase__ : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd lowercase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels lowercase__ : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify orig_size lowercase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size lowercase__ : Optional[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) ) @slow def __a ( self ) -> str: """simple docstring""" lowercase__ : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowercase__ : Optional[int] = json.loads(f.read() ) lowercase__ : Tuple = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} lowercase__ : List[str] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowercase__ : Tuple = ConditionalDetrImageProcessor(format="coco_panoptic" ) lowercase__ : Optional[Any] = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , masks_path=lowerCamelCase , return_tensors="pt" ) # verify pixel values lowercase__ : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) lowercase__ : str = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area lowercase__ : str = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes lowercase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) lowercase__ : Dict = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id lowercase__ : Union[str, Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd lowercase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels lowercase__ : Dict = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify masks lowercase__ : Optional[Any] = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCamelCase ) # verify orig_size lowercase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size lowercase__ : Optional[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) )
298
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __a : Tuple = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Optional[int] = ["""pixel_values"""] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BICUBIC , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = True , **lowerCamelCase , ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) lowercase__ : Optional[int] = size if size is not None else {"shortest_edge": 224} lowercase__ : Optional[int] = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) lowercase__ : int = crop_size if crop_size is not None else {"height": 224, "width": 224} lowercase__ : Tuple = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase , param_name="crop_size" ) lowercase__ : List[str] = do_resize lowercase__ : Tuple = size lowercase__ : Any = resample lowercase__ : List[str] = do_center_crop lowercase__ : Optional[int] = crop_size lowercase__ : List[str] = do_rescale lowercase__ : Union[str, Any] = rescale_factor lowercase__ : Dict = do_normalize lowercase__ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : Dict = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : str = do_convert_rgb def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BICUBIC , lowerCamelCase = None , **lowerCamelCase , ) -> np.ndarray: """simple docstring""" lowercase__ : Union[str, Any] = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowercase__ : Union[str, Any] = get_resize_output_image_size(lowerCamelCase , size=size["shortest_edge"] , default_to_square=lowerCamelCase ) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) -> np.ndarray: """simple docstring""" lowercase__ : List[Any] = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(lowerCamelCase , size=(size["height"], size["width"]) , data_format=lowerCamelCase , **lowerCamelCase ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) -> np.ndarray: """simple docstring""" return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __a ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> PIL.Image.Image: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : List[Any] = size if size is not None else self.size lowercase__ : Optional[Any] = get_size_dict(lowerCamelCase , param_name="size" , default_to_square=lowerCamelCase ) lowercase__ : Union[str, Any] = resample if resample is not None else self.resample lowercase__ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : int = crop_size if crop_size is not None else self.crop_size lowercase__ : List[str] = get_size_dict(lowerCamelCase , param_name="crop_size" , default_to_square=lowerCamelCase ) lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : int = image_std if image_std is not None else self.image_std lowercase__ : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : int = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : int = [convert_to_rgb(lowerCamelCase ) for image in images] # All transformations expect numpy arrays. lowercase__ : Optional[Any] = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: lowercase__ : Optional[Any] = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_center_crop: lowercase__ : Optional[Any] = [self.center_crop(image=lowerCamelCase , size=lowerCamelCase ) for image in images] if do_rescale: lowercase__ : Any = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: lowercase__ : Dict = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] lowercase__ : int = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] lowercase__ : Optional[int] = {"pixel_values": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
298
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase (unittest.TestCase ): def __init__( self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict=7 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : List[str]=1_8 , __UpperCAmelCase : Dict=3_0 , __UpperCAmelCase : List[Any]=4_0_0 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : str=True , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , __UpperCAmelCase : List[str]=[0.5, 0.5, 0.5] , ) -> List[str]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size if size is not None else {'height': 1_8, 'width': 2_0} SCREAMING_SNAKE_CASE__ = do_thumbnail SCREAMING_SNAKE_CASE__ = do_align_axis SCREAMING_SNAKE_CASE__ = do_pad SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std def SCREAMING_SNAKE_CASE ( self : str ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase (__UpperCamelCase ,unittest.TestCase ): lowerCamelCase__ : Tuple = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """size""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """do_thumbnail""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """do_align_long_axis""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """do_pad""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """image_std""" ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 2_0} ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) # Previous config had dimensions in (width, height) order SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(4_2, 8_4) ) self.assertEqual(image_processor.size , {"""height""": 8_4, """width""": 4_2} ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: pass @is_flaky() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
196
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCAmelCase ( __UpperCamelCase ): def __init__( self : str , UpperCAmelCase : Dict , UpperCAmelCase : Dict=13 , UpperCAmelCase : List[Any]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : int=False , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int=99 , UpperCAmelCase : Dict=32 , UpperCAmelCase : Dict=5 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[Any]=64 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Union[str, Any]=0.0_2 , UpperCAmelCase : Dict=3 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : int=None , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict=1 , ) -> List[Any]: lowerCamelCase__ : Any = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : Union[str, Any] = seq_length lowerCamelCase__ : Optional[Any] = is_training lowerCamelCase__ : Optional[Any] = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : str = use_labels lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Any = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : int = hidden_act lowerCamelCase__ : List[Any] = hidden_dropout_prob lowerCamelCase__ : List[str] = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Optional[int] = type_sequence_label_size lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : int = num_labels lowerCamelCase__ : Tuple = num_choices lowerCamelCase__ : Optional[Any] = scope lowerCamelCase__ : Dict = q_groups lowerCamelCase__ : Optional[Any] = k_groups lowerCamelCase__ : Any = v_groups lowerCamelCase__ : List[str] = post_attention_groups lowerCamelCase__ : Dict = intermediate_groups lowerCamelCase__ : Optional[int] = output_groups def A_ ( self : str ) -> str: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Tuple = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : Dict = None if self.use_labels: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : Union[str, Any] ) -> List[Any]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def A_ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] ) -> List[str]: lowerCamelCase__ : List[Any] = SqueezeBertModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[Any] = model(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Optional[Any]: lowerCamelCase__ : List[Any] = SqueezeBertForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = SqueezeBertForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : List[Any] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Any ) -> Any: lowerCamelCase__ : int = self.num_labels lowerCamelCase__ : Optional[int] = SqueezeBertForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : int = SqueezeBertForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : List[Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Tuple: lowerCamelCase__ : Optional[int] = self.num_choices lowerCamelCase__ : List[str] = SqueezeBertForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : str = model( UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Optional[Any] ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : Tuple = config_and_inputs lowerCamelCase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) UpperCAmelCase__ = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = False def A_ ( self : Union[str, Any] ) -> Dict: lowerCamelCase__ : Optional[Any] = SqueezeBertModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A_ ( self : str ) -> str: self.config_tester.run_common_tests() def A_ ( self : str ) -> int: lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Tuple: lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Any: lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> List[str]: lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCAmelCase ) def A_ ( self : Optional[int] ) -> Optional[Any]: lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCAmelCase ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> Dict: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any = SqueezeBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def A_ ( self : Optional[Any] ) -> List[str]: lowerCamelCase__ : Dict = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) lowerCamelCase__ : Optional[int] = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) lowerCamelCase__ : Optional[int] = model(UpperCAmelCase )[0] lowerCamelCase__ : Dict = torch.Size((1, 3) ) self.assertEqual(output.shape , UpperCAmelCase ) lowerCamelCase__ : List[str] = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-4 ) )
295
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class A__ ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = tempfile.mkdtemp() UpperCamelCase : int = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] UpperCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCamelCase : Tuple = { "do_resize": True, "size": {"height": 224, "width": 224}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], "image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], "do_convert_rgb": True, } UpperCamelCase : int = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(A_ , A_ ) def __UpperCamelCase( self , **A_ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase( self , **A_ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase( self , **A_ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase : List[str] = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.get_tokenizer() UpperCamelCase : List[str] = self.get_rust_tokenizer() UpperCamelCase : List[Any] = self.get_image_processor() UpperCamelCase : Tuple = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) UpperCamelCase : Optional[int] = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : Any = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) UpperCamelCase : List[str] = self.get_image_processor(do_normalize=A_ ) UpperCamelCase : Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=A_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = self.get_image_processor() UpperCamelCase : Tuple = self.get_tokenizer() UpperCamelCase : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase : Optional[int] = self.prepare_image_inputs() UpperCamelCase : Tuple = image_processor(A_ , return_tensors="np" ) UpperCamelCase : List[str] = processor(images=A_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.get_image_processor() UpperCamelCase : Dict = self.get_tokenizer() UpperCamelCase : Tuple = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase : Any = "Alexandra,T-shirt的价格是15便士。" UpperCamelCase : List[str] = processor(text=A_ ) UpperCamelCase : Optional[int] = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.get_image_processor() UpperCamelCase : Optional[int] = self.get_tokenizer() UpperCamelCase : Optional[int] = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase : List[Any] = "Alexandra,T-shirt的价格是15便士。" UpperCamelCase : Union[str, Any] = self.prepare_image_inputs() UpperCamelCase : List[str] = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.get_image_processor() UpperCamelCase : Optional[int] = self.get_tokenizer() UpperCamelCase : str = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase : Any = processor.batch_decode(A_ ) UpperCamelCase : Optional[int] = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.get_image_processor() UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : List[str] = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase : Any = "Alexandra,T-shirt的价格是15便士。" UpperCamelCase : Tuple = self.prepare_image_inputs() UpperCamelCase : int = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
712
from __future__ import annotations from random import random from typing import Generic, TypeVar __lowerCamelCase : Dict = TypeVar("""KT""") __lowerCamelCase : Dict = TypeVar("""VT""") class A__ ( Generic[KT, VT] ): def __init__( self , A_ = "root" , A_ = None ): '''simple docstring''' UpperCamelCase : int = key UpperCamelCase : List[Any] = value UpperCamelCase : list[Node[KT, VT]] = [] def __repr__( self ): '''simple docstring''' return F"""Node({self.key}: {self.value})""" @property def __UpperCamelCase( self ): '''simple docstring''' return len(self.forward ) class A__ ( Generic[KT, VT] ): def __init__( self , A_ = 0.5 , A_ = 16 ): '''simple docstring''' UpperCamelCase : Node[KT, VT] = Node[KT, VT]() UpperCamelCase : List[Any] = 0 UpperCamelCase : Union[str, Any] = p UpperCamelCase : List[str] = max_level def __str__( self ): '''simple docstring''' UpperCamelCase : int = list(self ) if len(A_ ) == 0: return F"""SkipList(level={self.level})""" UpperCamelCase : str = max((len(str(A_ ) ) for item in items) , default=4 ) UpperCamelCase : Dict = max(A_ , 4 ) + 4 UpperCamelCase : str = self.head UpperCamelCase : List[Any] = [] UpperCamelCase : int = node.forward.copy() lines.append(F"""[{node.key}]""".ljust(A_ , "-" ) + "* " * len(A_ ) ) lines.append(" " * label_size + "| " * len(A_ ) ) while len(node.forward ) != 0: UpperCamelCase : Union[str, Any] = node.forward[0] lines.append( F"""[{node.key}]""".ljust(A_ , "-" ) + " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) ) lines.append(" " * label_size + "| " * len(A_ ) ) UpperCamelCase : Tuple = node.forward lines.append("None".ljust(A_ ) + "* " * len(A_ ) ) return F"""SkipList(level={self.level})\n""" + "\n".join(A_ ) def __iter__( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.head while len(node.forward ) != 0: yield node.forward[0].key UpperCamelCase : Union[str, Any] = node.forward[0] def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = 1 while random() < self.p and level < self.max_level: level += 1 return level def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[str] = [] UpperCamelCase : List[Any] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: UpperCamelCase : str = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(A_ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase , UpperCamelCase : str = self._locate_node(A_ ) if node is not None: for i, update_node in enumerate(A_ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: UpperCamelCase : Tuple = node.forward[i] else: UpperCamelCase : List[Any] = update_node.forward[:i] def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Optional[int] = self._locate_node(A_ ) if node is not None: UpperCamelCase : Union[str, Any] = value else: UpperCamelCase : Dict = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , A_ ): update_vector.append(self.head ) UpperCamelCase : Optional[int] = level UpperCamelCase : Dict = Node(A_ , A_ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(A_ ) else: UpperCamelCase : List[Any] = new_node def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Union[str, Any] = self._locate_node(A_ ) if node is not None: return node.value return None def A_ ( ) -> List[Any]: UpperCamelCase : int = SkipList() skip_list.insert("Key1" , 3 ) skip_list.insert("Key2" , 12 ) skip_list.insert("Key3" , 41 ) skip_list.insert("Key4" , -19 ) UpperCamelCase : Optional[int] = skip_list.head UpperCamelCase : List[str] = {} while node.level != 0: UpperCamelCase : str = node.forward[0] UpperCamelCase : Optional[int] = node.value assert len(_lowerCAmelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def A_ ( ) -> List[Any]: UpperCamelCase : Optional[int] = SkipList() skip_list.insert("Key1" , 10 ) skip_list.insert("Key1" , 12 ) skip_list.insert("Key5" , 7 ) skip_list.insert("Key7" , 10 ) skip_list.insert("Key10" , 5 ) skip_list.insert("Key7" , 7 ) skip_list.insert("Key5" , 5 ) skip_list.insert("Key10" , 10 ) UpperCamelCase : Dict = skip_list.head UpperCamelCase : Tuple = {} while node.level != 0: UpperCamelCase : List[str] = node.forward[0] UpperCamelCase : Dict = node.value if len(_lowerCAmelCase ) != 4: print() assert len(_lowerCAmelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def A_ ( ) -> List[Any]: UpperCamelCase : List[Any] = SkipList() assert skip_list.find("Some key" ) is None def A_ ( ) -> Tuple: UpperCamelCase : Optional[int] = SkipList() skip_list.insert("Key2" , 20 ) assert skip_list.find("Key2" ) == 20 skip_list.insert("Some Key" , 10 ) skip_list.insert("Key2" , 8 ) skip_list.insert("V" , 13 ) assert skip_list.find("Y" ) is None assert skip_list.find("Key2" ) == 8 assert skip_list.find("Some Key" ) == 10 assert skip_list.find("V" ) == 13 def A_ ( ) -> Dict: UpperCamelCase : Optional[int] = SkipList() skip_list.delete("Some key" ) assert len(skip_list.head.forward ) == 0 def A_ ( ) -> Dict: UpperCamelCase : List[Any] = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 14 ) skip_list.insert("Key2" , 15 ) skip_list.delete("V" ) skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("Key2" ) is None def A_ ( ) -> List[str]: UpperCamelCase : int = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 14 ) skip_list.insert("Key2" , 15 ) skip_list.delete("V" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) == 14 assert skip_list.find("Key1" ) == 12 assert skip_list.find("Key2" ) == 15 skip_list.delete("X" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) == 12 assert skip_list.find("Key2" ) == 15 skip_list.delete("Key1" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) == 15 skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) is None def A_ ( ) -> List[Any]: UpperCamelCase : List[Any] = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 142 ) skip_list.insert("Key2" , 15 ) skip_list.delete("X" ) def traverse_keys(_lowerCAmelCase ): yield node.key for forward_node in node.forward: yield from traverse_keys(_lowerCAmelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def A_ ( ) -> Union[str, Any]: def is_sorted(_lowerCAmelCase ): return all(next_item >= item for item, next_item in zip(_lowerCAmelCase , lst[1:] ) ) UpperCamelCase : int = SkipList() for i in range(10 ): skip_list.insert(_lowerCAmelCase , _lowerCAmelCase ) assert is_sorted(list(_lowerCAmelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_lowerCAmelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_lowerCAmelCase ) ) def A_ ( ) -> Tuple: for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def A_ ( ) -> List[str]: UpperCamelCase : Optional[int] = SkipList() skip_list.insert(2 , "2" ) skip_list.insert(4 , "4" ) skip_list.insert(6 , "4" ) skip_list.insert(4 , "5" ) skip_list.insert(8 , "4" ) skip_list.insert(9 , "4" ) skip_list.delete(4 ) print(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
38
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline snake_case_ : int = logging.get_logger(__name__) # pylint: disable=invalid-name class A_ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self , A_ , A_ ): super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self , A_ = 1 , A_ = 1_00 , A_ = None , A_ = None , A_ = True , ): if audio_length_in_s is None: _UpperCamelCase = self.unet.config.sample_size / self.unet.config.sample_rate _UpperCamelCase = audio_length_in_s * self.unet.config.sample_rate _UpperCamelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"{audio_length_in_s} is too small. Make sure it's bigger or equal to" F" {3 * down_scale_factor / self.unet.config.sample_rate}." ) _UpperCamelCase = int(A_ ) if sample_size % down_scale_factor != 0: _UpperCamelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" F" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" " process." ) _UpperCamelCase = int(A_ ) _UpperCamelCase = next(iter(self.unet.parameters() ) ).dtype _UpperCamelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(A_ , A_ ) and len(A_ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(A_ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) _UpperCamelCase = randn_tensor(A_ , generator=A_ , device=self.device , dtype=A_ ) # set step values self.scheduler.set_timesteps(A_ , device=audio.device ) _UpperCamelCase = self.scheduler.timesteps.to(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCamelCase = self.unet(A_ , A_ ).sample # 2. compute previous image: x_t -> t_t-1 _UpperCamelCase = self.scheduler.step(A_ , A_ , A_ ).prev_sample _UpperCamelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() _UpperCamelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=A_ )
138
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def a ( self ): torch.manual_seed(0 ) _UpperCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def a ( self ): _UpperCamelCase = self.dummy_uncond_unet _UpperCamelCase = ScoreSdeVeScheduler() _UpperCamelCase = ScoreSdeVePipeline(unet=A_ , scheduler=A_ ) sde_ve.to(A_ ) sde_ve.set_progress_bar_config(disable=A_ ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=A_ ).images _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=A_ , return_dict=A_ )[ 0 ] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def a ( self ): _UpperCamelCase = "google/ncsnpp-church-256" _UpperCamelCase = UNetaDModel.from_pretrained(A_ ) _UpperCamelCase = ScoreSdeVeScheduler.from_pretrained(A_ ) _UpperCamelCase = ScoreSdeVePipeline(unet=A_ , scheduler=A_ ) sde_ve.to(A_ ) sde_ve.set_progress_bar_config(disable=A_ ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=A_ ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _UpperCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
138
1
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : str = logging.get_logger(__name__) set_seed(770) _snake_case : Tuple = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } _snake_case : Optional[Any] = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } _snake_case : Union[str, Any] = os.path.dirname(os.path.abspath(__file__)) _snake_case : List[Any] = os.path.join(os.path.expanduser("""~"""), """.cache""") _snake_case : str = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def _a ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple=False ): _SCREAMING_SNAKE_CASE = model_type if use_small: key += "_small" return os.path.join(_SCREAMING_SNAKE_CASE , REMOTE_MODEL_PATHS[key]["file_name"] ) def _a ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple ): os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) hf_hub_download(repo_id=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , local_dir=_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Tuple="text" ): if model_type == "text": _SCREAMING_SNAKE_CASE = BarkSemanticModel _SCREAMING_SNAKE_CASE = BarkSemanticConfig _SCREAMING_SNAKE_CASE = BarkSemanticGenerationConfig elif model_type == "coarse": _SCREAMING_SNAKE_CASE = BarkCoarseModel _SCREAMING_SNAKE_CASE = BarkCoarseConfig _SCREAMING_SNAKE_CASE = BarkCoarseGenerationConfig elif model_type == "fine": _SCREAMING_SNAKE_CASE = BarkFineModel _SCREAMING_SNAKE_CASE = BarkFineConfig _SCREAMING_SNAKE_CASE = BarkFineGenerationConfig else: raise NotImplementedError() _SCREAMING_SNAKE_CASE = F'{model_type}_small' if use_small else model_type _SCREAMING_SNAKE_CASE = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(_SCREAMING_SNAKE_CASE ): logger.info(F'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info["repo_id"] , model_info["file_name"] ) _SCREAMING_SNAKE_CASE = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) # this is a hack _SCREAMING_SNAKE_CASE = checkpoint["model_args"] if "input_vocab_size" not in model_args: _SCREAMING_SNAKE_CASE = model_args["vocab_size"] _SCREAMING_SNAKE_CASE = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _SCREAMING_SNAKE_CASE = model_args.pop("n_head" ) _SCREAMING_SNAKE_CASE = model_args.pop("n_embd" ) _SCREAMING_SNAKE_CASE = model_args.pop("n_layer" ) _SCREAMING_SNAKE_CASE = ConfigClass(**checkpoint["model_args"] ) _SCREAMING_SNAKE_CASE = ModelClass(config=_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = GenerationConfigClass() _SCREAMING_SNAKE_CASE = model_generation_config _SCREAMING_SNAKE_CASE = checkpoint["model"] # fixup checkpoint _SCREAMING_SNAKE_CASE = "_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(_SCREAMING_SNAKE_CASE ): # replace part of the key with corresponding layer name in HF implementation _SCREAMING_SNAKE_CASE = k[len(_SCREAMING_SNAKE_CASE ) :] for old_layer_name in new_layer_name_dict: _SCREAMING_SNAKE_CASE = new_k.replace(_SCREAMING_SNAKE_CASE , new_layer_name_dict[old_layer_name] ) _SCREAMING_SNAKE_CASE = state_dict.pop(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = set(state_dict.keys() ) - set(model.state_dict().keys() ) _SCREAMING_SNAKE_CASE = {k for k in extra_keys if not k.endswith(".attn.bias" )} _SCREAMING_SNAKE_CASE = set(model.state_dict().keys() ) - set(state_dict.keys() ) _SCREAMING_SNAKE_CASE = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError(F'extra keys found: {extra_keys}' ) if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError(F'missing keys: {missing_keys}' ) model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = model.num_parameters(exclude_embeddings=_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = checkpoint["best_val_loss"].item() logger.info(F'model loaded: {round(n_params/1e6 , 1 )}M params, {round(_SCREAMING_SNAKE_CASE , 3 )} loss' ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) del checkpoint, state_dict return model def _a ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any]=False , _SCREAMING_SNAKE_CASE : List[Any]="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _SCREAMING_SNAKE_CASE = "cpu" # do conversion on cpu _SCREAMING_SNAKE_CASE = _get_ckpt_path(_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = _load_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , model_type=_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) # load bark initial model _SCREAMING_SNAKE_CASE = _bark_load_model(_SCREAMING_SNAKE_CASE , "cpu" , model_type=_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) if model_type == "text": _SCREAMING_SNAKE_CASE = bark_model["model"] if model.num_parameters(exclude_embeddings=_SCREAMING_SNAKE_CASE ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model _SCREAMING_SNAKE_CASE = 5 _SCREAMING_SNAKE_CASE = 10 if model_type in ["text", "coarse"]: _SCREAMING_SNAKE_CASE = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) _SCREAMING_SNAKE_CASE = bark_model(_SCREAMING_SNAKE_CASE )[0] _SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ) # take last logits _SCREAMING_SNAKE_CASE = output_new_model_total.logits[:, [-1], :] else: _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 8 _SCREAMING_SNAKE_CASE = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = bark_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("initial and new outputs are not equal" ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , ): _SCREAMING_SNAKE_CASE = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = BarkSemanticConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , "config.json" ) ) _SCREAMING_SNAKE_CASE = BarkCoarseConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , "config.json" ) ) _SCREAMING_SNAKE_CASE = BarkFineConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , "config.json" ) ) _SCREAMING_SNAKE_CASE = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) _SCREAMING_SNAKE_CASE = BarkSemanticModel.from_pretrained(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = BarkCoarseModel.from_pretrained(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = BarkFineModel.from_pretrained(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = EncodecModel.from_pretrained("facebook/encodec_24khz" ) _SCREAMING_SNAKE_CASE = BarkConfig.from_sub_model_configs( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _SCREAMING_SNAKE_CASE = BarkModel(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = semantic _SCREAMING_SNAKE_CASE = coarseAcoustic _SCREAMING_SNAKE_CASE = fineAcoustic _SCREAMING_SNAKE_CASE = codec _SCREAMING_SNAKE_CASE = bark_generation_config Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) bark.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id=_SCREAMING_SNAKE_CASE , push_to_hub=_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") _snake_case : Tuple = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
493
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): a : Optional[int] = KandinskyImgaImgPipeline a : Union[str, Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] a : Union[str, Any] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] a : int = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a : Tuple = False @property def lowercase ( self ): return 32 @property def lowercase ( self ): return 32 @property def lowercase ( self ): return self.time_input_dim @property def lowercase ( self ): return self.time_input_dim * 4 @property def lowercase ( self ): return 100 @property def lowercase ( self ): _SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) _SCREAMING_SNAKE_CASE = MultilingualCLIP(UpperCamelCase ) _SCREAMING_SNAKE_CASE = text_encoder.eval() return text_encoder @property def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _SCREAMING_SNAKE_CASE = UNetaDConditionModel(**UpperCamelCase ) return model @property def lowercase ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = self.dummy_tokenizer _SCREAMING_SNAKE_CASE = self.dummy_unet _SCREAMING_SNAKE_CASE = self.dummy_movq _SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _SCREAMING_SNAKE_CASE = DDIMScheduler(**UpperCamelCase ) _SCREAMING_SNAKE_CASE = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowercase ( self , UpperCamelCase , UpperCamelCase=0 ): _SCREAMING_SNAKE_CASE = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) _SCREAMING_SNAKE_CASE = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase ) # create init_image _SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(UpperCamelCase ) ).convert("RGB" ).resize((256, 256) ) if str(UpperCamelCase ).startswith("mps" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCamelCase ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _SCREAMING_SNAKE_CASE = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowercase ( self ): _SCREAMING_SNAKE_CASE = "cpu" _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCamelCase ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(UpperCamelCase ) , return_dict=UpperCamelCase , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE = np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ): _SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) _SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) _SCREAMING_SNAKE_CASE = "A red cartoon frog, 4k" _SCREAMING_SNAKE_CASE = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) _SCREAMING_SNAKE_CASE = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) _SCREAMING_SNAKE_CASE = torch.Generator(device="cpu" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = pipe_prior( UpperCamelCase , generator=UpperCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() _SCREAMING_SNAKE_CASE = pipeline( UpperCamelCase , image=UpperCamelCase , image_embeds=UpperCamelCase , negative_image_embeds=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
493
1
def UpperCamelCase ( __lowercase : list[int] ,__lowercase : list[int] ): '''simple docstring''' if not len(__lowercase ) == len(__lowercase ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients A_ , A_ , A_ : List[str] = equationa A_ , A_ , A_ : Any = equationa # Calculate the determinants of the matrices A_ : int = aa * ba - aa * ba A_ : int = ca * ba - ca * ba A_ : Any = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: A_ : str = determinant_x / determinant A_ : str = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
558
import sys import turtle def UpperCamelCase ( __lowercase : tuple[float, float] ,__lowercase : tuple[float, float] ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def UpperCamelCase ( __lowercase : tuple[float, float] ,__lowercase : tuple[float, float] ,__lowercase : tuple[float, float] ,__lowercase : int ,): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) if depth == 0: return triangle(__lowercase ,get_mid(__lowercase ,__lowercase ) ,get_mid(__lowercase ,__lowercase ) ,depth - 1 ) triangle(__lowercase ,get_mid(__lowercase ,__lowercase ) ,get_mid(__lowercase ,__lowercase ) ,depth - 1 ) triangle(__lowercase ,get_mid(__lowercase ,__lowercase ) ,get_mid(__lowercase ,__lowercase ) ,depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) _UpperCAmelCase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") _UpperCAmelCase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
558
1
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[int] = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Optional[int] = AlbertTokenizer snake_case__ : Dict = AlbertTokenizerFast snake_case__ : List[str] = True snake_case__ : Optional[int] = True snake_case__ : Union[str, Any] = True def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = AlbertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : int ) -> Tuple: __SCREAMING_SNAKE_CASE = "this is a test" __SCREAMING_SNAKE_CASE = "this is a test" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = "<pad>" __SCREAMING_SNAKE_CASE = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(UpperCAmelCase__ ) , 3_0_0_0_0 ) def UpperCAmelCase_ ( self : int ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def UpperCAmelCase_ ( self : int ) -> Tuple: if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = "I was born in 92000, and this is falsé." __SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = AlbertTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCAmelCase__ , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [4_8, 2_5, 2_1, 1_2_8_9] ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCAmelCase__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , [3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def UpperCAmelCase_ ( self : int ) -> int: __SCREAMING_SNAKE_CASE = AlbertTokenizer(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.encode("sequence builders" ) __SCREAMING_SNAKE_CASE = tokenizer.encode("multi-sequence build" ) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: # fmt: off __SCREAMING_SNAKE_CASE = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
710
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : str , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Tuple ) -> None: warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
553
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _A = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['LayoutLMv2FeatureExtractor'] _A = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
159
import math snake_case__ = 10 snake_case__ = 7 snake_case__ = BALLS_PER_COLOUR * NUM_COLOURS def lowerCamelCase__ ( a : int = 20 ) -> str: """simple docstring""" a__ :List[str] = math.comb(a , a ) a__ :Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a ) a__ :Union[str, Any] = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
395
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : int = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCamelCase (A__ ): lowerCamelCase__ : Optional[Any] = 'visual_bert' def __init__( self : Union[str, Any] , __UpperCAmelCase : Dict=3_0_5_2_2 , __UpperCAmelCase : List[str]=7_6_8 , __UpperCAmelCase : Any=5_1_2 , __UpperCAmelCase : Union[str, Any]=1_2 , __UpperCAmelCase : List[Any]=1_2 , __UpperCAmelCase : List[str]=3_0_7_2 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Optional[Any]=5_1_2 , __UpperCAmelCase : List[Any]=2 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Optional[Any]=1e-12 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : int=True , __UpperCAmelCase : int=1 , __UpperCAmelCase : Dict=0 , __UpperCAmelCase : int=2 , **__UpperCAmelCase : List[Any] , ) -> Any: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = visual_embedding_dim SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = bypass_transformer SCREAMING_SNAKE_CASE__ = special_visual_initialize
616
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class lowerCamelCase (A__ ): lowerCamelCase__ : List[str] = 'swin2sr' lowerCamelCase__ : Optional[Any] = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Tuple , __UpperCAmelCase : Optional[int]=6_4 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : Optional[Any]=3 , __UpperCAmelCase : List[str]=1_8_0 , __UpperCAmelCase : List[str]=[6, 6, 6, 6, 6, 6] , __UpperCAmelCase : Optional[Any]=[6, 6, 6, 6, 6, 6] , __UpperCAmelCase : Tuple=8 , __UpperCAmelCase : Union[str, Any]=2.0 , __UpperCAmelCase : int=True , __UpperCAmelCase : Optional[Any]=0.0 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : List[Any]=1e-5 , __UpperCAmelCase : str=2 , __UpperCAmelCase : Optional[int]=1.0 , __UpperCAmelCase : Union[str, Any]="1conv" , __UpperCAmelCase : List[Any]="pixelshuffle" , **__UpperCAmelCase : Any , ) -> Optional[int]: super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = embed_dim SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = window_size SCREAMING_SNAKE_CASE__ = mlp_ratio SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = drop_path_rate SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = use_absolute_embeddings SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = upscale SCREAMING_SNAKE_CASE__ = img_range SCREAMING_SNAKE_CASE__ = resi_connection SCREAMING_SNAKE_CASE__ = upsampler
616
1
import re def _a ( __UpperCamelCase : str ): if len(re.findall('''[ATCG]''' ,__UpperCamelCase ) ) != len(__UpperCamelCase ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' ,'''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
233
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar A__ : Dict = TypeVar("""T""") def _a ( __UpperCamelCase : int ): return (position - 1) // 2 def _a ( __UpperCamelCase : int ): return (2 * position) + 1 def _a ( __UpperCamelCase : int ): return (2 * position) + 2 class lowercase ( Generic[T] ): def __init__( self ): """simple docstring""" lowerCAmelCase__ : list[tuple[T, int]] = [] lowerCAmelCase__ : dict[T, int] = {} lowerCAmelCase__ : int = 0 def __len__( self ): """simple docstring""" return self.elements def __repr__( self ): """simple docstring""" return str(self.heap ) def lowercase_ ( self ): """simple docstring""" return self.elements == 0 def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" self.heap.append((elem, weight) ) lowerCAmelCase__ : Dict = self.elements self.elements += 1 self._bubble_up(SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self ): """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = self.heap[0] self._bubble_down(SCREAMING_SNAKE_CASE__ ) return elem def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.position_map[elem] lowerCAmelCase__ : str = (elem, weight) if position > 0: lowerCAmelCase__ : Any = get_parent_position(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.heap[parent_position] if parent_weight > weight: self._bubble_up(SCREAMING_SNAKE_CASE__ ) else: self._bubble_down(SCREAMING_SNAKE_CASE__ ) else: self._bubble_down(SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.position_map[elem] if curr_pos == 0: return None lowerCAmelCase__ : Optional[int] = get_parent_position(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.heap[curr_pos] lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_up(SCREAMING_SNAKE_CASE__ ) return None def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Optional[int] = self.position_map[elem] lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = self.heap[curr_pos] lowerCAmelCase__ : Tuple = get_child_left_position(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Any = get_child_right_position(SCREAMING_SNAKE_CASE__ ) if child_left_position < self.elements and child_right_position < self.elements: lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.heap[child_left_position] lowerCAmelCase__ , lowerCAmelCase__ : Any = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) if child_left_position < self.elements: lowerCAmelCase__ , lowerCAmelCase__ : Any = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) else: return None if child_right_position < self.elements: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) return None def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Dict = self.heap[nodea_pos][0] lowerCAmelCase__ : Dict = self.heap[nodea_pos][0] lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowerCAmelCase__ : Tuple = nodea_pos lowerCAmelCase__ : int = nodea_pos class lowercase ( Generic[T] ): def __init__( self ): """simple docstring""" lowerCAmelCase__ : dict[T, dict[T, int]] = {} lowerCAmelCase__ : int = 0 def __repr__( self ): """simple docstring""" return str(self.connections ) def __len__( self ): """simple docstring""" return self.nodes def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if node not in self.connections: lowerCAmelCase__ : Union[str, Any] = {} self.nodes += 1 def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" self.add_node(SCREAMING_SNAKE_CASE__ ) self.add_node(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Tuple = weight lowerCAmelCase__ : Tuple = weight def _a ( __UpperCamelCase : GraphUndirectedWeighted[T] ,): lowerCAmelCase__ : dict[T, int] = {node: maxsize for node in graph.connections} lowerCAmelCase__ : dict[T, T | None] = {node: None for node in graph.connections} lowerCAmelCase__ : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__UpperCamelCase ,__UpperCamelCase ) if priority_queue.is_empty(): return dist, parent # initialization lowerCAmelCase__ : List[Any] = priority_queue.extract_min() lowerCAmelCase__ : str = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase__ : List[str] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCamelCase ,dist[neighbour] ) lowerCAmelCase__ : Optional[Any] = node # running prim's algorithm while not priority_queue.is_empty(): lowerCAmelCase__ : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase__ : Optional[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCamelCase ,dist[neighbour] ) lowerCAmelCase__ : Optional[int] = node return dist, parent
233
1
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ReformerTokenizer lowercase__ = ReformerTokenizerFast lowercase__ = True lowercase__ = False lowercase__ = True def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' super().setUp() _snake_case : Any = ReformerTokenizer(a_, keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = """<s>""" _snake_case : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ), a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ), a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], """<unk>""" ) self.assertEqual(vocab_keys[1], """<s>""" ) self.assertEqual(vocab_keys[-1], """j""" ) self.assertEqual(len(a_ ), 1_000 ) def UpperCamelCase_ ( self: int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_000 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : Union[str, Any] = self.get_tokenizer() _snake_case : Union[str, Any] = self.get_rust_tokenizer() _snake_case : Tuple = """I was born in 92000, and this is falsé.""" _snake_case : List[Any] = tokenizer.tokenize(a_ ) _snake_case : Optional[int] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) _snake_case : Optional[int] = tokenizer.encode(a_, add_special_tokens=a_ ) _snake_case : Dict = rust_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) _snake_case : Tuple = self.get_rust_tokenizer() _snake_case : List[str] = tokenizer.encode(a_ ) _snake_case : List[str] = rust_tokenizer.encode(a_ ) self.assertListEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any], a_: str=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : int = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) # Simple input _snake_case : List[Any] = """This is a simple input""" _snake_case : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _snake_case : Union[str, Any] = ("""This is a simple input""", """This is a pair""") _snake_case : int = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a_, tokenizer_r.encode, a_, max_length=a_, padding="""max_length""" ) # Simple input self.assertRaises(a_, tokenizer_r.encode_plus, a_, max_length=a_, padding="""max_length""" ) # Simple input self.assertRaises( a_, tokenizer_r.batch_encode_plus, a_, max_length=a_, padding="""max_length""", ) # Pair input self.assertRaises(a_, tokenizer_r.encode, a_, max_length=a_, padding="""max_length""" ) # Pair input self.assertRaises(a_, tokenizer_r.encode_plus, a_, max_length=a_, padding="""max_length""" ) # Pair input self.assertRaises( a_, tokenizer_r.batch_encode_plus, a_, max_length=a_, padding="""max_length""", ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = ReformerTokenizer(a_, keep_accents=a_ ) _snake_case : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a_, ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ), [285, 46, 10, 170, 382], ) _snake_case : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a_, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ], ) _snake_case : List[Any] = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], ) _snake_case : List[str] = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ], ) @cached_property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = """Hello World!""" _snake_case : Tuple = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(a_, self.big_tokenizer.encode(a_ ) ) @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _snake_case : List[Any] = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(a_, self.big_tokenizer.encode(a_ ) ) @require_torch @slow def UpperCamelCase_ ( self: str ): '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence _snake_case : Optional[int] = list(self.big_tokenizer.get_vocab().keys() )[:10] _snake_case : Tuple = """ """.join(a_ ) _snake_case : Union[str, Any] = self.big_tokenizer.encode_plus(a_, return_tensors="""pt""" ) _snake_case : List[Any] = self.big_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="""pt""" ) _snake_case : List[str] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _snake_case : Optional[Any] = encoded_sequence["""input_ids"""].shape _snake_case : Dict = ReformerModel(a_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**a_ ) model(**a_ ) @slow def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Dict = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _snake_case : Tuple = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=a_, model_name="""google/reformer-crime-and-punishment""", revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""", padding=a_, sequences=a_, )
704
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ): _snake_case : Union[str, Any] = [] for k, v in d.items(): _snake_case : List[str] = parent_key + sep + k if parent_key else k if isinstance(snake_case__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() ) else: items.append((new_key, v) ) return dict(snake_case__ ) _snake_case : Dict = argparse.Namespace() with open(snake_case__ , """r""" ) as yaml_file: try: _snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader ) _snake_case : Any = flatten_yaml_as_dict(snake_case__ ) for k, v in flat_cfg.items(): setattr(snake_case__ , snake_case__ , snake_case__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) ) return config def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Dict = MobileViTVaConfig() _snake_case : Optional[int] = False # dataset if task_name.startswith("""imagenet1k_""" ): _snake_case : Dict = 10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Union[str, Any] = 3_84 else: _snake_case : Optional[Any] = 2_56 _snake_case : str = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _snake_case : str = 2_10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Dict = 3_84 else: _snake_case : Union[str, Any] = 2_56 _snake_case : Tuple = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _snake_case : Tuple = 1_51 _snake_case : str = 5_12 _snake_case : List[Any] = """ade20k-id2label.json""" _snake_case : Union[str, Any] = True elif task_name.startswith("""voc_""" ): _snake_case : List[Any] = 21 _snake_case : List[str] = 5_12 _snake_case : int = """pascal-voc-id2label.json""" _snake_case : int = True # orig_config _snake_case : int = load_orig_config_file(snake_case__ ) assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" _snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 ) _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label _snake_case : Union[str, Any] = """huggingface/label-files""" _snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : Tuple = idalabel _snake_case : Any = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : List[str] = dct.pop(snake_case__ ) _snake_case : List[Any] = val def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ): """simple docstring""" if base_model: _snake_case : Any = """""" else: _snake_case : Union[str, Any] = """mobilevitv2.""" _snake_case : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case : List[str] = k[8:] else: _snake_case : str = k if ".block." in k: _snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: _snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: _snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: _snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." ) for i in [1, 2]: if F"layer_{i}." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if F"layer_{i}.0." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if F"layer_{i}.1.local_rep.0." in k: _snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if F"layer_{i}.1.local_rep.1." in k: _snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: _snake_case : Optional[Any] = [0, 1] elif i == 4: _snake_case : Any = [0, 1, 2, 3] elif i == 5: _snake_case : List[Any] = [0, 1, 2] for j in j_in: if F"layer_{i}.1.global_rep.{j}." in k: _snake_case : Any = k_new.replace( F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if F"layer_{i}.1.global_rep.{j+1}." in k: _snake_case : List[Any] = k_new.replace( F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." ) if F"layer_{i}.1.conv_proj." in k: _snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: _snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: _snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: _snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: _snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: _snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: _snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[str] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case__ ) for k in keys_to_ignore: state_dict.pop(snake_case__ , snake_case__ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ): """simple docstring""" _snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ ) # load original state_dict _snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval() _snake_case : List[Any] = False else: _snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval() _snake_case : Optional[Any] = False # remove and rename some keys of load the original model _snake_case : Union[str, Any] = checkpoint remove_unused_keys(snake_case__ ) _snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # load modified state_dict model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : Optional[Any] = model(**snake_case__ ) # verify classification model if task_name.startswith("""imagenet""" ): _snake_case : List[str] = outputs.logits _snake_case : Any = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ) assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
28
0
def lowercase_ (A : str ): snake_case__ : Union[str, Any] = [0 for i in range(len(A ) )] # initialize interval's left pointer and right pointer snake_case__ , snake_case__ : Optional[int] = 0, 0 for i in range(1 , len(A ) ): # case when current index is inside the interval if i <= right_pointer: snake_case__ : Union[str, Any] = min(right_pointer - i + 1 , z_result[i - left_pointer] ) snake_case__ : Tuple = min_edge while go_next(A , A , A ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: snake_case__ , snake_case__ : Union[str, Any] = i, i + z_result[i] - 1 return z_result def lowercase_ (A : int , A : list[int] , A : str ): return i + z_result[i] < len(A ) and s[z_result[i]] == s[i + z_result[i]] def lowercase_ (A : str , A : str ): snake_case__ : int = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string snake_case__ : int = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(A ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
478
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a_ :List[str] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class snake_case__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int, _snake_case : Union[str, Any], _snake_case : List[str]=7, _snake_case : int=3, _snake_case : List[Any]=1_8, _snake_case : List[str]=3_0, _snake_case : str=4_0_0, _snake_case : Optional[Any]=None, _snake_case : Dict=True, _snake_case : str=True, _snake_case : Union[str, Any]=None, ) ->str: snake_case__ : int = size if size is not None else {'height': 2_0, 'width': 2_0} snake_case__ : Optional[Any] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : List[Any] = num_channels snake_case__ : List[str] = image_size snake_case__ : List[str] = min_resolution snake_case__ : int = max_resolution snake_case__ : Union[str, Any] = size snake_case__ : Tuple = do_normalize snake_case__ : List[str] = do_convert_rgb snake_case__ : List[Any] = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] snake_case__ : Tuple = patch_size if patch_size is not None else {'height': 1_6, 'width': 1_6} def lowercase_ ( self : str ) ->int: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowercase_ ( self : Optional[Any] ) ->str: snake_case__ : List[Any] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' snake_case__ : List[Any] = Image.open(requests.get(_snake_case, stream=_snake_case ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PixaStructImageProcessor if is_vision_available() else None def lowercase_ ( self : str ) ->str: snake_case__ : Optional[int] = PixaStructImageProcessingTester(self ) @property def lowercase_ ( self : Union[str, Any] ) ->Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case, 'do_normalize' ) ) self.assertTrue(hasattr(_snake_case, 'do_convert_rgb' ) ) def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ : List[str] = self.image_processor_tester.prepare_dummy_image() snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) snake_case__ : Optional[int] = 2_0_4_8 snake_case__ : Optional[int] = image_processor(_snake_case, return_tensors='pt', max_patches=_snake_case ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0_6_0_6 ), atol=1e-3, rtol=1e-3 ) ) def lowercase_ ( self : Tuple ) ->Dict: # Initialize image_processor snake_case__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, Image.Image ) # Test not batched input snake_case__ : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : Optional[Any] = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : Any = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase_ ( self : List[str] ) ->Optional[Any]: # Initialize image_processor snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, Image.Image ) # Test not batched input snake_case__ : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 snake_case__ : Union[str, Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_snake_case ): snake_case__ : int = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches snake_case__ : Optional[Any] = 'Hello' snake_case__ : Dict = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case, header_text=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : List[Any] = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case, header_text=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase_ ( self : Any ) ->int: # Initialize image_processor snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case, numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, np.ndarray ) snake_case__ : Union[str, Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : List[str] = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : Dict = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase_ ( self : List[Any] ) ->List[Any]: # Initialize image_processor snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case, torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, torch.Tensor ) # Test not batched input snake_case__ : Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : Optional[Any] = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : int = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PixaStructImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) ->Union[str, Any]: snake_case__ : Union[str, Any] = PixaStructImageProcessingTester(self, num_channels=4 ) snake_case__ : int = 3 @property def lowercase_ ( self : Optional[Any] ) ->List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : Optional[int] ) ->Optional[int]: snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case, 'do_normalize' ) ) self.assertTrue(hasattr(_snake_case, 'do_convert_rgb' ) ) def lowercase_ ( self : Optional[int] ) ->str: # Initialize image_processor snake_case__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, Image.Image ) # Test not batched input snake_case__ : List[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : Any = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : Dict = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
478
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) A_ = _symbol_database.Default() A_ = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) A_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: A_ = None A_ = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" A_ = 45 A_ = 15_81 A_ = 15_17 A_ = 15_70 A_ = 15_84 A_ = 17_93 A_ = 17_95 A_ = 19_16 A_ = 18_64 A_ = 19_05 A_ = 19_19 A_ = 24_29 A_ = 22_08 A_ = 24_18 A_ = 23_23 A_ = 24_07 # @@protoc_insertion_point(module_scope)
123
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np A_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 A_ = typing.Union[np.floataa, int, float] # noqa: UP007 def A ( _UpperCAmelCase : Vector ,_UpperCAmelCase : Vector ) -> VectorOut: '''simple docstring''' return np.sqrt(np.sum((np.asarray(_UpperCAmelCase ) - np.asarray(_UpperCAmelCase )) ** 2 ) ) def A ( _UpperCAmelCase : Vector ,_UpperCAmelCase : Vector ) -> VectorOut: '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) ** (1 / 2) if __name__ == "__main__": def A ( ) -> None: '''simple docstring''' from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' ,number=1_0_0_0_0 ,globals=globals() ,) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' ,number=1_0_0_0_0 ,globals=globals() ,) ) benchmark()
123
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''biogpt''' def __init__( self , lowerCamelCase_=4_2_3_8_4 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=2_4 , lowerCamelCase_=1_6 , lowerCamelCase_=4_0_9_6 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=2 , **lowerCamelCase_ , ) -> Union[str, Any]: UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = scale_embedding UpperCamelCase = use_cache UpperCamelCase = layerdrop UpperCamelCase = activation_dropout super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_)
34
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def a__ ( UpperCamelCase_ : str, UpperCamelCase_ : str ): UpperCAmelCase__ :Any = list(UpperCamelCase_ ) UpperCAmelCase__ :Optional[int] = list(UpperCamelCase_ ) UpperCAmelCase__ :str = 0 for i in range(len(UpperCamelCase_ ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase__ :Union[str, Any] = '''_''' if count > 1: return False else: return "".join(UpperCamelCase_ ) def a__ ( UpperCamelCase_ : list[str] ): UpperCAmelCase__ :int = [] while True: UpperCAmelCase__ :Dict = ['''$'''] * len(UpperCamelCase_ ) UpperCAmelCase__ :List[str] = [] for i in range(len(UpperCamelCase_ ) ): for j in range(i + 1, len(UpperCamelCase_ ) ): UpperCAmelCase__ :Optional[Any] = compare_string(binary[i], binary[j] ) if k is False: UpperCAmelCase__ :Any = '''*''' UpperCAmelCase__ :List[Any] = '''*''' temp.append('''X''' ) for i in range(len(UpperCamelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(UpperCamelCase_ ) == 0: return pi UpperCAmelCase__ :Tuple = list(set(UpperCamelCase_ ) ) def a__ ( UpperCamelCase_ : int, UpperCamelCase_ : Sequence[float] ): UpperCAmelCase__ :int = [] for minterm in minterms: UpperCAmelCase__ :int = '''''' for _ in range(UpperCamelCase_ ): UpperCAmelCase__ :Optional[int] = str(minterm % 2 ) + string minterm //= 2 temp.append(UpperCamelCase_ ) return temp def a__ ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : int ): UpperCAmelCase__ :Dict = list(UpperCamelCase_ ) UpperCAmelCase__ :str = list(UpperCamelCase_ ) UpperCAmelCase__ :str = 0 for i in range(len(UpperCamelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def a__ ( UpperCamelCase_ : list[list[int]], UpperCamelCase_ : list[str] ): UpperCAmelCase__ :Optional[Any] = [] UpperCAmelCase__ :List[Any] = [0] * len(UpperCamelCase_ ) for i in range(len(chart[0] ) ): UpperCAmelCase__ :Optional[Any] = 0 UpperCAmelCase__ :Union[str, Any] = -1 for j in range(len(UpperCamelCase_ ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase__ :Any = j if count == 1: UpperCAmelCase__ :Any = 1 for i in range(len(UpperCamelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(UpperCamelCase_ ) ): UpperCAmelCase__ :int = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase__ :Optional[int] = 0 UpperCAmelCase__ :Dict = -1 UpperCAmelCase__ :Optional[Any] = 0 for i in range(len(UpperCamelCase_ ) ): UpperCAmelCase__ :str = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase__ :Any = count_n UpperCAmelCase__ :List[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(UpperCamelCase_ ) ): UpperCAmelCase__ :Optional[int] = 0 def a__ ( UpperCamelCase_ : list[str], UpperCamelCase_ : list[str] ): UpperCAmelCase__ :List[str] = [[0 for x in range(len(UpperCamelCase_ ) )] for x in range(len(UpperCamelCase_ ) )] for i in range(len(UpperCamelCase_ ) ): UpperCAmelCase__ :Tuple = prime_implicants[i].count('''_''' ) for j in range(len(UpperCamelCase_ ) ): if is_for_table(prime_implicants[i], binary[j], UpperCamelCase_ ): UpperCAmelCase__ :List[str] = 1 return chart def a__ ( ): UpperCAmelCase__ :int = int(input('''Enter the no. of variables\n''' ) ) UpperCAmelCase__ :Tuple = [ float(UpperCamelCase_ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] UpperCAmelCase__ :Union[str, Any] = decimal_to_binary(UpperCamelCase_, UpperCamelCase_ ) UpperCAmelCase__ :Optional[Any] = check(UpperCamelCase_ ) print('''Prime Implicants are:''' ) print(UpperCamelCase_ ) UpperCAmelCase__ :Optional[int] = prime_implicant_chart(UpperCamelCase_, UpperCamelCase_ ) UpperCAmelCase__ :Dict = selection(UpperCamelCase_, UpperCamelCase_ ) print('''Essential Prime Implicants are:''' ) print(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
467
0
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __lowerCAmelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> int: lowerCamelCase_ = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCamelCase_ = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } lowerCamelCase_ = F'''{src_lang}-{tgt_lang}''' lowerCamelCase_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) lowerCamelCase_ = os.path.join(UpperCAmelCase__ , """README.md""" ) print(F'''Generating {path}''' ) with open(UpperCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(UpperCAmelCase__ ) # make sure we are under the root of the project lowercase = Path(__file__).resolve().parent.parent.parent lowercase = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowercase , lowercase , lowercase = model_name.split('''-''') lowercase = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
103
def __lowerCAmelCase ( UpperCAmelCase__ : int = 4_0_0_0_0_0_0 ) -> int: lowerCamelCase_ = [] lowerCamelCase_ , lowerCamelCase_ = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(UpperCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = b, a + b return sum(UpperCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
103
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : Union[str, Any] = StableUnCLIPPipeline A_ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS A_ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS A_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS A_ : str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false A_ : Optional[Any] = False def __UpperCamelCase ( self : Tuple ) -> str: A = 32 A = embedder_hidden_size # prior components torch.manual_seed(0 ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) A = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__UpperCamelCase , projection_dim=__UpperCamelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) A = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__UpperCamelCase , num_layers=1 , ) torch.manual_seed(0 ) A = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_000 , clip_sample=__UpperCamelCase , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) A = StableUnCLIPImageNormalizer(embedding_dim=__UpperCamelCase ) A = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) A = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) A = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__UpperCamelCase , layers_per_block=1 , upcast_attention=__UpperCamelCase , use_linear_projection=__UpperCamelCase , ) torch.manual_seed(0 ) A = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='v_prediction' , set_alpha_to_one=__UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) A = AutoencoderKL() A = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str=0 ) -> Optional[int]: if str(__UpperCamelCase ).startswith('mps' ): A = torch.manual_seed(__UpperCamelCase ) else: A = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: A = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=__UpperCamelCase ) def __UpperCamelCase ( self : Optional[int] ) -> Tuple: A = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=__UpperCamelCase ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Any ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any] ) -> Tuple: A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) A = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A = torch.Generator(device='cpu' ).manual_seed(0 ) A = pipe('anime turle' , generator=__UpperCamelCase , output_type='np' ) A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : List[str] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) A = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) A = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
106
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ ={"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
482
0
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = '▁' UpperCAmelCase__ : Tuple = {'vocab_file': 'prophetnet.tokenizer'} UpperCAmelCase__ : int = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } UpperCAmelCase__ : Union[str, Any] = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } UpperCAmelCase__ : Optional[int] = { 'microsoft/xprophetnet-large-wiki100-cased': 5_1_2, } def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Dict = collections.OrderedDict() with open(_snake_case ,"""r""" ,encoding="""utf-8""" ) as reader: SCREAMING_SNAKE_CASE__ : Any = reader.readlines() for index, token in enumerate(_snake_case ): SCREAMING_SNAKE_CASE__ : str = token.rstrip("""\n""" ) SCREAMING_SNAKE_CASE__ : Dict = index return vocab class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Tuple = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Any = ['''input_ids''', '''attention_mask'''] def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="[UNK]" , SCREAMING_SNAKE_CASE__="[PAD]" , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[MASK]" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise SCREAMING_SNAKE_CASE__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab SCREAMING_SNAKE_CASE__ : List[Any] = {"""[PAD]""": 0, """[CLS]""": 1, """[SEP]""": 2, """[UNK]""": 3, """[MASK]""": 4} for i in range(10 ): SCREAMING_SNAKE_CASE__ : Any = F'''[unused{i}]''' SCREAMING_SNAKE_CASE__ : Tuple = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE__ : Optional[Any] = 12 SCREAMING_SNAKE_CASE__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(SCREAMING_SNAKE_CASE__ ) def __getstate__(self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.__dict__.copy() SCREAMING_SNAKE_CASE__ : Union[str, Any] = None return state def __setstate__(self , SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = d try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE__ : Tuple = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE__ : List[str] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = """""".join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , """ """ ).strip() return out_string def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , """wb""" ) as fi: SCREAMING_SNAKE_CASE__ : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
545
"""simple docstring""" def lowercase_ ( _snake_case ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE__ : List[str] = 1 SCREAMING_SNAKE_CASE__ : List[Any] = 1 while repunit: SCREAMING_SNAKE_CASE__ : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowercase_ ( _snake_case = 1_000_000 ): SCREAMING_SNAKE_CASE__ : int = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_snake_case ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
545
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : Union[str, Any] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = '''gptsan-japanese''' SCREAMING_SNAKE_CASE__ = [ '''past_key_values''', ] SCREAMING_SNAKE_CASE__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Union[str, Any] , lowercase : Union[str, Any]=3_60_00 , lowercase : Any=12_80 , lowercase : int=10_24 , lowercase : Optional[Any]=81_92 , lowercase : int=40_96 , lowercase : Optional[int]=1_28 , lowercase : List[str]=10 , lowercase : str=0 , lowercase : Optional[Any]=16 , lowercase : int=16 , lowercase : List[str]=1_28 , lowercase : Any=0.0 , lowercase : Optional[int]=1E-5 , lowercase : Tuple=False , lowercase : Any=0.0 , lowercase : Optional[int]="float32" , lowercase : Optional[Any]=False , lowercase : List[str]=False , lowercase : Optional[Any]=False , lowercase : Dict=0.0_0_2 , lowercase : List[Any]=False , lowercase : Union[str, Any]=True , lowercase : List[str]=3_59_98 , lowercase : List[Any]=3_59_95 , lowercase : Any=3_59_99 , **lowercase : int , ): '''simple docstring''' UpperCAmelCase : str = vocab_size UpperCAmelCase : int = max_position_embeddings UpperCAmelCase : int = d_model UpperCAmelCase : List[Any] = d_ff UpperCAmelCase : Dict = d_ext UpperCAmelCase : Optional[Any] = d_spout UpperCAmelCase : Union[str, Any] = num_switch_layers UpperCAmelCase : int = num_ext_layers UpperCAmelCase : List[str] = num_switch_layers + num_ext_layers UpperCAmelCase : int = num_heads UpperCAmelCase : Dict = num_experts UpperCAmelCase : Any = expert_capacity UpperCAmelCase : Any = dropout_rate UpperCAmelCase : Any = layer_norm_epsilon UpperCAmelCase : Tuple = router_bias UpperCAmelCase : List[str] = router_jitter_noise UpperCAmelCase : Tuple = router_dtype UpperCAmelCase : Optional[Any] = router_ignore_padding_tokens UpperCAmelCase : Optional[int] = output_hidden_states UpperCAmelCase : Optional[Any] = output_attentions UpperCAmelCase : Tuple = initializer_factor UpperCAmelCase : Any = output_router_logits UpperCAmelCase : Union[str, Any] = use_cache super().__init__( separator_token_id=__UpperCamelCase , pad_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase , )
595
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCAmelCase ( UpperCAmelCase__ : Union[List, PIL.Image.Image, torch.Tensor] ) -> int: warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , UpperCAmelCase__ , ) if isinstance(UpperCAmelCase__ , torch.Tensor ): return image elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowerCamelCase_ = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCamelCase_ , lowerCamelCase_ = image[0].size lowerCamelCase_ , lowerCamelCase_ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCamelCase_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] lowerCamelCase_ = np.concatenate(UpperCAmelCase__ , axis=0 ) lowerCamelCase_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) / 2_5_5.0 lowerCamelCase_ = image.transpose(0 , 3 , 1 , 2 ) lowerCamelCase_ = 2.0 * image - 1.0 lowerCamelCase_ = torch.from_numpy(UpperCAmelCase__ ) elif isinstance(image[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(UpperCAmelCase__ , dim=0 ) return image def __lowerCAmelCase ( UpperCAmelCase__ : Union[List, PIL.Image.Image, torch.Tensor] ) -> Any: if isinstance(UpperCAmelCase__ , torch.Tensor ): return mask elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowerCamelCase_ = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCamelCase_ , lowerCamelCase_ = mask[0].size lowerCamelCase_ , lowerCamelCase_ = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 lowerCamelCase_ = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] lowerCamelCase_ = np.concatenate(UpperCAmelCase__ , axis=0 ) lowerCamelCase_ = mask.astype(np.floataa ) / 2_5_5.0 lowerCamelCase_ = 0 lowerCamelCase_ = 1 lowerCamelCase_ = torch.from_numpy(UpperCAmelCase__ ) elif isinstance(mask[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(UpperCAmelCase__ , dim=0 ) return mask class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def __init__( self : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): super().__init__() self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self : List[str] , __UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] , __UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] , __UpperCamelCase : int = 2_5_0 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 1_0 , __UpperCamelCase : int = 1_0 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , ): lowerCamelCase_ = image lowerCamelCase_ = _preprocess_image(__UpperCamelCase ) lowerCamelCase_ = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCamelCase_ = _preprocess_mask(__UpperCamelCase ) lowerCamelCase_ = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCamelCase_ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__UpperCamelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase_ = original_image.shape lowerCamelCase_ = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , self.device ) lowerCamelCase_ = eta lowerCamelCase_ = self.scheduler.timesteps[0] + 1 lowerCamelCase_ = generator[0] if isinstance(__UpperCamelCase , __UpperCamelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCamelCase_ = self.unet(__UpperCamelCase , __UpperCamelCase ).sample # compute previous image: x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCamelCase_ = self.scheduler.undo_step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = t lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
272
0
"""simple docstring""" import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowercase = False lowercase = True lowercase = False if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowercase = parser.parse_args() lowercase = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } lowercase = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } lowercase = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: lowercase = reader.read() lowercase = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): lowercase = UNetaDModel(**config) else: lowercase = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel lowercase = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowercase = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowercase = config[key] del config[key] lowercase = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] lowercase = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: lowercase = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) lowercase = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue lowercase = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: lowercase = param_value lowercase = True if not has_changed: lowercase = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
714
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
150
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> tuple[float, float]: # Check if the input is valid if not len(UpperCamelCase__ ) == len(UpperCamelCase__ ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = equationa __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = equationa # Calculate the determinants of the matrices __lowerCamelCase = aa * ba - aa * ba __lowerCamelCase = ca * ba - ca * ba __lowerCamelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __lowerCamelCase = determinant_x / determinant __lowerCamelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
546
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[Any] ="levit" def __init__( self : Optional[int] , a : int=2_24 , a : Union[str, Any]=3 , a : List[Any]=3 , a : Dict=2 , a : Tuple=1 , a : Optional[int]=16 , a : Optional[Any]=[1_28, 2_56, 3_84] , a : Dict=[4, 8, 12] , a : Optional[Any]=[4, 4, 4] , a : Optional[int]=[16, 16, 16] , a : Any=0 , a : List[Any]=[2, 2, 2] , a : Optional[Any]=[2, 2, 2] , a : Union[str, Any]=0.02 , **a : Optional[int] , ): """simple docstring""" super().__init__(**a ) __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = kernel_size __lowerCamelCase = stride __lowerCamelCase = padding __lowerCamelCase = hidden_sizes __lowerCamelCase = num_attention_heads __lowerCamelCase = depths __lowerCamelCase = key_dim __lowerCamelCase = drop_path_rate __lowerCamelCase = patch_size __lowerCamelCase = attention_ratio __lowerCamelCase = mlp_ratio __lowerCamelCase = initializer_range __lowerCamelCase = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a__ ( UpperCAmelCase__ ): lowerCamelCase : Tuple =version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return 1e-4
546
1
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCamelCase : Tuple = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' _lowerCamelCase : Optional[Any] = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' _lowerCamelCase : Tuple = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def __snake_case( self : Optional[int] ) -> Optional[int]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def __snake_case( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : int = CHRF.CHAR_ORDER , _UpperCamelCase : int = CHRF.WORD_ORDER , _UpperCamelCase : int = CHRF.BETA , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = len(references[0] ) if any(len(_UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) SCREAMING_SNAKE_CASE = [[refs[i] for refs in references] for i in range(_UpperCamelCase )] SCREAMING_SNAKE_CASE = CHRF(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = sb_chrf.corpus_score(_UpperCamelCase , _UpperCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
647
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[Any] = '''▁''' _lowerCamelCase : Optional[int] = {'''vocab_file''': '''prophetnet.tokenizer'''} _lowerCamelCase : str = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } _lowerCamelCase : Optional[Any] = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } _lowerCamelCase : Optional[Any] = { '''microsoft/xprophetnet-large-wiki100-cased''': 5_12, } def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = collections.OrderedDict() with open(UpperCAmelCase__ , "r" , encoding="utf-8" ) as reader: SCREAMING_SNAKE_CASE = reader.readlines() for index, token in enumerate(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = token.rstrip("\n" ) SCREAMING_SNAKE_CASE = index return vocab class lowercase ( a ): lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Any = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : str="[SEP]" , _UpperCamelCase : str="[SEP]" , _UpperCamelCase : Dict="[SEP]" , _UpperCamelCase : Tuple="[UNK]" , _UpperCamelCase : Dict="[PAD]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , sep_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab SCREAMING_SNAKE_CASE = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): SCREAMING_SNAKE_CASE = F"[unused{i}]" SCREAMING_SNAKE_CASE = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_UpperCamelCase ) def __getstate__( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self : List[Any] , _UpperCamelCase : Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case( self : Dict , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def __snake_case( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __snake_case( self : Dict ) -> Optional[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def __snake_case( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case( self : Union[str, Any] , _UpperCamelCase : str ) -> str: '''simple docstring''' return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __snake_case( self : Optional[Any] , _UpperCamelCase : List[Any] ) -> List[str]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __snake_case( self : str , _UpperCamelCase : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case( self : List[str] , _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = "".join(_UpperCamelCase ).replace(_UpperCamelCase , " " ).strip() return out_string def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , "wb" ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def __snake_case( self : Optional[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
647
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __SCREAMING_SNAKE_CASE (__A ): """simple docstring""" _a : Dict = '''sew''' def __init__( self , UpperCamelCase__=32 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3_072 , UpperCamelCase__=2 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-5 , UpperCamelCase__="group" , UpperCamelCase__="gelu" , UpperCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCamelCase__=False , UpperCamelCase__=128 , UpperCamelCase__=16 , UpperCamelCase__=True , UpperCamelCase__=0.05 , UpperCamelCase__=10 , UpperCamelCase__=2 , UpperCamelCase__=0.0 , UpperCamelCase__=10 , UpperCamelCase__=0 , UpperCamelCase__="mean" , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=256 , UpperCamelCase__=0 , UpperCamelCase__=1 , UpperCamelCase__=2 , **UpperCamelCase__ , ): """simple docstring""" super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) a_ = hidden_size a_ = feat_extract_norm a_ = feat_extract_activation a_ = list(A_ ) a_ = list(A_ ) a_ = list(A_ ) a_ = conv_bias a_ = num_conv_pos_embeddings a_ = num_conv_pos_embedding_groups a_ = len(self.conv_dim ) a_ = num_hidden_layers a_ = intermediate_size a_ = squeeze_factor a_ = hidden_act a_ = num_attention_heads a_ = hidden_dropout a_ = attention_dropout a_ = activation_dropout a_ = feat_proj_dropout a_ = final_dropout a_ = layerdrop a_ = layer_norm_eps a_ = initializer_range a_ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a_ = apply_spec_augment a_ = mask_time_prob a_ = mask_time_length a_ = mask_time_min_masks a_ = mask_feature_prob a_ = mask_feature_length a_ = mask_feature_min_masks # ctc loss a_ = ctc_loss_reduction a_ = ctc_zero_infinity # sequence classification a_ = use_weighted_layer_sum a_ = classifier_proj_size @property def _a ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
536
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = BertTokenizer UpperCamelCase = BertTokenizerFast UpperCamelCase = True UpperCamelCase = True UpperCamelCase = filter_non_english def a__ ( self : List[Any] ) -> int: """simple docstring""" super().setUp() lowerCamelCase_ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : Tuple , A_ : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) # With lower casing lowerCamelCase_ = self.get_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = self.get_rust_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" lowerCamelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Tuple ) -> str: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : int ) -> List[Any]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> List[str]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : int ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer() lowerCamelCase_ = 'a\n\'ll !!to?\'d of, can\'t.' lowerCamelCase_ = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(A_ ) , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCamelCase_ = {} for i, token in enumerate(A_ ): lowerCamelCase_ = i lowerCamelCase_ = WordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : List[Any] ) -> int: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('bert-base-uncased' ) lowerCamelCase_ = tokenizer.encode('sequence builders' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a__ ( self : str ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase_ = tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = ['的', '人', '有'] lowerCamelCase_ = ''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ )
70
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _lowerCamelCase = { '''gpt-neox-20b''': 2048, } class UpperCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Tuple = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase=False , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) a =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: a =getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) a =add_prefix_space a =pre_tok_class(**_lowerCAmelCase ) a =add_prefix_space def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): a =self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def lowerCAmelCase__ ( self , _lowerCAmelCase ): a =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) + [self.eos_token_id] ) if len(_lowerCAmelCase ) > self.model_max_length: a =input_ids[-self.model_max_length :] return input_ids
321
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowerCamelCase ( UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : Tuple=10 , UpperCAmelCase_ : Dict=100 , UpperCAmelCase_ : Optional[int]=1026 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : List[Any]="data/tokenized_stories_train_wikitext103.jbl" , UpperCAmelCase_ : int="igf_context_pairs.jbl" , )-> Dict: """simple docstring""" set_seed(3 ) # generate train_data and objective_set a , a =generate_datasets( UpperCAmelCase_ , UpperCAmelCase_ , number=UpperCAmelCase_ , min_len=1026 , trim=UpperCAmelCase_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? a =torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model a =load_gpta("""gpt2""" ).to(UpperCAmelCase_ ) print("""computing perplexity on objective set""" ) a =compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).item() print("""perplexity on objective set:""" , UpperCAmelCase_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int=15 , UpperCAmelCase_ : Optional[int]=128 , UpperCAmelCase_ : Tuple=100 , UpperCAmelCase_ : List[Any]="igf_model.pt" , )-> Union[str, Any]: """simple docstring""" set_seed(42 ) # Load pre-trained model a =GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model a =SecondaryLearner(UpperCAmelCase_ ) # Train secondary learner a =train_secondary_learner( UpperCAmelCase_ , UpperCAmelCase_ , max_epochs=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , eval_freq=100 , igf_model_path=UpperCAmelCase_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : Any=1000 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : str=recopy_gpta , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[Any]=10 , UpperCAmelCase_ : int="gpt2_finetuned.pt" , )-> int: """simple docstring""" a =torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) a =RandomSampler(UpperCAmelCase_ ) a =DataLoader(UpperCAmelCase_ , sampler=UpperCAmelCase_ ) a =max_steps // (len(UpperCAmelCase_ )) + 1 a =0 a =torch.zeros((1, context_len) , dtype=torch.long , device=UpperCAmelCase_ ) a , a , a =recopy_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) model.train() if secondary_learner is not None: secondary_learner.to(UpperCAmelCase_ ) secondary_learner.eval() a =[] a =0 a =[] a =[] # Compute the performance of the transformer model at the beginning a =compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) test_perps.append(UpperCAmelCase_ ) print("""Test perplexity, step""" , UpperCAmelCase_ , """:""" , UpperCAmelCase_ ) for epoch in range(int(UpperCAmelCase_ ) ): for step, example in enumerate(UpperCAmelCase_ ): torch.cuda.empty_cache() a =random.randint(0 , example.size(2 ) - context_len - 1 ) a =example[0, 0, start : start + context_len] lm_optimizer.zero_grad() a =model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) a =True if secondary_learner is not None: a =secondary_learner.forward( torch.tensor(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(UpperCAmelCase_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: a =-1 if predicted_q < threshold: a =False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) a =outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() a =0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: a =compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) test_perps.append(UpperCAmelCase_ ) print("""Test perplexity, step""" , UpperCAmelCase_ , """:""" , UpperCAmelCase_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , UpperCAmelCase_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowerCamelCase ( )-> Any: """simple docstring""" a =argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="""The input data dir. Should contain data files for WikiText.""" , ) parser.add_argument( """--model_name_or_path""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--data_file""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ) , ) parser.add_argument( """--igf_data_file""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , ) parser.add_argument( """--output_dir""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="""The output directory where the final fine-tuned model is stored.""" , ) parser.add_argument( """--tokenizer_name""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument("""--seed""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""" , default=32 , type=UpperCAmelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--size_objective_set""" , default=100 , type=UpperCAmelCase_ , help="""number of articles that are long enough to be used as our objective set""" , ) parser.add_argument( """--eval_freq""" , default=100 , type=UpperCAmelCase_ , help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""" , default=1000 , type=UpperCAmelCase_ , help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""" , default=128 , type=UpperCAmelCase_ , help="""batch size of training data for secondary learner""" , ) parser.add_argument( """--batch_size""" , default=16 , type=UpperCAmelCase_ , help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""" , default=10 , type=UpperCAmelCase_ , help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ) , ) parser.add_argument( """--number""" , default=100 , type=UpperCAmelCase_ , help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""" , default=1026 , type=UpperCAmelCase_ , help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""" , default=15 , type=UpperCAmelCase_ , help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""" , default=1.0 , type=UpperCAmelCase_ , help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ) , ) parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=UpperCAmelCase_ , help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=UpperCAmelCase_ , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , ) # Load train data for secondary learner a =joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner a =training_secondary_learner( UpperCAmelCase_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="""igf_model.pt""" , ) # load pretrained gpt2 model a =GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model a , a =generate_datasets( context_len=32 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=100 , min_len=1026 , trim=UpperCAmelCase_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=UpperCAmelCase_ , secondary_learner=UpperCAmelCase_ , eval_interval=10 , finetuned_model_name="""gpt2_finetuned.pt""" , ) if __name__ == "__main__": main()
321
1
"""simple docstring""" import random from typing import Any def snake_case ( lowerCAmelCase_ ) -> list[Any]: for _ in range(len(lowerCAmelCase_ ) ): _snake_case = random.randint(0 , len(lowerCAmelCase_ ) - 1 ) _snake_case = random.randint(0 , len(lowerCAmelCase_ ) - 1 ) _snake_case , _snake_case = data[b], data[a] return data if __name__ == "__main__": snake_case = [0, 1, 2, 3, 4, 5, 6, 7] snake_case = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
103
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCAmelCase__ ( __lowercase ): @staticmethod @abstractmethod def A_ ( a ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError() @abstractmethod def A_ ( self ) -> List[Any]: '''simple docstring''' raise NotImplementedError()
612
0
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Dict=1_3 , snake_case__ : Tuple=7 , snake_case__ : List[Any]=True , snake_case__ : Any=True , snake_case__ : str=True , snake_case__ : int=True , snake_case__ : Tuple=9_9 , snake_case__ : Union[str, Any]=1_6 , snake_case__ : str=3_6 , snake_case__ : List[str]=6 , snake_case__ : List[Any]=6 , snake_case__ : Dict=6 , snake_case__ : str=3_7 , snake_case__ : Dict="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Any=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Optional[Any]=1_6 , snake_case__ : Tuple=2 , snake_case__ : Tuple=0.02 , snake_case__ : List[str]=3 , snake_case__ : Optional[Any]=4 , snake_case__ : Any=None , ): '''simple docstring''' lowercase :Optional[int] = parent lowercase :int = batch_size lowercase :Optional[int] = seq_length lowercase :str = is_training lowercase :Optional[Any] = use_input_mask lowercase :List[str] = use_token_type_ids lowercase :Optional[int] = use_labels lowercase :Tuple = vocab_size lowercase :List[str] = embedding_size lowercase :Tuple = hidden_size lowercase :List[Any] = num_hidden_layers lowercase :Dict = num_hidden_groups lowercase :List[Any] = num_attention_heads lowercase :str = intermediate_size lowercase :List[Any] = hidden_act lowercase :Optional[int] = hidden_dropout_prob lowercase :Any = attention_probs_dropout_prob lowercase :Optional[int] = max_position_embeddings lowercase :Union[str, Any] = type_vocab_size lowercase :Union[str, Any] = type_sequence_label_size lowercase :Tuple = initializer_range lowercase :List[Any] = num_labels lowercase :Union[str, Any] = num_choices lowercase :Dict = scope def __snake_case ( self : Any ): '''simple docstring''' lowercase :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase :Dict = None if self.use_input_mask: lowercase :Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase :Optional[Any] = None if self.use_token_type_ids: lowercase :Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase :List[str] = None lowercase :Tuple = None lowercase :Union[str, Any] = None if self.use_labels: lowercase :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase :str = ids_tensor([self.batch_size] , self.num_choices ) lowercase :Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self : Optional[int] ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __snake_case ( self : int , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Optional[int] ): '''simple docstring''' lowercase :str = AlbertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Dict = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowercase :Tuple = model(snake_case__ , token_type_ids=snake_case__ ) lowercase :Union[str, Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __snake_case ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): '''simple docstring''' lowercase :Union[str, Any] = AlbertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Optional[Any] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __snake_case ( self : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' lowercase :Optional[int] = AlbertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : Optional[int] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] ): '''simple docstring''' lowercase :Union[str, Any] = AlbertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :int = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : str , snake_case__ : Optional[Any] ): '''simple docstring''' lowercase :Union[str, Any] = self.num_labels lowercase :Optional[Any] = AlbertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : str , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' lowercase :int = self.num_labels lowercase :Union[str, Any] = AlbertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Optional[Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : List[str] ): '''simple docstring''' lowercase :Optional[Any] = self.num_choices lowercase :Dict = AlbertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase :Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase :Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase :int = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :str = self.prepare_config_and_inputs() ( lowercase ) :Optional[int] = config_and_inputs lowercase :List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A : List[Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) __A : List[str] = True def __snake_case ( self : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Any=False ): '''simple docstring''' lowercase :Any = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowercase :Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) lowercase :int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def __snake_case ( self : Any ): '''simple docstring''' lowercase :Dict = AlbertModelTester(self ) lowercase :str = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __snake_case ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def __snake_case ( self : str ): '''simple docstring''' lowercase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase :Optional[int] = type self.model_tester.create_and_check_model(*snake_case__ ) @slow def __snake_case ( self : Tuple ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase :Union[str, Any] = AlbertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :Dict = AlbertModel.from_pretrained('''albert-base-v2''' ) lowercase :Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase :Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase :List[str] = model(snake_case__ , attention_mask=snake_case__ )[0] lowercase :Union[str, Any] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) lowercase :int = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
716
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def lowerCamelCase (a_ :Union[str, Any]) -> Optional[Any]: for pegasus_name, hf_name in PATTERNS: lowercase :List[Any] = k.replace(a_ , a_) return k def lowerCamelCase (a_ :dict , a_ :dict) -> PegasusForConditionalGeneration: lowercase :Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(a_) lowercase :Optional[Any] = PegasusConfig(**a_) lowercase :int = PegasusForConditionalGeneration(a_) lowercase :Optional[int] = torch_model.model.state_dict() lowercase :Tuple = {} for k, v in tf_weights.items(): lowercase :Dict = rename_state_dict_key(a_) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""") if "dense" in k or "proj" in new_k: lowercase :Union[str, Any] = v.T lowercase :List[str] = torch.tensor(a_ , dtype=sd[new_k].dtype) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected lowercase :Optional[int] = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1]) lowercase :Union[str, Any] = mapping['''shared.weight'''] lowercase :Dict = mapping['''shared.weight'''] lowercase :int = {k: torch.zeros_like(a_) for k, v in sd.items() if k.endswith('''bias''') and k not in mapping} mapping.update(**a_) lowercase , lowercase :Tuple = torch_model.model.load_state_dict(a_ , strict=a_) lowercase :Dict = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCamelCase (a_ :Union[str, Any]="./ckpt/aeslc/model.ckpt-32000") -> Dict: lowercase :Any = tf.train.list_variables(a_) lowercase :str = {} lowercase :Optional[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(a_ , desc='''converting tf checkpoint to dict'''): lowercase :str = any(pat in name for pat in ignore_name) if skip_key: continue lowercase :str = tf.train.load_variable(a_ , a_) lowercase :Dict = array return tf_weights def lowerCamelCase (a_ :str , a_ :str) -> List[str]: # save tokenizer first lowercase :List[str] = Path(a_).parent.name lowercase :List[Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] lowercase :List[Any] = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a_) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a_) # convert model lowercase :Any = get_tf_weights_as_numpy(a_) lowercase :str = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": lowercase :int = task_specific_params lowercase :List[Any] = convert_pegasus(a_ , a_) torch_model.save_pretrained(a_) lowercase :Union[str, Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''') sd.pop('''model.encoder.embed_positions.weight''') torch.save(a_ , Path(a_) / '''pytorch_model.bin''') if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCAmelCase = parser.parse_args() if args.save_dir is None: UpperCAmelCase = Path(args.tf_ckpt_path).parent.name UpperCAmelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
475
0
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self :Dict ): __SCREAMING_SNAKE_CASE : Any = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self :int ): __SCREAMING_SNAKE_CASE : List[Any] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): __SCREAMING_SNAKE_CASE : List[str] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self :Any ): __SCREAMING_SNAKE_CASE : Tuple = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): __SCREAMING_SNAKE_CASE : List[str] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self :int ): __SCREAMING_SNAKE_CASE : Optional[int] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __SCREAMING_SNAKE_CASE : int = '''fp16''' self.assertTrue(is_safetensors_compatible(_lowerCamelCase , variant=_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self :int ): __SCREAMING_SNAKE_CASE : List[str] = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __SCREAMING_SNAKE_CASE : List[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(_lowerCamelCase , variant=_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): # pass variant but use the non-variant filenames __SCREAMING_SNAKE_CASE : List[str] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] __SCREAMING_SNAKE_CASE : Dict = '''fp16''' self.assertTrue(is_safetensors_compatible(_lowerCamelCase , variant=_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self :int ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __SCREAMING_SNAKE_CASE : int = '''fp16''' self.assertFalse(is_safetensors_compatible(_lowerCamelCase , variant=_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self :str ): __SCREAMING_SNAKE_CASE : Optional[int] = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] __SCREAMING_SNAKE_CASE : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(_lowerCamelCase , variant=_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): # pass variant but use the non-variant filenames __SCREAMING_SNAKE_CASE : List[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] __SCREAMING_SNAKE_CASE : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(_lowerCamelCase , variant=_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __SCREAMING_SNAKE_CASE : List[Any] = '''fp16''' self.assertFalse(is_safetensors_compatible(_lowerCamelCase , variant=_lowerCamelCase ) )
674
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self :int ): __SCREAMING_SNAKE_CASE : Tuple = 0 def SCREAMING_SNAKE_CASE_ ( self :Any ): __SCREAMING_SNAKE_CASE : Optional[Any] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :int ): with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Optional[Any] = Path(_lowerCamelCase ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE : Dict = Path(_lowerCamelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowerCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowerCamelCase , '''w''' ) ) __SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Tuple = Path(_lowerCamelCase ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE : Union[str, Any] = Path(_lowerCamelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowerCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowerCamelCase , '''w''' ) ) __SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :int ): with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : str = CLIPConfig() # Create a dummy config file with image_proceesor_type __SCREAMING_SNAKE_CASE : Tuple = Path(_lowerCamelCase ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE : Any = Path(_lowerCamelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowerCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowerCamelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained(_lowerCamelCase ).to_dict() config_dict.pop('''image_processor_type''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPImageProcessor(**_lowerCamelCase ) # save in new folder model_config.save_pretrained(_lowerCamelCase ) config.save_pretrained(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = AutoImageProcessor.from_pretrained(_lowerCamelCase ) # make sure private variable is not incorrectly saved __SCREAMING_SNAKE_CASE : Tuple = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Dict = Path(_lowerCamelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowerCamelCase , '''w''' ) , ) __SCREAMING_SNAKE_CASE : Optional[Any] = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): with self.assertRaisesRegex( _lowerCamelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): __SCREAMING_SNAKE_CASE : Tuple = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): with self.assertRaisesRegex( _lowerCamelCase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained(_lowerCamelCase , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): with self.assertRaisesRegex( _lowerCamelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = AutoImageProcessor.from_pretrained(_lowerCamelCase , trust_remote_code=_lowerCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): try: AutoConfig.register('''custom''' , _lowerCamelCase ) AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCamelCase ): AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Dict = Path(_lowerCamelCase ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE : Dict = Path(_lowerCamelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowerCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowerCamelCase , '''w''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = CustomImageProcessor.from_pretrained(_lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE_ ( self :Dict ): class snake_case ( __UpperCAmelCase ): lowerCamelCase__ = True try: AutoConfig.register('''custom''' , _lowerCamelCase ) AutoImageProcessor.register(_lowerCamelCase , _lowerCamelCase ) # If remote code is not set, the default is to use local __SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_lowerCamelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
674
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCamelCase : '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] , _snake_case : Tuple , _snake_case : Dict , _snake_case : int ) -> str: return None class lowerCamelCase : '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : List[str] , _snake_case : str ) -> Tuple: return None class lowerCamelCase (unittest.TestCase ): '''simple docstring''' a = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCAmelCase_ ( self : str ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_snake_case , "tf" , 12 , **_snake_case ) @require_torch @slow def lowerCAmelCase_ ( self : Dict ) -> List[str]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_snake_case , "pt" , 12 , **_snake_case ) @require_torch @slow def lowerCAmelCase_ ( self : List[str] ) -> Optional[int]: from transformers import BertModel SCREAMING_SNAKE_CASE__ = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(_snake_case ) ) vocab_file.flush() SCREAMING_SNAKE_CASE__ = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE__ = BertModel(BertConfig(vocab_size=len(_snake_case ) ) ) model.save_pretrained(_snake_case ) self._test_export(_snake_case , "pt" , 12 , _snake_case ) @require_tf @slow def lowerCAmelCase_ ( self : int ) -> Optional[int]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE__ = self._test_export(_snake_case , "tf" , 12 , **_snake_case ) SCREAMING_SNAKE_CASE__ = quantize(Path(_snake_case ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_snake_case ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def lowerCAmelCase_ ( self : str ) -> Tuple: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE__ = self._test_export(_snake_case , "pt" , 12 , **_snake_case ) SCREAMING_SNAKE_CASE__ = quantize(_snake_case ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_snake_case ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def lowerCAmelCase_ ( self : Tuple , _snake_case : str , _snake_case : Tuple , _snake_case : List[str] , _snake_case : Union[str, Any]=None , **_snake_case : Union[str, Any] ) -> Optional[int]: try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE__ = Path(_snake_case ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case ) return path except Exception as e: self.fail(_snake_case ) @require_torch @require_tokenizers @slow def lowerCAmelCase_ ( self : Dict ) -> Any: from transformers import BertModel SCREAMING_SNAKE_CASE__ = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE__ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(_snake_case , _snake_case , "pt" ) @require_tf @require_tokenizers @slow def lowerCAmelCase_ ( self : Optional[int] ) -> Dict: from transformers import TFBertModel SCREAMING_SNAKE_CASE__ = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE__ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(_snake_case , _snake_case , "tf" ) def lowerCAmelCase_ ( self : Union[str, Any] , _snake_case : Dict , _snake_case : str , _snake_case : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = FeatureExtractionPipeline(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE__ = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = infer_shapes(_snake_case , _snake_case ) # Assert all variables are present self.assertEqual(len(_snake_case ) , len(_snake_case ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _snake_case ) self.assertSequenceEqual(variable_names[3:] , _snake_case ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def lowerCAmelCase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = ["input_ids", "attention_mask", "token_type_ids"] SCREAMING_SNAKE_CASE__ = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = ensure_valid_input(FuncContiguousArgs() , _snake_case , _snake_case ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_snake_case ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_snake_case ) , set(_snake_case ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_snake_case , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = ensure_valid_input(FuncNonContiguousArgs() , _snake_case , _snake_case ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_snake_case ) , 1 ) self.assertEqual(len(_snake_case ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def lowerCAmelCase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
538
"""simple docstring""" import sys def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__ = len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = [[0 for x in range(__UpperCAmelCase )] for x in range(__UpperCAmelCase )] SCREAMING_SNAKE_CASE__ = [[0 for x in range(__UpperCAmelCase )] for x in range(__UpperCAmelCase )] for chain_length in range(2 , __UpperCAmelCase ): for a in range(1 , n - chain_length + 1 ): SCREAMING_SNAKE_CASE__ = a + chain_length - 1 SCREAMING_SNAKE_CASE__ = sys.maxsize for c in range(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: SCREAMING_SNAKE_CASE__ = cost SCREAMING_SNAKE_CASE__ = c return matrix, sol def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: if i == j: print("A" + str(__UpperCAmelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__UpperCAmelCase , __UpperCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(__UpperCAmelCase , optimal_solution[i][j] + 1 , __UpperCAmelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE ( ) -> Any: SCREAMING_SNAKE_CASE__ = [30, 35, 15, 5, 10, 20, 25] SCREAMING_SNAKE_CASE__ = len(__UpperCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = matrix_chain_order(__UpperCAmelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__UpperCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
538
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : Any ='''cvt''' def __init__( self :Dict, snake_case :Tuple=3, snake_case :Optional[int]=[7, 3, 3], snake_case :int=[4, 2, 2], snake_case :Dict=[2, 1, 1], snake_case :Tuple=[64, 192, 384], snake_case :Optional[Any]=[1, 3, 6], snake_case :Any=[1, 2, 10], snake_case :Optional[Any]=[4.0, 4.0, 4.0], snake_case :Any=[0.0, 0.0, 0.0], snake_case :List[Any]=[0.0, 0.0, 0.0], snake_case :str=[0.0, 0.0, 0.1], snake_case :Any=[True, True, True], snake_case :Dict=[False, False, True], snake_case :Dict=["dw_bn", "dw_bn", "dw_bn"], snake_case :int=[3, 3, 3], snake_case :List[str]=[1, 1, 1], snake_case :Optional[Any]=[2, 2, 2], snake_case :str=[1, 1, 1], snake_case :Optional[Any]=[1, 1, 1], snake_case :int=0.0_2, snake_case :List[str]=1e-1_2, **snake_case :Dict, ): """simple docstring""" super().__init__(**snake_case) _lowercase =num_channels _lowercase =patch_sizes _lowercase =patch_stride _lowercase =patch_padding _lowercase =embed_dim _lowercase =num_heads _lowercase =depth _lowercase =mlp_ratio _lowercase =attention_drop_rate _lowercase =drop_rate _lowercase =drop_path_rate _lowercase =qkv_bias _lowercase =cls_token _lowercase =qkv_projection_method _lowercase =kernel_qkv _lowercase =padding_kv _lowercase =stride_kv _lowercase =padding_q _lowercase =stride_q _lowercase =initializer_range _lowercase =layer_norm_eps
181
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure)
169
0
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
42
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : """simple docstring""" def __init__( self: List[Any] , __a: List[str] , __a: Optional[int]=13 , __a: List[str]=32 , __a: int=2 , __a: List[str]=3 , __a: Union[str, Any]=16 , __a: int=[32, 64, 128] , __a: Optional[Any]=[1, 2, 1] , __a: Optional[int]=[2, 2, 4] , __a: Tuple=2 , __a: Dict=2.0 , __a: List[str]=True , __a: Optional[Any]=0.0 , __a: Any=0.0 , __a: List[Any]=0.1 , __a: List[str]="gelu" , __a: Tuple=False , __a: Union[str, Any]=True , __a: Optional[int]=0.02 , __a: Tuple=1e-5 , __a: int=True , __a: List[Any]=None , __a: Optional[int]=True , __a: Dict=10 , __a: List[str]=8 , __a: Any=["stage1", "stage2"] , __a: Union[str, Any]=[1, 2] , )-> Dict: lowerCamelCase : Dict = parent lowerCamelCase : Optional[Any] = batch_size lowerCamelCase : Union[str, Any] = image_size lowerCamelCase : Optional[int] = patch_size lowerCamelCase : Any = num_channels lowerCamelCase : Any = embed_dim lowerCamelCase : Dict = hidden_sizes lowerCamelCase : List[Any] = depths lowerCamelCase : Tuple = num_heads lowerCamelCase : List[Any] = window_size lowerCamelCase : str = mlp_ratio lowerCamelCase : str = qkv_bias lowerCamelCase : str = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : Tuple = drop_path_rate lowerCamelCase : Dict = hidden_act lowerCamelCase : Tuple = use_absolute_embeddings lowerCamelCase : List[str] = patch_norm lowerCamelCase : List[str] = layer_norm_eps lowerCamelCase : str = initializer_range lowerCamelCase : Tuple = is_training lowerCamelCase : int = scope lowerCamelCase : Union[str, Any] = use_labels lowerCamelCase : List[str] = type_sequence_label_size lowerCamelCase : str = encoder_stride lowerCamelCase : List[str] = out_features lowerCamelCase : Optional[int] = out_indices def a__ ( self: Optional[Any] )-> Union[str, Any]: lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : str = None if self.use_labels: lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : str = self.get_config() return config, pixel_values, labels def a__ ( self: List[Any] )-> Optional[int]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self: Tuple , __a: Optional[int] , __a: Optional[int] , __a: Optional[int] )-> List[str]: lowerCamelCase : Tuple = FocalNetModel(config=__a ) model.to(__a ) model.eval() lowerCamelCase : Tuple = model(__a ) lowerCamelCase : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self: Optional[int] , __a: Dict , __a: Tuple , __a: List[Any] )-> int: lowerCamelCase : List[Any] = FocalNetBackbone(config=__a ) model.to(__a ) model.eval() lowerCamelCase : Optional[Any] = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase : Dict = None lowerCamelCase : Dict = FocalNetBackbone(config=__a ) model.to(__a ) model.eval() lowerCamelCase : Any = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self: Optional[int] , __a: Optional[int] , __a: Optional[int] , __a: Optional[int] )-> List[str]: lowerCamelCase : Tuple = FocalNetForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() lowerCamelCase : List[str] = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase : List[str] = 1 lowerCamelCase : Any = FocalNetForMaskedImageModeling(__a ) model.to(__a ) model.eval() lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self: str , __a: Optional[Any] , __a: Optional[Any] , __a: Tuple )-> str: lowerCamelCase : Optional[Any] = self.type_sequence_label_size lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__a ) model.to(__a ) model.eval() lowerCamelCase : List[str] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase : int = 1 lowerCamelCase : List[Any] = FocalNetForImageClassification(__a ) model.to(__a ) model.eval() lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase : Optional[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self: int )-> Optional[int]: lowerCamelCase : str = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[int] = config_and_inputs lowerCamelCase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A__ ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : List[str] =( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) snake_case__ : Optional[int] =( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) snake_case__ : Tuple =False snake_case__ : Dict =False snake_case__ : Dict =False snake_case__ : Tuple =False snake_case__ : Optional[int] =False def a__ ( self: Union[str, Any] )-> Optional[int]: lowerCamelCase : List[str] = FocalNetModelTester(self ) lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=__a , embed_dim=37 , has_text_modality=__a ) def a__ ( self: List[str] )-> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self: List[str] )-> Union[str, Any]: return def a__ ( self: Tuple )-> Tuple: lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def a__ ( self: List[Any] )-> Dict: lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__a ) def a__ ( self: List[Any] )-> Tuple: lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def a__ ( self: List[str] )-> Dict: lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def a__ ( self: Optional[Any] )-> str: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def a__ ( self: Optional[Any] )-> Dict: pass def a__ ( self: Optional[Any] )-> Dict: lowerCamelCase , lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase : Any = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def a__ ( self: Tuple )-> Optional[int]: lowerCamelCase , lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase : int = model_class(__a ) lowerCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : Any = [*signature.parameters.keys()] lowerCamelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def a__ ( self: str , __a: Union[str, Any] , __a: int , __a: Tuple , __a: List[str] )-> Union[str, Any]: lowerCamelCase : List[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): lowerCamelCase : List[str] = model(**self._prepare_for_class(__a , __a ) ) lowerCamelCase : List[str] = outputs.hidden_states lowerCamelCase : Tuple = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # FocalNet has a different seq_length lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase : Optional[Any] = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[int] = reshaped_hidden_states[0].shape lowerCamelCase : Tuple = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self: Any )-> Any: lowerCamelCase , lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase : List[str] = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : List[Any] = True self.check_hidden_states_output(__a , __a , __a , __a ) def a__ ( self: str )-> Union[str, Any]: lowerCamelCase , lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : List[str] = 3 lowerCamelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase : Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase : str = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : Union[str, Any] = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) @slow def a__ ( self: Optional[int] )-> List[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : List[str] = FocalNetModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def a__ ( self: str )-> Any: lowerCamelCase , lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : int = _config_zero_init(__a ) for model_class in self.all_model_classes: lowerCamelCase : int = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class A__ ( unittest.TestCase): """simple docstring""" @cached_property def a__ ( self: Optional[int] )-> Optional[Any]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def a__ ( self: int )-> Optional[Any]: lowerCamelCase : Tuple = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(__a ) lowerCamelCase : Any = self.default_image_processor lowerCamelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCamelCase : int = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): lowerCamelCase : Any = model(**__a ) # verify the logits lowerCamelCase : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __a ) lowerCamelCase : List[str] = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A__ ( __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : str =(FocalNetBackbone,) if is_torch_available() else () snake_case__ : Optional[int] =FocalNetConfig snake_case__ : str =False def a__ ( self: Union[str, Any] )-> Tuple: lowerCamelCase : str = FocalNetModelTester(self )
42
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused') __A : str = load_dataset('ashraq/esc50') __A : str = dataset['train']['audio'][-1]['array'] __A : Union[str, Any] = audio_classifier(_UpperCAmelCase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(_UpperCAmelCase) , [{'score': 0.501, 'label': 'Sound of a dog'}, {'score': 0.499, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @slow @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog __A : Any = load_dataset('ashraq/esc50') __A : Dict = dataset['train']['audio'][-1]['array'] __A : Tuple = audio_classifier(_UpperCAmelCase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(_UpperCAmelCase) , [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ] , ) __A : Tuple = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(_UpperCAmelCase) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) __A : List[str] = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5) self.assertEqual( nested_simplify(_UpperCAmelCase) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Any = 42 lowerCamelCase : Union[str, Any] = jnp.floataa lowerCamelCase : Optional[int] = True def __UpperCAmelCase ( self : List[str] ) -> Dict: super().setup() lowerCAmelCase = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Any , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Tuple ) -> Optional[Any]: lowerCAmelCase = super().__call__(*UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Any = FlaxBigBirdForNaturalQuestionsModule def a_ ( lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : Dict ): def cross_entropy(lowerCamelCase : Dict , lowerCamelCase : Any , lowerCamelCase : Any=None ): lowerCAmelCase = logits.shape[-1] lowerCAmelCase = (labels[..., None] == jnp.arange(_snake_case )[None]).astype('f4' ) lowerCAmelCase = jax.nn.log_softmax(_snake_case , axis=-1 ) lowerCAmelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCAmelCase = reduction(_snake_case ) return loss lowerCAmelCase = partial(_snake_case , reduction=jnp.mean ) lowerCAmelCase = cross_entropy(_snake_case , _snake_case ) lowerCAmelCase = cross_entropy(_snake_case , _snake_case ) lowerCAmelCase = cross_entropy(_snake_case , _snake_case ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCAmelCase_ : lowerCamelCase : Dict = '''google/bigbird-roberta-base''' lowerCamelCase : Any = 3_000 lowerCamelCase : List[Any] = 10_500 lowerCamelCase : str = 128 lowerCamelCase : Optional[Any] = 3 lowerCamelCase : List[Any] = 1 lowerCamelCase : Union[str, Any] = 5 # tx_args lowerCamelCase : List[str] = 3E-5 lowerCamelCase : Optional[Any] = 0.0 lowerCamelCase : Tuple = 20_000 lowerCamelCase : str = 0.0_0_9_5 lowerCamelCase : List[Any] = '''bigbird-roberta-natural-questions''' lowerCamelCase : Dict = '''training-expt''' lowerCamelCase : List[str] = '''data/nq-training.jsonl''' lowerCamelCase : str = '''data/nq-validation.jsonl''' def __UpperCAmelCase ( self : str ) -> List[Any]: os.makedirs(self.base_dir , exist_ok=UpperCAmelCase__ ) lowerCAmelCase = os.path.join(self.base_dir , self.save_dir ) lowerCAmelCase = self.batch_size_per_device * jax.device_count() @dataclass class UpperCAmelCase_ : lowerCamelCase : Dict = 42 lowerCamelCase : Optional[Any] = 4_096 # no dynamic padding on TPUs def __call__( self : List[str] , UpperCAmelCase__ : Union[str, Any] ) -> Optional[int]: lowerCAmelCase = self.collate_fn(UpperCAmelCase__ ) lowerCAmelCase = jax.tree_util.tree_map(UpperCAmelCase__ , UpperCAmelCase__ ) return batch def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : List[Any] ) -> List[Any]: lowerCAmelCase , lowerCAmelCase = self.fetch_inputs(features['input_ids'] ) lowerCAmelCase = { 'input_ids': jnp.array(UpperCAmelCase__ , dtype=jnp.intaa ), 'attention_mask': jnp.array(UpperCAmelCase__ , dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ), } return batch def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : Tuple ) -> Union[str, Any]: lowerCAmelCase = [self._fetch_inputs(UpperCAmelCase__ ) for ids in input_ids] return zip(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: lowerCAmelCase = [1 for _ in range(len(UpperCAmelCase__ ) )] while len(UpperCAmelCase__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def a_ ( lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : Tuple=None ): if seed is not None: lowerCAmelCase = dataset.shuffle(seed=_snake_case ) for i in range(len(_snake_case ) // batch_size ): lowerCAmelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_snake_case ) @partial(jax.pmap , axis_name='batch' ) def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , **lowerCamelCase : Optional[int] ): def loss_fn(lowerCamelCase : Optional[int] ): lowerCAmelCase = model_inputs.pop('start_labels' ) lowerCAmelCase = model_inputs.pop('end_labels' ) lowerCAmelCase = model_inputs.pop('pooled_labels' ) lowerCAmelCase = state.apply_fn(**_snake_case , params=_snake_case , dropout_rng=_snake_case , train=_snake_case ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = outputs return state.loss_fn( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) lowerCAmelCase , lowerCAmelCase = jax.random.split(_snake_case ) lowerCAmelCase = jax.value_and_grad(_snake_case ) lowerCAmelCase , lowerCAmelCase = grad_fn(state.params ) lowerCAmelCase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) lowerCAmelCase = jax.lax.pmean(_snake_case , 'batch' ) lowerCAmelCase = state.apply_gradients(grads=_snake_case ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def a_ ( lowerCamelCase : Optional[Any] , **lowerCamelCase : str ): lowerCAmelCase = model_inputs.pop('start_labels' ) lowerCAmelCase = model_inputs.pop('end_labels' ) lowerCAmelCase = model_inputs.pop('pooled_labels' ) lowerCAmelCase = state.apply_fn(**_snake_case , params=state.params , train=_snake_case ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = outputs lowerCAmelCase = state.loss_fn(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) lowerCAmelCase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class UpperCAmelCase_ ( train_state.TrainState ): lowerCamelCase : Dict = struct.field(pytree_node=__lowercase ) @dataclass class UpperCAmelCase_ : lowerCamelCase : Tuple = 42 lowerCamelCase : Dict = 42 lowerCamelCase : Tuple = 42 lowerCamelCase : Optional[int] = 42 lowerCamelCase : Dict = 42 lowerCamelCase : Union[str, Any] = 42 lowerCamelCase : Optional[Any] = None def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=None ) -> int: lowerCAmelCase = model.params lowerCAmelCase = TrainState.create( apply_fn=model.__call__ , params=UpperCAmelCase__ , tx=UpperCAmelCase__ , loss_fn=UpperCAmelCase__ , ) if ckpt_dir is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = restore_checkpoint(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } lowerCAmelCase , lowerCAmelCase = build_tx(**UpperCAmelCase__ ) lowerCAmelCase = train_state.TrainState( step=UpperCAmelCase__ , apply_fn=model.__call__ , params=UpperCAmelCase__ , tx=UpperCAmelCase__ , opt_state=UpperCAmelCase__ , ) lowerCAmelCase = args lowerCAmelCase = data_collator lowerCAmelCase = lr lowerCAmelCase = params lowerCAmelCase = jax_utils.replicate(UpperCAmelCase__ ) return state def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] ) -> Tuple: lowerCAmelCase = self.args lowerCAmelCase = len(UpperCAmelCase__ ) // args.batch_size lowerCAmelCase = jax.random.PRNGKey(0 ) lowerCAmelCase = jax.random.split(UpperCAmelCase__ , jax.device_count() ) for epoch in range(args.max_epochs ): lowerCAmelCase = jnp.array(0 , dtype=jnp.floataa ) lowerCAmelCase = get_batched_dataset(UpperCAmelCase__ , args.batch_size , seed=UpperCAmelCase__ ) lowerCAmelCase = 0 for batch in tqdm(UpperCAmelCase__ , total=UpperCAmelCase__ , desc=F'''Running EPOCH-{epoch}''' ): lowerCAmelCase = self.data_collator(UpperCAmelCase__ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.train_step_fn(UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: lowerCAmelCase = jax_utils.unreplicate(state.step ) lowerCAmelCase = running_loss.item() / i lowerCAmelCase = self.scheduler_fn(state_step - 1 ) lowerCAmelCase = self.evaluate(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(UpperCAmelCase__ ) ) self.logger.log(UpperCAmelCase__ , commit=UpperCAmelCase__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' , state=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> List[str]: lowerCAmelCase = get_batched_dataset(UpperCAmelCase__ , self.args.batch_size ) lowerCAmelCase = len(UpperCAmelCase__ ) // self.args.batch_size lowerCAmelCase = jnp.array(0 , dtype=jnp.floataa ) lowerCAmelCase = 0 for batch in tqdm(UpperCAmelCase__ , total=UpperCAmelCase__ , desc='Evaluating ... ' ): lowerCAmelCase = self.data_collator(UpperCAmelCase__ ) lowerCAmelCase = self.val_step_fn(UpperCAmelCase__ , **UpperCAmelCase__ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple ) -> Tuple: lowerCAmelCase = jax_utils.unreplicate(UpperCAmelCase__ ) print(F'''SAVING CHECKPOINT IN {save_dir}''' , end=' ... ' ) self.model_save_fn(UpperCAmelCase__ , params=state.params ) with open(os.path.join(UpperCAmelCase__ , 'opt_state.msgpack' ) , 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(UpperCAmelCase__ , 'args.joblib' ) ) joblib.dump(self.data_collator , os.path.join(UpperCAmelCase__ , 'data_collator.joblib' ) ) with open(os.path.join(UpperCAmelCase__ , 'training_state.json' ) , 'w' ) as f: json.dump({'step': state.step.item()} , UpperCAmelCase__ ) print('DONE' ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] ): print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=' ... ' ) with open(os.path.join(_snake_case , 'flax_model.msgpack' ) , 'rb' ) as f: lowerCAmelCase = from_bytes(state.params , f.read() ) with open(os.path.join(_snake_case , 'opt_state.msgpack' ) , 'rb' ) as f: lowerCAmelCase = from_bytes(state.opt_state , f.read() ) lowerCAmelCase = joblib.load(os.path.join(_snake_case , 'args.joblib' ) ) lowerCAmelCase = joblib.load(os.path.join(_snake_case , 'data_collator.joblib' ) ) with open(os.path.join(_snake_case , 'training_state.json' ) , 'r' ) as f: lowerCAmelCase = json.load(_snake_case ) lowerCAmelCase = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def a_ ( lowerCamelCase : Any , lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] ): lowerCAmelCase = num_train_steps - warmup_steps lowerCAmelCase = optax.linear_schedule(init_value=_snake_case , end_value=_snake_case , transition_steps=_snake_case ) lowerCAmelCase = optax.linear_schedule(init_value=_snake_case , end_value=1e-7 , transition_steps=_snake_case ) lowerCAmelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def a_ ( lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] ): def weight_decay_mask(lowerCamelCase : Optional[int] ): lowerCAmelCase = traverse_util.flatten_dict(_snake_case ) lowerCAmelCase = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(_snake_case ) lowerCAmelCase = scheduler_fn(_snake_case , _snake_case , _snake_case , _snake_case ) lowerCAmelCase = optax.adamw(learning_rate=_snake_case , weight_decay=_snake_case , mask=_snake_case ) return tx, lr
708
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case ={ """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =["""ChineseCLIPFeatureExtractor"""] __snake_case =["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =[ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
513
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _A ( lowerCAmelCase_ : Dict ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = image.size lowerCAmelCase__ , lowerCAmelCase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase__ = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) lowerCAmelCase__ = np.array(lowerCAmelCase_ ).astype(np.floataa ) / 255.0 lowerCAmelCase__ = image[None].transpose(0 , 3 , 1 , 2 ) lowerCAmelCase__ = torch.from_numpy(lowerCAmelCase_ ) return 2.0 * image - 1.0 class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : VQModel , SCREAMING_SNAKE_CASE__ : UNetaDModel , SCREAMING_SNAKE_CASE__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> List[str]: super().__init__() self.register_modules(vqvae=SCREAMING_SNAKE_CASE__ , unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[torch.Tensor, PIL.Image.Image] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = 1 , SCREAMING_SNAKE_CASE__ : Optional[int] = 100 , SCREAMING_SNAKE_CASE__ : Optional[float] = 0.0 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): lowerCAmelCase__ = 1 elif isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): lowerCAmelCase__ = image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE__ )}' ) if isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): lowerCAmelCase__ = preprocess(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ , lowerCAmelCase__ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowerCAmelCase__ = (batch_size, self.unet.config.in_channels // 2, height, width) lowerCAmelCase__ = next(self.unet.parameters() ).dtype lowerCAmelCase__ = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device , dtype=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = image.to(device=self.device , dtype=SCREAMING_SNAKE_CASE__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=self.device ) lowerCAmelCase__ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase__ = {} if accepts_eta: lowerCAmelCase__ = eta for t in self.progress_bar(SCREAMING_SNAKE_CASE__ ): # concat latents and low resolution image in the channel dimension. lowerCAmelCase__ = torch.cat([latents, image] , dim=1 ) lowerCAmelCase__ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # predict the noise residual lowerCAmelCase__ = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase__ = self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample # decode the image latents with the VQVAE lowerCAmelCase__ = self.vqvae.decode(SCREAMING_SNAKE_CASE__ ).sample lowerCAmelCase__ = torch.clamp(SCREAMING_SNAKE_CASE__ , -1.0 , 1.0 ) lowerCAmelCase__ = image / 2 + 0.5 lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase__ = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
61
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = "vit_msn" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple=768 , SCREAMING_SNAKE_CASE__ : Optional[Any]=12 , SCREAMING_SNAKE_CASE__ : List[str]=12 , SCREAMING_SNAKE_CASE__ : Dict=3_072 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=1e-0_6 , SCREAMING_SNAKE_CASE__ : Dict=224 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Dict=True , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = qkv_bias
61
1
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ (__a : str , __a : Optional[Any] , __a : Union[str, Any] ): """simple docstring""" _a : int = UniSpeechSatForSequenceClassification.from_pretrained(__a , config=__a ) _a : List[str] = downstream_dict['projector.weight'] _a : Tuple = downstream_dict['projector.bias'] _a : str = downstream_dict['model.post_net.linear.weight'] _a : List[str] = downstream_dict['model.post_net.linear.bias'] return model def UpperCAmelCase_ (__a : Union[str, Any] , __a : Dict , __a : Optional[int] ): """simple docstring""" _a : str = UniSpeechSatForAudioFrameClassification.from_pretrained(__a , config=__a ) _a : List[str] = downstream_dict['model.linear.weight'] _a : List[str] = downstream_dict['model.linear.bias'] return model def UpperCAmelCase_ (__a : List[str] , __a : Union[str, Any] , __a : Optional[int] ): """simple docstring""" _a : str = UniSpeechSatForXVector.from_pretrained(__a , config=__a ) _a : Any = downstream_dict['connector.weight'] _a : Optional[int] = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _a : Optional[Any] = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] _a : Any = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] _a : Any = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] _a : Optional[int] = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] _a : Tuple = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] _a : Tuple = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] _a : str = downstream_dict['objective.W'] return model @torch.no_grad() def UpperCAmelCase_ (__a : List[Any] , __a : Tuple , __a : Dict , __a : Tuple ): """simple docstring""" _a : Union[str, Any] = torch.load(__a , map_location='cpu' ) _a : Union[str, Any] = checkpoint['Downstream'] _a : Optional[Any] = UniSpeechSatConfig.from_pretrained(__a ) _a : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( __a , return_attention_mask=__a , do_normalize=__a ) _a : Optional[Any] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): _a : List[Any] = convert_classification(__a , __a , __a ) elif arch.endswith('ForAudioFrameClassification' ): _a : Tuple = convert_diarization(__a , __a , __a ) elif arch.endswith('ForXVector' ): _a : Tuple = convert_xvector(__a , __a , __a ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: _a : str = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(__a ) hf_model.save_pretrained(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") __lowerCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
703
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def UpperCAmelCase_ (): """simple docstring""" _a : Any = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) _a : List[Any] = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(__a ) # Let's go _a : Optional[Any] = parser.parse_args() if not hasattr(__a , 'func' ): parser.print_help() exit(1 ) # Run _a : Optional[Any] = args.func(__a ) service.run() if __name__ == "__main__": main()
319
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } UpperCAmelCase_ = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } UpperCAmelCase_ = { "ctrl": 256, } UpperCAmelCase_ = { "Pregnancy": 16_8629, "Christianity": 7675, "Explain": 10_6423, "Fitness": 6_3440, "Saving": 6_3163, "Ask": 2_7171, "Ass": 9_5985, "Joke": 16_3509, "Questions": 4_5622, "Thoughts": 4_9605, "Retail": 5_2342, "Feminism": 16_4338, "Writing": 1_1992, "Atheism": 19_2263, "Netflix": 4_8616, "Computing": 3_9639, "Opinion": 4_3213, "Alone": 4_4967, "Funny": 5_8917, "Gaming": 4_0358, "Human": 4088, "India": 1331, "Joker": 7_7138, "Diet": 3_6206, "Legal": 1_1859, "Norman": 4939, "Tip": 7_2689, "Weight": 5_2343, "Movies": 4_6273, "Running": 2_3425, "Science": 2090, "Horror": 3_7793, "Confession": 6_0572, "Finance": 1_2250, "Politics": 1_6360, "Scary": 19_1985, "Support": 1_2654, "Technologies": 3_2516, "Teenage": 6_6160, "Event": 3_2769, "Learned": 6_7460, "Notion": 18_2770, "Wikipedia": 3_7583, "Books": 6665, "Extract": 7_6050, "Confessions": 10_2701, "Conspiracy": 7_5932, "Links": 6_3674, "Narcissus": 15_0425, "Relationship": 5_4766, "Relationships": 13_4796, "Reviews": 4_1671, "News": 4256, "Translation": 2_6820, "multilingual": 12_8406, } def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> Any: UpperCamelCase__ : Optional[int] = set() UpperCamelCase__ : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase__ : List[Any] = char UpperCamelCase__ : List[Any] = set(SCREAMING_SNAKE_CASE__ ) return pairs class lowercase__ ( _UpperCamelCase ): '''simple docstring''' a : Dict = VOCAB_FILES_NAMES a : Tuple = PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Any = CONTROL_CODES def __init__( self, __magic_name__, __magic_name__, __magic_name__="<unk>", **__magic_name__ ) -> List[Any]: """simple docstring""" super().__init__(unk_token=__magic_name__, **__magic_name__ ) with open(__magic_name__, encoding='''utf-8''' ) as vocab_handle: UpperCamelCase__ : List[Any] = json.load(__magic_name__ ) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} with open(__magic_name__, encoding='''utf-8''' ) as merges_handle: UpperCamelCase__ : Dict = merges_handle.read().split('''\n''' )[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split() ) for merge in merges] UpperCamelCase__ : Optional[int] = dict(zip(__magic_name__, range(len(__magic_name__ ) ) ) ) UpperCamelCase__ : Union[str, Any] = {} @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" return len(self.encoder ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" return dict(self.encoder, **self.added_tokens_encoder ) def UpperCamelCase__ ( self, __magic_name__ ) -> List[str]: """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase__ : Tuple = tuple(__magic_name__ ) UpperCamelCase__ : Optional[int] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) UpperCamelCase__ : Any = get_pairs(__magic_name__ ) if not pairs: return token while True: UpperCamelCase__ : str = min(__magic_name__, key=lambda __magic_name__ : self.bpe_ranks.get(__magic_name__, float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase__ : str = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : int = 0 while i < len(__magic_name__ ): try: UpperCamelCase__ : Tuple = word.index(__magic_name__, __magic_name__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase__ : Tuple = j if word[i] == first and i < len(__magic_name__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase__ : Union[str, Any] = tuple(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = new_word if len(__magic_name__ ) == 1: break else: UpperCamelCase__ : List[Any] = get_pairs(__magic_name__ ) UpperCamelCase__ : Any = "@@ ".join(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = word[:-4] UpperCamelCase__ : Optional[int] = word return word def UpperCamelCase__ ( self, __magic_name__ ) -> Dict: """simple docstring""" UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = re.findall(R'''\S+\n?''', __magic_name__ ) for token in words: split_tokens.extend(list(self.bpe(__magic_name__ ).split(''' ''' ) ) ) return split_tokens def UpperCamelCase__ ( self, __magic_name__ ) -> Union[str, Any]: """simple docstring""" return self.encoder.get(__magic_name__, self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self, __magic_name__ ) -> Tuple: """simple docstring""" return self.decoder.get(__magic_name__, self.unk_token ) def UpperCamelCase__ ( self, __magic_name__ ) -> int: """simple docstring""" UpperCamelCase__ : Dict = " ".join(__magic_name__ ).replace('''@@ ''', '''''' ).strip() return out_string def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> Optional[int]: """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase__ : Optional[Any] = os.path.join( __magic_name__, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ : Tuple = os.path.join( __magic_name__, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__magic_name__, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=__magic_name__, ensure_ascii=__magic_name__ ) + '''\n''' ) UpperCamelCase__ : int = 0 with open(__magic_name__, '''w''', encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda __magic_name__ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) UpperCamelCase__ : Optional[int] = token_index writer.write(''' '''.join(__magic_name__ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
253
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __snake_case ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" _UpperCAmelCase : int = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert("RGB" ) return image def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def __snake_case ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Tuple = val def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _UpperCAmelCase : List[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _UpperCAmelCase : List[str] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _UpperCAmelCase : List[Any] = torch.cat((q_bias, torch.zeros_like(SCREAMING_SNAKE_CASE__ , requires_grad=SCREAMING_SNAKE_CASE__ ), v_bias) ) _UpperCAmelCase : Union[str, Any] = qkv_bias def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any ) -> str: '''simple docstring''' _UpperCAmelCase : int = 364 if "coco" in model_name else 224 _UpperCAmelCase : Dict = BlipaVisionConfig(image_size=SCREAMING_SNAKE_CASE__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _UpperCAmelCase : Any = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=SCREAMING_SNAKE_CASE__ ).to_dict() elif "opt-6.7b" in model_name: _UpperCAmelCase : List[Any] = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=SCREAMING_SNAKE_CASE__ ).to_dict() elif "t5-xl" in model_name: _UpperCAmelCase : Tuple = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _UpperCAmelCase : int = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() _UpperCAmelCase : Optional[Any] = BlipaConfig(vision_config=SCREAMING_SNAKE_CASE__ , text_config=SCREAMING_SNAKE_CASE__ ) return config, image_size @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) _UpperCAmelCase : Optional[int] = tokenizer("\n" , add_special_tokens=SCREAMING_SNAKE_CASE__ ).input_ids[0] _UpperCAmelCase , _UpperCAmelCase : int = get_blipa_config(SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = BlipaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() _UpperCAmelCase : Optional[int] = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } _UpperCAmelCase , _UpperCAmelCase : str = model_name_to_original[model_name] # load original model print("Loading original model..." ) _UpperCAmelCase : List[Any] = "cuda" if torch.cuda.is_available() else "cpu" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = load_model_and_preprocess( name=SCREAMING_SNAKE_CASE__ , model_type=SCREAMING_SNAKE_CASE__ , is_eval=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) original_model.eval() print("Done!" ) # update state dict keys _UpperCAmelCase : Optional[Any] = original_model.state_dict() _UpperCAmelCase : Union[str, Any] = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _UpperCAmelCase : Tuple = state_dict.pop(SCREAMING_SNAKE_CASE__ ) if key.startswith("Qformer.bert" ): _UpperCAmelCase : List[Any] = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: _UpperCAmelCase : Dict = key.replace("self" , "attention" ) if "opt_proj" in key: _UpperCAmelCase : Union[str, Any] = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: _UpperCAmelCase : Optional[Any] = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): _UpperCAmelCase : Dict = key.replace("opt" , "language" ) if key.startswith("t5" ): _UpperCAmelCase : Union[str, Any] = key.replace("t5" , "language" ) _UpperCAmelCase : List[str] = val # read in qv biases read_in_q_v_bias(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = hf_model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _UpperCAmelCase : Dict = load_demo_image() _UpperCAmelCase : List[Any] = vis_processors["eval"](SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(SCREAMING_SNAKE_CASE__ ) # create processor _UpperCAmelCase : Any = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=SCREAMING_SNAKE_CASE__ , image_std=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Dict = BlipaProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values.to(SCREAMING_SNAKE_CASE__ ) # make sure processor creates exact same pixel values assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) original_model.to(SCREAMING_SNAKE_CASE__ ) hf_model.to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): if "opt" in model_name: _UpperCAmelCase : str = original_model({"image": original_pixel_values, "text_input": [""]} ).logits _UpperCAmelCase : Optional[int] = hf_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).logits else: _UpperCAmelCase : List[Any] = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits _UpperCAmelCase : List[str] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) _UpperCAmelCase : Union[str, Any] = hf_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _UpperCAmelCase : List[str] = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=SCREAMING_SNAKE_CASE__ ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": _UpperCAmelCase : Any = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=SCREAMING_SNAKE_CASE__ ) else: # cast to same type _UpperCAmelCase : List[str] = logits.dtype assert torch.allclose(original_logits.to(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) print("Looks ok!" ) print("Generating a caption..." ) _UpperCAmelCase : int = "" _UpperCAmelCase : Any = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).input_ids.to(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[Any] = original_model.generate({"image": original_pixel_values} ) _UpperCAmelCase : int = hf_model.generate( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : str = input_ids.shape[1] _UpperCAmelCase : List[Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = [text.strip() for text in output_text] print("HF generation:" , SCREAMING_SNAKE_CASE__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() _lowerCAmelCase : List[Any] = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _lowerCAmelCase : str = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
289
0
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __lowerCAmelCase : Any = 5_0003 __lowerCAmelCase : List[Any] = 5_0002 @require_sentencepiece @require_tokenizers class lowerCamelCase ( __snake_case , unittest.TestCase ): __lowerCamelCase = PLBartTokenizer __lowerCamelCase = None __lowerCamelCase = False def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case: Any = PLBartTokenizer(__lowerCamelCase , language_codes="""base""" , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' snake_case: Tuple = PLBartTokenizer(__lowerCamelCase , language_codes="""base""" , keep_accents=__lowerCamelCase ) snake_case: Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) snake_case: List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case: str = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) snake_case: Optional[int] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) snake_case: List[Any] = tokenizer.vocab_size snake_case: Any = [tokenizer.convert_ids_to_tokens(__lowerCamelCase ) for x in range(end - 4 , __lowerCamelCase )] self.assertListEqual(__lowerCamelCase , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) snake_case: Optional[Any] = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" snake_case: Optional[Any] = tokenizer(__lowerCamelCase ).input_ids self.assertEqual( tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) , __lowerCamelCase , ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' snake_case: List[str] = PLBartTokenizer(__lowerCamelCase , language_codes="""multi""" , keep_accents=__lowerCamelCase ) snake_case: Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) snake_case: Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case: List[Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) snake_case: List[str] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) snake_case: List[Any] = tokenizer.vocab_size snake_case: List[str] = [tokenizer.convert_ids_to_tokens(__lowerCamelCase ) for x in range(end - 7 , __lowerCamelCase )] self.assertListEqual( __lowerCamelCase , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) snake_case: str = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" snake_case: Dict = tokenizer(__lowerCamelCase ).input_ids self.assertEqual( tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) , __lowerCamelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): __lowerCamelCase = 'uclanlp/plbart-python-en_XX' __lowerCamelCase = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __lowerCamelCase = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __lowerCamelCase = [ 134, 5_452, 33_460, 33_441, 33_463, 33_465, 33_463, 33_449, 988, 20, 33_456, 19, 33_456, 771, 39, 4_258, 889, 3_318, 33_441, 33_463, 33_465, 33_463, 33_449, 2_471, 2, PYTHON_CODE, ] @classmethod def lowerCAmelCase_ ( cls ) -> str: '''simple docstring''' snake_case: PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) snake_case: Any = 1 return cls def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' snake_case: Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' self.assertIn(__lowerCamelCase , self.tokenizer.all_special_ids ) snake_case: Tuple = [EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] snake_case: int = self.tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) snake_case: Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __lowerCamelCase ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' snake_case: Optional[Any] = ["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , __lowerCamelCase ) snake_case: Union[str, Any] = 10 snake_case: Any = self.tokenizer(__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] ) def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' snake_case: Optional[int] = tempfile.mkdtemp() snake_case: Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCamelCase ) snake_case: Union[str, Any] = PLBartTokenizer.from_pretrained(__lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCamelCase ) @require_torch def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' snake_case: Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , return_tensors="""pt""" ) snake_case: str = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __lowerCamelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' snake_case: Any = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) snake_case: str = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) snake_case: Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' snake_case: Optional[int] = self.tokenizer(self.src_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=3 , return_tensors="""pt""" ) snake_case: Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=10 , return_tensors="""pt""" ) snake_case: Tuple = targets["""input_ids"""] snake_case: str = shift_tokens_right(__lowerCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' snake_case: List[Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { # A, test, EOS, en_XX """input_ids""": [[1_50, 2_42, 2, 5_00_03]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_00_01, } , )
702
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class lowerCamelCase ( __snake_case ): __lowerCamelCase = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **__lowerCamelCase ) -> Any: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case: List[Any] = deprecated_arg[3:] setattr(self , __lowerCamelCase , not kwargs.pop(__lowerCamelCase ) ) logger.warning( F"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}" ) snake_case: Tuple = kwargs.pop("""torchscript""" , self.torchscript ) snake_case: int = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) snake_case: List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**__lowerCamelCase ) __lowerCamelCase = field(default=__snake_case , metadata={'help': 'Trace the models using torchscript'} ) __lowerCamelCase = field(default=__snake_case , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) __lowerCamelCase = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def lowerCAmelCase_ ( self ) -> Tuple["torch.device", int]: '''simple docstring''' requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: snake_case: List[str] = torch.device("""cpu""" ) snake_case: Optional[int] = 0 elif is_torch_tpu_available(): snake_case: Union[str, Any] = xm.xla_device() snake_case: Dict = 0 else: snake_case: List[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) snake_case: str = torch.cuda.device_count() return device, n_gpu @property def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowerCAmelCase_ ( self ) -> "torch.device": '''simple docstring''' requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' return self.n_gpu > 0
164
0
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ = 2 class __lowerCAmelCase : def __init__( self , *, # begin keyword-only arguments __UpperCAmelCase="<s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = bos, unk, pad, eos __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = {} __lowerCamelCase = self.add_symbol(UpperCAmelCase_ ) __lowerCamelCase = self.add_symbol(UpperCAmelCase_ ) __lowerCamelCase = self.add_symbol(UpperCAmelCase_ ) __lowerCamelCase = self.add_symbol(UpperCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase_ ) __lowerCamelCase = len(self.symbols ) def __eq__( self , __UpperCAmelCase ): '''simple docstring''' return self.indices == other.indices def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): '''simple docstring''' return len(self.symbols ) def __contains__( self , __UpperCAmelCase ): '''simple docstring''' return sym in self.indices @classmethod def lowerCamelCase ( cls , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = cls() d.add_from_file(UpperCAmelCase_ ) return d def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=1 , __UpperCAmelCase=False ): '''simple docstring''' if word in self.indices and not overwrite: __lowerCamelCase = self.indices[word] __lowerCamelCase = self.count[idx] + n return idx else: __lowerCamelCase = len(self.symbols ) __lowerCamelCase = idx self.symbols.append(UpperCAmelCase_ ) self.count.append(UpperCAmelCase_ ) return idx def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return 0 def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): try: with open(UpperCAmelCase_ , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(UpperCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(UpperCAmelCase_ ) ) return __lowerCamelCase = f.readlines() __lowerCamelCase = self._load_meta(UpperCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCamelCase ,__lowerCamelCase = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": __lowerCamelCase = True __lowerCamelCase ,__lowerCamelCase = line.rsplit(''' ''' , 1 ) else: __lowerCamelCase = False __lowerCamelCase = int(UpperCAmelCase_ ) __lowerCamelCase = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(UpperCAmelCase_ ) ) self.add_symbol(UpperCAmelCase_ , n=UpperCAmelCase_ , overwrite=UpperCAmelCase_ ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def a__ ( _UpperCamelCase : List[str] ): __lowerCamelCase = dict((re.sub(R'''@@$''' ,'''''' ,_snake_case ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' ,'''</w>''' ,_snake_case ), v) for k, v in d.items() ) __lowerCamelCase = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCamelCase = d[k] # restore return da def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Tuple ): if not os.path.exists(_snake_case ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(_snake_case ,exist_ok=_snake_case ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCamelCase = os.path.join(_snake_case ,'''checkpoint.pt''' ) if not os.path.isfile(_snake_case ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCamelCase = torch.load(_snake_case ,map_location='''cpu''' ) __lowerCamelCase = chkpt['''cfg''']['''model'''] # dicts __lowerCamelCase = os.path.join(_snake_case ,'''dict.txt''' ) if not os.path.isfile(_snake_case ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCamelCase = Dictionary.load(_snake_case ) __lowerCamelCase = rewrite_dict_keys(src_dict.indices ) __lowerCamelCase = len(_snake_case ) __lowerCamelCase = os.path.join(_snake_case ,VOCAB_FILES_NAMES['''vocab_file'''] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(_snake_case ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(_snake_case ,ensure_ascii=_snake_case ,indent=_snake_case ) ) # merges_file (bpecodes) __lowerCamelCase = os.path.join(_snake_case ,'''bpecodes''' ) if not os.path.isfile(_snake_case ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCamelCase = os.path.join(_snake_case ,VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(_snake_case ,_snake_case ) # model config __lowerCamelCase = os.path.join(_snake_case ,'''config.json''' ) __lowerCamelCase = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(_snake_case ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(_snake_case ,ensure_ascii=_snake_case ,indent=_snake_case ) ) # tokenizer config __lowerCamelCase = os.path.join(_snake_case ,_snake_case ) __lowerCamelCase = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 10_24, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(_snake_case ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(_snake_case ,ensure_ascii=_snake_case ,indent=_snake_case ) ) # model __lowerCamelCase = chkpt['''model'''] # remove unneeded keys __lowerCamelCase = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(_snake_case ,_snake_case ) __lowerCamelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): __lowerCamelCase = model_state_dict.pop(_snake_case ) else: __lowerCamelCase = model_state_dict.pop(_snake_case ) __lowerCamelCase = BioGptConfig.from_pretrained(_snake_case ) __lowerCamelCase = BioGptForCausalLM(_snake_case ) # check that it loads ok model_new.load_state_dict(_snake_case ) # save __lowerCamelCase = os.path.join(_snake_case ,_snake_case ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(_snake_case ,_snake_case ) print('''Conversion is done!''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a_ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
175
'''simple docstring''' def lowerCamelCase ( _snake_case : Optional[Any] ,_snake_case : Union[str, Any] ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : List[str] ,_snake_case : List[str] ): '''simple docstring''' if index == r: for j in range(_snake_case ): print(data[j] ,end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowercase__ = arr[i] combination_util(_snake_case ,_snake_case ,_snake_case ,index + 1 ,_snake_case ,i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCamelCase ( _snake_case : Optional[Any] ,_snake_case : Tuple ,_snake_case : Union[str, Any] ): '''simple docstring''' lowercase__ = [0] * r # Print all combination using temporary array 'data[]' combination_util(_snake_case ,_snake_case ,_snake_case ,0 ,_snake_case ,0 ) if __name__ == "__main__": # Driver code to check the function above SCREAMING_SNAKE_CASE__ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
267
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = '▁' __SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } __SCREAMING_SNAKE_CASE = { 'facebook/xglm-564M': 2048, } class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ['input_ids', 'attention_mask'] def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase = None , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Union[str, Any] ={} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer SCREAMING_SNAKE_CASE_ : Dict =7 SCREAMING_SNAKE_CASE_ : Optional[int] =[F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] SCREAMING_SNAKE_CASE_ : Tuple =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ : List[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Dict =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ : Dict =1 # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ : List[str] ={'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} SCREAMING_SNAKE_CASE_ : str =len(self.sp_model ) SCREAMING_SNAKE_CASE_ : Union[str, Any] ={F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): SCREAMING_SNAKE_CASE_ : Tuple =self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Dict =None SCREAMING_SNAKE_CASE_ : Optional[int] =self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Optional[Any] ={} SCREAMING_SNAKE_CASE_ : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a SCREAMING_SNAKE_CASE_ : Tuple =[self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): SCREAMING_SNAKE_CASE_ : Any =[self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __lowerCamelCase ( self ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self , __UpperCAmelCase ): return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ : Tuple =self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCamelCase ( self , __UpperCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple =''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ' ' ).strip() return out_string def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE_ : List[Any] =os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : List[Any] =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
153
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = IMAGENET_DEFAULT_MEAN , __UpperCAmelCase = IMAGENET_DEFAULT_STD , **__UpperCAmelCase , ): super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple =size if size is not None else {'shortest_edge': 224} SCREAMING_SNAKE_CASE_ : List[Any] =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] =crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE_ : Union[str, Any] =get_size_dict(__UpperCAmelCase , param_name='crop_size' ) SCREAMING_SNAKE_CASE_ : Tuple =do_resize SCREAMING_SNAKE_CASE_ : Dict =size SCREAMING_SNAKE_CASE_ : Tuple =resample SCREAMING_SNAKE_CASE_ : List[str] =do_center_crop SCREAMING_SNAKE_CASE_ : Optional[int] =crop_size SCREAMING_SNAKE_CASE_ : int =do_rescale SCREAMING_SNAKE_CASE_ : List[Any] =rescale_factor SCREAMING_SNAKE_CASE_ : Any =do_normalize SCREAMING_SNAKE_CASE_ : Tuple =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE_ : Tuple =image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Optional[Any] =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: SCREAMING_SNAKE_CASE_ : List[str] =int((256 / 224) * size['shortest_edge'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] =get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple ={'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( __UpperCAmelCase , size=(size_dict['height'], size_dict['width']) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : List[Any] =get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size['height'], size['width']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Optional[int] =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : List[str] =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Tuple =do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ : Union[str, Any] =do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : Tuple =rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : Tuple =do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : int =image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : List[Any] =image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : List[str] =size if size is not None else self.size SCREAMING_SNAKE_CASE_ : Any =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ : Optional[Any] =get_size_dict(__UpperCAmelCase , param_name='crop_size' ) SCREAMING_SNAKE_CASE_ : Optional[Any] =make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : Any =[to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : Dict =[self.resize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ : Any =[self.center_crop(__UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : List[Any] =[self.rescale(__UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : List[str] =[self.normalize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ : Tuple =[to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ : Tuple ={'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
153
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _a = logging.get_logger(__name__) _a = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class _UpperCAmelCase( lowercase_ ): lowercase__ = "perceiver" def __init__( self , __a=2_56 , __a=12_80 , __a=7_68 , __a=1 , __a=26 , __a=8 , __a=8 , __a=None , __a=None , __a="kv" , __a=1 , __a=1 , __a="gelu" , __a=0.1 , __a=0.02 , __a=1e-12 , __a=True , __a=2_62 , __a=20_48 , __a=56 , __a=[3_68, 4_96] , __a=16 , __a=19_20 , __a=16 , __a=[1, 16, 2_24, 2_24] , **__a , ) -> List[str]: '''simple docstring''' super().__init__(**a__) _UpperCamelCase = num_latents _UpperCamelCase = d_latents _UpperCamelCase = d_model _UpperCamelCase = num_blocks _UpperCamelCase = num_self_attends_per_block _UpperCamelCase = num_self_attention_heads _UpperCamelCase = num_cross_attention_heads _UpperCamelCase = qk_channels _UpperCamelCase = v_channels _UpperCamelCase = cross_attention_shape_for_attention _UpperCamelCase = self_attention_widening_factor _UpperCamelCase = cross_attention_widening_factor _UpperCamelCase = hidden_act _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = use_query_residual # masked language modeling attributes _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings # image classification attributes _UpperCamelCase = image_size # flow attributes _UpperCamelCase = train_size # multimodal autoencoding attributes _UpperCamelCase = num_frames _UpperCamelCase = audio_samples_per_frame _UpperCamelCase = samples_per_patch _UpperCamelCase = output_shape class _UpperCAmelCase( lowercase_ ): @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-4 def UpperCAmelCase ( self , __a , __a = -1 , __a = -1 , __a = -1 , __a = False , __a = None , __a = 3 , __a = 40 , __a = 40 , ) -> Mapping[str, Any]: '''simple docstring''' if isinstance(a__ , a__): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCamelCase = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCamelCase = preprocessor.num_special_tokens_to_add(a__) _UpperCamelCase = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a__) # Generate dummy inputs according to compute batch and sequence _UpperCamelCase = [""" """.join(['''a''']) * seq_length] * batch_size _UpperCamelCase = dict(preprocessor(a__ , return_tensors=a__)) _UpperCamelCase = inputs.pop('''input_ids''') return inputs elif isinstance(a__ , a__) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCamelCase = compute_effective_axis_dimension(a__ , fixed_dimension=OnnxConfig.default_fixed_batch) _UpperCamelCase = self._generate_dummy_images(a__ , a__ , a__ , a__) _UpperCamelCase = dict(preprocessor(images=a__ , return_tensors=a__)) _UpperCamelCase = inputs.pop('''pixel_values''') return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''')
19
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class snake_case__ ( lowercase_): '''simple docstring''' def __init__( self , a__=0.01 , a__=10_00 ) -> List[Any]: '''simple docstring''' __snake_case :int = p_stop __snake_case :List[Any] = max_length def __iter__( self ) -> Optional[int]: '''simple docstring''' __snake_case :str = 0 __snake_case :Optional[Any] = False while not stop and count < self.max_length: yield count count += 1 __snake_case :str = random.random() < self.p_stop class snake_case__ ( unittest.TestCase): '''simple docstring''' def __lowercase ( self , a__ , a__ , a__=False , a__=True ) -> List[Any]: '''simple docstring''' __snake_case :Optional[Any] = [ BatchSamplerShard(a__ , 2 , a__ , split_batches=a__ , even_batches=a__ ) for i in range(2 ) ] __snake_case :Union[str, Any] = [list(a__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(a__ ) for shard in batch_sampler_shards] , [len(a__ ) for e in expected] ) self.assertListEqual(a__ , a__ ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case :List[str] = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case :Optional[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case :List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is very small. __snake_case :Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [[], []] self.check_batch_sampler_shards(a__ , a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) __snake_case :Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case :Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :str = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[Any] = [[], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) def __lowercase ( self ) -> List[Any]: '''simple docstring''' __snake_case :Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case :Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case :int = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case :Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [[], []] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :int = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case :Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :int = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[str] = [[], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case :List[str] = [BatchSamplerShard(a__ , 2 , a__ , even_batches=a__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __lowercase ( self , a__ , a__ , a__ , a__=False , a__=2 , a__=False ) -> List[str]: '''simple docstring''' random.seed(a__ ) __snake_case :Optional[int] = list(a__ ) __snake_case :Union[str, Any] = [ IterableDatasetShard( a__ , batch_size=a__ , drop_last=a__ , num_processes=a__ , process_index=a__ , split_batches=a__ , ) for i in range(a__ ) ] __snake_case :Any = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(a__ ) iterable_dataset_lists.append(list(a__ ) ) __snake_case :Union[str, Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case :str = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(a__ ) , len(a__ ) ) self.assertTrue(len(a__ ) % shard_batch_size == 0 ) __snake_case :int = [] for idx in range(0 , len(a__ ) , a__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(a__ ) < len(a__ ): reference += reference self.assertListEqual(a__ , reference[: len(a__ )] ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :int = 42 __snake_case :Tuple = RandomIterableDataset() self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) # Edge case with a very small dataset __snake_case :Optional[int] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :str = BatchSampler(range(16 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = SkipBatchSampler(a__ , 2 ) self.assertListEqual(list(a__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :str = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Union[str, Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case :Dict = skip_first_batches(a__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :Any = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __lowercase ( self ) -> Any: '''simple docstring''' Accelerator() __snake_case :Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
455
0
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __A =numpy.array([0, 0]) __A =numpy.array([0.5, 0.8_6_6_0_2_5_4]) __A =numpy.array([1, 0]) __A =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Union[str, Any] = initial_vectors for _ in range(UpperCamelCase__ ): UpperCAmelCase__ : Dict = iteration_step(UpperCamelCase__ ) return vectors def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase__ : Tuple = vectors[i + 1] new_vectors.append(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Any = numpy.radians(UpperCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : int = numpy.cos(UpperCamelCase__ ), numpy.sin(UpperCamelCase__ ) UpperCAmelCase__ : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCamelCase__ , UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Any = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase__ , UpperCAmelCase__ : Tuple = zip(*UpperCamelCase__ ) plt.plot(UpperCamelCase__ , UpperCamelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __A =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
113
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __A =logging.getLogger() def _UpperCamelCase ( ): UpperCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) UpperCAmelCase__ : Optional[Any] = parser.parse_args() return args.f class _snake_case ( a__ ): def snake_case__ ( self): UpperCAmelCase__ : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Any = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""") with patch.object(_lowerCamelCase , """argv""" , _lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_lowerCamelCase , 0.666) @slow @require_torch_non_multi_gpu def snake_case__ ( self): UpperCAmelCase__ : List[str] = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_lowerCamelCase) UpperCAmelCase__ : Dict = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_lowerCamelCase) UpperCAmelCase__ : Any = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_lowerCamelCase)
113
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging SCREAMING_SNAKE_CASE__ : int =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Union[str, Any] ={ 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" __snake_case = 'marian' __snake_case = ['past_key_values'] __snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _lowercase=58101 , _lowercase=None , _lowercase=1024 , _lowercase=12 , _lowercase=4096 , _lowercase=16 , _lowercase=12 , _lowercase=4096 , _lowercase=16 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=True , _lowercase=True , _lowercase="gelu" , _lowercase=1024 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=58100 , _lowercase=False , _lowercase=58100 , _lowercase=0 , _lowercase=0 , _lowercase=True , **_lowercase , ) -> Optional[Any]: _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : int = decoder_vocab_size or vocab_size _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : Union[str, Any] = d_model _lowerCamelCase : Tuple = encoder_ffn_dim _lowerCamelCase : Optional[int] = encoder_layers _lowerCamelCase : str = encoder_attention_heads _lowerCamelCase : List[str] = decoder_ffn_dim _lowerCamelCase : List[Any] = decoder_layers _lowerCamelCase : Tuple = decoder_attention_heads _lowerCamelCase : str = dropout _lowerCamelCase : Optional[int] = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : str = activation_function _lowerCamelCase : Tuple = init_std _lowerCamelCase : Any = encoder_layerdrop _lowerCamelCase : Optional[int] = decoder_layerdrop _lowerCamelCase : str = use_cache _lowerCamelCase : Dict = encoder_layers _lowerCamelCase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : List[str] = share_encoder_decoder_embeddings super().__init__( pad_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) class _UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def a__ ( self ) -> Any: if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _lowerCamelCase : List[str] = {0: '''batch'''} _lowerCamelCase : Optional[int] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _lowerCamelCase : Dict = {0: '''batch''', 1: '''decoder_sequence'''} _lowerCamelCase : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCamelCase : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _lowerCamelCase, _lowerCamelCase : str = self.num_layers for i in range(_lowercase ): _lowerCamelCase : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} _lowerCamelCase : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _lowerCamelCase : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def a__ ( self ) -> Union[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : List[Any] = super().outputs else: _lowerCamelCase : Union[str, Any] = super(_lowercase , self ).outputs if self.use_past: _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.num_layers for i in range(_lowercase ): _lowerCamelCase : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} _lowerCamelCase : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def a__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> Union[str, Any]: _lowerCamelCase : str = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Generate decoder inputs _lowerCamelCase : Optional[Any] = seq_length if not self.use_past else 1 _lowerCamelCase : Optional[int] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) _lowerCamelCase : List[Any] = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCamelCase : List[Any] = dict(**_lowercase , **_lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _lowerCamelCase, _lowerCamelCase : int = common_inputs['''input_ids'''].shape _lowerCamelCase : Union[str, Any] = common_inputs['''decoder_input_ids'''].shape[1] _lowerCamelCase, _lowerCamelCase : Any = self.num_attention_heads _lowerCamelCase : List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : List[str] = decoder_seq_length + 3 _lowerCamelCase : Optional[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCamelCase : List[str] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowercase , _lowercase )] , dim=1 ) _lowerCamelCase : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.num_layers _lowerCamelCase : List[str] = min(_lowercase , _lowercase ) _lowerCamelCase : int = max(_lowercase , _lowercase ) - min_num_layers _lowerCamelCase : List[str] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), ) ) # TODO: test this. _lowerCamelCase : List[Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowercase , _lowercase ): common_inputs["past_key_values"].append((torch.zeros(_lowercase ), torch.zeros(_lowercase )) ) return common_inputs def a__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> Dict: _lowerCamelCase : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _lowerCamelCase, _lowerCamelCase : List[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _lowerCamelCase : List[str] = seqlen + 2 _lowerCamelCase, _lowerCamelCase : List[str] = self.num_layers _lowerCamelCase, _lowerCamelCase : Tuple = self.num_attention_heads _lowerCamelCase : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : Any = common_inputs['''attention_mask'''].dtype _lowerCamelCase : Dict = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) _lowerCamelCase : Any = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(_lowercase ) ] return common_inputs def a__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> int: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCamelCase : List[Any] = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCamelCase : Union[str, Any] = tokenizer.num_special_tokens_to_add(_lowercase ) _lowerCamelCase : str = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase ) # Generate dummy inputs according to compute batch and sequence _lowerCamelCase : Union[str, Any] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCamelCase : Any = dict(tokenizer(_lowercase , return_tensors=_lowercase ) ) return common_inputs def a__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> str: if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) else: _lowerCamelCase : Optional[int] = self._generate_dummy_inputs_for_causal_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) return common_inputs def a__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Tuple = super()._flatten_past_key_values_(_lowercase , _lowercase , _lowercase , _lowercase ) else: _lowerCamelCase : Optional[Any] = super(_lowercase , self )._flatten_past_key_values_( _lowercase , _lowercase , _lowercase , _lowercase ) @property def a__ ( self ) -> Any: return 1E-4
434
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowercase__ =logging.get_logger(__name__) # General docstring lowercase__ ='ResNetConfig' # Base docstring lowercase__ ='microsoft/resnet-50' lowercase__ =[1, 20_48, 7, 7] # Image classification docstring lowercase__ ='microsoft/resnet-50' lowercase__ ='tiger cat' lowercase__ =[ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 3 , UpperCAmelCase = 1 , UpperCAmelCase = "relu" ): super().__init__() a_ = nn.Convad( UpperCAmelCase , UpperCAmelCase , kernel_size=UpperCAmelCase , stride=UpperCAmelCase , padding=kernel_size // 2 , bias=UpperCAmelCase ) a_ = nn.BatchNormad(UpperCAmelCase ) a_ = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = self.convolution(UpperCAmelCase ) a_ = self.normalization(UpperCAmelCase ) a_ = self.activation(UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): def __init__( self , UpperCAmelCase ): super().__init__() a_ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) a_ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) a_ = config.num_channels def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) a_ = self.embedder(UpperCAmelCase ) a_ = self.pooler(UpperCAmelCase ) return embedding class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 2 ): super().__init__() a_ = nn.Convad(UpperCAmelCase , UpperCAmelCase , kernel_size=1 , stride=UpperCAmelCase , bias=UpperCAmelCase ) a_ = nn.BatchNormad(UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = self.convolution(UpperCAmelCase ) a_ = self.normalization(UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = "relu" ): super().__init__() a_ = in_channels != out_channels or stride != 1 a_ = ( ResNetShortCut(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) a_ = nn.Sequential( ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , activation=UpperCAmelCase ) , ) a_ = ACTaFN[activation] def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = hidden_state a_ = self.layer(UpperCAmelCase ) a_ = self.shortcut(UpperCAmelCase ) hidden_state += residual a_ = self.activation(UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = "relu" , UpperCAmelCase = 4 ): super().__init__() a_ = in_channels != out_channels or stride != 1 a_ = out_channels // reduction a_ = ( ResNetShortCut(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) a_ = nn.Sequential( ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , kernel_size=1 ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , kernel_size=1 , activation=UpperCAmelCase ) , ) a_ = ACTaFN[activation] def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = hidden_state a_ = self.layer(UpperCAmelCase ) a_ = self.shortcut(UpperCAmelCase ) hidden_state += residual a_ = self.activation(UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 2 , UpperCAmelCase = 2 , ): super().__init__() a_ = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer a_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase , activation=config.hidden_act ) , *[layer(UpperCAmelCase , UpperCAmelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = input for layer in self.layers: a_ = layer(UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): def __init__( self , UpperCAmelCase ): super().__init__() a_ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) a_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCAmelCase , config.depths[1:] ): self.stages.append(ResNetStage(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , depth=UpperCAmelCase ) ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = True ): a_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a_ = hidden_states + (hidden_state,) a_ = stage_module(UpperCAmelCase ) if output_hidden_states: a_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=UpperCAmelCase , hidden_states=UpperCAmelCase , ) class a_ ( UpperCamelCase__ ): lowerCamelCase__ : List[Any] = ResNetConfig lowerCamelCase__ : Dict = 'resnet' lowerCamelCase__ : Dict = 'pixel_values' lowerCamelCase__ : str = True def lowerCAmelCase__ ( self , UpperCAmelCase ): if isinstance(UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=False ): if isinstance(UpperCAmelCase , UpperCAmelCase ): a_ = value lowercase__ =r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowercase__ =r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , UpperCamelCase__ , ) class a_ ( UpperCamelCase__ ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) a_ = config a_ = ResNetEmbeddings(UpperCAmelCase ) a_ = ResNetEncoder(UpperCAmelCase ) a_ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ): a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.embedder(UpperCAmelCase ) a_ = self.encoder( UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase ) a_ = encoder_outputs[0] a_ = self.pooler(UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase , pooler_output=UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , UpperCamelCase__ , ) class a_ ( UpperCamelCase__ ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) a_ = config.num_labels a_ = ResNetModel(UpperCAmelCase ) # classification head a_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ): a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.resnet(UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase ) a_ = outputs.pooler_output if return_dict else outputs[1] a_ = self.classifier(UpperCAmelCase ) a_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a_ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a_ = """single_label_classification""" else: a_ = """multi_label_classification""" if self.config.problem_type == "regression": a_ = MSELoss() if self.num_labels == 1: a_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: a_ = loss_fct(UpperCAmelCase , UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": a_ = CrossEntropyLoss() a_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": a_ = BCEWithLogitsLoss() a_ = loss_fct(UpperCAmelCase , UpperCAmelCase ) if not return_dict: a_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , UpperCamelCase__ , ) class a_ ( UpperCamelCase__ , UpperCamelCase__ ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) super()._init_backbone(UpperCAmelCase ) a_ = [config.embedding_size] + config.hidden_sizes a_ = ResNetEmbeddings(UpperCAmelCase ) a_ = ResNetEncoder(UpperCAmelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @replace_return_docstrings(output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ): a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = self.embedder(UpperCAmelCase ) a_ = self.encoder(UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase ) a_ = outputs.hidden_states a_ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: a_ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=UpperCAmelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCAmelCase , )
263
0
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def SCREAMING_SNAKE_CASE_ ( snake_case : Dict[str, torch.Tensor] )-> Dict[str, torch.Tensor]: _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = [] for rt in rc.restypes: _lowerCamelCase = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _lowerCamelCase = {name: i for i, name in enumerate(snake_case )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _lowerCamelCase = torch.tensor( snake_case , dtype=torch.intaa , device=protein['aatype'].device , ) _lowerCamelCase = torch.tensor( snake_case , dtype=torch.intaa , device=protein['aatype'].device , ) _lowerCamelCase = torch.tensor( snake_case , dtype=torch.floataa , device=protein['aatype'].device , ) _lowerCamelCase = protein['aatype'].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _lowerCamelCase = restype_atomaa_to_atomaa[protein_aatype] _lowerCamelCase = restype_atomaa_mask[protein_aatype] _lowerCamelCase = residx_atomaa_mask _lowerCamelCase = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _lowerCamelCase = restype_atomaa_to_atomaa[protein_aatype] _lowerCamelCase = residx_atomaa_to_atomaa.long() # create the corresponding mask _lowerCamelCase = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['aatype'].device ) for restype, restype_letter in enumerate(rc.restypes ): _lowerCamelCase = rc.restype_atoa[restype_letter] _lowerCamelCase = rc.residue_atoms[restype_name] for atom_name in atom_names: _lowerCamelCase = rc.atom_order[atom_name] _lowerCamelCase = 1 _lowerCamelCase = restype_atomaa_mask[protein_aatype] _lowerCamelCase = residx_atomaa_mask return protein def SCREAMING_SNAKE_CASE_ ( snake_case : Dict[str, torch.Tensor] )-> Dict[str, np.ndarray]: _lowerCamelCase = tree_map(lambda snake_case : torch.tensor(snake_case , device=batch['aatype'].device ) , snake_case , np.ndarray ) _lowerCamelCase = tensor_tree_map(lambda snake_case : np.array(snake_case ) , make_atomaa_masks(snake_case ) ) return out
222
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ : Optional[int] =get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __a ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Tuple = XGLMTokenizer SCREAMING_SNAKE_CASE__ : Tuple = XGLMTokenizerFast SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = True def snake_case_ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase = XGLMTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self ): _lowerCamelCase = '<pad>' _lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def snake_case_ ( self ): _lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(a__ ) , 10_08 ) def snake_case_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def snake_case_ ( self ): _lowerCamelCase = XGLMTokenizer(a__ , keep_accents=a__ ) _lowerCamelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(a__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _lowerCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def snake_case_ ( self ): return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(a__ , f.name ) _lowerCamelCase = XGLMTokenizer(f.name , keep_accents=a__ ) _lowerCamelCase = pickle.dumps(a__ ) pickle.loads(a__ ) def snake_case_ ( self ): if not self.test_rust_tokenizer: return _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_rust_tokenizer() _lowerCamelCase = 'I was born in 92000, and this is falsé.' _lowerCamelCase = tokenizer.tokenize(a__ ) _lowerCamelCase = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCamelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) _lowerCamelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) _lowerCamelCase = self.get_rust_tokenizer() _lowerCamelCase = tokenizer.encode(a__ ) _lowerCamelCase = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def snake_case_ ( self ): _lowerCamelCase = 'Hello World!' _lowerCamelCase = [2, 3_12_27, 44_47, 35] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def snake_case_ ( self ): _lowerCamelCase = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off _lowerCamelCase = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def snake_case_ ( self ): # fmt: off _lowerCamelCase = { 'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='facebook/xglm-564M' , padding=a__ , )
222
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : int=13 , _lowerCAmelCase : Optional[int]=7 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : int=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Union[str, Any]=99 , _lowerCAmelCase : int=0 , _lowerCAmelCase : Tuple=32 , _lowerCAmelCase : Union[str, Any]=5 , _lowerCAmelCase : Any=4 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : List[Any]=512 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Dict="last" , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : int=None , _lowerCAmelCase : str=0 , ) -> List[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_lengths __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = gelu_activation __lowercase = sinusoidal_embeddings __lowercase = causal __lowercase = asm __lowercase = n_langs __lowercase = vocab_size __lowercase = n_special __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = summary_type __lowercase = use_proj __lowercase = scope __lowercase = bos_token_id def _a ( self : Any ) -> Any: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_input_lengths: __lowercase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , 2 ).float() __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self : List[Any] ) -> str: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _a ( self : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , ) -> int: """simple docstring""" __lowercase = XLMModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , lengths=_lowerCAmelCase , langs=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , langs=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , ) -> List[Any]: """simple docstring""" __lowercase = XLMWithLMHeadModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , ) -> str: """simple docstring""" __lowercase = XLMForQuestionAnsweringSimple(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase ) __lowercase = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , ) -> List[str]: """simple docstring""" __lowercase = XLMForQuestionAnswering(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) __lowercase = model( _lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , cls_index=_lowerCAmelCase , is_impossible=_lowerCAmelCase , p_mask=_lowerCAmelCase , ) __lowercase = model( _lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , cls_index=_lowerCAmelCase , is_impossible=_lowerCAmelCase , ) ((__lowercase) , ) = result_with_labels.to_tuple() __lowercase = model(_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase ) ((__lowercase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _a ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any , ) -> Dict: """simple docstring""" __lowercase = XLMForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" __lowercase = self.num_labels __lowercase = XLMForTokenClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" __lowercase = self.num_choices __lowercase = XLMForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __snake_case :Tuple = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __snake_case :Optional[Any] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _a ( self : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ) -> int: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any]=False ) -> Union[str, Any]: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def _a ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = XLMModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , emb_dim=37 ) def _a ( self : List[Any] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_lowerCAmelCase ) def _a ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_lowerCAmelCase ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_lowerCAmelCase ) def _a ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_lowerCAmelCase ) def _a ( self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=False , _lowerCAmelCase : List[str]=1 ) -> Tuple: """simple docstring""" self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual( [isinstance(_lowerCAmelCase , _lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(_lowerCAmelCase ) ) self.assertEqual(len(_lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_lowerCAmelCase ): # adds PAD dummy token __lowercase = min_length + idx + 1 __lowercase = min_length + idx + 1 __lowercase = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_lowerCAmelCase ) ) def _a ( self : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=1 ) -> int: """simple docstring""" self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual( [isinstance(_lowerCAmelCase , _lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(_lowerCAmelCase ) , ) self.assertEqual(len(_lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_lowerCAmelCase ): # adds PAD dummy token __lowercase = min_length + idx + 1 __lowercase = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_lowerCAmelCase ) , ) pass @slow def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = XLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(_lowerCAmelCase ) __lowercase = torch.tensor([[14, 447]] , dtype=torch.long , device=_lowerCAmelCase ) # the president __lowercase = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowercase = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _lowerCAmelCase )
80
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = BlenderbotConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = """gelu""" def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=False , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=20 , _snake_case=2 , _snake_case=1 , _snake_case=0 , ) -> Dict: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase = prepare_blenderbot_inputs_dict(_snake_case , _snake_case , _snake_case ) return config, inputs_dict def snake_case_ ( self , _snake_case , _snake_case ) -> Any: """simple docstring""" UpperCAmelCase = TFBlenderbotModel(config=_snake_case ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = inputs_dict['''head_mask'''] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(_snake_case , attention_mask=_snake_case , head_mask=_snake_case , use_cache=_snake_case ) UpperCAmelCase , UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase = model(_snake_case , attention_mask=_snake_case )[0] UpperCAmelCase = model(_snake_case , attention_mask=_snake_case , past_key_values=_snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_snake_case , _snake_case , rtol=1e-3 ) def _lowerCAmelCase ( A__: int , A__: Tuple , A__: Union[str, Any] , A__: Optional[int]=None , A__: Any=None , A__: int=None , A__: str=None , A__: int=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(A__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = TFBlenderbotModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_snake_case ) def snake_case_ ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case ) @require_tokenizers @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""My friends are cool but they eat too many carbs."""] __SCREAMING_SNAKE_CASE = """facebook/blenderbot-400M-distill""" @cached_property def snake_case_ ( self ) -> List[str]: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_snake_case )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
254
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( _lowercase ): snake_case = '''gptsan-japanese''' snake_case = [ '''past_key_values''', ] snake_case = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Any=3_6000 , SCREAMING_SNAKE_CASE_ : Dict=1280 , SCREAMING_SNAKE_CASE_ : Any=1024 , SCREAMING_SNAKE_CASE_ : Optional[int]=8192 , SCREAMING_SNAKE_CASE_ : int=4096 , SCREAMING_SNAKE_CASE_ : Any=128 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=10 , SCREAMING_SNAKE_CASE_ : str=0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=16 , SCREAMING_SNAKE_CASE_ : str=16 , SCREAMING_SNAKE_CASE_ : str=128 , SCREAMING_SNAKE_CASE_ : Any=0.0 , SCREAMING_SNAKE_CASE_ : Tuple=1e-5 , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE_ : int="float32" , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : str=0.0_0_2 , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Optional[int]=3_5998 , SCREAMING_SNAKE_CASE_ : Dict=3_5995 , SCREAMING_SNAKE_CASE_ : str=3_5999 , **SCREAMING_SNAKE_CASE_ : List[Any] , ): lowerCamelCase__ = vocab_size lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = d_model lowerCamelCase__ = d_ff lowerCamelCase__ = d_ext lowerCamelCase__ = d_spout lowerCamelCase__ = num_switch_layers lowerCamelCase__ = num_ext_layers lowerCamelCase__ = num_switch_layers + num_ext_layers lowerCamelCase__ = num_heads lowerCamelCase__ = num_experts lowerCamelCase__ = expert_capacity lowerCamelCase__ = dropout_rate lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = router_bias lowerCamelCase__ = router_jitter_noise lowerCamelCase__ = router_dtype lowerCamelCase__ = router_ignore_padding_tokens lowerCamelCase__ = output_hidden_states lowerCamelCase__ = output_attentions lowerCamelCase__ = initializer_factor lowerCamelCase__ = output_router_logits lowerCamelCase__ = use_cache super().__init__( separator_token_id=A_ , pad_token_id=A_ , eos_token_id=A_ , **A_ , )
700
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class SCREAMING_SNAKE_CASE__ ( datasets.BeamBasedBuilder ): def __UpperCAmelCase ( self : List[Any] ): return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=SCREAMING_SNAKE_CASE_ , ) def __UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def __UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ ( datasets.BeamBasedBuilder ): def __UpperCAmelCase ( self : Optional[int] ): return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=SCREAMING_SNAKE_CASE_ , ) def __UpperCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def __UpperCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE_ ) def _A ( ): """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def _A ( ): """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): @require_beam def __UpperCAmelCase ( self : Any ): lowerCamelCase__ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase__ = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE_ , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE_ , builder.name , """default""" , """0.0.0""" , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) lowerCamelCase__ = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , SCREAMING_SNAKE_CASE_ ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def __UpperCAmelCase ( self : str ): import apache_beam as beam lowerCamelCase__ = beam.io.parquetio.WriteToParquet lowerCamelCase__ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase__ = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE_ , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: lowerCamelCase__ = partial(SCREAMING_SNAKE_CASE_ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE_ , builder.name , """default""" , """0.0.0""" , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE_ , builder.name , """default""" , """0.0.0""" , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) lowerCamelCase__ = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , SCREAMING_SNAKE_CASE_ ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , SCREAMING_SNAKE_CASE_ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def __UpperCAmelCase ( self : Dict ): with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase__ = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE_ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __UpperCAmelCase ( self : Tuple ): lowerCamelCase__ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase__ = NestedBeamDataset(cache_dir=SCREAMING_SNAKE_CASE_ , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE_ , builder.name , """default""" , """0.0.0""" , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) lowerCamelCase__ = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , SCREAMING_SNAKE_CASE_ ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
258
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __A = logging.getLogger(__name__) def lowercase__ ( A_: str , A_: Optional[int] ) -> List[str]: """simple docstring""" __UpperCAmelCase =np.argmax(A_ , axis=1 ) return np.sum(outputs == labels ) def lowercase__ ( A_: Optional[int] ) -> Dict: """simple docstring""" with open(A_ , encoding="""utf_8""" ) as f: __UpperCAmelCase =csv.reader(A_ ) __UpperCAmelCase =[] next(A_ ) # skip the first line for line in tqdm(A_ ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowercase__ ( A_: Optional[Any] , A_: Dict , A_: Optional[Any] , A_: int , A_: Dict , A_: Optional[int] ) -> Dict: """simple docstring""" __UpperCAmelCase =[] for dataset in encoded_datasets: __UpperCAmelCase =len(A_ ) __UpperCAmelCase =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __UpperCAmelCase =np.zeros((n_batch, 2) , dtype=np.intaa ) __UpperCAmelCase =np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) __UpperCAmelCase =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(A_ ): __UpperCAmelCase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCAmelCase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCAmelCase =with_conta __UpperCAmelCase =with_conta __UpperCAmelCase =len(A_ ) - 1 __UpperCAmelCase =len(A_ ) - 1 __UpperCAmelCase =with_conta __UpperCAmelCase =with_conta __UpperCAmelCase =mc_label __UpperCAmelCase =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(A_ ) for t in all_inputs ) ) return tensor_datasets def lowercase__ ( ) -> str: """simple docstring""" __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=A_ , default="""openai-gpt""" , help="""pretrained model name""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""" , default=A_ , type=A_ , required=A_ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=A_ , default="""""" ) parser.add_argument("""--eval_dataset""" , type=A_ , default="""""" ) parser.add_argument("""--seed""" , type=A_ , default=42 ) parser.add_argument("""--num_train_epochs""" , type=A_ , default=3 ) parser.add_argument("""--train_batch_size""" , type=A_ , default=8 ) parser.add_argument("""--eval_batch_size""" , type=A_ , default=16 ) parser.add_argument("""--adam_epsilon""" , default=1e-8 , type=A_ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , type=A_ , default=1 ) parser.add_argument( """--max_steps""" , default=-1 , type=A_ , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=A_ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=A_ , default=6.25e-5 ) parser.add_argument("""--warmup_steps""" , default=0 , type=A_ , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""" , type=A_ , default="""warmup_linear""" ) parser.add_argument("""--weight_decay""" , type=A_ , default=0.0_1 ) parser.add_argument("""--lm_coef""" , type=A_ , default=0.9 ) parser.add_argument("""--n_valid""" , type=A_ , default=374 ) parser.add_argument("""--server_ip""" , type=A_ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=A_ , default="""""" , help="""Can be used for distant debugging.""" ) __UpperCAmelCase =parser.parse_args() print(A_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __UpperCAmelCase =torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) __UpperCAmelCase =torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(A_ , A_ ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __UpperCAmelCase =["""_start_""", """_delimiter_""", """_classify_"""] __UpperCAmelCase =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(A_ ) __UpperCAmelCase =tokenizer.convert_tokens_to_ids(A_ ) __UpperCAmelCase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(A_ ) ) model.to(A_ ) # Load and encode the datasets def tokenize_and_encode(A_: Tuple ): if isinstance(A_ , A_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(A_ ) ) elif isinstance(A_ , A_ ): return obj return [tokenize_and_encode(A_ ) for o in obj] logger.info("""Encoding dataset...""" ) __UpperCAmelCase =load_rocstories_dataset(args.train_dataset ) __UpperCAmelCase =load_rocstories_dataset(args.eval_dataset ) __UpperCAmelCase =(train_dataset, eval_dataset) __UpperCAmelCase =tokenize_and_encode(A_ ) # Compute the max input length for the Transformer __UpperCAmelCase =model.config.n_positions // 2 - 2 __UpperCAmelCase =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __UpperCAmelCase =min(A_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __UpperCAmelCase =pre_process_datasets(A_ , A_ , A_ , *A_ ) __UpperCAmelCase , __UpperCAmelCase =tensor_datasets[0], tensor_datasets[1] __UpperCAmelCase =TensorDataset(*A_ ) __UpperCAmelCase =RandomSampler(A_ ) __UpperCAmelCase =DataLoader(A_ , sampler=A_ , batch_size=args.train_batch_size ) __UpperCAmelCase =TensorDataset(*A_ ) __UpperCAmelCase =SequentialSampler(A_ ) __UpperCAmelCase =DataLoader(A_ , sampler=A_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __UpperCAmelCase =args.max_steps __UpperCAmelCase =args.max_steps // (len(A_ ) // args.gradient_accumulation_steps) + 1 else: __UpperCAmelCase =len(A_ ) // args.gradient_accumulation_steps * args.num_train_epochs __UpperCAmelCase =list(model.named_parameters() ) __UpperCAmelCase =["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] __UpperCAmelCase =[ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] __UpperCAmelCase =AdamW(A_ , lr=args.learning_rate , eps=args.adam_epsilon ) __UpperCAmelCase =get_linear_schedule_with_warmup( A_ , num_warmup_steps=args.warmup_steps , num_training_steps=A_ ) if args.do_train: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ): __UpperCAmelCase =0 __UpperCAmelCase =0 __UpperCAmelCase =tqdm(A_ , desc="""Training""" ) for step, batch in enumerate(A_ ): __UpperCAmelCase =tuple(t.to(A_ ) for t in batch ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =batch __UpperCAmelCase =model(A_ , mc_token_ids=A_ , lm_labels=A_ , mc_labels=A_ ) __UpperCAmelCase =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __UpperCAmelCase =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __UpperCAmelCase ="""Training loss: {:.2e} lr: {:.2e}""".format(A_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __UpperCAmelCase =model.module if hasattr(A_ , """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __UpperCAmelCase =os.path.join(args.output_dir , A_ ) __UpperCAmelCase =os.path.join(args.output_dir , A_ ) torch.save(model_to_save.state_dict() , A_ ) model_to_save.config.to_json_file(A_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __UpperCAmelCase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __UpperCAmelCase =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(A_ ) if args.do_eval: model.eval() __UpperCAmelCase , __UpperCAmelCase =0, 0 __UpperCAmelCase , __UpperCAmelCase =0, 0 for batch in tqdm(A_ , desc="""Evaluating""" ): __UpperCAmelCase =tuple(t.to(A_ ) for t in batch ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =batch with torch.no_grad(): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =model( A_ , mc_token_ids=A_ , lm_labels=A_ , mc_labels=A_ ) __UpperCAmelCase =mc_logits.detach().cpu().numpy() __UpperCAmelCase =mc_labels.to("""cpu""" ).numpy() __UpperCAmelCase =accuracy(A_ , A_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __UpperCAmelCase =eval_loss / nb_eval_steps __UpperCAmelCase =eval_accuracy / nb_eval_examples __UpperCAmelCase =tr_loss / nb_tr_steps if args.do_train else None __UpperCAmelCase ={"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} __UpperCAmelCase =os.path.join(args.output_dir , """eval_results.txt""" ) with open(A_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , A_ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
68
def a_ ( SCREAMING_SNAKE_CASE__ : bytes ): '''simple docstring''' return "".join([hex(SCREAMING_SNAKE_CASE__ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE__ )] ) def a_ ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if (len(SCREAMING_SNAKE_CASE__ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE__ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
464
0
'''simple docstring''' import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCAmelCase ( *a_: Tuple ): if not isinstance(a_, a_ ): _UpperCAmelCase : Optional[int] = list(a_ ) for i in range(len(a_ ) ): _UpperCAmelCase : List[Any] = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCAmelCase ( a_: Exception ): _UpperCAmelCase : Optional[Any] = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(a_, a_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCAmelCase ( a_: callable = None, a_: int = 128 ): if function is None: return functools.partial(a_, starting_batch_size=a_ ) _UpperCAmelCase : Tuple = starting_batch_size def decorator(*a_: str, **a_: int ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _UpperCAmelCase : Optional[Any] = list(inspect.signature(a_ ).parameters.keys() ) # Guard against user error if len(a_ ) < (len(a_ ) + 1): _UpperCAmelCase : Dict = ", ".join([f"""{arg}={value}""" for arg, value in zip(params[1:], args[1:] )] ) raise TypeError( f"""Batch size was passed into `{function.__name__}` as the first argument when called.""" f"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(a_, *a_, **a_ ) except Exception as e: if should_reduce_batch_size(a_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
257
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __a = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __UpperCAmelCase ( a_: Union[str, Any] ): config.addinivalue_line( "markers", "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers", "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers", "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers", "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers", "tool_tests: mark the tool tests that are run on their specific schedule" ) def __UpperCAmelCase ( a_: Any ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __UpperCAmelCase ( a_: Tuple ): from transformers.testing_utils import pytest_terminal_summary_main _UpperCAmelCase : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(a_, id=a_ ) def __UpperCAmelCase ( a_: Union[str, Any], a_: str ): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: _UpperCAmelCase : List[Any] = 0 # Doctest custom flag to ignore output. __a = doctest.register_optionflag('IGNORE_RESULT') __a = doctest.OutputChecker class A__ ( UpperCamelCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ) -> Dict: """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a = CustomOutputChecker __a = HfDoctestModule __a = HfDocTestParser
257
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE__ = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : int ): __a : Dict = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): __a : Union[str, Any] = True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , lowerCamelCase_ , ) is not None ): __a : Dict = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __a : Dict = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __a : List[Any] = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] __a : Optional[Any] = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed __a : Optional[Any] = True if not attribute_used: __a : Any = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __a : int = True elif attribute in ["tie_word_embeddings"] and default_value is False: __a : List[str] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __a : Tuple = True elif attribute.endswith('_token_id' ): __a : Dict = True # configuration class specific cases if not case_allowed: __a : Tuple = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __a : Optional[Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCAmelCase__ ( lowerCamelCase_ : Any ): __a : str = dict(inspect.signature(config_class.__init__ ).parameters ) __a : Optional[Any] = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] __a : List[Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __a : Any = {} if len(config_class.attribute_map ) > 0: __a : Optional[int] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __a : Union[str, Any] = inspect.getsourcefile(lowerCamelCase_ ) __a : str = os.path.dirname(lowerCamelCase_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __a : Dict = [os.path.join(lowerCamelCase_ , lowerCamelCase_ ) for fn in os.listdir(lowerCamelCase_ ) if fn.startswith('modeling_' )] # Get the source code strings __a : str = [] for path in modeling_paths: if os.path.isfile(lowerCamelCase_ ): with open(lowerCamelCase_ ) as fp: modeling_sources.append(fp.read() ) __a : str = [] for config_param, default_value in zip(lowerCamelCase_ , lowerCamelCase_ ): # `attributes` here is all the variant names for `config_param` __a : Dict = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): unused_attributes.append(attributes[0] ) return sorted(lowerCamelCase_ ) def UpperCAmelCase__ ( ): __a : Dict = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __a : List[Any] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCamelCase_ : inspect.isclass(lowerCamelCase_ ) and issubclass(lowerCamelCase_ , lowerCamelCase_ ) and inspect.getmodule(lowerCamelCase_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __a : List[Any] = check_config_attributes_being_used(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: __a : Optional[Any] = unused_attributes if len(lowerCamelCase_ ) > 0: __a : str = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(lowerCamelCase_ ) if __name__ == "__main__": check_config_attributes()
47
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class _snake_case ( snake_case_ ): '''simple docstring''' __snake_case = "bloom" __snake_case = ["past_key_values"] __snake_case = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self: Union[str, Any] , __UpperCamelCase: Any=25_0880 , __UpperCamelCase: str=64 , __UpperCamelCase: Any=2 , __UpperCamelCase: str=8 , __UpperCamelCase: str=1E-5 , __UpperCamelCase: Optional[int]=0.0_2 , __UpperCamelCase: Any=True , __UpperCamelCase: Tuple=1 , __UpperCamelCase: Optional[Any]=2 , __UpperCamelCase: List[Any]=False , __UpperCamelCase: Any=0.0 , __UpperCamelCase: str=0.0 , __UpperCamelCase: List[str]=1 , __UpperCamelCase: str=False , **__UpperCamelCase: Optional[int] , ) -> List[Any]: __magic_name__ : Any = vocab_size # Backward compatibility with n_embed kwarg __magic_name__ : Any = kwargs.pop("n_embed" , __UpperCamelCase ) __magic_name__ : str = hidden_size if n_embed is None else n_embed __magic_name__ : Tuple = n_layer __magic_name__ : Tuple = n_head __magic_name__ : Optional[int] = layer_norm_epsilon __magic_name__ : List[Any] = initializer_range __magic_name__ : int = use_cache __magic_name__ : str = pretraining_tp __magic_name__ : Any = apply_residual_connection_post_layernorm __magic_name__ : Union[str, Any] = hidden_dropout __magic_name__ : Optional[int] = attention_dropout __magic_name__ : Dict = bos_token_id __magic_name__ : List[Any] = eos_token_id __magic_name__ : Union[str, Any] = slow_but_exact super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) class _snake_case ( snake_case_ ): '''simple docstring''' __snake_case = version.parse("1.12" ) def __init__( self: str , __UpperCamelCase: PretrainedConfig , __UpperCamelCase: str = "default" , __UpperCamelCase: List[PatchingSpec] = None , __UpperCamelCase: bool = False , ) -> List[Any]: super().__init__(__UpperCamelCase , task=__UpperCamelCase , patching_specs=__UpperCamelCase , use_past=__UpperCamelCase ) if not getattr(self._config , "pad_token_id" , __UpperCamelCase ): # TODO: how to do that better? __magic_name__ : Any = 0 @property def lowerCAmelCase__ ( self: Any ) -> Mapping[str, Mapping[int, str]]: __magic_name__ : List[str] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__UpperCamelCase , direction="inputs" , inverted_values_shape=__UpperCamelCase ) __magic_name__ : Any = {0: "batch", 1: "past_sequence + sequence"} else: __magic_name__ : Optional[Any] = {0: "batch", 1: "sequence"} return common_inputs @property def lowerCAmelCase__ ( self: Dict ) -> int: return self._config.n_layer @property def lowerCAmelCase__ ( self: List[str] ) -> int: return self._config.n_head @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> float: return 1E-3 def lowerCAmelCase__ ( self: Optional[int] , __UpperCamelCase: "PreTrainedTokenizer" , __UpperCamelCase: int = -1 , __UpperCamelCase: int = -1 , __UpperCamelCase: bool = False , __UpperCamelCase: Optional["TensorType"] = None , ) -> Mapping[str, Any]: __magic_name__ : Dict = super(__UpperCamelCase , self ).generate_dummy_inputs( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) # We need to order the input in the way they appears in the forward() __magic_name__ : Optional[int] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __magic_name__ , __magic_name__ : Union[str, Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values __magic_name__ : Dict = seqlen + 2 __magic_name__ : Optional[Any] = self._config.hidden_size // self.num_attention_heads __magic_name__ : List[str] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __magic_name__ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __magic_name__ : str = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(self.num_layers ) ] __magic_name__ : Tuple = common_inputs["attention_mask"] if self.use_past: __magic_name__ : Tuple = ordered_inputs["attention_mask"].dtype __magic_name__ : Optional[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase__ ( self: Optional[int] ) -> int: return 13
436
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowercase ( unittest.TestCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=18 , lowercase__=30 , lowercase__=4_00 , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=None , ): snake_case_ : Dict = size if size is not None else {"""shortest_edge""": 20} snake_case_ : List[str] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} snake_case_ : str = parent snake_case_ : Optional[Any] = batch_size snake_case_ : Union[str, Any] = num_channels snake_case_ : Optional[int] = image_size snake_case_ : Dict = min_resolution snake_case_ : Union[str, Any] = max_resolution snake_case_ : Any = do_resize snake_case_ : Dict = size snake_case_ : Union[str, Any] = do_center_crop snake_case_ : Dict = crop_size def __UpperCamelCase (self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Optional[int] = MobileNetVaImageProcessor if is_vision_available() else None def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = MobileNetVaImageProcessingTester(self ) @property def __UpperCamelCase (self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase (self ): snake_case_ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase__ , """size""" ) ) self.assertTrue(hasattr(lowercase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(lowercase__ , """crop_size""" ) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) snake_case_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input snake_case_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : int = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __UpperCamelCase (self ): # Initialize image_processing snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : List[Any] = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __UpperCamelCase (self ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : int = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
48
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
1
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _UpperCamelCase ( ): UpperCamelCase_ =[randint(-1_000 , 1_000 ) for i in range(10 )] UpperCamelCase_ =randint(-5_000 , 5_000 ) return (arr, r) A_ = make_dataset() def _UpperCamelCase ( A , A ): for triplet in permutations(A , 3 ): if sum(A ) == target: return tuple(sorted(A ) ) return (0, 0, 0) def _UpperCamelCase ( A , A ): arr.sort() UpperCamelCase_ =len(A ) for i in range(n - 1 ): UpperCamelCase_ , UpperCamelCase_ =i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _UpperCamelCase ( ): UpperCamelCase_ ="\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" UpperCamelCase_ ="\ntriplet_sum1(*dataset)\n" UpperCamelCase_ ="\ntriplet_sum2(*dataset)\n" UpperCamelCase_ =repeat(setup=A , stmt=A , repeat=5 , number=10_000 ) UpperCamelCase_ =repeat(setup=A , stmt=A , repeat=5 , number=10_000 ) return (min(A ), min(A )) if __name__ == "__main__": from doctest import testmod testmod() A_ = solution_times() print(f'''The time for naive implementation is {times[0]}.''') print(f'''The time for optimized implementation is {times[1]}.''')
391
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = "▁" A_ = {"vocab_file": "sentencepiece.bpe.model"} A_ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } A_ = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off A_ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' __lowerCamelCase : Tuple = VOCAB_FILES_NAMES __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __lowerCamelCase : List[int] = [] __lowerCamelCase : List[int] = [] def __init__( self: int , UpperCamelCase_: Dict , UpperCamelCase_: Any="<s>" , UpperCamelCase_: Dict="</s>" , UpperCamelCase_: Tuple="</s>" , UpperCamelCase_: int="<s>" , UpperCamelCase_: Union[str, Any]="<unk>" , UpperCamelCase_: Union[str, Any]="<pad>" , UpperCamelCase_: int="<mask>" , UpperCamelCase_: str=None , UpperCamelCase_: Any=None , UpperCamelCase_: int=None , UpperCamelCase_: Optional[Dict[str, Any]] = None , UpperCamelCase_: str=None , UpperCamelCase_: Optional[Any]=False , **UpperCamelCase_: Optional[Any] , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase_ =AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token UpperCamelCase_ ={} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase_ =legacy_behaviour super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) UpperCamelCase_ =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase_ ={"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase_ =1 UpperCamelCase_ =len(self.sp_model ) UpperCamelCase_ ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase_ ) } UpperCamelCase_ ={v: k for k, v in self.lang_code_to_id.items()} UpperCamelCase_ =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCamelCase_ ={v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCamelCase_ =list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCamelCase_ =src_lang if src_lang is not None else "eng_Latn" UpperCamelCase_ =self.lang_code_to_id[self._src_lang] UpperCamelCase_ =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self: List[Any] ): UpperCamelCase_ =self.__dict__.copy() UpperCamelCase_ =None UpperCamelCase_ =self.sp_model.serialized_model_proto() return state def __setstate__( self: int , UpperCamelCase_: List[str] ): UpperCamelCase_ =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ ={} UpperCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCamelCase__ ( self: List[Any] ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase__ ( self: Any ): return self._src_lang @src_lang.setter def UpperCamelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): UpperCamelCase_ =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase__ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) UpperCamelCase_ =[1] * len(self.prefix_tokens ) UpperCamelCase_ =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase_ )) + ([0] * len(UpperCamelCase_ )) + suffix_ones def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): UpperCamelCase_ =[self.sep_token_id] UpperCamelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple , UpperCamelCase_: str , UpperCamelCase_: Optional[str] , UpperCamelCase_: Optional[str] , **UpperCamelCase_: int ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCamelCase_ =src_lang UpperCamelCase_ =self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ =self.convert_tokens_to_ids(UpperCamelCase_ ) UpperCamelCase_ =tgt_lang_id return inputs def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ ={self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self: Dict , UpperCamelCase_: str ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def UpperCamelCase__ ( self: Optional[Any] , UpperCamelCase_: Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase_ =self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ ( self: List[str] , UpperCamelCase_: str ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self: List[Any] , UpperCamelCase_: str ): UpperCamelCase_ ="".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase_ =os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: UpperCamelCase_ =self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[str] , UpperCamelCase_: str = "eng_Latn" , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "fra_Latn" , **UpperCamelCase_: Dict , ): UpperCamelCase_ =src_lang UpperCamelCase_ =tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase__ ( self: int ): return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase__ ( self: List[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase__ ( self: List[Any] , UpperCamelCase_: Dict ): UpperCamelCase_ =self.lang_code_to_id[src_lang] if self.legacy_behaviour: UpperCamelCase_ =[] UpperCamelCase_ =[self.eos_token_id, self.cur_lang_code] else: UpperCamelCase_ =[self.cur_lang_code] UpperCamelCase_ =[self.eos_token_id] def UpperCamelCase__ ( self: Dict , UpperCamelCase_: str ): UpperCamelCase_ =self.lang_code_to_id[lang] if self.legacy_behaviour: UpperCamelCase_ =[] UpperCamelCase_ =[self.eos_token_id, self.cur_lang_code] else: UpperCamelCase_ =[self.cur_lang_code] UpperCamelCase_ =[self.eos_token_id]
391
1
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowerCamelCase = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') _lowerCamelCase = parser.parse_args() _lowerCamelCase = 'cpu' _lowerCamelCase = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' _lowerCamelCase = 'path-to-your-trained-model' _lowerCamelCase = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowerCamelCase = pipe.to(device) # to channels last _lowerCamelCase = pipe.unet.to(memory_format=torch.channels_last) _lowerCamelCase = pipe.vae.to(memory_format=torch.channels_last) _lowerCamelCase = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowerCamelCase = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowerCamelCase = torch.randn(2, 4, 64, 64) _lowerCamelCase = torch.rand(1) * 999 _lowerCamelCase = torch.randn(2, 77, 768) _lowerCamelCase = (sample, timestep, encoder_hidden_status) try: _lowerCamelCase = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowerCamelCase = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowerCamelCase = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowerCamelCase = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowerCamelCase = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowerCamelCase = 666 _lowerCamelCase = torch.Generator(device).manual_seed(seed) _lowerCamelCase = {'generator': generator} if args.steps is not None: _lowerCamelCase = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowerCamelCase = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
112
"""simple docstring""" def __lowercase ( lowerCamelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = set({"(", "[", "{"} ) SCREAMING_SNAKE_CASE__ = set({")", "]", "}"} ) SCREAMING_SNAKE_CASE__ = {"{": "}", "[": "]", "(": ")"} for i in range(len(lowerCamelCase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCamelCase_ ) == 0 or (len(lowerCamelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCamelCase_ ) == 0 def __lowercase ( ): SCREAMING_SNAKE_CASE__ = input("Enter sequence of brackets: " ) if is_balanced(lowerCamelCase_ ): print(lowerCamelCase_ , "is balanced" ) else: print(lowerCamelCase_ , "is not balanced" ) if __name__ == "__main__": main()
112
1
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) a__ : Optional[int] = logging.get_logger(__name__) a__ : Optional[Any] = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) a__ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCAmelCase = model_type_to_module_name(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = importlib.import_module(f".{module_name}" , '''transformers.models''' ) try: return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE_ , '''__name__''' , SCREAMING_SNAKE_CASE_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCAmelCase = importlib.import_module('''transformers''' ) if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return None def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, str]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[bool, str]] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : bool = False , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> List[str]: """simple docstring""" UpperCAmelCase = get_file_from_repo( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , use_auth_token=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as reader: return json.load(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[str] ): raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(a__ ) def __snake_case ( cls : int , a__ : Union[str, Any] , **a__ : List[str] ): UpperCAmelCase = kwargs.pop('''config''' , a__ ) UpperCAmelCase = kwargs.pop('''trust_remote_code''' , a__ ) UpperCAmelCase = True UpperCAmelCase, UpperCAmelCase = ImageProcessingMixin.get_image_processor_dict(a__ , **a__ ) UpperCAmelCase = config_dict.get('''image_processor_type''' , a__ ) UpperCAmelCase = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): UpperCAmelCase = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCAmelCase = config_dict.pop('''feature_extractor_type''' , a__ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) UpperCAmelCase = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): UpperCAmelCase = config_dict['''auto_map''']['''AutoFeatureExtractor'''] UpperCAmelCase = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(a__ , a__ ): UpperCAmelCase = AutoConfig.from_pretrained(a__ , **a__ ) # It could be in `config.image_processor_type`` UpperCAmelCase = getattr(a__ , '''image_processor_type''' , a__ ) if hasattr(a__ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: UpperCAmelCase = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: UpperCAmelCase = image_processor_class_from_name(a__ ) UpperCAmelCase = image_processor_auto_map is not None UpperCAmelCase = image_processor_class is not None or type(a__ ) in IMAGE_PROCESSOR_MAPPING UpperCAmelCase = resolve_trust_remote_code( a__ , a__ , a__ , a__ ) if has_remote_code and trust_remote_code: UpperCAmelCase = get_class_from_dynamic_module( a__ , a__ , **a__ ) UpperCAmelCase = kwargs.pop('''code_revision''' , a__ ) if os.path.isdir(a__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(a__ , **a__ ) elif image_processor_class is not None: return image_processor_class.from_dict(a__ , **a__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(a__ ) in IMAGE_PROCESSOR_MAPPING: UpperCAmelCase = IMAGE_PROCESSOR_MAPPING[type(a__ )] return image_processor_class.from_dict(a__ , **a__ ) raise ValueError( f"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " f"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def __snake_case ( a__ : Union[str, Any] , a__ : Tuple ): IMAGE_PROCESSOR_MAPPING.register(a__ , a__ )
51
'''simple docstring''' from __future__ import annotations a__ : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ): UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase = {} UpperCAmelCase = source_vertex def __snake_case ( self : Optional[int] ): UpperCAmelCase = {self.source_vertex} UpperCAmelCase = None UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(a__ ) UpperCAmelCase = vertex queue.append(a__ ) def __snake_case ( self : Any , a__ : str ): if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase = self.parent.get(a__ ) if target_vertex_parent is None: UpperCAmelCase = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(a__ ) return self.shortest_path(a__ ) + f"->{target_vertex}" if __name__ == "__main__": a__ : Tuple = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
51
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = ['''MobileViTFeatureExtractor'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
623
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __SCREAMING_SNAKE_CASE : Dict = random.Random() def lowerCAmelCase_( lowercase_ : Dict , lowercase_ : int=1.0 , lowercase_ : str=None , lowercase_ : Optional[int]=None ) -> Any: if rng is None: _lowerCamelCase = global_rng _lowerCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=4_0_0 , lowerCamelCase__=2_0_0_0 , lowerCamelCase__=1_0 , lowerCamelCase__=1_6_0 , lowerCamelCase__=8 , lowerCamelCase__=0.0 , lowerCamelCase__=4_0_0_0 , lowerCamelCase__=False , lowerCamelCase__=True , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = min_seq_length _lowerCamelCase = max_seq_length _lowerCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCamelCase = padding_value _lowerCamelCase = sampling_rate _lowerCamelCase = return_attention_mask _lowerCamelCase = do_normalize _lowerCamelCase = feature_size _lowerCamelCase = chunk_length _lowerCamelCase = hop_length def snake_case__ ( self ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case__ ( self , lowerCamelCase__=False , lowerCamelCase__=False ): def _flatten(lowerCamelCase__ ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: _lowerCamelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCamelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCamelCase = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase_( A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[int] = WhisperFeatureExtractor if is_speech_available() else None def snake_case__ ( self ): _lowerCamelCase = WhisperFeatureExtractionTester(self ) def snake_case__ ( self ): _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase = feat_extract_first.save_pretrained(lowerCamelCase__ )[0] check_json_file_has_correct_format(lowerCamelCase__ ) _lowerCamelCase = self.feature_extraction_class.from_pretrained(lowerCamelCase__ ) _lowerCamelCase = feat_extract_first.to_dict() _lowerCamelCase = feat_extract_second.to_dict() _lowerCamelCase = feat_extract_first.mel_filters _lowerCamelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase = os.path.join(lowerCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(lowerCamelCase__ ) _lowerCamelCase = self.feature_extraction_class.from_json_file(lowerCamelCase__ ) _lowerCamelCase = feat_extract_first.to_dict() _lowerCamelCase = feat_extract_second.to_dict() _lowerCamelCase = feat_extract_first.mel_filters _lowerCamelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCamelCase = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test feature size _lowerCamelCase = feature_extractor(lowerCamelCase__ , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _lowerCamelCase = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # Test batched _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _lowerCamelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _lowerCamelCase = np.asarray(lowerCamelCase__ ) _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # Test truncation required _lowerCamelCase = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] _lowerCamelCase = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] _lowerCamelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _lowerCamelCase = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs_truncated] _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def snake_case__ ( self ): import torch _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) _lowerCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCamelCase = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _lowerCamelCase = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _lowerCamelCase = ds.sort('''id''' ).select(range(lowerCamelCase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def snake_case__ ( self ): # fmt: off _lowerCamelCase = torch.tensor( [ 0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1, 0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8, 0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4, -0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4 ] ) # fmt: on _lowerCamelCase = self._load_datasamples(1 ) _lowerCamelCase = WhisperFeatureExtractor() _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , lowerCamelCase__ , atol=1e-4 ) ) def snake_case__ ( self ): _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase = self._load_datasamples(1 )[0] _lowerCamelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue _lowerCamelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCamelCase__ )[0] self.assertTrue(np.all(np.mean(lowerCamelCase__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase__ ) - 1 ) < 1e-3 ) )
623
1
"""simple docstring""" from PIL import Image def UpperCAmelCase ( A : Image ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = image.size _UpperCAmelCase = 0 _UpperCAmelCase = image.load() for i in range(A ): for j in range(A ): _UpperCAmelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(A ): for i in range(A ): _UpperCAmelCase = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": lowercase = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
573
"""simple docstring""" def UpperCAmelCase ( A : list[int] , A : list[int] ): '''simple docstring''' if not len(A ) == len(A ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa # Calculate the determinants of the matrices _UpperCAmelCase = aa * ba - aa * ba _UpperCAmelCase = ca * ba - ca * ba _UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase = determinant_x / determinant _UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
573
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: List[str] ) -> Any: '''simple docstring''' __lowerCamelCase : Dict = b.T __lowerCamelCase : str = np.sum(np.square(_lowerCamelCase ) , axis=1 ) __lowerCamelCase : Any = np.sum(np.square(_lowerCamelCase ) , axis=0 ) __lowerCamelCase : str = np.matmul(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : str = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( _lowerCamelCase: Any , _lowerCamelCase: str ) -> Tuple: '''simple docstring''' __lowerCamelCase : int = x.reshape(-1 , 3 ) __lowerCamelCase : Any = squared_euclidean_distance(_lowerCamelCase , _lowerCamelCase ) return np.argmin(_lowerCamelCase , axis=1 ) class _snake_case ( a__ ): snake_case__ = ["pixel_values"] def __init__( self : Any , UpperCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , **UpperCAmelCase : Dict , ): super().__init__(**UpperCAmelCase ) __lowerCamelCase : Any = size if size is not None else {"height": 256, "width": 256} __lowerCamelCase : List[str] = get_size_dict(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = np.array(UpperCAmelCase ) if clusters is not None else None __lowerCamelCase : int = do_resize __lowerCamelCase : List[str] = size __lowerCamelCase : List[str] = resample __lowerCamelCase : List[str] = do_normalize __lowerCamelCase : str = do_color_quantize def lowerCamelCase__ ( self : str , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Union[str, Any] , ): __lowerCamelCase : Optional[int] = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dictionary must contain both height and width keys. Got {size.keys()}""" ) return resize( UpperCAmelCase , size=(size["height"], size["width"]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , ): __lowerCamelCase : List[str] = rescale(image=UpperCAmelCase , scale=1 / 1_2_7.5 , data_format=UpperCAmelCase ) __lowerCamelCase : Any = image - 1 return image def lowerCamelCase__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **UpperCAmelCase : str , ): __lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize __lowerCamelCase : List[str] = size if size is not None else self.size __lowerCamelCase : str = get_size_dict(UpperCAmelCase ) __lowerCamelCase : Any = resample if resample is not None else self.resample __lowerCamelCase : str = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase : Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __lowerCamelCase : List[str] = clusters if clusters is not None else self.clusters __lowerCamelCase : str = np.array(UpperCAmelCase ) __lowerCamelCase : Dict = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. __lowerCamelCase : Union[str, Any] = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: __lowerCamelCase : Dict = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_normalize: __lowerCamelCase : Union[str, Any] = [self.normalize(image=UpperCAmelCase ) for image in images] if do_color_quantize: __lowerCamelCase : List[str] = [to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __lowerCamelCase : Tuple = np.array(UpperCAmelCase ) __lowerCamelCase : List[Any] = color_quantize(UpperCAmelCase , UpperCAmelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __lowerCamelCase : int = images.shape[0] __lowerCamelCase : Union[str, Any] = images.reshape(UpperCAmelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __lowerCamelCase : Optional[int] = list(UpperCAmelCase ) else: __lowerCamelCase : List[str] = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] __lowerCamelCase : int = {"input_ids": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
366
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __A = (720, 1280) # Height, Width __A = (0.4, 0.6) # if height or width lower than this scale, drop it. __A = 1 / 100 __A = '''''' __A = '''''' __A = '''''' __A = 250 def lowercase_ ( ) -> None: '''simple docstring''' __lowerCamelCase , __lowerCamelCase : List[Any] = get_dataset(_lowerCamelCase , _lowerCamelCase ) for index in range(_lowerCamelCase ): __lowerCamelCase : Optional[Any] = random.sample(range(len(_lowerCamelCase ) ) , 4 ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = update_image_and_anno( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , filter_scale=_lowerCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase : Tuple = random_chars(32 ) __lowerCamelCase : Dict = path.split(os.sep )[-1].rsplit("." , 1 )[0] __lowerCamelCase : List[str] = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , _lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) __lowerCamelCase : List[Any] = [] for anno in new_annos: __lowerCamelCase : Any = anno[3] - anno[1] __lowerCamelCase : Optional[int] = anno[4] - anno[2] __lowerCamelCase : Optional[int] = anno[1] + width / 2 __lowerCamelCase : Union[str, Any] = anno[2] + height / 2 __lowerCamelCase : int = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(_lowerCamelCase ) with open(F"""{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str ) -> tuple[list, list]: '''simple docstring''' __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Any = [] for label_file in glob.glob(os.path.join(_lowerCamelCase , "*.txt" ) ): __lowerCamelCase : List[Any] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_lowerCamelCase ) as in_file: __lowerCamelCase : Tuple = in_file.readlines() __lowerCamelCase : List[str] = os.path.join(_lowerCamelCase , F"""{label_name}.jpg""" ) __lowerCamelCase : Union[str, Any] = [] for obj_list in obj_lists: __lowerCamelCase : str = obj_list.rstrip("\n" ).split(" " ) __lowerCamelCase : Union[str, Any] = float(obj[1] ) - float(obj[3] ) / 2 __lowerCamelCase : Tuple = float(obj[2] ) - float(obj[4] ) / 2 __lowerCamelCase : Union[str, Any] = float(obj[1] ) + float(obj[3] ) / 2 __lowerCamelCase : Any = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_lowerCamelCase ) labels.append(_lowerCamelCase ) return img_paths, labels def lowercase_ ( _lowerCamelCase: list , _lowerCamelCase: list , _lowerCamelCase: list[int] , _lowerCamelCase: tuple[int, int] , _lowerCamelCase: tuple[float, float] , _lowerCamelCase: float = 0.0 , ) -> tuple[list, list, str]: '''simple docstring''' __lowerCamelCase : Union[str, Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __lowerCamelCase : Optional[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowerCamelCase : List[str] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowerCamelCase : int = int(scale_x * output_size[1] ) __lowerCamelCase : Optional[Any] = int(scale_y * output_size[0] ) __lowerCamelCase : List[Any] = [] __lowerCamelCase : Optional[Any] = [] for i, index in enumerate(_lowerCamelCase ): __lowerCamelCase : List[str] = all_img_list[index] path_list.append(_lowerCamelCase ) __lowerCamelCase : Optional[Any] = all_annos[index] __lowerCamelCase : List[str] = cva.imread(_lowerCamelCase ) if i == 0: # top-left __lowerCamelCase : List[str] = cva.resize(_lowerCamelCase , (divid_point_x, divid_point_y) ) __lowerCamelCase : Any = img for bbox in img_annos: __lowerCamelCase : str = bbox[1] * scale_x __lowerCamelCase : Union[str, Any] = bbox[2] * scale_y __lowerCamelCase : Optional[int] = bbox[3] * scale_x __lowerCamelCase : Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __lowerCamelCase : str = cva.resize(_lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) __lowerCamelCase : Any = img for bbox in img_annos: __lowerCamelCase : List[Any] = scale_x + bbox[1] * (1 - scale_x) __lowerCamelCase : List[Any] = bbox[2] * scale_y __lowerCamelCase : Tuple = scale_x + bbox[3] * (1 - scale_x) __lowerCamelCase : Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __lowerCamelCase : Any = cva.resize(_lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) __lowerCamelCase : List[str] = img for bbox in img_annos: __lowerCamelCase : Any = bbox[1] * scale_x __lowerCamelCase : Optional[int] = scale_y + bbox[2] * (1 - scale_y) __lowerCamelCase : Dict = bbox[3] * scale_x __lowerCamelCase : Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __lowerCamelCase : int = cva.resize( _lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __lowerCamelCase : Optional[Any] = img for bbox in img_annos: __lowerCamelCase : Union[str, Any] = scale_x + bbox[1] * (1 - scale_x) __lowerCamelCase : Union[str, Any] = scale_y + bbox[2] * (1 - scale_y) __lowerCamelCase : int = scale_x + bbox[3] * (1 - scale_x) __lowerCamelCase : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __lowerCamelCase : str = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowercase_ ( _lowerCamelCase: int ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase : Tuple = ascii_lowercase + digits return "".join(random.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
366
1
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def lowerCAmelCase (__A): """simple docstring""" random.seed(__A) np.random.seed(__A) torch.manual_seed(__A) torch.cuda.manual_seed_all(__A) # ^^ safe to call this function even if cuda is not available class __A : '''simple docstring''' def __init__(self , A , A = 0.9999 , A = 0.0 , A = 0 , A = False , A = 1.0 , A = 2 / 3 , A = None , A = None , **A , ) -> List[str]: """simple docstring""" if isinstance(A , torch.nn.Module ): _a = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , A , standard_warn=A , ) _a = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _a = True if kwargs.get('''max_value''' , A ) is not None: _a = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , A , standard_warn=A ) _a = kwargs['''max_value'''] if kwargs.get('''min_value''' , A ) is not None: _a = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , A , standard_warn=A ) _a = kwargs['''min_value'''] _a = list(A ) _a = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , A ) is not None: _a = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , A , standard_warn=A ) self.to(device=kwargs['''device'''] ) _a = None _a = decay _a = min_decay _a = update_after_step _a = use_ema_warmup _a = inv_gamma _a = power _a = 0 _a = None # set in `step()` _a = model_cls _a = model_config @classmethod def a__ (cls , A , A ) -> "EMAModel": """simple docstring""" _a , _a = model_cls.load_config(A , return_unused_kwargs=A ) _a = model_cls.from_pretrained(A ) _a = cls(model.parameters() , model_cls=A , model_config=model.config ) ema_model.load_state_dict(A ) return ema_model def a__ (self , A ) -> Tuple: """simple docstring""" if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) _a = self.model_cls.from_config(self.model_config ) _a = self.state_dict() state_dict.pop('''shadow_params''' , A ) model.register_to_config(**A ) self.copy_to(model.parameters() ) model.save_pretrained(A ) def a__ (self , A ) -> float: """simple docstring""" _a = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _a = 1 - (1 + step / self.inv_gamma) ** -self.power else: _a = (1 + step) / (10 + step) _a = min(A , self.decay ) # make sure decay is not smaller than min_decay _a = max(A , self.min_decay ) return cur_decay_value @torch.no_grad() def a__ (self , A ) -> Optional[Any]: """simple docstring""" if isinstance(A , torch.nn.Module ): _a = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , A , standard_warn=A , ) _a = parameters.parameters() _a = list(A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _a = self.get_decay(self.optimization_step ) _a = decay _a = 1 - decay _a = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _a = deepspeed.zero.GatheredParameters(A , modifier_rank=A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(A ) def a__ (self , A ) -> None: """simple docstring""" _a = list(A ) for s_param, param in zip(self.shadow_params , A ): param.data.copy_(s_param.to(param.device ).data ) def a__ (self , A=None , A=None ) -> None: """simple docstring""" _a = [ p.to(device=A , dtype=A ) if p.is_floating_point() else p.to(device=A ) for p in self.shadow_params ] def a__ (self ) -> dict: """simple docstring""" return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def a__ (self , A ) -> None: """simple docstring""" _a = [param.detach().cpu().clone() for param in parameters] def a__ (self , A ) -> None: """simple docstring""" if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , A ): param.data.copy_(c_param.data ) # Better memory-wise. _a = None def a__ (self , A ) -> None: """simple docstring""" _a = copy.deepcopy(A ) _a = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) _a = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , A ): raise ValueError('''Invalid min_decay''' ) _a = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , A ): raise ValueError('''Invalid optimization_step''' ) _a = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , A ): raise ValueError('''Invalid update_after_step''' ) _a = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , A ): raise ValueError('''Invalid use_ema_warmup''' ) _a = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) _a = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) _a = state_dict.get('''shadow_params''' , A ) if shadow_params is not None: _a = shadow_params if not isinstance(self.shadow_params , A ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(A , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
11
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
1
from functools import lru_cache @lru_cache def UpperCamelCase (lowercase_: int ) -> int: if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
64
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Dict = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(f'''{len(upper_files)} files contain uppercase characters:''') print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(f'''{len(space_files)} files contain space characters:''') print('\n'.join(space_files) + '\n') A_ : Any = [file for file in filepaths if '-' in file] if hyphen_files: print(f'''{len(hyphen_files)} files contain hyphen characters:''') print('\n'.join(hyphen_files) + '\n') A_ : List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(f'''{len(nodir_files)} files are not in a directory:''') print('\n'.join(nodir_files) + '\n') A_ : Any = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
64
1
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __lowercase ( unittest.TestCase ): def __init__( self : Union[str, Any] ,A : Optional[int] ,A : int=13 ,A : Tuple=7 ,A : Dict=True ,A : Optional[int]=True ,A : Tuple=True ,A : str=True ,A : Any=99 ,A : Tuple=32 ,A : Dict=5 ,A : Optional[int]=4 ,A : Dict=37 ,A : Any="gelu" ,A : Any=0.1 ,A : Optional[int]=0.1 ,A : Union[str, Any]=512 ,A : Any=16 ,A : List[str]=2 ,A : List[Any]=0.0_2 ,A : Optional[int]=4 ,): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : List[Any] = seq_length UpperCAmelCase__ : Optional[int] = is_training UpperCAmelCase__ : Optional[Any] = use_attention_mask UpperCAmelCase__ : int = use_token_type_ids UpperCAmelCase__ : int = use_labels UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : Any = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : List[Any] = type_vocab_size UpperCAmelCase__ : List[str] = type_sequence_label_size UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = num_choices def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : List[str] = None if self.use_attention_mask: UpperCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : int = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=A ,) return config, input_ids, attention_mask def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = config_and_inputs UpperCAmelCase__ : str = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = FlaxDistilBertModelTester(self ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class_name.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase__ : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __lowercase ( unittest.TestCase ): @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase__ : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCAmelCase__ : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase__ : Dict = model(A ,attention_mask=A )[0] UpperCAmelCase__ : List[Any] = (1, 11, 768) self.assertEqual(output.shape ,A ) UpperCAmelCase__ : Any = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,A ,atol=1e-4 ) )
65
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def lowercase (_lowerCAmelCase ): __lowerCAmelCase = torch.exp(_lowerCAmelCase ) __lowerCAmelCase = torch.sum(_lowerCAmelCase , dim=1 ) # sum of exp(x_i) __lowerCAmelCase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowerCAmelCase ) - B / A class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ ) -> Optional[Any]: super().__init__() __lowerCAmelCase = config.output_attentions __lowerCAmelCase = config.output_hidden_states __lowerCAmelCase = nn.ModuleList([BertLayer(snake_case_ ) for _ in range(config.num_hidden_layers )] ) __lowerCAmelCase = nn.ModuleList([BertHighway(snake_case_ ) for _ in range(config.num_hidden_layers )] ) __lowerCAmelCase = [-1 for _ in range(config.num_hidden_layers )] def A__ ( self , snake_case_ ) -> List[Any]: if (type(snake_case_ ) is float) or (type(snake_case_ ) is int): for i in range(len(self.early_exit_entropy ) ): __lowerCAmelCase = x else: __lowerCAmelCase = x def A__ ( self , snake_case_ ) -> Dict: __lowerCAmelCase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def A__ ( self , snake_case_ , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , ) -> List[str]: __lowerCAmelCase = () __lowerCAmelCase = () __lowerCAmelCase = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __lowerCAmelCase = all_hidden_states + (hidden_states,) __lowerCAmelCase = layer_module( snake_case_ , snake_case_ , head_mask[i] , snake_case_ , snake_case_ ) __lowerCAmelCase = layer_outputs[0] if self.output_attentions: __lowerCAmelCase = all_attentions + (layer_outputs[1],) __lowerCAmelCase = (hidden_states,) if self.output_hidden_states: __lowerCAmelCase = current_outputs + (all_hidden_states,) if self.output_attentions: __lowerCAmelCase = current_outputs + (all_attentions,) __lowerCAmelCase = self.highway[i](snake_case_ ) # logits, pooled_output if not self.training: __lowerCAmelCase = highway_exit[0] __lowerCAmelCase = entropy(snake_case_ ) __lowerCAmelCase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __lowerCAmelCase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __lowerCAmelCase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(snake_case_ , i + 1 ) else: __lowerCAmelCase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __lowerCAmelCase = all_hidden_states + (hidden_states,) __lowerCAmelCase = (hidden_states,) if self.output_hidden_states: __lowerCAmelCase = outputs + (all_hidden_states,) if self.output_attentions: __lowerCAmelCase = outputs + (all_attentions,) __lowerCAmelCase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , A__ , ) class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , snake_case_ ) -> Tuple: super().__init__(snake_case_ ) __lowerCAmelCase = config __lowerCAmelCase = BertEmbeddings(snake_case_ ) __lowerCAmelCase = DeeBertEncoder(snake_case_ ) __lowerCAmelCase = BertPooler(snake_case_ ) self.init_weights() def A__ ( self ) -> Dict: self.encoder.init_highway_pooler(self.pooler ) def A__ ( self ) -> List[Any]: return self.embeddings.word_embeddings def A__ ( self , snake_case_ ) -> Tuple: __lowerCAmelCase = value def A__ ( self , snake_case_ ) -> List[str]: for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(snake_case_ ) @add_start_docstrings_to_model_forward(snake_case_ ) def A__ ( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , ) -> Optional[Any]: if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: __lowerCAmelCase = input_ids.size() elif inputs_embeds is not None: __lowerCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) __lowerCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowerCAmelCase = torch.ones(snake_case_ , device=snake_case_ ) if encoder_attention_mask is None: __lowerCAmelCase = torch.ones(snake_case_ , device=snake_case_ ) if token_type_ids is None: __lowerCAmelCase = torch.zeros(snake_case_ , dtype=torch.long , device=snake_case_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowerCAmelCase = self.get_extended_attention_mask(snake_case_ , snake_case_ , snake_case_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __lowerCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __lowerCAmelCase = encoder_attention_mask[:, None, None, :] __lowerCAmelCase = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __lowerCAmelCase = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowerCAmelCase = self.get_head_mask(snake_case_ , self.config.num_hidden_layers ) __lowerCAmelCase = self.embeddings( input_ids=snake_case_ , position_ids=snake_case_ , token_type_ids=snake_case_ , inputs_embeds=snake_case_ ) __lowerCAmelCase = self.encoder( snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , ) __lowerCAmelCase = encoder_outputs[0] __lowerCAmelCase = self.pooler(snake_case_ ) __lowerCAmelCase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ) -> Optional[int]: __lowerCAmelCase = message __lowerCAmelCase = exit_layer # start from 1! class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ ) -> List[Any]: super().__init__() __lowerCAmelCase = BertPooler(snake_case_ ) __lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) __lowerCAmelCase = nn.Linear(config.hidden_size , config.num_labels ) def A__ ( self , snake_case_ ) -> Optional[int]: # Pooler __lowerCAmelCase = encoder_outputs[0] __lowerCAmelCase = self.pooler(snake_case_ ) # "return" pooler_output # BertModel __lowerCAmelCase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __lowerCAmelCase = bmodel_output[1] __lowerCAmelCase = self.dropout(snake_case_ ) __lowerCAmelCase = self.classifier(snake_case_ ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , A__ , ) class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , snake_case_ ) -> Optional[Any]: super().__init__(snake_case_ ) __lowerCAmelCase = config.num_labels __lowerCAmelCase = config.num_hidden_layers __lowerCAmelCase = DeeBertModel(snake_case_ ) __lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) __lowerCAmelCase = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(snake_case_ ) def A__ ( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=-1 , snake_case_=False , ) -> Optional[int]: __lowerCAmelCase = self.num_layers try: __lowerCAmelCase = self.bert( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , position_ids=snake_case_ , head_mask=snake_case_ , inputs_embeds=snake_case_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __lowerCAmelCase = outputs[1] __lowerCAmelCase = self.dropout(snake_case_ ) __lowerCAmelCase = self.classifier(snake_case_ ) __lowerCAmelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowerCAmelCase = e.message __lowerCAmelCase = e.exit_layer __lowerCAmelCase = outputs[0] if not self.training: __lowerCAmelCase = entropy(snake_case_ ) __lowerCAmelCase = [] __lowerCAmelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __lowerCAmelCase = MSELoss() __lowerCAmelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __lowerCAmelCase = CrossEntropyLoss() __lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __lowerCAmelCase = [] for highway_exit in outputs[-1]: __lowerCAmelCase = highway_exit[0] if not self.training: highway_logits_all.append(snake_case_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowerCAmelCase = MSELoss() __lowerCAmelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __lowerCAmelCase = CrossEntropyLoss() __lowerCAmelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(snake_case_ ) if train_highway: __lowerCAmelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowerCAmelCase = (loss,) + outputs if not self.training: __lowerCAmelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowerCAmelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
465
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class UpperCamelCase__ : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE = 14 ) -> None: if group not in primes: raise ValueError('Unsupported Group' ) __lowerCAmelCase : List[str] = primes[group]['prime'] __lowerCAmelCase : Tuple = primes[group]['generator'] __lowerCAmelCase : Optional[int] = int(hexlify(urandom(32 ) ) , base=16 ) def snake_case ( self ) -> str: return hex(self.__private_key )[2:] def snake_case ( self ) -> str: __lowerCAmelCase : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(SCREAMING_SNAKE_CASE )[2:] def snake_case ( self , SCREAMING_SNAKE_CASE ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(SCREAMING_SNAKE_CASE , (self.prime - 1) // 2 , self.prime ) == 1 ) def snake_case ( self , SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase : List[Any] = int(SCREAMING_SNAKE_CASE , base=16 ) if not self.is_valid_public_key(SCREAMING_SNAKE_CASE ): raise ValueError('Invalid public key' ) __lowerCAmelCase : Tuple = pow(SCREAMING_SNAKE_CASE , self.__private_key , self.prime ) return shaaaa(str(SCREAMING_SNAKE_CASE ).encode() ).hexdigest() @staticmethod def snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(SCREAMING_SNAKE_CASE , (prime - 1) // 2 , SCREAMING_SNAKE_CASE ) == 1 ) @staticmethod def snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 14 ) -> str: __lowerCAmelCase : Tuple = int(SCREAMING_SNAKE_CASE , base=16 ) __lowerCAmelCase : Any = int(SCREAMING_SNAKE_CASE , base=16 ) __lowerCAmelCase : Optional[int] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('Invalid public key' ) __lowerCAmelCase : List[Any] = pow(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return shaaaa(str(SCREAMING_SNAKE_CASE ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
123
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A_ = None A_ = logging.get_logger(__name__) A_ = "▁" A_ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } A_ = { "google/pegasus-xsum": 5_12, } class UpperCamelCase__ ( a ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = PegasusTokenizer _snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="<mask_2>" , SCREAMING_SNAKE_CASE="<mask_1>" , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1_03 , **SCREAMING_SNAKE_CASE , ) -> List[str]: __lowerCAmelCase : List[str] = offset if additional_special_tokens is not None: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError( F"""additional_special_tokens should be of type {type(SCREAMING_SNAKE_CASE )}, but is""" F""" {type(SCREAMING_SNAKE_CASE )}""" ) __lowerCAmelCase : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(SCREAMING_SNAKE_CASE ) ) != len(SCREAMING_SNAKE_CASE ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) __lowerCAmelCase : Tuple = additional_special_tokens_extended else: __lowerCAmelCase : List[str] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , mask_token_sent=SCREAMING_SNAKE_CASE , offset=SCREAMING_SNAKE_CASE , additional_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = vocab_file __lowerCAmelCase : Union[str, Any] = False if not self.vocab_file else True def snake_case ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: __lowerCAmelCase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' F""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase : Optional[Any] = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
123
1
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ ( enum.Enum): lowerCamelCase__ = 0 lowerCamelCase__ = 1 lowerCamelCase__ = 2 @add_end_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self, *__a, **__a): '''simple docstring''' super().__init__(*__a, **__a) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _lowerCAmelCase : List[Any] = None if self.model.config.prefix is not None: _lowerCAmelCase : Any = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _lowerCAmelCase : Optional[int] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self._sanitize_parameters(prefix=__a, **self._forward_params) _lowerCAmelCase : Dict = {**self._preprocess_params, **preprocess_params} _lowerCAmelCase : List[Any] = {**self._forward_params, **forward_params} def snake_case__ ( self, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, **__a, ): '''simple docstring''' _lowerCAmelCase : Tuple = {} if prefix is not None: _lowerCAmelCase : List[Any] = prefix if prefix: _lowerCAmelCase : Any = self.tokenizer( __a, padding=__a, add_special_tokens=__a, return_tensors=self.framework) _lowerCAmelCase : int = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" " [None, 'hole']") _lowerCAmelCase : Any = handle_long_generation preprocess_params.update(__a) _lowerCAmelCase : Any = generate_kwargs _lowerCAmelCase : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`") if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`") _lowerCAmelCase : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`") _lowerCAmelCase : str = ReturnType.TENSORS if return_type is not None: _lowerCAmelCase : Tuple = return_type if clean_up_tokenization_spaces is not None: _lowerCAmelCase : Optional[int] = clean_up_tokenization_spaces if stop_sequence is not None: _lowerCAmelCase : str = self.tokenizer.encode(__a, add_special_tokens=__a) if len(__a) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim.") _lowerCAmelCase : Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def snake_case__ ( self, *__a, **__a): '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True}) return super()._parse_and_tokenize(*__a, **__a) def __call__( self, __a, **__a): '''simple docstring''' return super().__call__(__a, **__a) def snake_case__ ( self, __a, __a="", __a=None, **__a): '''simple docstring''' _lowerCAmelCase : Tuple = self.tokenizer( prefix + prompt_text, padding=__a, add_special_tokens=__a, return_tensors=self.framework) _lowerCAmelCase : Optional[Any] = prompt_text if handle_long_generation == "hole": _lowerCAmelCase : str = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: _lowerCAmelCase : Union[str, Any] = generate_kwargs["max_new_tokens"] else: _lowerCAmelCase : List[str] = generate_kwargs.get("max_length", self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected") if cur_len + new_tokens > self.tokenizer.model_max_length: _lowerCAmelCase : Any = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length") _lowerCAmelCase : Any = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: _lowerCAmelCase : List[str] = inputs["attention_mask"][:, -keep_length:] return inputs def snake_case__ ( self, __a, **__a): '''simple docstring''' _lowerCAmelCase : Any = model_inputs["input_ids"] _lowerCAmelCase : Any = model_inputs.get("attention_mask", __a) # Allow empty prompts if input_ids.shape[1] == 0: _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Dict = 1 else: _lowerCAmelCase : Tuple = input_ids.shape[0] _lowerCAmelCase : str = model_inputs.pop("prompt_text") # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _lowerCAmelCase : Optional[Any] = generate_kwargs.pop("prefix_length", 0) if prefix_length > 0: _lowerCAmelCase : Tuple = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: _lowerCAmelCase : Optional[int] = generate_kwargs.get("max_length") or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _lowerCAmelCase : Dict = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _lowerCAmelCase : str = self.model.generate(input_ids=__a, attention_mask=__a, **__a) _lowerCAmelCase : Union[str, Any] = generated_sequence.shape[0] if self.framework == "pt": _lowerCAmelCase : Tuple = generated_sequence.reshape(__a, out_b // in_b, *generated_sequence.shape[1:]) elif self.framework == "tf": _lowerCAmelCase : Any = tf.reshape(__a, (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def snake_case__ ( self, __a, __a=ReturnType.FULL_TEXT, __a=True): '''simple docstring''' _lowerCAmelCase : Dict = model_outputs["generated_sequence"][0] _lowerCAmelCase : int = model_outputs["input_ids"] _lowerCAmelCase : List[str] = model_outputs["prompt_text"] _lowerCAmelCase : int = generated_sequence.numpy().tolist() _lowerCAmelCase : List[Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _lowerCAmelCase : Tuple = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _lowerCAmelCase : Optional[Any] = self.tokenizer.decode( __a, skip_special_tokens=__a, clean_up_tokenization_spaces=__a, ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _lowerCAmelCase : List[str] = 0 else: _lowerCAmelCase : str = len( self.tokenizer.decode( input_ids[0], skip_special_tokens=__a, clean_up_tokenization_spaces=__a, )) if return_type == ReturnType.FULL_TEXT: _lowerCAmelCase : List[Any] = prompt_text + text[prompt_length:] else: _lowerCAmelCase : Any = text[prompt_length:] _lowerCAmelCase : int = {"generated_text": all_text} records.append(__a) return records
500
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'gptj' lowerCamelCase__ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=5_0400, __a=2048, __a=4096, __a=28, __a=16, __a=64, __a=None, __a="gelu_new", __a=0.0, __a=0.0, __a=0.0, __a=1E-5, __a=0.02, __a=True, __a=5_0256, __a=5_0256, __a=False, **__a, ): '''simple docstring''' _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : Dict = n_positions _lowerCAmelCase : Any = n_embd _lowerCAmelCase : Optional[Any] = n_layer _lowerCAmelCase : List[str] = n_head _lowerCAmelCase : Tuple = n_inner _lowerCAmelCase : Union[str, Any] = rotary_dim _lowerCAmelCase : Optional[int] = activation_function _lowerCAmelCase : List[str] = resid_pdrop _lowerCAmelCase : int = embd_pdrop _lowerCAmelCase : int = attn_pdrop _lowerCAmelCase : Tuple = layer_norm_epsilon _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : Any = use_cache _lowerCAmelCase : str = bos_token_id _lowerCAmelCase : List[Any] = eos_token_id super().__init__( bos_token_id=__a, eos_token_id=__a, tie_word_embeddings=__a, **__a) class UpperCAmelCase_ ( a): def __init__( self, __a, __a = "default", __a = None, __a = False, ): '''simple docstring''' super().__init__(__a, task=__a, patching_specs=__a, use_past=__a) if not getattr(self._config, "pad_token_id", __a): # TODO: how to do that better? _lowerCAmelCase : Optional[int] = 0 @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: self.fill_with_past_key_values_(__a, direction="inputs") _lowerCAmelCase : Tuple = {0: "batch", 1: "past_sequence + sequence"} else: _lowerCAmelCase : str = {0: "batch", 1: "sequence"} return common_inputs @property def snake_case__ ( self): '''simple docstring''' return self._config.n_layer @property def snake_case__ ( self): '''simple docstring''' return self._config.n_head def snake_case__ ( self, __a, __a = -1, __a = -1, __a = False, __a = None, ): '''simple docstring''' _lowerCAmelCase : List[str] = super(__a, self).generate_dummy_inputs( __a, batch_size=__a, seq_length=__a, is_pair=__a, framework=__a) # We need to order the input in the way they appears in the forward() _lowerCAmelCase : Any = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch _lowerCAmelCase , _lowerCAmelCase : Tuple = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase : Optional[int] = seqlen + 2 _lowerCAmelCase : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCAmelCase : Optional[int] = [ (torch.zeros(__a), torch.zeros(__a)) for _ in range(self.num_layers) ] _lowerCAmelCase : Any = common_inputs["attention_mask"] if self.use_past: _lowerCAmelCase : Tuple = ordered_inputs["attention_mask"].dtype _lowerCAmelCase : Any = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__a, __a, dtype=__a)], dim=1) return ordered_inputs @property def snake_case__ ( self): '''simple docstring''' return 13
500
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowercase = sys.version_info >= (3, 10) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=UpperCamelCase__ ) @dataclass class lowercase_ : __lowerCamelCase = 4_2 __lowerCamelCase = 4_2 __lowerCamelCase = 4_2 __lowerCamelCase = 4_2 @dataclass class lowercase_ : __lowerCamelCase = 4_2 __lowerCamelCase = field(default="toto" , metadata={"help": "help message"} ) @dataclass class lowercase_ : __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = None class lowercase_ ( UpperCamelCase__ ): __lowerCamelCase = "titi" __lowerCamelCase = "toto" class lowercase_ ( UpperCamelCase__ ): __lowerCamelCase = "titi" __lowerCamelCase = "toto" __lowerCamelCase = 4_2 @dataclass class lowercase_ : __lowerCamelCase = "toto" def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Any =BasicEnum(self.foo ) @dataclass class lowercase_ : __lowerCamelCase = "toto" def _snake_case ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ : str =MixedTypeEnum(self.foo ) @dataclass class lowercase_ : __lowerCamelCase = None __lowerCamelCase = field(default=UpperCamelCase__ , metadata={"help": "help message"} ) __lowerCamelCase = None __lowerCamelCase = list_field(default=[] ) __lowerCamelCase = list_field(default=[] ) @dataclass class lowercase_ : __lowerCamelCase = list_field(default=[] ) __lowerCamelCase = list_field(default=[1, 2, 3] ) __lowerCamelCase = list_field(default=["Hallo", "Bonjour", "Hello"] ) __lowerCamelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : __lowerCamelCase = field() __lowerCamelCase = field() __lowerCamelCase = field() def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : int =BasicEnum(self.required_enum ) @dataclass class lowercase_ : __lowerCamelCase = 4_2 __lowerCamelCase = field() __lowerCamelCase = None __lowerCamelCase = field(default="toto" , metadata={"help": "help message"} ) __lowerCamelCase = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = None @dataclass class lowercase_ : __lowerCamelCase = None __lowerCamelCase = field(default=UpperCamelCase__ , metadata={"help": "help message"} ) __lowerCamelCase = None __lowerCamelCase = list_field(default=[] ) __lowerCamelCase = list_field(default=[] ) class lowercase_ ( unittest.TestCase ): def _snake_case ( self , __A , __A ) -> List[str]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): SCREAMING_SNAKE_CASE_ : Any ={k: v for k, v in vars(__A ).items() if k != '''container'''} SCREAMING_SNAKE_CASE_ : Tuple ={k: v for k, v in vars(__A ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , __A ) and yy.get('''choices''' , __A ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](__A ) , yy['''type'''](__A ) ) del xx["type"], yy["type"] self.assertEqual(__A , __A ) def _snake_case ( self ) -> str: SCREAMING_SNAKE_CASE_ : Dict =HfArgumentParser(__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__A , required=__A ) expected.add_argument('''--bar''' , type=__A , required=__A ) expected.add_argument('''--baz''' , type=__A , required=__A ) expected.add_argument('''--flag''' , type=__A , default=__A , const=__A , nargs='''?''' ) self.argparsersEqual(__A , __A ) SCREAMING_SNAKE_CASE_ : Any =['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((SCREAMING_SNAKE_CASE_ ) , ) : int =parser.parse_args_into_dataclasses(__A , look_for_args_file=__A ) self.assertFalse(example.flag ) def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : int =HfArgumentParser(__A ) SCREAMING_SNAKE_CASE_ : Optional[int] =argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=__A ) expected.add_argument('''--baz''' , default='''toto''' , type=__A , help='''help message''' ) self.argparsersEqual(__A , __A ) def _snake_case ( self ) -> Any: SCREAMING_SNAKE_CASE_ : Any =argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__A , default=__A , const=__A , nargs='''?''' ) expected.add_argument('''--baz''' , type=__A , default=__A , const=__A , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=__A , dest='''baz''' ) expected.add_argument('''--opt''' , type=__A , default=__A ) SCREAMING_SNAKE_CASE_ : Tuple =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__A ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE_ : Dict =HfArgumentParser(__A ) self.argparsersEqual(__A , __A ) SCREAMING_SNAKE_CASE_ : List[str] =parser.parse_args([] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) SCREAMING_SNAKE_CASE_ : Optional[int] =parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) SCREAMING_SNAKE_CASE_ : Optional[int] =parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) SCREAMING_SNAKE_CASE_ : Tuple =parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) def _snake_case ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Optional[Any] =HfArgumentParser(__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(__A , __A ) SCREAMING_SNAKE_CASE_ : Any =parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) SCREAMING_SNAKE_CASE_ : int =parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) SCREAMING_SNAKE_CASE_ : Any =parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) SCREAMING_SNAKE_CASE_ : Optional[int] =parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) SCREAMING_SNAKE_CASE_ : Any =parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) SCREAMING_SNAKE_CASE_ : Any =parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _snake_case ( self ) -> Any: @dataclass class lowercase_ : __lowerCamelCase = "toto" SCREAMING_SNAKE_CASE_ : Any =HfArgumentParser(__A ) SCREAMING_SNAKE_CASE_ : int =argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(__A , __A ) SCREAMING_SNAKE_CASE_ : List[Any] =parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) SCREAMING_SNAKE_CASE_ : List[Any] =parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) SCREAMING_SNAKE_CASE_ : str =parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Union[str, Any] =HfArgumentParser(__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=__A ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=__A ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__A ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=__A ) self.argparsersEqual(__A , __A ) SCREAMING_SNAKE_CASE_ : List[str] =parser.parse_args([] ) self.assertEqual( __A , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) SCREAMING_SNAKE_CASE_ : int =parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(__A , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _snake_case ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : Optional[int] =argparse.ArgumentParser() expected.add_argument('''--foo''' , default=__A , type=__A ) expected.add_argument('''--bar''' , default=__A , type=__A , help='''help message''' ) expected.add_argument('''--baz''' , default=__A , type=__A ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=__A ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=__A ) SCREAMING_SNAKE_CASE_ : Dict =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__A ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE_ : Dict =HfArgumentParser(__A ) self.argparsersEqual(__A , __A ) SCREAMING_SNAKE_CASE_ : str =parser.parse_args([] ) self.assertEqual(__A , Namespace(foo=__A , bar=__A , baz=__A , ces=[] , des=[] ) ) SCREAMING_SNAKE_CASE_ : Any =parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(__A , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Any =HfArgumentParser(__A ) SCREAMING_SNAKE_CASE_ : List[str] =argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=__A , required=__A ) expected.add_argument('''--required_str''' , type=__A , required=__A ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__A , ) self.argparsersEqual(__A , __A ) def _snake_case ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : str =HfArgumentParser(__A ) SCREAMING_SNAKE_CASE_ : Dict =argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__A , required=__A ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__A , ) expected.add_argument('''--opt''' , type=__A , default=__A ) expected.add_argument('''--baz''' , default='''toto''' , type=__A , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__A ) self.argparsersEqual(__A , __A ) def _snake_case ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ : Union[str, Any] =HfArgumentParser(__A ) SCREAMING_SNAKE_CASE_ : Dict ={ '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } SCREAMING_SNAKE_CASE_ : Union[str, Any] =parser.parse_dict(__A )[0] SCREAMING_SNAKE_CASE_ : List[str] =BasicExample(**__A ) self.assertEqual(__A , __A ) def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : List[str] =HfArgumentParser(__A ) SCREAMING_SNAKE_CASE_ : Optional[int] ={ '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(__A , parser.parse_dict , __A , allow_extra_keys=__A ) def _snake_case ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : str =HfArgumentParser(__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] ={ '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : List[str] =os.path.join(__A , '''temp_json''' ) os.mkdir(__A ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(__A , __A ) SCREAMING_SNAKE_CASE_ : int =parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] SCREAMING_SNAKE_CASE_ : List[str] =BasicExample(**__A ) self.assertEqual(__A , __A ) def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Union[str, Any] =HfArgumentParser(__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] ={ '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Optional[int] =os.path.join(__A , '''temp_yaml''' ) os.mkdir(__A ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(__A , __A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] SCREAMING_SNAKE_CASE_ : str =BasicExample(**__A ) self.assertEqual(__A , __A ) def _snake_case ( self ) -> str: SCREAMING_SNAKE_CASE_ : Dict =HfArgumentParser(__A ) self.assertIsNotNone(__A )
715
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ ( A ): def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=False , __A=True , __A="None" , __A=3 , __A=4 , __A=None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : Any =parent SCREAMING_SNAKE_CASE_ : Tuple =batch_size SCREAMING_SNAKE_CASE_ : Dict =seq_length SCREAMING_SNAKE_CASE_ : Dict =is_training SCREAMING_SNAKE_CASE_ : Any =use_input_mask SCREAMING_SNAKE_CASE_ : Dict =use_token_type_ids SCREAMING_SNAKE_CASE_ : List[Any] =use_labels SCREAMING_SNAKE_CASE_ : Any =vocab_size SCREAMING_SNAKE_CASE_ : Dict =hidden_size SCREAMING_SNAKE_CASE_ : int =num_hidden_layers SCREAMING_SNAKE_CASE_ : Any =num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] =intermediate_size SCREAMING_SNAKE_CASE_ : Dict =hidden_act SCREAMING_SNAKE_CASE_ : Any =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str =max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] =type_vocab_size SCREAMING_SNAKE_CASE_ : List[Any] =type_sequence_label_size SCREAMING_SNAKE_CASE_ : Dict =initializer_range SCREAMING_SNAKE_CASE_ : List[str] =num_labels SCREAMING_SNAKE_CASE_ : Optional[int] =num_choices SCREAMING_SNAKE_CASE_ : Optional[Any] =relative_attention SCREAMING_SNAKE_CASE_ : Optional[Any] =position_biased_input SCREAMING_SNAKE_CASE_ : Union[str, Any] =pos_att_type SCREAMING_SNAKE_CASE_ : Tuple =scope def _snake_case ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : int =None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE_ : Tuple =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] =None SCREAMING_SNAKE_CASE_ : List[str] =None SCREAMING_SNAKE_CASE_ : Optional[int] =None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Optional[Any] =ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : str =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ) -> Dict: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _snake_case ( self , __A ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[Any]: SCREAMING_SNAKE_CASE_ : str =DebertaVaModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : int =model(__A , attention_mask=__A , token_type_ids=__A )[0] SCREAMING_SNAKE_CASE_ : Optional[Any] =model(__A , token_type_ids=__A )[0] SCREAMING_SNAKE_CASE_ : int =model(__A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> str: SCREAMING_SNAKE_CASE_ : List[str] =DebertaVaForMaskedLM(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : int =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Tuple =self.num_labels SCREAMING_SNAKE_CASE_ : Dict =DebertaVaForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__A ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> Dict: SCREAMING_SNAKE_CASE_ : str =self.num_labels SCREAMING_SNAKE_CASE_ : int =DebertaVaForTokenClassification(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> Tuple: SCREAMING_SNAKE_CASE_ : Any =DebertaVaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict =model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[str]: SCREAMING_SNAKE_CASE_ : Any =DebertaVaForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Tuple =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Any =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Dict =model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ) -> int: SCREAMING_SNAKE_CASE_ : List[str] =self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[Any] =config_and_inputs SCREAMING_SNAKE_CASE_ : Dict ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ ( A , A , unittest.TestCase ): __lowerCamelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __lowerCamelCase = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def _snake_case ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ : int =DebertaVaModelTester(self ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =ConfigTester(self , config_class=__A , hidden_size=37 ) def _snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def _snake_case ( self ) -> str: SCREAMING_SNAKE_CASE_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__A ) def _snake_case ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__A ) def _snake_case ( self ) -> Any: SCREAMING_SNAKE_CASE_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__A ) def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__A ) def _snake_case ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__A ) def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__A ) @slow def _snake_case ( self ) -> Tuple: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Union[str, Any] =DebertaVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch @require_sentencepiece @require_tokenizers class lowercase_ ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def _snake_case ( self ) -> str: pass @slow def _snake_case ( self ) -> str: SCREAMING_SNAKE_CASE_ : List[Any] =DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) SCREAMING_SNAKE_CASE_ : List[str] =torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE_ : Tuple =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] =model(__A , attention_mask=__A )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE_ : int =torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4 ) , F'{output[:, 1:4, 1:4]}' )
431
0
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ) -> List[Any]: # ===== initialization ===== __lowerCamelCase : Dict = Mock() __lowerCamelCase : Union[str, Any] = conn, Mock() __lowerCamelCase : Dict = iter([1, None] ) __lowerCamelCase : Tuple = lambda UpperCAmelCase_ : next(UpperCAmelCase_ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=UpperCAmelCase_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
13
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
62
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _snake_case = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
"""simple docstring""" import argparse import json from tqdm import tqdm def snake_case ( )-> List[Any]: '''simple docstring''' lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=_a , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=_a , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=_a , help='where to store parsed gold_data_path file' , ) lowerCamelCase__ = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowerCamelCase__ = json.load(_a ) for dpr_record in tqdm(_a ): lowerCamelCase__ = dpr_record['question'] lowerCamelCase__ = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(_a ) + '\n' ) if __name__ == "__main__": main()
659
1
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _UpperCamelCase ( A , A=7 ): UpperCamelCase_ =None if token is not None: UpperCamelCase_ ={"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) UpperCamelCase_ ="636036" UpperCamelCase_ =f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" UpperCamelCase_ =requests.get(A , headers=A ).json() return result["workflow_runs"] def _UpperCamelCase ( A ): UpperCamelCase_ =get_daily_ci_runs(A ) UpperCamelCase_ =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": UpperCamelCase_ =workflow_run["id"] break return workflow_run_id def _UpperCamelCase ( A , A , A ): UpperCamelCase_ =get_last_daily_ci_runs(A ) if workflow_run_id is not None: UpperCamelCase_ =get_artifacts_links(worflow_run_id=A , token=A ) for artifact_name in artifact_names: if artifact_name in artifacts_links: UpperCamelCase_ =artifacts_links[artifact_name] download_artifact( artifact_name=A , artifact_url=A , output_dir=A , token=A ) def _UpperCamelCase ( A , A , A ): get_last_daily_ci_artifacts(A , A , A ) UpperCamelCase_ ={} for artifact_name in artifact_names: UpperCamelCase_ =os.path.join(A , f"""{artifact_name}.zip""" ) if os.path.isfile(A ): UpperCamelCase_ ={} with zipfile.ZipFile(A ) as z: for filename in z.namelist(): if not os.path.isdir(A ): # read the file with z.open(A ) as f: UpperCamelCase_ =f.read().decode("UTF-8" ) return results
391
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
391
1
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowerCAmelCase (_lowercase ): # picklable for multiprocessing """simple docstring""" return x.sum() def _lowerCAmelCase (_lowercase ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class lowerCamelCase__ : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = 42 class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" def lowerCAmelCase_ ( self : str ): a__ = {} a__ = [] a__ = 1 a__ = [1, 2] a__ = {"a": 1, "b": 2} a__ = {"a": [1, 2], "b": [3, 4]} a__ = {"a": {"1": 1}, "b": 2} a__ = {"a": 1, "b": 2, "c": 3, "d": 4} a__ = {} a__ = [] a__ = 2 a__ = [2, 3] a__ = {"a": 2, "b": 3} a__ = {"a": [2, 3], "b": [4, 5]} a__ = {"a": {"1": 2}, "b": 3} a__ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(a__ ,a__ ) ,a__ ) self.assertEqual(map_nested(a__ ,a__ ) ,a__ ) self.assertEqual(map_nested(a__ ,a__ ) ,a__ ) self.assertEqual(map_nested(a__ ,a__ ) ,a__ ) self.assertEqual(map_nested(a__ ,a__ ) ,a__ ) self.assertEqual(map_nested(a__ ,a__ ) ,a__ ) self.assertEqual(map_nested(a__ ,a__ ) ,a__ ) self.assertEqual(map_nested(a__ ,a__ ) ,a__ ) a__ = 2 self.assertEqual(map_nested(a__ ,a__ ,num_proc=a__ ) ,a__ ) self.assertEqual(map_nested(a__ ,a__ ,num_proc=a__ ) ,a__ ) self.assertEqual(map_nested(a__ ,a__ ,num_proc=a__ ) ,a__ ) self.assertEqual(map_nested(a__ ,a__ ,num_proc=a__ ) ,a__ ) self.assertEqual(map_nested(a__ ,a__ ,num_proc=a__ ) ,a__ ) self.assertEqual(map_nested(a__ ,a__ ,num_proc=a__ ) ,a__ ) self.assertEqual(map_nested(a__ ,a__ ,num_proc=a__ ) ,a__ ) self.assertEqual(map_nested(a__ ,a__ ,num_proc=a__ ) ,a__ ) a__ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} a__ = {"a": 2, "b": 0, "c": 2} a__ = { "a": np.eye(2 ).astype(a__ ), "b": np.zeros(3 ).astype(a__ ), "c": np.ones(2 ).astype(a__ ), } self.assertEqual(map_nested(a__ ,a__ ,map_numpy=a__ ) ,a__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(a__ ,a__ ,map_numpy=a__ ).items()} ,{k: v.tolist() for k, v in expected_map_nested_sna_int.items()} ,) self.assertEqual(map_nested(a__ ,a__ ,map_numpy=a__ ,num_proc=a__ ) ,a__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(a__ ,a__ ,map_numpy=a__ ,num_proc=a__ ).items()} ,{k: v.tolist() for k, v in expected_map_nested_sna_int.items()} ,) with self.assertRaises(a__ ): # can't pickle a local lambda map_nested(lambda a__ : x + 1 ,a__ ,num_proc=a__ ) def lowerCAmelCase_ ( self : str ): a__ = {"a": 1, "b": 2} a__ = {"a": 3, "b": 4} a__ = {"a": 5, "b": 6} a__ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(a__ ,a__ ,a__ ) ) ,a__ ) def lowerCAmelCase_ ( self : List[str] ): class lowerCamelCase__ : """simple docstring""" UpperCamelCase__ = '''bar''' a__ = Foo() self.assertEqual(foo.my_attr ,"bar" ) with temporary_assignment(a__ ,"my_attr" ,"BAR" ): self.assertEqual(foo.my_attr ,"BAR" ) self.assertEqual(foo.my_attr ,"bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _lowerCAmelCase (_lowercase , _lowercase , _lowercase ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: a__ = {F'{i}': i for i in range(_lowercase )} a__ = map_nested(lambda _lowercase : x + 10 , _lowercase , num_proc=_lowercase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" @require_tf def lowerCAmelCase_ ( self : List[Any] ): import tensorflow as tf from tensorflow.keras import layers a__ = layers.Dense(2 ) def gen_random_output(): a__ = tf.random.uniform((1, 3) ) return model(a__ ).numpy() with temp_seed(42 ,set_tensorflow=a__ ): a__ = gen_random_output() with temp_seed(42 ,set_tensorflow=a__ ): a__ = gen_random_output() a__ = gen_random_output() np.testing.assert_equal(a__ ,a__ ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): import torch def gen_random_output(): a__ = torch.nn.Linear(3 ,2 ) a__ = torch.rand(1 ,3 ) return model(a__ ).detach().numpy() with temp_seed(42 ,set_pytorch=a__ ): a__ = gen_random_output() with temp_seed(42 ,set_pytorch=a__ ): a__ = gen_random_output() a__ = gen_random_output() np.testing.assert_equal(a__ ,a__ ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) def lowerCAmelCase_ ( self : Tuple ): def gen_random_output(): return np.random.rand(1 ,3 ) with temp_seed(42 ): a__ = gen_random_output() with temp_seed(42 ): a__ = gen_random_output() a__ = gen_random_output() np.testing.assert_equal(a__ ,a__ ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) @pytest.mark.parametrize("input_data" , [{}] ) def _lowerCAmelCase (_lowercase ): """simple docstring""" a__ = NestedDataStructure(_lowercase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" a__ = NestedDataStructure(_lowercase ).flatten() assert output == expected_output def _lowerCAmelCase (): """simple docstring""" a__ = A(x=1 , y="foobar" ) a__ = {"x": 1, "y": "foobar"} assert asdict(_lowercase ) == expected_output a__ = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} a__ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(_lowercase ) == expected_output with pytest.raises(_lowercase ): asdict([1, A(x=10 , y="foo" )] ) def _lowerCAmelCase (_lowercase ): """simple docstring""" return text.split() def _lowerCAmelCase (_lowercase ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowerCAmelCase (): """simple docstring""" with Pool(2 ) as pool: a__ = list(iflatmap_unordered(_lowercase , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_lowercase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: a__ = list(iflatmap_unordered(_lowercase , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_lowercase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: a__ = [] for yield_time, content in iflatmap_unordered( _lowercase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(_lowercase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(_lowercase ) == 4
702
'''simple docstring''' import os UpperCamelCase_ : Dict = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def _lowerCAmelCase (_lowercase ): """simple docstring""" a__ = 0 a__ = 0 while index < len(_lowercase ) - 1: a__ = SYMBOLS[numerals[index]] a__ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _lowerCAmelCase (_lowercase ): """simple docstring""" a__ = "" a__ = num // 10_00 numerals += m_count * "M" num %= 10_00 a__ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 a__ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _lowerCAmelCase (_lowercase = "/p089_roman.txt" ): """simple docstring""" a__ = 0 with open(os.path.dirname(_lowercase ) + roman_numerals_filename ) as filea: a__ = filea.readlines() for line in lines: a__ = line.strip() a__ = parse_roman_numerals(_lowercase ) a__ = generate_roman_numerals(_lowercase ) savings += len(_lowercase ) - len(_lowercase ) return savings if __name__ == "__main__": print(F"{solution() = }")
394
0
'''simple docstring''' import math def a__ ( _SCREAMING_SNAKE_CASE : int = 1_00 ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[int] = sum(i * i for i in range(1 , n + 1 ) ) UpperCAmelCase_ : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
71
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
315
0
from math import isclose, sqrt def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = point_y / 4 / point_x lowerCamelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCamelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCamelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCamelCase = outgoing_gradient**2 + 4 lowerCamelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCamelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 lowerCamelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCamelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCamelCase = x_minus if isclose(UpperCAmelCase__ , UpperCAmelCase__ ) else x_plus lowerCamelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __lowercase( UpperCAmelCase__ = 1.4 , UpperCAmelCase__ = -9.6 ): """simple docstring""" lowerCamelCase = 0 lowerCamelCase = first_x_coord lowerCamelCase = first_y_coord lowerCamelCase = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): lowerCamelCase , lowerCamelCase , lowerCamelCase = next_point(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
484
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowerCamelCase__ : """simple docstring""" _A = 42 _A = 42 class lowerCamelCase__ : """simple docstring""" def __init__(self , __a ): '''simple docstring''' lowerCamelCase = [[] for _ in range(__a )] lowerCamelCase = size def __getitem__(self , __a ): '''simple docstring''' return iter(self._graph[vertex] ) @property def _a (self ): '''simple docstring''' return self._size def _a (self , __a , __a , __a ): '''simple docstring''' if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def _a (self , __a , __a ): '''simple docstring''' lowerCamelCase = deque([start_vertex] ) lowerCamelCase = [None] * self.size lowerCamelCase = 0 while queue: lowerCamelCase = queue.popleft() lowerCamelCase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCamelCase = current_distance + edge.weight lowerCamelCase = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue lowerCamelCase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
484
1