code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class __snake_case (_a ): lowerCAmelCase__ = "swinv2" lowerCAmelCase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=96 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : Dict=[3, 6, 12, 24] , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : int=4.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : int=1E-5 , _UpperCAmelCase : List[Any]=32 , **_UpperCAmelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : Optional[int] = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : List[Any] = embed_dim _lowerCAmelCase : Any = depths _lowerCAmelCase : int = len(_UpperCAmelCase ) _lowerCAmelCase : str = num_heads _lowerCAmelCase : Tuple = window_size _lowerCAmelCase : List[str] = mlp_ratio _lowerCAmelCase : str = qkv_bias _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = drop_path_rate _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : int = use_absolute_embeddings _lowerCAmelCase : Optional[Any] = layer_norm_eps _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) ) _lowerCAmelCase : int = (0, 0, 0, 0)
429
from collections import deque from .hash_table import HashTable class __snake_case (_a ): def __init__( self : int , *_UpperCAmelCase : str , **_UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ) -> int: '''simple docstring''' _lowerCAmelCase : Dict = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = self.values[key] def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: '''simple docstring''' return ( sum(self.charge_factor - len(_UpperCAmelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple=None ) -> Tuple: '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCAmelCase ) == 0 ): return key return super()._collision_resolution(_UpperCAmelCase , _UpperCAmelCase )
429
1
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self :int ): __lowerCamelCase : Dict =Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __lowerCamelCase : Union[str, Any] =Vector() def __lowercase ( self :Any ): __lowerCamelCase : Optional[int] =Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(lowercase__ ) , '''(0,0,0,0,0,1)''' ) def __lowercase ( self :Optional[Any] ): __lowerCamelCase : List[str] =Vector([1, 2, 3, 4] ) self.assertEqual(len(lowercase__ ) , 4 ) def __lowercase ( self :Union[str, Any] ): __lowerCamelCase : Dict =Vector([1, 2] ) __lowerCamelCase : Union[str, Any] =Vector([1, 2, 3, 4, 5] ) __lowerCamelCase : Dict =Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __lowerCamelCase : Union[str, Any] =Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def __lowercase ( self :int ): __lowerCamelCase : Dict =Vector([1, 2, 3] ) __lowerCamelCase : int =Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __lowercase ( self :Union[str, Any] ): __lowerCamelCase : int =Vector([1, 2, 3] ) __lowerCamelCase : Tuple =Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __lowercase ( self :List[str] ): __lowerCamelCase : str =Vector([1, 2, 3] ) __lowerCamelCase : Any =Vector([2, -1, 4] ) # for test of dot product __lowerCamelCase : str =Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def __lowercase ( self :List[str] ): self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def __lowercase ( self :Optional[int] ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def __lowercase ( self :Union[str, Any] ): __lowerCamelCase : List[Any] =Vector([1, 2, 3] ) __lowerCamelCase : Any =Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , lowercase__ , lowercase__ ) ) , '''(3,4,7)''' ) def __lowercase ( self :List[Any] ): __lowerCamelCase : Optional[int] =Vector([1, 0, 0, 0, 0, 0] ) __lowerCamelCase : List[Any] =x.copy() self.assertEqual(str(lowercase__ ) , str(lowercase__ ) ) def __lowercase ( self :Optional[Any] ): __lowerCamelCase : List[str] =Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(lowercase__ ) , '''(0,1,0)''' ) def __lowercase ( self :List[Any] ): __lowerCamelCase : int =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(lowercase__ ) ) def __lowercase ( self :Tuple ): __lowerCamelCase : Optional[Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : Dict =[[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(lowercase__ , lowercase__ ) ) def __lowercase ( self :Any ): __lowerCamelCase : int =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : List[Any] =[[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(lowercase__ , lowercase__ ) ) def __lowercase ( self :Tuple ): __lowerCamelCase : List[str] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __lowercase ( self :List[Any] ): __lowerCamelCase : str =Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __lowerCamelCase : Union[str, Any] =Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def __lowercase ( self :Tuple ): __lowerCamelCase : List[Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(lowercase__ ) ) def __lowercase ( self :List[str] ): __lowerCamelCase : Optional[Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __lowercase ( self :Optional[int] ): __lowerCamelCase : Optional[Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : Dict =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def __lowercase ( self :Union[str, Any] ): __lowerCamelCase : Tuple =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : Optional[Any] =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def __lowercase ( self :int ): self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
703
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _UpperCamelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' try: with open(SCREAMING_SNAKE_CASE , '''rb''' ) as flax_state_f: __lowerCamelCase : int =from_bytes(SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights __lowerCamelCase : str =flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE ) ).values() if any(SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) __lowerCamelCase : List[str] =jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE ) __lowerCamelCase : int ='''''' __lowerCamelCase : List[str] =flatten_dict(SCREAMING_SNAKE_CASE , sep='''.''' ) __lowerCamelCase : List[str] =pt_model.state_dict() # keep track of unexpected & missing keys __lowerCamelCase : Union[str, Any] =[] __lowerCamelCase : int =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __lowerCamelCase : Tuple =flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __lowerCamelCase : Optional[int] =flax_key_tuple_array[:-1] + ['''weight'''] __lowerCamelCase : Union[str, Any] =jnp.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __lowerCamelCase : Optional[Any] =flax_key_tuple_array[:-1] + ['''weight'''] __lowerCamelCase : Dict =flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __lowerCamelCase : str =flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE ): __lowerCamelCase : Union[str, Any] =( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) __lowerCamelCase : Optional[int] ='''.'''.join(SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict __lowerCamelCase : Tuple =np.asarray(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor __lowerCamelCase : Any =torch.from_numpy(SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list __lowerCamelCase : Optional[Any] =list(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) return pt_model
363
0
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCamelCase__ : Dict = [ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] lowerCamelCase__ : Any = [ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] lowerCamelCase__ : int = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCamelCase__ : str = f'''down_blocks.{i}.resnets.{j}.''' lowerCamelCase__ : List[Any] = f'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCamelCase__ : Optional[Any] = f'''down_blocks.{i}.attentions.{j}.''' lowerCamelCase__ : str = f'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCamelCase__ : List[Any] = f'''up_blocks.{i}.resnets.{j}.''' lowerCamelCase__ : List[Any] = f'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCamelCase__ : Tuple = f'''up_blocks.{i}.attentions.{j}.''' lowerCamelCase__ : Dict = f'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCamelCase__ : Union[str, Any] = f'''down_blocks.{i}.downsamplers.0.conv.''' lowerCamelCase__ : Union[str, Any] = f'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCamelCase__ : Optional[int] = f'''up_blocks.{i}.upsamplers.0.''' lowerCamelCase__ : List[Any] = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCamelCase__ : Dict = 'mid_block.attentions.0.' lowerCamelCase__ : Any = 'middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCamelCase__ : Union[str, Any] = f'''mid_block.resnets.{j}.''' lowerCamelCase__ : int = f'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> int: # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. SCREAMING_SNAKE_CASE_ = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: SCREAMING_SNAKE_CASE_ = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: SCREAMING_SNAKE_CASE_ = v.replace(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: SCREAMING_SNAKE_CASE_ = v.replace(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = v SCREAMING_SNAKE_CASE_ = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCamelCase__ : str = [ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCamelCase__ : Union[str, Any] = f'''encoder.down_blocks.{i}.resnets.{j}.''' lowerCamelCase__ : Union[str, Any] = f'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCamelCase__ : int = f'''down_blocks.{i}.downsamplers.0.''' lowerCamelCase__ : List[Any] = f'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCamelCase__ : List[Any] = f'''up_blocks.{i}.upsamplers.0.''' lowerCamelCase__ : int = f'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCamelCase__ : Dict = f'''decoder.up_blocks.{i}.resnets.{j}.''' lowerCamelCase__ : Any = f'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCamelCase__ : List[str] = f'''mid_block.resnets.{i}.''' lowerCamelCase__ : str = f'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCamelCase__ : str = [ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> List[str]: # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: SCREAMING_SNAKE_CASE_ = v.replace(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: SCREAMING_SNAKE_CASE_ = v.replace(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = v SCREAMING_SNAKE_CASE_ = {v: vae_state_dict[k] for k, v in mapping.items()} SCREAMING_SNAKE_CASE_ = ['q', 'k', 'v', 'proj_out'] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"mid.attn_1.{weight_name}.weight" in k: print(f"Reshaping {k} for SD format" ) SCREAMING_SNAKE_CASE_ = reshape_weight_for_sd(__UpperCAmelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCamelCase__ : str = [ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] lowerCamelCase__ : Tuple = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCamelCase__ : str = re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCamelCase__ : Optional[int] = {'q': 0, 'k': 1, 'v': 2} def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = {} for k, v in text_enc_dict.items(): if ( k.endswith('.self_attn.q_proj.weight' ) or k.endswith('.self_attn.k_proj.weight' ) or k.endswith('.self_attn.v_proj.weight' ) ): SCREAMING_SNAKE_CASE_ = k[: -len('.q_proj.weight' )] SCREAMING_SNAKE_CASE_ = k[-len('q_proj.weight' )] if k_pre not in capture_qkv_weight: SCREAMING_SNAKE_CASE_ = [None, None, None] SCREAMING_SNAKE_CASE_ = v continue if ( k.endswith('.self_attn.q_proj.bias' ) or k.endswith('.self_attn.k_proj.bias' ) or k.endswith('.self_attn.v_proj.bias' ) ): SCREAMING_SNAKE_CASE_ = k[: -len('.q_proj.bias' )] SCREAMING_SNAKE_CASE_ = k[-len('q_proj.bias' )] if k_pre not in capture_qkv_bias: SCREAMING_SNAKE_CASE_ = [None, None, None] SCREAMING_SNAKE_CASE_ = v continue SCREAMING_SNAKE_CASE_ = textenc_pattern.sub(lambda __UpperCAmelCase : protected[re.escape(m.group(0 ) )] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) SCREAMING_SNAKE_CASE_ = textenc_pattern.sub(lambda __UpperCAmelCase : protected[re.escape(m.group(0 ) )] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.cat(__UpperCAmelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) SCREAMING_SNAKE_CASE_ = textenc_pattern.sub(lambda __UpperCAmelCase : protected[re.escape(m.group(0 ) )] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.cat(__UpperCAmelCase ) return new_state_dict def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Optional[Any]: return text_enc_dict if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) lowerCamelCase__ : Any = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCamelCase__ : Union[str, Any] = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') lowerCamelCase__ : Dict = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') lowerCamelCase__ : List[str] = osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCamelCase__ : Any = load_file(unet_path, device='cpu') else: lowerCamelCase__ : List[str] = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') lowerCamelCase__ : Any = torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): lowerCamelCase__ : Tuple = load_file(vae_path, device='cpu') else: lowerCamelCase__ : Any = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') lowerCamelCase__ : str = torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): lowerCamelCase__ : List[str] = load_file(text_enc_path, device='cpu') else: lowerCamelCase__ : Optional[Any] = osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') lowerCamelCase__ : int = torch.load(text_enc_path, map_location='cpu') # Convert the UNet model lowerCamelCase__ : List[str] = convert_unet_state_dict(unet_state_dict) lowerCamelCase__ : Union[str, Any] = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCamelCase__ : List[Any] = convert_vae_state_dict(vae_state_dict) lowerCamelCase__ : int = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCamelCase__ : str = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCamelCase__ : int = {'transformer.' + k: v for k, v in text_enc_dict.items()} lowerCamelCase__ : Union[str, Any] = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCamelCase__ : Any = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: lowerCamelCase__ : List[str] = convert_text_enc_state_dict(text_enc_dict) lowerCamelCase__ : Any = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCamelCase__ : Union[str, Any] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCamelCase__ : Dict = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCamelCase__ : Optional[int] = {'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
31
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
391
0
'''simple docstring''' import operator def __UpperCAmelCase ( a_: list, a_: bool = False, a_: list | None = None ): _UpperCAmelCase : Tuple = operator.lt if reverse else operator.gt _UpperCAmelCase : Any = solution or [] if not arr: return solution _UpperCAmelCase : Any = [arr.pop(0 )] for i, item in enumerate(a_ ): if _operator(a_, sublist[-1] ): sublist.append(a_ ) arr.pop(a_ ) # merging sublist into solution list if not solution: solution.extend(a_ ) else: while sublist: _UpperCAmelCase : List[str] = sublist.pop(0 ) for i, xx in enumerate(a_ ): if not _operator(a_, a_ ): solution.insert(a_, a_ ) break else: solution.append(a_ ) strand_sort(a_, a_, a_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
257
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCamelCase ( _a , _a=False ) -> str: '''simple docstring''' lowercase_ :int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ :Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def UpperCamelCase ( _a , _a , _a=False ) -> Tuple: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase_ :Optional[int] = '''''' else: lowercase_ :Dict = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ :List[str] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowercase_ :Tuple = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ :str = in_proj_weight[ : config.hidden_size, : ] lowercase_ :Any = in_proj_bias[: config.hidden_size] lowercase_ :Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ :Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase_ :int = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( _a ) -> Tuple: '''simple docstring''' lowercase_ :Optional[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_a , _a ) def UpperCamelCase ( _a ) -> Union[str, Any]: '''simple docstring''' lowercase_ :Union[str, Any] = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(_a , _a ) def UpperCamelCase ( _a , _a , _a ) -> Optional[int]: '''simple docstring''' lowercase_ :Union[str, Any] = dct.pop(_a ) lowercase_ :Union[str, Any] = val def UpperCamelCase ( _a , _a ) -> Optional[int]: '''simple docstring''' lowercase_ :Tuple = ViTMSNConfig() lowercase_ :Optional[Any] = 1_0_0_0 lowercase_ :List[Any] = '''datasets/huggingface/label-files''' lowercase_ :Optional[Any] = '''imagenet-1k-id2label.json''' lowercase_ :int = json.load(open(hf_hub_download(_a , _a ) , '''r''' ) ) lowercase_ :List[Any] = {int(_a ): v for k, v in idalabel.items()} lowercase_ :Union[str, Any] = idalabel lowercase_ :Any = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase_ :Union[str, Any] = 3_8_4 lowercase_ :List[Any] = 1_5_3_6 lowercase_ :Optional[Any] = 6 elif "l16" in checkpoint_url: lowercase_ :Union[str, Any] = 1_0_2_4 lowercase_ :List[Any] = 4_0_9_6 lowercase_ :List[Any] = 2_4 lowercase_ :int = 1_6 lowercase_ :str = 0.1 elif "b4" in checkpoint_url: lowercase_ :List[str] = 4 elif "l7" in checkpoint_url: lowercase_ :List[Any] = 7 lowercase_ :int = 1_0_2_4 lowercase_ :Any = 4_0_9_6 lowercase_ :Union[str, Any] = 2_4 lowercase_ :Tuple = 1_6 lowercase_ :int = 0.1 lowercase_ :Tuple = ViTMSNModel(_a ) lowercase_ :Any = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' )['''target_encoder'''] lowercase_ :Optional[Any] = ViTImageProcessor(size=config.image_size ) remove_projection_head(_a ) lowercase_ :Dict = create_rename_keys(_a , base_model=_a ) for src, dest in rename_keys: rename_key(_a , _a , _a ) read_in_q_k_v(_a , _a , base_model=_a ) model.load_state_dict(_a ) model.eval() lowercase_ :Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase_ :Union[str, Any] = Image.open(requests.get(_a , stream=_a ).raw ) lowercase_ :str = ViTImageProcessor( size=config.image_size , image_mean=_a , image_std=_a ) lowercase_ :Dict = image_processor(images=_a , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase_ :Tuple = model(**_a ) lowercase_ :Union[str, Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase_ :Tuple = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase_ :Tuple = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase_ :str = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase_ :List[Any] = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase_ :List[Any] = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _a , atol=1E-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
257
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase__ : def __init__( self : str , lowercase__ : Optional[Any] , lowercase__ : str=2 , lowercase__ : Union[str, Any]=3 , lowercase__ : Dict=4 , lowercase__ : Any=2 , lowercase__ : Any=7 , lowercase__ : Dict=True , lowercase__ : Any=True , lowercase__ : Optional[int]=True , lowercase__ : str=True , lowercase__ : Optional[Any]=99 , lowercase__ : int=36 , lowercase__ : Union[str, Any]=3 , lowercase__ : List[Any]=4 , lowercase__ : List[str]=37 , lowercase__ : Optional[Any]="gelu" , lowercase__ : Optional[int]=0.1 , lowercase__ : List[Any]=0.1 , lowercase__ : Tuple=5_12 , lowercase__ : Optional[Any]=16 , lowercase__ : Tuple=2 , lowercase__ : Optional[int]=0.0_2 , lowercase__ : List[str]=6 , lowercase__ : List[Any]=6 , lowercase__ : Optional[int]=3 , lowercase__ : Optional[Any]=4 , lowercase__ : Optional[Any]=None , lowercase__ : Optional[Any]=10_00 , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = text_seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = coordinate_size _lowerCAmelCase = shape_size _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCAmelCase = text_seq_length _lowerCAmelCase = (image_size // patch_size) ** 2 + 1 _lowerCAmelCase = self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase = bbox[i, j, 3] _lowerCAmelCase = bbox[i, j, 1] _lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase = bbox[i, j, 2] _lowerCAmelCase = bbox[i, j, 0] _lowerCAmelCase = t _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowerCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : Tuple , lowercase__ : str , lowercase__ : Optional[Any] ): _lowerCAmelCase = LayoutLMvaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() # text + image _lowerCAmelCase = model(lowercase__ , pixel_values=lowercase__ ) _lowerCAmelCase = model( lowercase__ , bbox=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) _lowerCAmelCase = model(lowercase__ , bbox=lowercase__ , pixel_values=lowercase__ , token_type_ids=lowercase__ ) _lowerCAmelCase = model(lowercase__ , bbox=lowercase__ , pixel_values=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowerCAmelCase = model(lowercase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowerCAmelCase = model(pixel_values=lowercase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : Union[str, Any] , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : int ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = LayoutLMvaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model( lowercase__ , bbox=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : int ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = LayoutLMvaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model( lowercase__ , bbox=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[str] , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : List[str] , lowercase__ : Union[str, Any] ): _lowerCAmelCase = LayoutLMvaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model( lowercase__ , bbox=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =False UpperCamelCase__ =False UpperCamelCase__ =False UpperCamelCase__ =( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase__ =( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = LayoutLMvaModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any=False ): _lowerCAmelCase = copy.deepcopy(lowercase__ ) if model_class in get_values(lowercase__ ): _lowerCAmelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowercase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowercase__ ): _lowerCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) elif model_class in get_values(lowercase__ ): _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) elif model_class in [ *get_values(lowercase__ ), ]: _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) elif model_class in [ *get_values(lowercase__ ), ]: _lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowercase__ , ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : List[str] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = LayoutLMvaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _lowerCamelCase ( ): _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowerCamelCase__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return LayoutLMvaImageProcessor(apply_ocr=lowercase__ ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(lowercase__ ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=lowercase__ , return_tensors='pt' ).pixel_values.to(lowercase__ ) _lowerCAmelCase = torch.tensor([[1, 2]] ) _lowerCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowerCAmelCase = model( input_ids=input_ids.to(lowercase__ ) , bbox=bbox.to(lowercase__ ) , pixel_values=pixel_values.to(lowercase__ ) , ) # verify the logits _lowerCAmelCase = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , lowercase__ ) _lowerCAmelCase = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase__ , atol=1e-4 ) )
192
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class UpperCAmelCase_ ( snake_case ): def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> Optional[Any]: super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) __lowercase : int = {} def _lowerCamelCase ( self , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) -> Optional[int]: __lowercase : Optional[int] = super().add_tokens(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ''' `placeholder_token` that is not already in the tokenizer.''' ) def _lowerCamelCase ( self , UpperCamelCase_ , *UpperCamelCase_ , UpperCamelCase_=1 , **UpperCamelCase_ ) -> Optional[Any]: __lowercase : Union[str, Any] = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) output.append(UpperCamelCase_ ) else: __lowercase : List[Any] = [] for i in range(UpperCamelCase_ ): __lowercase : List[str] = placeholder_token + F"""_{i}""" self.try_adding_tokens(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) output.append(UpperCamelCase_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) __lowercase : int = output def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_=1.0 ) -> Tuple: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowercase : Optional[Any] = [] for i in range(len(UpperCamelCase_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCamelCase_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __lowercase : List[Any] = self.token_map[placeholder_token] __lowercase : Optional[Any] = tokens[: 1 + int(len(UpperCamelCase_ ) * prop_tokens_to_load )] if vector_shuffle: __lowercase : int = copy.copy(UpperCamelCase_ ) random.shuffle(UpperCamelCase_ ) __lowercase : Tuple = text.replace(UpperCamelCase_ , ''' '''.join(UpperCamelCase_ ) ) return text def __call__( self , UpperCamelCase_ , *UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_=1.0 , **UpperCamelCase_ ) -> Optional[Any]: return super().__call__( self.replace_placeholder_tokens_in_text( UpperCamelCase_ , vector_shuffle=UpperCamelCase_ , prop_tokens_to_load=UpperCamelCase_ ) , *UpperCamelCase_ , **UpperCamelCase_ , ) def _lowerCamelCase ( self , UpperCamelCase_ , *UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_=1.0 , **UpperCamelCase_ ) -> int: return super().encode( self.replace_placeholder_tokens_in_text( UpperCamelCase_ , vector_shuffle=UpperCamelCase_ , prop_tokens_to_load=UpperCamelCase_ ) , *UpperCamelCase_ , **UpperCamelCase_ , )
523
0
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : int ) -> str: if number > 0: raise ValueError('''input must be a negative integer''' ) lowercase : Dict =len(bin(__magic_name__ )[3:] ) lowercase : List[Any] =bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:] lowercase : List[str] =( ( '''1''' + '''0''' * (binary_number_length - len(__magic_name__ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
92
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = (UnCLIPScheduler,) def lowerCAmelCase ( self : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : Any = { 'num_train_timesteps': 1_0_0_0, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**SCREAMING_SNAKE_CASE__) return config def lowerCAmelCase ( self : Optional[Any]): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any]): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Union[str, Any]): for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple): for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any]): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict): for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ,prev_timestep=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Optional[int] = self.scheduler_classes[0] __lowerCamelCase : Any = self.get_scheduler_config(variance_type='fixed_small_log') __lowerCamelCase : Dict = scheduler_class(**SCREAMING_SNAKE_CASE__) assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.00_00E-10)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7) - 0.0549625)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9) - 0.9994987)) < 1E-5 def lowerCAmelCase ( self : Any): __lowerCamelCase : Dict = self.scheduler_classes[0] __lowerCamelCase : List[str] = self.get_scheduler_config(variance_type='learned_range') __lowerCamelCase : int = scheduler_class(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = 0.5 assert scheduler._get_variance(1 ,predicted_variance=SCREAMING_SNAKE_CASE__) - -10.1712790 < 1E-5 assert scheduler._get_variance(4_8_7 ,predicted_variance=SCREAMING_SNAKE_CASE__) - -5.7998052 < 1E-5 assert scheduler._get_variance(9_9_9 ,predicted_variance=SCREAMING_SNAKE_CASE__) - -0.0010011 < 1E-5 def lowerCAmelCase ( self : List[str]): __lowerCamelCase : str = self.scheduler_classes[0] __lowerCamelCase : str = self.get_scheduler_config() __lowerCamelCase : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = scheduler.timesteps __lowerCamelCase : Union[str, Any] = self.dummy_model() __lowerCamelCase : Optional[Any] = self.dummy_sample_deter __lowerCamelCase : List[str] = torch.manual_seed(0) for i, t in enumerate(SCREAMING_SNAKE_CASE__): # 1. predict noise residual __lowerCamelCase : int = model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) # 2. predict previous mean of sample x_t-1 __lowerCamelCase : Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__).prev_sample __lowerCamelCase : Optional[Any] = pred_prev_sample __lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__)) assert abs(result_sum.item() - 252.2682495) < 1E-2 assert abs(result_mean.item() - 0.3284743) < 1E-3 def lowerCAmelCase ( self : str): __lowerCamelCase : str = self.scheduler_classes[0] __lowerCamelCase : List[Any] = self.get_scheduler_config() __lowerCamelCase : int = scheduler_class(**SCREAMING_SNAKE_CASE__) scheduler.set_timesteps(2_5) __lowerCamelCase : int = scheduler.timesteps __lowerCamelCase : Tuple = self.dummy_model() __lowerCamelCase : Any = self.dummy_sample_deter __lowerCamelCase : Any = torch.manual_seed(0) for i, t in enumerate(SCREAMING_SNAKE_CASE__): # 1. predict noise residual __lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) if i + 1 == timesteps.shape[0]: __lowerCamelCase : Optional[Any] = None else: __lowerCamelCase : Union[str, Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowerCamelCase : int = scheduler.step( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,prev_timestep=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__).prev_sample __lowerCamelCase : Union[str, Any] = pred_prev_sample __lowerCamelCase : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__)) assert abs(result_sum.item() - 258.2044983) < 1E-2 assert abs(result_mean.item() - 0.3362038) < 1E-3 def lowerCAmelCase ( self : List[Any]): pass def lowerCAmelCase ( self : Union[str, Any]): pass
652
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github lowercase__ :Any = [ 'good first issue', 'feature request', 'wip', ] def lowerCamelCase_ ( ) ->str: """simple docstring""" __UpperCAmelCase : str = Github(os.environ['''GITHUB_TOKEN'''] ) __UpperCAmelCase : Tuple = g.get_repo('''huggingface/accelerate''' ) __UpperCAmelCase : str = repo.get_issues(state='''open''' ) for issue in open_issues: __UpperCAmelCase : int = sorted([comment for comment in issue.get_comments()] , key=lambda UpperCAmelCase_ : i.created_at , reverse=UpperCAmelCase_ ) __UpperCAmelCase : List[str] = comments[0] if len(UpperCAmelCase_ ) > 0 else None __UpperCAmelCase : Optional[Any] = dt.utcnow() __UpperCAmelCase : Optional[int] = (current_time - issue.updated_at).days __UpperCAmelCase : Optional[Any] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
704
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase__ :Optional[int] = logging.get_logger(__name__) @dataclass class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : Tuple = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : Dict , **__lowercase : Dict ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __UpperCAmelCase : Optional[Any] = deprecated_arg[3:] __UpperCAmelCase : List[str] = not kwargs.pop(__lowercase ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) __UpperCAmelCase : int = kwargs.pop('''tpu_name''' , self.tpu_name ) __UpperCAmelCase : Any = kwargs.pop('''device_idx''' , self.device_idx ) __UpperCAmelCase : Tuple = kwargs.pop('''eager_mode''' , self.eager_mode ) __UpperCAmelCase : Optional[int] = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**__lowercase ) _A : str = field( default=__UpperCAmelCase , metadata={'help': 'Name of TPU'} , ) _A : int = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) _A : bool = field(default=__UpperCAmelCase , metadata={'help': 'Benchmark models in eager model.'} ) _A : bool = field( default=__UpperCAmelCase , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def A_ ( self : int ): '''simple docstring''' requires_backends(self , ['''tf'''] ) __UpperCAmelCase : Any = None if self.tpu: try: if self.tpu_name: __UpperCAmelCase : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __UpperCAmelCase : Any = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __UpperCAmelCase : int = None return tpu @cached_property def A_ ( self : Any ): '''simple docstring''' requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __UpperCAmelCase : Any = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) __UpperCAmelCase : Any = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU __UpperCAmelCase : str = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def A_ ( self : Optional[int] ): '''simple docstring''' requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def A_ ( self : List[str] ): '''simple docstring''' requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def A_ ( self : Any ): '''simple docstring''' requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def A_ ( self : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def A_ ( self : Optional[Any] ): '''simple docstring''' return self.n_gpu > 0
374
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__ : """simple docstring""" a__ : str a__ : str = None @staticmethod def snake_case_ ( ) -> List[str]: raise NotImplementedError def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : str ) -> int: raise NotImplementedError def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : int ) -> List[Any]: raise NotImplementedError def snake_case_ ( self : Union[str, Any] ) -> Optional[int]: if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def snake_case_ ( cls : Optional[Any] ) -> List[str]: return f'''`pip install {cls.pip_package or cls.name}`''' class lowerCamelCase__ ( _A): """simple docstring""" a__ : List[str] = "optuna" @staticmethod def snake_case_ ( ) -> int: return is_optuna_available() def snake_case_ ( self : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : int ) -> Any: return run_hp_search_optuna(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : Tuple , __lowerCAmelCase : Tuple ) -> Dict: return default_hp_space_optuna(__lowerCAmelCase ) class lowerCamelCase__ ( _A): """simple docstring""" a__ : List[str] = "ray" a__ : Tuple = "'ray[tune]'" @staticmethod def snake_case_ ( ) -> List[str]: return is_ray_available() def snake_case_ ( self : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : Optional[int] ) -> Optional[int]: return run_hp_search_ray(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : Tuple ) -> int: return default_hp_space_ray(__lowerCAmelCase ) class lowerCamelCase__ ( _A): """simple docstring""" a__ : Optional[int] = "sigopt" @staticmethod def snake_case_ ( ) -> Optional[Any]: return is_sigopt_available() def snake_case_ ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : int ) -> List[str]: return run_hp_search_sigopt(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Dict ) -> int: return default_hp_space_sigopt(__lowerCAmelCase ) class lowerCamelCase__ ( _A): """simple docstring""" a__ : Union[str, Any] = "wandb" @staticmethod def snake_case_ ( ) -> int: return is_wandb_available() def snake_case_ ( self : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : List[str] ) -> Dict: return run_hp_search_wandb(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : Tuple ) -> Dict: return default_hp_space_wandb(__lowerCAmelCase ) UpperCAmelCase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def SCREAMING_SNAKE_CASE_ ( ) -> str: _A = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_snake_case ) > 0: _A = available_backends[0].name if len(_snake_case ) > 1: logger.info( F'''{len(_snake_case )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
2
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __a ( A ) -> Union[str, Any]: '''simple docstring''' A__ = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __a ( A , A ) -> str: '''simple docstring''' A__ = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __a ( A ) -> List[str]: '''simple docstring''' A__ = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", "stage2.cls_token") ) return token def __a ( ) -> Dict: '''simple docstring''' A__ = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def __a ( A , A , A , A ) -> int: '''simple docstring''' A__ = "imagenet-1k-id2label.json" A__ = 1_000 A__ = "huggingface/label-files" A__ = num_labels A__ = json.load(open(cached_download(hf_hub_url(A , A , repo_type="dataset" ) ) , "r" ) ) A__ = {int(A ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = A__ = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": A__ = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": A__ = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: A__ = [2, 2, 20] A__ = [3, 12, 16] A__ = [192, 768, 1_024] A__ = CvtForImageClassification(A ) A__ = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) A__ = image_size A__ = torch.load(A , map_location=torch.device("cpu" ) ) A__ = OrderedDict() A__ = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: A__ = list_of_state_dict + cls_token(A ) A__ = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): A__ = list_of_state_dict + attention(A , A ) A__ = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): A__ = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=384, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=r"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __UpperCAmelCase =parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
337
0
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
570
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: UpperCAmelCase = _modexpt(SCREAMING_SNAKE_CASE_ , exponent // 2 , SCREAMING_SNAKE_CASE_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(SCREAMING_SNAKE_CASE_ , exponent - 1 , SCREAMING_SNAKE_CASE_ )) % modulo_value def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 1_777 , SCREAMING_SNAKE_CASE_ : int = 1_855 , SCREAMING_SNAKE_CASE_ : int = 8 ) -> int: """simple docstring""" UpperCAmelCase = base for _ in range(1 , SCREAMING_SNAKE_CASE_ ): UpperCAmelCase = _modexpt(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 10**digits ) return result if __name__ == "__main__": print(F"""{solution() = }""")
570
1
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" if openai_config_file == "": A__ = OpenAIGPTConfig() else: A__ = OpenAIGPTConfig.from_json_file(lowercase_ ) A__ = OpenAIGPTModel(lowercase_ ) # Load weights from numpy load_tf_weights_in_openai_gpt(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model A__ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME A__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , lowercase_ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--openai_checkpoint_folder_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--openai_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
87
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
40
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device snake_case = False class UpperCAmelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) _snake_case = torch.manual_seed(0 ) _snake_case = pipe( image=_a , generator=_a , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' , ).images _snake_case = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _snake_case = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
710
"""simple docstring""" def snake_case ( lowerCAmelCase_ = 1000 ) -> int: return sum(e for e in range(3 , lowerCAmelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
404
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : str = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class snake_case_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase = "gpt_neox" def __init__( self : Dict , __lowerCamelCase : str=50_432 , __lowerCamelCase : Union[str, Any]=6_144 , __lowerCamelCase : List[str]=44 , __lowerCamelCase : List[Any]=64 , __lowerCamelCase : str=24_576 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Any=0.25 , __lowerCamelCase : Any=10_000 , __lowerCamelCase : Any=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=2_048 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Any=1E-5 , __lowerCamelCase : Dict=True , __lowerCamelCase : str=0 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : str=True , __lowerCamelCase : str=None , **__lowerCamelCase : int , ) -> Optional[int]: '''simple docstring''' super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = rotary_pct __lowercase = rotary_emb_base __lowercase = attention_dropout __lowercase = hidden_dropout __lowercase = classifier_dropout __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = use_cache __lowercase = tie_word_embeddings __lowercase = use_parallel_residual __lowercase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def UpperCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"got {self.rope_scaling}" ) __lowercase = self.rope_scaling.get('type' , __lowerCamelCase ) __lowercase = self.rope_scaling.get('factor' , __lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowerCamelCase , __lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}" )
375
def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->list: """simple docstring""" __magic_name__ : Optional[Any] = word.split() def justify(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) -> str: __magic_name__ : int = max_width - width __magic_name__ : Optional[int] = len(UpperCAmelCase ) if len(UpperCAmelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __magic_name__ : List[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __magic_name__ : int = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __magic_name__ : Optional[int] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCAmelCase ): num_spaces_between_words_list[i] += 1 __magic_name__ : List[str] = [] for i in range(UpperCAmelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCAmelCase ) __magic_name__ : List[Any] = [] __magic_name__ : list[str] = [] __magic_name__ : List[str] = 0 for word in words: if width + len(UpperCAmelCase ) + len(UpperCAmelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCAmelCase ) width += len(UpperCAmelCase ) else: # justify the line and add it to result answer.append(justify(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) ) # reset new line and new width __magic_name__ , __magic_name__ : Optional[int] = [word], len(UpperCAmelCase ) __magic_name__ : List[str] = max_width - width - len(UpperCAmelCase ) answer.append(''' '''.join(UpperCAmelCase ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
154
0
import os import sys import unittest _snake_case : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _snake_case : Optional[Any] = os.path.join(git_repo_path, 'src', 'transformers') _snake_case : str = """ {0} = None """ _snake_case : int = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ _snake_case : Any = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : str ) -> Any: __lowerCAmelCase = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(lowerCAmelCase_ ) __lowerCAmelCase = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(lowerCAmelCase_ , 'tokenizers' ) __lowerCAmelCase = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(lowerCAmelCase_ , 'tensorflow_text' ) __lowerCAmelCase = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(lowerCAmelCase_ , 'sentencepiece_and_tokenizers' ) __lowerCAmelCase = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(lowerCAmelCase_ , 'sentencepiece_and_tensorflow_text' ) __lowerCAmelCase = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(lowerCAmelCase_ , 'sentencepiece_and_tokenizers_and_vision' ) def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , lowerCAmelCase_ ) self.assertIn('tensorflow_text' , lowerCAmelCase_ ) self.assertIn('sentencepiece_and_tokenizers' , lowerCAmelCase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def lowercase ( self : str ) -> List[str]: __lowerCAmelCase = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(lowerCAmelCase_ , '\nCONSTANT = None\n' ) __lowerCAmelCase = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( lowerCAmelCase_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) __lowerCAmelCase = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' __lowerCAmelCase = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' __lowerCAmelCase = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , lowerCAmelCase_ )
720
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : Union[str, Any] ) -> str: __lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) __lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) sd_pipe.set_scheduler('sample_euler' ) __lowerCAmelCase = 'A painting of a squirrel eating a burger' __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Union[str, Any] ) -> Dict: __lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) sd_pipe.set_scheduler('sample_euler' ) __lowerCAmelCase = 'A painting of a squirrel eating a burger' __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def lowercase ( self : int ) -> Dict: __lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) __lowerCAmelCase = 'A painting of a squirrel eating a burger' __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='np' , use_karras_sigmas=lowerCAmelCase_ , ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
421
0
"""simple docstring""" import os import sys import unittest _lowerCAmelCase : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCAmelCase : Tuple = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') _lowerCAmelCase : str = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class A_ ( unittest.TestCase ): def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : int = get_test_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = get_test_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Dict = {"BertModelTest": "BertModelTester"} _lowerCamelCase : Union[str, Any] = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = get_model_to_test_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = get_model_to_test_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } _lowerCamelCase : Optional[Any] = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = get_model_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Dict = get_model_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } _lowerCamelCase : List[str] = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase )
46
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = """roc_bert""" def __init__( self , _SCREAMING_SNAKE_CASE=3_0_5_2_2 , _SCREAMING_SNAKE_CASE=7_6_8 , _SCREAMING_SNAKE_CASE=1_2 , _SCREAMING_SNAKE_CASE=1_2 , _SCREAMING_SNAKE_CASE=3_0_7_2 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_1_2 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=7_6_8 , _SCREAMING_SNAKE_CASE=9_1_0 , _SCREAMING_SNAKE_CASE=5_1_2 , _SCREAMING_SNAKE_CASE=2_4_8_5_8 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: a_ : Optional[int] = vocab_size a_ : str = max_position_embeddings a_ : List[Any] = hidden_size a_ : Optional[Any] = num_hidden_layers a_ : Union[str, Any] = num_attention_heads a_ : List[str] = intermediate_size a_ : List[Any] = hidden_act a_ : str = hidden_dropout_prob a_ : Union[str, Any] = attention_probs_dropout_prob a_ : Any = initializer_range a_ : str = type_vocab_size a_ : Union[str, Any] = layer_norm_eps a_ : str = use_cache a_ : Tuple = enable_pronunciation a_ : Dict = enable_shape a_ : int = pronunciation_embed_dim a_ : List[Any] = pronunciation_vocab_size a_ : int = shape_embed_dim a_ : List[str] = shape_vocab_size a_ : List[Any] = concat_input a_ : List[str] = position_embedding_type a_ : Any = classifier_dropout super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
473
0
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path snake_case_ : List[Any] = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) snake_case_ : List[Any] = [ord(letter) for letter in string.ascii_lowercase] snake_case_ : str = {ord(char) for char in VALID_CHARS} snake_case_ : str = ['the', 'be', 'to', 'of', 'and', 'in', 'that', 'have'] def __snake_case ( _UpperCAmelCase : list[int], _UpperCAmelCase : tuple[int, ...]): UpperCamelCase = "" UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(_UpperCAmelCase), _UpperCAmelCase): UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_UpperCAmelCase) return decoded def __snake_case ( _UpperCAmelCase : list[int]): UpperCamelCase = [] for key in product(_UpperCAmelCase, repeat=3): UpperCamelCase = try_key(_UpperCAmelCase, _UpperCAmelCase) if encoded is not None: possibles.append(_UpperCAmelCase) return possibles def __snake_case ( _UpperCAmelCase : list[str], _UpperCAmelCase : str): return [possible for possible in possibles if common_word in possible.lower()] def __snake_case ( _UpperCAmelCase : str = "p059_cipher.txt"): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = Path(_UpperCAmelCase).parent.joinpath(_UpperCAmelCase).read_text(encoding='''utf-8''') UpperCamelCase = [int(_UpperCAmelCase) for number in data.strip().split(''',''')] UpperCamelCase = filter_valid_chars(_UpperCAmelCase) for common_word in COMMON_WORDS: UpperCamelCase = filter_common_word(_UpperCAmelCase, _UpperCAmelCase) if len(_UpperCAmelCase) == 1: break UpperCamelCase = possibles[0] return sum(ord(_UpperCAmelCase) for char in decoded_text) if __name__ == "__main__": print(F'''{solution() = }''')
708
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=1_8 , lowerCamelCase__=3_0 , lowerCamelCase__=4_0_0 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=[0.5, 0.5, 0.5] , lowerCamelCase__=[0.5, 0.5, 0.5] , ): '''simple docstring''' UpperCamelCase = size if size is not None else {'''shortest_edge''': 1_8} UpperCamelCase = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = do_center_crop UpperCamelCase = crop_size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def UpperCAmelCase ( self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase__ ( snake_case_, unittest.TestCase ): '''simple docstring''' _snake_case = LevitImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = LevitImageProcessingTester(self ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
350
0
'''simple docstring''' import math from datetime import datetime, timedelta def __A ( a_ : int ): lowerCAmelCase : Any = year % 1_9 lowerCAmelCase : str = year % 4 lowerCAmelCase : Union[str, Any] = year % 7 lowerCAmelCase : Optional[int] = math.floor(year / 1_0_0 ) lowerCAmelCase : Optional[Any] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) lowerCAmelCase : Any = leap_day_inhibits / 4 lowerCAmelCase : str = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 lowerCAmelCase : Dict = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowerCAmelCase : Optional[int] = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon lowerCAmelCase : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(a_ ,4 ,1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(a_ ,4 ,1_8 ) else: return datetime(a_ ,3 ,2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): lowerCAmelCase = 'will be' if year > datetime.now().year else 'was' print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
525
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) def UpperCAmelCase__ ( __magic_name__ : Optional[int] ): '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class __magic_name__ ( snake_case ): _lowerCAmelCase = ["pixel_values"] def __init__( self : str , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[int, float] = 1 / 2_5_5 , lowerCamelCase__ : bool = True , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , **lowerCamelCase__ : Optional[Any] , ): super().__init__(**lowerCamelCase__ ) lowerCAmelCase : List[str] = size if size is not None else {'''shortest_edge''': 2_5_6} lowerCAmelCase : Dict = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) lowerCAmelCase : List[str] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase : int = get_size_dict(lowerCamelCase__ , param_name='''crop_size''' ) lowerCAmelCase : Optional[Any] = do_resize lowerCAmelCase : Union[str, Any] = size lowerCAmelCase : Optional[Any] = do_center_crop lowerCAmelCase : List[str] = crop_size lowerCAmelCase : List[str] = resample lowerCAmelCase : int = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : Optional[Any] = offset lowerCAmelCase : Dict = do_normalize lowerCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _A ( self : int , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : List[str] , ): lowerCAmelCase : Union[str, Any] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" in size: lowerCAmelCase : Union[str, Any] = get_resize_output_image_size(lowerCamelCase__ , size['''shortest_edge'''] , default_to_square=lowerCamelCase__ ) elif "height" in size and "width" in size: lowerCAmelCase : int = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _A ( self : int , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Optional[Any] , ): lowerCAmelCase : Optional[int] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCamelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _A ( self : Dict , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[int, float] , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Optional[int] , ): lowerCAmelCase : Union[str, Any] = image.astype(np.floataa ) if offset: lowerCAmelCase : Any = image - (scale / 2) return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _A ( self : Dict , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[float, List[float]] , lowerCamelCase__ : Union[float, List[float]] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Optional[Any] , ): return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _A ( self : List[str] , lowerCamelCase__ : ImageInput , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : float = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowerCAmelCase : Tuple = to_numpy_array(lowerCamelCase__ ) if do_resize: lowerCAmelCase : Any = self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) if do_center_crop: lowerCAmelCase : Dict = self.center_crop(lowerCamelCase__ , size=lowerCamelCase__ ) if do_rescale: lowerCAmelCase : Union[str, Any] = self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ , offset=lowerCamelCase__ ) if do_normalize: lowerCAmelCase : Union[str, Any] = self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) lowerCAmelCase : Optional[int] = to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) return image def _A ( self : Tuple , lowerCamelCase__ : ImageInput , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : float = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase__ : int , ): lowerCAmelCase : Any = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Optional[Any] = resample if resample is not None else self.resample lowerCAmelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : Optional[Any] = offset if offset is not None else self.offset lowerCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Optional[int] = image_std if image_std is not None else self.image_std lowerCAmelCase : Any = size if size is not None else self.size lowerCAmelCase : Optional[Any] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase : List[Any] = get_size_dict(lowerCamelCase__ , param_name='''crop_size''' ) if not valid_images(lowerCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowerCAmelCase : Any = make_batched(lowerCamelCase__ ) lowerCAmelCase : Any = [ [ self._preprocess_image( image=lowerCamelCase__ , do_resize=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , do_center_crop=lowerCamelCase__ , crop_size=lowerCamelCase__ , do_rescale=lowerCamelCase__ , rescale_factor=lowerCamelCase__ , offset=lowerCamelCase__ , do_normalize=lowerCamelCase__ , image_mean=lowerCamelCase__ , image_std=lowerCamelCase__ , data_format=lowerCamelCase__ , ) for img in video ] for video in videos ] lowerCAmelCase : Union[str, Any] = {'''pixel_values''': videos} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
348
0
"""simple docstring""" import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( snake_case = "https://www.worldometers.info/coronavirus"): __snake_case = BeautifulSoup(requests.get(_lowerCamelCase).text, '''html.parser''') __snake_case = soup.findAll('''h1''') __snake_case = soup.findAll('''div''', {'''class''': '''maincounter-number'''}) keys += soup.findAll('''span''', {'''class''': '''panel-title'''}) values += soup.findAll('''div''', {'''class''': '''number-table-main'''}) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase, _lowerCamelCase)} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
700
"""simple docstring""" def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = len(snake_case) for i in range(length - 1): __snake_case = i for k in range(i + 1, snake_case): if collection[k] < collection[least]: __snake_case = k if least != i: __snake_case , __snake_case = (collection[i], collection[least]) return collection if __name__ == "__main__": __lowercase : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() __lowercase : Tuple = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
93
0
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[int] =logging.get_logger(__name__) __lowercase : Optional[Any] ={ """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class A ( __lowercase ): _snake_case ='''xlm-prophetnet''' _snake_case =['''past_key_values'''] _snake_case ={ '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self: int , _lowerCAmelCase: Optional[float] = 0.1 , _lowerCAmelCase: Optional[Union[str, Callable]] = "gelu" , _lowerCAmelCase: Optional[int] = 3_0522 , _lowerCAmelCase: Optional[int] = 1024 , _lowerCAmelCase: Optional[int] = 4096 , _lowerCAmelCase: Optional[int] = 12 , _lowerCAmelCase: Optional[int] = 16 , _lowerCAmelCase: Optional[int] = 4096 , _lowerCAmelCase: Optional[int] = 12 , _lowerCAmelCase: Optional[int] = 16 , _lowerCAmelCase: Optional[float] = 0.1 , _lowerCAmelCase: Optional[float] = 0.1 , _lowerCAmelCase: Optional[int] = 512 , _lowerCAmelCase: Optional[float] = 0.02 , _lowerCAmelCase: Optional[bool] = True , _lowerCAmelCase: Optional[bool] = True , _lowerCAmelCase: Optional[int] = 0 , _lowerCAmelCase: Optional[int] = 2 , _lowerCAmelCase: Optional[int] = 32 , _lowerCAmelCase: Optional[int] = 128 , _lowerCAmelCase: Optional[bool] = False , _lowerCAmelCase: Optional[float] = 0.0 , _lowerCAmelCase: Optional[bool] = True , _lowerCAmelCase: Optional[int] = 0 , _lowerCAmelCase: Optional[int] = 1 , _lowerCAmelCase: Optional[int] = 2 , **_lowerCAmelCase: str , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =encoder_ffn_dim UpperCAmelCase_ =num_encoder_layers UpperCAmelCase_ =num_encoder_attention_heads UpperCAmelCase_ =decoder_ffn_dim UpperCAmelCase_ =num_decoder_layers UpperCAmelCase_ =num_decoder_attention_heads UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =init_std # Normal(0, this parameter) UpperCAmelCase_ =activation_function # parameters for xlmprophetnet UpperCAmelCase_ =ngram UpperCAmelCase_ =num_buckets UpperCAmelCase_ =relative_max_distance UpperCAmelCase_ =disable_ngram_loss UpperCAmelCase_ =eps # 3 Types of Dropout UpperCAmelCase_ =attention_dropout UpperCAmelCase_ =activation_dropout UpperCAmelCase_ =dropout UpperCAmelCase_ =use_cache super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , add_cross_attention=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) @property def lowerCAmelCase__ ( self: List[Any] ) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Optional[int] ) -> Tuple: '''simple docstring''' raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
54
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class _lowerCAmelCase ( _lowercase , _lowercase ): A__ = 'focalnet' def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=96 , __UpperCAmelCase=False , __UpperCAmelCase=[192, 384, 768, 768] , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[2, 2, 2, 2] , __UpperCAmelCase=[3, 3, 3, 3] , __UpperCAmelCase="gelu" , __UpperCAmelCase=4.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=False , __UpperCAmelCase=1e-4 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ : Any = image_size lowerCAmelCase__ : Any = patch_size lowerCAmelCase__ : Tuple = num_channels lowerCAmelCase__ : Dict = embed_dim lowerCAmelCase__ : Optional[int] = use_conv_embed lowerCAmelCase__ : Optional[int] = hidden_sizes lowerCAmelCase__ : Optional[Any] = depths lowerCAmelCase__ : Dict = focal_levels lowerCAmelCase__ : int = focal_windows lowerCAmelCase__ : Optional[Any] = hidden_act lowerCAmelCase__ : Optional[int] = mlp_ratio lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : List[Any] = drop_path_rate lowerCAmelCase__ : Tuple = use_layerscale lowerCAmelCase__ : List[Any] = layerscale_value lowerCAmelCase__ : Dict = use_post_layernorm lowerCAmelCase__ : Dict = use_post_layernorm_in_modulation lowerCAmelCase__ : Dict = normalize_modulator lowerCAmelCase__ : Union[str, Any] = initializer_range lowerCAmelCase__ : List[str] = layer_norm_eps lowerCAmelCase__ : Tuple = encoder_stride lowerCAmelCase__ : Dict = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
678
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer lowerCamelCase =logging.get_logger(__name__) lowerCamelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase ={ "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } lowerCamelCase ={ "bert-base-uncased": 5_1_2, "bert-large-uncased": 5_1_2, "bert-base-cased": 5_1_2, "bert-large-cased": 5_1_2, "bert-base-multilingual-uncased": 5_1_2, "bert-base-multilingual-cased": 5_1_2, "bert-base-chinese": 5_1_2, "bert-base-german-cased": 5_1_2, "bert-large-uncased-whole-word-masking": 5_1_2, "bert-large-cased-whole-word-masking": 5_1_2, "bert-large-uncased-whole-word-masking-finetuned-squad": 5_1_2, "bert-large-cased-whole-word-masking-finetuned-squad": 5_1_2, "bert-base-cased-finetuned-mrpc": 5_1_2, "bert-base-german-dbmdz-cased": 5_1_2, "bert-base-german-dbmdz-uncased": 5_1_2, "TurkuNLP/bert-base-finnish-cased-v1": 5_1_2, "TurkuNLP/bert-base-finnish-uncased-v1": 5_1_2, "wietsedv/bert-base-dutch-cased": 5_1_2, } lowerCamelCase ={ "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = BertTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCamelCase__ : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''' ) ) UpperCamelCase__ : int = do_lower_case UpperCamelCase__ : Optional[Any] = strip_accents UpperCamelCase__ : List[Any] = tokenize_chinese_chars UpperCamelCase__ : int = normalizer_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = do_lower_case def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) -> List[str]: """simple docstring""" UpperCamelCase__ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" UpperCamelCase__ : str = [self.sep_token_id] UpperCamelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase__ : Tuple = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE )
705
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCamelCase =logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(UpperCamelCase__ ): return ext raise Exception( f'''Unable to determine file format from file extension {path}. ''' f'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): UpperCamelCase__ : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) UpperCamelCase__ : Any = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format UpperCamelCase__ : Tuple = PipelineDataFormat.from_str( format=UpperCamelCase__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(UpperCamelCase__ , UpperCamelCase__ ) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = nlp UpperCamelCase__ : Dict = reader @staticmethod def __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ : Optional[Any] = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''' ) run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''' ) run_parser.add_argument('''--input''' , type=__SCREAMING_SNAKE_CASE , help='''Path to the file to use for inference''' ) run_parser.add_argument('''--output''' , type=__SCREAMING_SNAKE_CASE , help='''Path to the file that will be used post to write results.''' ) run_parser.add_argument('''--model''' , type=__SCREAMING_SNAKE_CASE , help='''Name or path to the model to instantiate.''' ) run_parser.add_argument('''--config''' , type=__SCREAMING_SNAKE_CASE , help='''Name or path to the model\'s config to instantiate.''' ) run_parser.add_argument( '''--tokenizer''' , type=__SCREAMING_SNAKE_CASE , help='''Name of the tokenizer to use. (default: same as the model name)''' ) run_parser.add_argument( '''--column''' , type=__SCREAMING_SNAKE_CASE , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , ) run_parser.add_argument( '''--format''' , type=__SCREAMING_SNAKE_CASE , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , ) run_parser.add_argument( '''--device''' , type=__SCREAMING_SNAKE_CASE , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''' ) run_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = self._nlp, [] for entry in self._reader: UpperCamelCase__ : List[str] = nlp(**__SCREAMING_SNAKE_CASE ) if self._reader.is_multi_columns else nlp(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): outputs.append(__SCREAMING_SNAKE_CASE ) else: outputs += output # Saving data if self._nlp.binary_output: UpperCamelCase__ : Union[str, Any] = self._reader.save_binary(__SCREAMING_SNAKE_CASE ) logger.warning(F'''Current pipeline requires output to be in binary format, saving at {binary_path}''' ) else: self._reader.save(__SCREAMING_SNAKE_CASE )
462
0
from __future__ import annotations from collections import Counter from random import random class __UpperCAmelCase : """simple docstring""" def __init__( self ): __a = {} def snake_case_ ( self , __A ): __a = {} def snake_case_ ( self , __A , __A , __A ): if nodea not in self.connections: self.add_node(__A ) if nodea not in self.connections: self.add_node(__A ) __a = probability def snake_case_ ( self ): return list(self.connections ) def snake_case_ ( self , __A ): __a = 0 __a = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __a = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a = Counter(graph.get_nodes() ) __a = start for _ in range(lowerCAmelCase__ ): __a = graph.transition(lowerCAmelCase__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
99
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=[0, 1, 2, 3] , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=[1, 384, 24, 24] , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , ): lowercase : Optional[Any] = parent lowercase : Tuple = batch_size lowercase : Any = image_size lowercase : Union[str, Any] = patch_size lowercase : Optional[Any] = num_channels lowercase : Optional[int] = is_training lowercase : Dict = use_labels lowercase : Union[str, Any] = hidden_size lowercase : Dict = num_hidden_layers lowercase : Optional[Any] = backbone_out_indices lowercase : Dict = num_attention_heads lowercase : Tuple = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : str = hidden_dropout_prob lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = initializer_range lowercase : str = num_labels lowercase : str = backbone_featmap_shape lowercase : Optional[int] = scope lowercase : int = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowercase : List[Any] = (image_size // patch_size) ** 2 lowercase : int = num_patches + 1 def __lowerCamelCase ( self ): lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : int = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): lowercase : List[str] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=SCREAMING_SNAKE_CASE__ , backbone_featmap_shape=self.backbone_featmap_shape , ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = DPTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Tuple = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = self.num_labels lowercase : Optional[Any] = DPTForDepthEstimation(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Dict = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = self.num_labels lowercase : List[str] = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Optional[int] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ): lowercase : List[Any] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase : Union[str, Any] = config_and_inputs lowercase : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): A : Tuple = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () A : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) A : str = False A : Union[str, Any] = False A : List[Any] = False def __lowerCamelCase ( self ): lowercase : List[str] = DPTModelTester(self ) lowercase : Tuple = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : str = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def __lowerCamelCase ( self ): lowercase , lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Dict = model_class(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : List[str] = [*signature.parameters.keys()] lowercase : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Tuple = True if model_class in get_values(SCREAMING_SNAKE_CASE__ ): continue lowercase : List[str] = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.train() lowercase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ).loss loss.backward() def __lowerCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase , lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Dict = False lowercase : Optional[int] = True if model_class in get_values(SCREAMING_SNAKE_CASE__ ) or not model_class.supports_gradient_checkpointing: continue lowercase : Any = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.gradient_checkpointing_enable() model.train() lowercase : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = model(**SCREAMING_SNAKE_CASE__ ).loss loss.backward() def __lowerCamelCase ( self ): lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Optional[Any] = _config_zero_init(SCREAMING_SNAKE_CASE__ ) for model_class in self.all_model_classes: lowercase : List[Any] = model_class(config=SCREAMING_SNAKE_CASE__ ) # Skip the check for the backbone lowercase : Tuple = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowercase : List[Any] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCamelCase ( self ): pass @slow def __lowerCamelCase ( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowercase : Any = DPTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Any = '''add''' with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = DPTForDepthEstimation(SCREAMING_SNAKE_CASE__ ) def __lowercase ( ) ->List[Any]: """simple docstring""" lowercase : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): lowercase : Optional[Any] = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) lowercase : Optional[Any] = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(SCREAMING_SNAKE_CASE__ ) lowercase : Any = prepare_img() lowercase : str = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): lowercase : Any = model(**SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = outputs.predicted_depth # verify the predicted depth lowercase : str = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
319
0
def lowerCamelCase__ ( _A ): if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) a : Any = '' while len(_A ) % 3 != 0: a : str = '0' + bin_string a : Any = [ bin_string[index : index + 3] for index in range(len(_A ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: a : Optional[Any] = 0 for index, val in enumerate(_A ): oct_val += int(2 ** (2 - index) * int(_A ) ) oct_string += str(_A ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
707
'''simple docstring''' class a__: def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Tuple ): a : List[str] = name a : Dict = value a : List[str] = weight def __repr__( self : int ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowercase_ ( self : Optional[int] ): return self.value def lowercase_ ( self : List[str] ): return self.name def lowercase_ ( self : int ): return self.weight def lowercase_ ( self : List[str] ): return self.value / self.weight def lowerCamelCase__ ( _A , _A , _A ): a : Optional[int] = [] for i in range(len(_A ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowerCamelCase__ ( _A , _A , _A ): a : Optional[Any] = sorted(_A , key=_A , reverse=_A ) a : Optional[int] = [] a , a : str = 0.0, 0.0 for i in range(len(_A ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCamelCase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
195
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return number | (1 << position) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return number & ~(1 << position) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return number ^ (1 << position) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return ((number >> position) & 1) == 1 def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
84
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): __a = StableDiffusionControlNetImgaImgPipeline __a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __a = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) __a = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self ) -> str: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: int= UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: str= ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: str= DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: List[str]= AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: List[Any]= CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE__: List[str]= CLIPTextModel(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=0 ) -> Optional[Any]: if str(lowerCAmelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__: Optional[int]= torch.manual_seed(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__: Union[str, Any]= torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= 2 SCREAMING_SNAKE_CASE__: Tuple= randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , ) SCREAMING_SNAKE_CASE__: int= floats_tensor(control_image.shape , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[int]= image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__: str= Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) SCREAMING_SNAKE_CASE__: Tuple= { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCamelCase_ ( self ) -> Tuple: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase_ ( self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCamelCase_ ( self ) -> str: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): __a = StableDiffusionControlNetImgaImgPipeline __a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __a = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCamelCase_ ( self ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: int= UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowerCAmelCase ): if isinstance(lowerCAmelCase , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) SCREAMING_SNAKE_CASE__: Any= ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCAmelCase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: Tuple= ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCAmelCase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: Tuple= DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: Tuple= AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: Optional[int]= CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE__: Any= CLIPTextModel(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE__: Dict= MultiControlNetModel([controlneta, controlneta] ) SCREAMING_SNAKE_CASE__: int= { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=0 ) -> List[Any]: if str(lowerCAmelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__: str= torch.manual_seed(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__: Optional[int]= torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= 2 SCREAMING_SNAKE_CASE__: Tuple= [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , ), ] SCREAMING_SNAKE_CASE__: Union[str, Any]= floats_tensor(control_image[0].shape , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__: Union[str, Any]= Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) SCREAMING_SNAKE_CASE__: int= { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCamelCase_ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE__: List[Any]= self.get_dummy_components() SCREAMING_SNAKE_CASE__: str= self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= 10.0 SCREAMING_SNAKE_CASE__: Any= 4 SCREAMING_SNAKE_CASE__: Optional[Any]= self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= steps SCREAMING_SNAKE_CASE__: int= scale SCREAMING_SNAKE_CASE__: List[Any]= pipe(**lowerCAmelCase )[0] SCREAMING_SNAKE_CASE__: Tuple= self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= steps SCREAMING_SNAKE_CASE__: List[Any]= scale SCREAMING_SNAKE_CASE__: int= pipe(**lowerCAmelCase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] SCREAMING_SNAKE_CASE__: Dict= self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= steps SCREAMING_SNAKE_CASE__: List[Any]= scale SCREAMING_SNAKE_CASE__: str= pipe(**lowerCAmelCase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] SCREAMING_SNAKE_CASE__: Optional[int]= self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= steps SCREAMING_SNAKE_CASE__: int= scale SCREAMING_SNAKE_CASE__: Any= pipe(**lowerCAmelCase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def UpperCamelCase_ ( self ) -> int: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase_ ( self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCamelCase_ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Any= self.get_dummy_components() SCREAMING_SNAKE_CASE__: Union[str, Any]= self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowerCAmelCase ) except NotImplementedError: pass @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: Optional[int]= ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) SCREAMING_SNAKE_CASE__: Tuple= StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase , controlnet=lowerCAmelCase ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__: List[Any]= '''evil space-punk bird''' SCREAMING_SNAKE_CASE__: List[str]= load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) SCREAMING_SNAKE_CASE__: List[Any]= load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) SCREAMING_SNAKE_CASE__: Optional[Any]= pipe( lowerCAmelCase , lowerCAmelCase , control_image=lowerCAmelCase , generator=lowerCAmelCase , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) SCREAMING_SNAKE_CASE__: Union[str, Any]= output.images[0] assert image.shape == (512, 512, 3) SCREAMING_SNAKE_CASE__: str= load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9e-2
64
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
347
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( snake_case ): UpperCAmelCase : Any = """deformable_detr""" UpperCAmelCase : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Dict , a_ : Optional[int]=True , a_ : Optional[int]=None , a_ : Tuple=3 , a_ : Optional[int]=3_0_0 , a_ : Tuple=1_0_2_4 , a_ : Union[str, Any]=6 , a_ : List[str]=1_0_2_4 , a_ : Union[str, Any]=8 , a_ : Any=6 , a_ : int=1_0_2_4 , a_ : Tuple=8 , a_ : Dict=0.0 , a_ : Union[str, Any]=True , a_ : Optional[int]="relu" , a_ : int=2_5_6 , a_ : Any=0.1 , a_ : Optional[int]=0.0 , a_ : Tuple=0.0 , a_ : Union[str, Any]=0.0_2 , a_ : List[Any]=1.0 , a_ : Optional[int]=True , a_ : Tuple=False , a_ : Optional[Any]="sine" , a_ : Optional[int]="resnet50" , a_ : List[str]=True , a_ : List[Any]=False , a_ : List[str]=4 , a_ : Tuple=4 , a_ : str=4 , a_ : Tuple=False , a_ : Optional[int]=3_0_0 , a_ : int=False , a_ : Optional[Any]=1 , a_ : int=5 , a_ : Optional[int]=2 , a_ : str=1 , a_ : Optional[int]=1 , a_ : Optional[Any]=5 , a_ : Optional[Any]=2 , a_ : List[Any]=0.1 , a_ : List[Any]=0.2_5 , a_ : Dict=False , **a_ : str , ) -> Dict: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) snake_case: Union[str, Any] =CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(a_ , a_ ): snake_case: Dict =backbone_config.get('model_type' ) snake_case: List[Any] =CONFIG_MAPPING[backbone_model_type] snake_case: str =config_class.from_dict(a_ ) snake_case: List[str] =use_timm_backbone snake_case: Optional[int] =backbone_config snake_case: List[Any] =num_channels snake_case: List[Any] =num_queries snake_case: List[Any] =max_position_embeddings snake_case: str =d_model snake_case: Tuple =encoder_ffn_dim snake_case: str =encoder_layers snake_case: List[Any] =encoder_attention_heads snake_case: Optional[Any] =decoder_ffn_dim snake_case: Union[str, Any] =decoder_layers snake_case: int =decoder_attention_heads snake_case: Union[str, Any] =dropout snake_case: Optional[int] =attention_dropout snake_case: Any =activation_dropout snake_case: Dict =activation_function snake_case: Union[str, Any] =init_std snake_case: Union[str, Any] =init_xavier_std snake_case: Tuple =encoder_layerdrop snake_case: List[str] =auxiliary_loss snake_case: Dict =position_embedding_type snake_case: Any =backbone snake_case: Union[str, Any] =use_pretrained_backbone snake_case: List[Any] =dilation # deformable attributes snake_case: Union[str, Any] =num_feature_levels snake_case: str =encoder_n_points snake_case: str =decoder_n_points snake_case: Any =two_stage snake_case: Dict =two_stage_num_proposals snake_case: str =with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher snake_case: Dict =class_cost snake_case: Dict =bbox_cost snake_case: int =giou_cost # Loss coefficients snake_case: Dict =mask_loss_coefficient snake_case: int =dice_loss_coefficient snake_case: List[str] =bbox_loss_coefficient snake_case: Tuple =giou_loss_coefficient snake_case: Union[str, Any] =eos_coefficient snake_case: List[Any] =focal_alpha snake_case: str =disable_custom_kernels super().__init__(is_encoder_decoder=a_ , **a_ ) @property def UpperCamelCase ( self : Optional[Any] ) -> int: return self.encoder_attention_heads @property def UpperCamelCase ( self : List[str] ) -> int: return self.d_model def UpperCamelCase ( self : str ) -> Optional[Any]: snake_case: Dict =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: snake_case: Union[str, Any] =self.backbone_config.to_dict() snake_case: Dict =self.__class__.model_type return output
347
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ="The Nymphenburg Palace is a beautiful palace in Munich!" def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: __SCREAMING_SNAKE_CASE = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } __SCREAMING_SNAKE_CASE = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __SCREAMING_SNAKE_CASE = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=__lowerCamelCase , output_all_encodings=__lowerCamelCase , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , __lowerCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __SCREAMING_SNAKE_CASE = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab __SCREAMING_SNAKE_CASE = os.path.join(get_home_dir() , '''models''' ) __SCREAMING_SNAKE_CASE = _load_vocab(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls=__lowerCamelCase ) __SCREAMING_SNAKE_CASE = nlp.model.BERTModel( __lowerCamelCase , len(__lowerCamelCase ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=__lowerCamelCase , use_token_type_embed=__lowerCamelCase , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=__lowerCamelCase , use_decoder=__lowerCamelCase , ) original_bort.load_parameters(__lowerCamelCase , cast_dtype=__lowerCamelCase , ignore_extra=__lowerCamelCase ) __SCREAMING_SNAKE_CASE = original_bort._collect_params_with_prefix() # Build our config 🤗 __SCREAMING_SNAKE_CASE = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(__lowerCamelCase ), } __SCREAMING_SNAKE_CASE = BertConfig.from_dict(__lowerCamelCase ) __SCREAMING_SNAKE_CASE = BertForMaskedLM(__lowerCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(UpperCAmelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = hf_param.shape __SCREAMING_SNAKE_CASE = to_torch(params[gluon_param] ) __SCREAMING_SNAKE_CASE = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param __SCREAMING_SNAKE_CASE = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) __SCREAMING_SNAKE_CASE = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) __SCREAMING_SNAKE_CASE = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) __SCREAMING_SNAKE_CASE = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __SCREAMING_SNAKE_CASE = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __SCREAMING_SNAKE_CASE = hf_bort_model.bert.encoder.layer[i] # self attention __SCREAMING_SNAKE_CASE = layer.attention.self __SCREAMING_SNAKE_CASE = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) __SCREAMING_SNAKE_CASE = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) __SCREAMING_SNAKE_CASE = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) __SCREAMING_SNAKE_CASE = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) __SCREAMING_SNAKE_CASE = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) __SCREAMING_SNAKE_CASE = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output __SCREAMING_SNAKE_CASE = layer.attention.output __SCREAMING_SNAKE_CASE = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) __SCREAMING_SNAKE_CASE = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) __SCREAMING_SNAKE_CASE = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) __SCREAMING_SNAKE_CASE = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate __SCREAMING_SNAKE_CASE = layer.intermediate __SCREAMING_SNAKE_CASE = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) __SCREAMING_SNAKE_CASE = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output __SCREAMING_SNAKE_CASE = layer.output __SCREAMING_SNAKE_CASE = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) __SCREAMING_SNAKE_CASE = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) __SCREAMING_SNAKE_CASE = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) __SCREAMING_SNAKE_CASE = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('''roberta-base''' ) __SCREAMING_SNAKE_CASE = tokenizer.encode_plus(__lowerCamelCase )['''input_ids'''] # Get gluon output __SCREAMING_SNAKE_CASE = mx.nd.array([input_ids] ) __SCREAMING_SNAKE_CASE = original_bort(inputs=__lowerCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__lowerCamelCase ) __SCREAMING_SNAKE_CASE = BertModel.from_pretrained(__lowerCamelCase ) hf_bort_model.eval() __SCREAMING_SNAKE_CASE = tokenizer.encode_plus(__lowerCamelCase , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE = hf_bort_model(**__lowerCamelCase )[0] __SCREAMING_SNAKE_CASE = output_gluon[0].asnumpy() __SCREAMING_SNAKE_CASE = output_hf[0].detach().numpy() __SCREAMING_SNAKE_CASE = np.max(np.abs(hf_layer - gluon_layer ) ).item() __SCREAMING_SNAKE_CASE = np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , __lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase__ =parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
482
from __future__ import annotations from random import random from typing import Generic, TypeVar __UpperCamelCase : Any = TypeVar("KT") __UpperCamelCase : List[Any] = TypeVar("VT") class __lowerCAmelCase ( Generic[KT, VT] ): def __init__( self :Union[str, Any] , __magic_name__ :KT | str = "root" , __magic_name__ :VT | None = None ): '''simple docstring''' a = key a = value a = [] def __repr__( self :List[Any] ): '''simple docstring''' return F'Node({self.key}: {self.value})' @property def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' return len(self.forward ) class __lowerCAmelCase ( Generic[KT, VT] ): def __init__( self :Optional[Any] , __magic_name__ :float = 0.5 , __magic_name__ :int = 16 ): '''simple docstring''' a = Node[KT, VT]() a = 0 a = p a = max_level def __str__( self :Tuple ): '''simple docstring''' a = list(self ) if len(__magic_name__ ) == 0: return F'SkipList(level={self.level})' a = max((len(str(__magic_name__ ) ) for item in items) , default=4 ) a = max(__magic_name__ , 4 ) + 4 a = self.head a = [] a = node.forward.copy() lines.append(F'[{node.key}]'.ljust(__magic_name__ , """-""" ) + """* """ * len(__magic_name__ ) ) lines.append(""" """ * label_size + """| """ * len(__magic_name__ ) ) while len(node.forward ) != 0: a = node.forward[0] lines.append( F'[{node.key}]'.ljust(__magic_name__ , """-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(__magic_name__ ) ) a = node.forward lines.append("""None""".ljust(__magic_name__ ) + """* """ * len(__magic_name__ ) ) return F'SkipList(level={self.level})\n' + "\n".join(__magic_name__ ) def __iter__( self :int ): '''simple docstring''' a = self.head while len(node.forward ) != 0: yield node.forward[0].key a = node.forward[0] def lowerCamelCase__ ( self :int ): '''simple docstring''' a = 1 while random() < self.p and level < self.max_level: level += 1 return level def lowerCamelCase__ ( self :Dict , __magic_name__ :int ): '''simple docstring''' a = [] a = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: a = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__magic_name__ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def lowerCamelCase__ ( self :List[str] , __magic_name__ :KT ): '''simple docstring''' a , a = self._locate_node(__magic_name__ ) if node is not None: for i, update_node in enumerate(__magic_name__ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: a = node.forward[i] else: a = update_node.forward[:i] def lowerCamelCase__ ( self :List[str] , __magic_name__ :KT , __magic_name__ :VT ): '''simple docstring''' a , a = self._locate_node(__magic_name__ ) if node is not None: a = value else: a = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __magic_name__ ): update_vector.append(self.head ) a = level a = Node(__magic_name__ , __magic_name__ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__magic_name__ ) else: a = new_node def lowerCamelCase__ ( self :Dict , __magic_name__ :VT ): '''simple docstring''' a , a = self._locate_node(__magic_name__ ) if node is not None: return node.value return None def __A ( ) -> Tuple: a = SkipList() skip_list.insert("""Key1""" , 3 ) skip_list.insert("""Key2""" , 12 ) skip_list.insert("""Key3""" , 41 ) skip_list.insert("""Key4""" , -19 ) a = skip_list.head a = {} while node.level != 0: a = node.forward[0] a = node.value assert len(__lowerCamelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def __A ( ) -> Tuple: a = SkipList() skip_list.insert("""Key1""" , 10 ) skip_list.insert("""Key1""" , 12 ) skip_list.insert("""Key5""" , 7 ) skip_list.insert("""Key7""" , 10 ) skip_list.insert("""Key10""" , 5 ) skip_list.insert("""Key7""" , 7 ) skip_list.insert("""Key5""" , 5 ) skip_list.insert("""Key10""" , 10 ) a = skip_list.head a = {} while node.level != 0: a = node.forward[0] a = node.value if len(__lowerCamelCase ) != 4: print() assert len(__lowerCamelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def __A ( ) -> Optional[int]: a = SkipList() assert skip_list.find("""Some key""" ) is None def __A ( ) -> Optional[int]: a = SkipList() skip_list.insert("""Key2""" , 20 ) assert skip_list.find("""Key2""" ) == 20 skip_list.insert("""Some Key""" , 10 ) skip_list.insert("""Key2""" , 8 ) skip_list.insert("""V""" , 13 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 10 assert skip_list.find("""V""" ) == 13 def __A ( ) -> str: a = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def __A ( ) -> int: a = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def __A ( ) -> Union[str, Any]: a = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 14 assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def __A ( ) -> Dict: a = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 142 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""X""" ) def traverse_keys(__lowerCamelCase ): yield node.key for forward_node in node.forward: yield from traverse_keys(__lowerCamelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __A ( ) -> Optional[Any]: def is_sorted(__lowerCamelCase ): return all(next_item >= item for item, next_item in zip(__lowerCamelCase , lst[1:] ) ) a = SkipList() for i in range(10 ): skip_list.insert(__lowerCamelCase , __lowerCamelCase ) assert is_sorted(list(__lowerCamelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(__lowerCamelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(__lowerCamelCase ) ) def __A ( ) -> Optional[Any]: for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __A ( ) -> Optional[int]: a = SkipList() skip_list.insert(2 , """2""" ) skip_list.insert(4 , """4""" ) skip_list.insert(6 , """4""" ) skip_list.insert(4 , """5""" ) skip_list.insert(8 , """4""" ) skip_list.insert(9 , """4""" ) skip_list.delete(4 ) print(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
468
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class a__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=False , lowercase=True , lowercase=False , lowercase=False , lowercase=19 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ) -> Any: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__A , esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} , ) return config def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' A__ = EsmForProteinFolding(config=__A ).float() model.to(__A ) model.eval() A__ = model(__A , attention_mask=__A ) A__ = model(__A ) A__ = model(__A ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" __lowerCamelCase = False __lowerCamelCase = (EsmForProteinFolding,) if is_torch_available() else () __lowerCamelCase = () __lowerCamelCase = {} if is_torch_available() else {} __lowerCamelCase = False def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = EsmFoldModelTester(self ) A__ = ConfigTester(self , config_class=__A , hidden_size=37 ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) @unittest.skip("Does not support attention outputs" ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip def UpperCamelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing" ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing" ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("ESMFold does not support passing input embeds!" ) def UpperCamelCase ( self ) -> int: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("ESMFold only has one output format." ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("This test doesn\'t work for ESMFold and doesn\'t test core functionality" ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("ESMFold does not support input chunking." ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments." ) def UpperCamelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip("ESMFold doesn\'t support torchscript compilation." ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("ESMFold doesn\'t support torchscript compilation." ) def UpperCamelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip("ESMFold doesn\'t support torchscript compilation." ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' pass @unittest.skip("ESMFold doesn\'t support data parallel." ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase ( self ) -> int: '''simple docstring''' pass @require_torch class a__ ( __lowercase ): """simple docstring""" @slow def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() A__ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A__ = model(__A )["positions"] A__ = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __A , atol=1e-4 ) )
714
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , lowercase=True , lowercase=1 / 255 , lowercase=True , ) -> Union[str, Any]: '''simple docstring''' A__ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def UpperCamelCase ( self ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self , lowercase , lowercase=False ) -> int: '''simple docstring''' if not batched: A__ = image_inputs[0] if isinstance(lowercase , Image.Image ): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size["shortest_edge"] * h / w ) A__ = self.size["shortest_edge"] elif w > h: A__ = self.size["shortest_edge"] A__ = int(self.size["shortest_edge"] * w / h ) else: A__ = self.size["shortest_edge"] A__ = self.size["shortest_edge"] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(lowercase , key=lambda lowercase : item[0] )[0] A__ = max(lowercase , key=lambda lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = DetaImageProcessor if is_vision_available() else None def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = DetaImageProcessingTester(self ) @property def UpperCamelCase ( self ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , "image_mean" ) ) self.assertTrue(hasattr(lowercase , "image_std" ) ) self.assertTrue(hasattr(lowercase , "do_normalize" ) ) self.assertTrue(hasattr(lowercase , "do_resize" ) ) self.assertTrue(hasattr(lowercase , "do_rescale" ) ) self.assertTrue(hasattr(lowercase , "do_pad" ) ) self.assertTrue(hasattr(lowercase , "size" ) ) def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , lowercase ) def UpperCamelCase ( self ) -> int: '''simple docstring''' pass def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: A__ = json.loads(f.read() ) A__ = {"image_id": 39769, "annotations": target} # encode them A__ = DetaImageProcessor() A__ = image_processing(images=lowercase , annotations=lowercase , return_tensors="pt" ) # verify pixel values A__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowercase ) A__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowercase , atol=1e-4 ) ) # verify area A__ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowercase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowercase ) A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowercase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowercase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowercase ) ) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowercase ) ) # verify orig_size A__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowercase ) ) # verify size A__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowercase ) ) @slow def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: A__ = json.loads(f.read() ) A__ = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} A__ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them A__ = DetaImageProcessor(format="coco_panoptic" ) A__ = image_processing(images=lowercase , annotations=lowercase , masks_path=lowercase , return_tensors="pt" ) # verify pixel values A__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowercase ) A__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowercase , atol=1e-4 ) ) # verify area A__ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowercase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowercase ) A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowercase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowercase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowercase ) ) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowercase ) ) # verify masks A__ = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowercase ) # verify orig_size A__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowercase ) ) # verify size A__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowercase ) )
626
0
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _lowerCAmelCase = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _lowerCAmelCase = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _lowerCAmelCase = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def UpperCamelCase_ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def UpperCamelCase_ ( self : Optional[Any] , _A : Optional[Any] , _A : int , _A : int=4 , _A : Union[str, Any]=False ): _UpperCamelCase = compute_bleu( reference_corpus=_A , translation_corpus=_A , max_order=_A , smooth=_A ) ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
10
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class UpperCAmelCase ( yaml.SafeLoader ): def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = [self.constructed_objects[key_node] for key_node, _ in node.value] _snake_case = [tuple(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else key for key in keys] _snake_case = Counter(__lowerCamelCase ) _snake_case = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"""Got duplicate yaml keys: {duplicate_keys}""" ) def __UpperCAmelCase ( self : str , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]=False ): """simple docstring""" _snake_case = super().construct_mapping(__lowerCamelCase , deep=__lowerCamelCase ) self._check_no_duplicates_on_constructed_node(__lowerCamelCase ) return mapping def snake_case ( lowerCAmelCase_ ) -> Tuple[Optional[str], str]: _snake_case = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _snake_case = full_content[1:].index('''---''' ) + 1 _snake_case = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase_ ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): # class attributes A__ : int = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def __UpperCAmelCase ( cls : str , __lowerCamelCase : Path ): """simple docstring""" with open(__lowerCamelCase , encoding='''utf-8''' ) as readme_file: _snake_case , _snake_case = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__lowerCamelCase ) else: return cls() def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Path ): """simple docstring""" if path.exists(): with open(__lowerCamelCase , encoding='''utf-8''' ) as readme_file: _snake_case = readme_file.read() else: _snake_case = None _snake_case = self._to_readme(__lowerCamelCase ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if readme_content is not None: _snake_case , _snake_case = _split_yaml_from_readme(__lowerCamelCase ) _snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: _snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def __UpperCAmelCase ( cls : Tuple , __lowerCamelCase : str ): """simple docstring""" _snake_case = yaml.load(__lowerCamelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _snake_case = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__lowerCamelCase , allow_unicode=__lowerCamelCase , encoding='''utf-8''' , ).decode('''utf-8''' ) snake_case = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser snake_case = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') snake_case = ap.parse_args() snake_case = Path(args.readme_filepath) snake_case = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
103
0
_UpperCAmelCase : List[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _UpperCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _UpperCAmelCase : str = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
715
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Dict = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Optional[int] = '''blip_2_vision_model''' def __init__( self , snake_case=1408 , snake_case=6144 , snake_case=39 , snake_case=16 , snake_case=224 , snake_case=14 , snake_case="gelu" , snake_case=0.0_00_01 , snake_case=0.0 , snake_case=1e-1_0 , snake_case=True , **snake_case , ): super().__init__(**snake_case ) snake_case_ = hidden_size snake_case_ = intermediate_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = patch_size snake_case_ = image_size snake_case_ = initializer_range snake_case_ = attention_dropout snake_case_ = layer_norm_eps snake_case_ = hidden_act snake_case_ = qkv_bias @classmethod def a ( cls , snake_case , **snake_case ): cls._set_token_in_kwargs(snake_case ) snake_case_ , snake_case_ = cls.get_config_dict(snake_case , **snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": snake_case_ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case , **snake_case ) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Any = '''blip_2_qformer''' def __init__( self , snake_case=3_0522 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=0.02 , snake_case=1e-1_2 , snake_case=0 , snake_case="absolute" , snake_case=2 , snake_case=1408 , **snake_case , ): super().__init__(pad_token_id=snake_case , **snake_case ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = cross_attention_frequency snake_case_ = encoder_hidden_size @classmethod def a ( cls , snake_case , **snake_case ): cls._set_token_in_kwargs(snake_case ) snake_case_ , snake_case_ = cls.get_config_dict(snake_case , **snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": snake_case_ = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case , **snake_case ) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Optional[int] = '''blip-2''' __SCREAMING_SNAKE_CASE : Dict = True def __init__( self , snake_case=None , snake_case=None , snake_case=None , snake_case=32 , **snake_case ): super().__init__(**snake_case ) if vision_config is None: snake_case_ = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: snake_case_ = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: snake_case_ = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) snake_case_ = BlipaVisionConfig(**snake_case ) snake_case_ = BlipaQFormerConfig(**snake_case ) snake_case_ = text_config['model_type'] if 'model_type' in text_config else 'opt' snake_case_ = CONFIG_MAPPING[text_model_type](**snake_case ) snake_case_ = self.text_config.tie_word_embeddings snake_case_ = self.text_config.is_encoder_decoder snake_case_ = num_query_tokens snake_case_ = self.vision_config.hidden_size snake_case_ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case_ = 1.0 snake_case_ = 0.02 @classmethod def a ( cls , snake_case , snake_case , snake_case , **snake_case , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **snake_case , ) def a ( self ): snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.vision_config.to_dict() snake_case_ = self.qformer_config.to_dict() snake_case_ = self.text_config.to_dict() snake_case_ = self.__class__.model_type return output
108
0
import math def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = 0 ) -> list: '''simple docstring''' lowerCamelCase__: Union[str, Any] = end or len(_UpperCamelCase ) for i in range(_UpperCamelCase , _UpperCamelCase ): lowerCamelCase__: Tuple = i lowerCamelCase__: List[str] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCamelCase__: Any = array[temp_index - 1] temp_index -= 1 lowerCamelCase__: Tuple = temp_index_value return array def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> None: # Max Heap '''simple docstring''' lowerCamelCase__: Dict = index lowerCamelCase__: str = 2 * index + 1 # Left Node lowerCamelCase__: Tuple = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCamelCase__: Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCamelCase__: Optional[Any] = right_index if largest != index: lowerCamelCase__ , lowerCamelCase__: Any = array[largest], array[index] heapify(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase ) -> list: '''simple docstring''' lowerCamelCase__: List[str] = len(_UpperCamelCase ) for i in range(n // 2 , -1 , -1 ): heapify(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(n - 1 , 0 , -1 ): lowerCamelCase__ , lowerCamelCase__: Any = array[0], array[i] heapify(_UpperCamelCase , 0 , _UpperCamelCase ) return array def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: '''simple docstring''' lowerCamelCase__: Union[str, Any] = low lowerCamelCase__: Optional[Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCamelCase__ , lowerCamelCase__: int = array[j], array[i] i += 1 def __lowerCAmelCase ( _UpperCamelCase ) -> list: '''simple docstring''' if len(_UpperCamelCase ) == 0: return array lowerCamelCase__: List[Any] = 2 * math.ceil(math.loga(len(_UpperCamelCase ) ) ) lowerCamelCase__: Optional[Any] = 16 return intro_sort(_UpperCamelCase , 0 , len(_UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> list: '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_UpperCamelCase ) max_depth -= 1 lowerCamelCase__: Any = median_of_a(_UpperCamelCase , _UpperCamelCase , start + ((end - start) // 2) + 1 , end - 1 ) lowerCamelCase__: Optional[Any] = partition(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) intro_sort(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowerCamelCase__: Optional[Any] = p return insertion_sort(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() _lowercase = input('Enter numbers separated by a comma : ').strip() _lowercase = [float(item) for item in user_input.split(',')] print(sort(unsorted))
306
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase__ ( A__ ): def __init__( self : Tuple , *__a : Tuple , __a : Dict=None , __a : List[str]=None , **__a : Dict ): '''simple docstring''' super().__init__(*__a , **__a ) lowerCamelCase__: str = eval_examples lowerCamelCase__: Optional[int] = post_process_function def lowerCamelCase_ ( self : str , __a : Optional[Dataset] = None , __a : List[Any]=None , __a : Optional[List[str]] = None , __a : str = "eval" , **__a : Tuple , ): '''simple docstring''' lowerCamelCase__: Tuple = gen_kwargs.copy() lowerCamelCase__: Union[str, Any] = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) lowerCamelCase__: Tuple = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) lowerCamelCase__: Optional[Any] = gen_kwargs lowerCamelCase__: List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase__: Union[str, Any] = self.get_eval_dataloader(__a ) lowerCamelCase__: Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase__: Optional[int] = self.compute_metrics lowerCamelCase__: Union[str, Any] = None lowerCamelCase__: Dict = time.time() lowerCamelCase__: Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase__: Any = eval_loop( __a , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: lowerCamelCase__: Any = compute_metrics lowerCamelCase__: int = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCamelCase__: Tuple = self.post_process_function(__a , __a , __a ) lowerCamelCase__: List[Any] = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): lowerCamelCase__: Dict = metrics.pop(__a ) metrics.update(output.metrics ) else: lowerCamelCase__: int = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase__: List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def lowerCamelCase_ ( self : str , __a : List[str] , __a : List[Any] , __a : Tuple=None , __a : str = "test" , **__a : Optional[int] ): '''simple docstring''' lowerCamelCase__: List[Any] = gen_kwargs.copy() lowerCamelCase__: Optional[Any] = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase__: Any = self.compute_metrics lowerCamelCase__: Optional[int] = None lowerCamelCase__: int = time.time() lowerCamelCase__: Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase__: List[str] = eval_loop( __a , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: lowerCamelCase__: Any = compute_metrics lowerCamelCase__: Optional[int] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase__: str = self.post_process_function(__a , __a , __a , """predict""" ) lowerCamelCase__: str = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): lowerCamelCase__: Dict = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
306
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __snake_case : int = TypeVar("T") __snake_case : List[Any] = TypeVar("U") class A ( Generic[T, U] ): def __init__( self , snake_case_ , snake_case_ ) -> Any: _a = key _a = val _a = None _a = None def __repr__( self ) -> str: return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class A ( Generic[T, U] ): def __init__( self ) -> None: _a = DoubleLinkedListNode(snake_case_ , snake_case_ ) _a = DoubleLinkedListNode(snake_case_ , snake_case_ ) _a , _a = self.rear, self.head def __repr__( self ) -> str: _a = ["DoubleLinkedList"] _a = self.head while node.next is not None: rep.append(str(snake_case_ ) ) _a = node.next rep.append(str(self.rear ) ) return ",\n ".join(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> None: _a = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _a = node _a = previous _a = node _a = self.rear def __lowerCAmelCase ( self , snake_case_ ) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None _a = node.next _a = node.prev _a = None _a = None return node class A ( Generic[T, U] ): __UpperCAmelCase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , snake_case_ ) -> Any: _a = DoubleLinkedList() _a = capacity _a = 0 _a = 0 _a = 0 _a = {} def __repr__( self ) -> str: return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , snake_case_ ) -> bool: return key in self.cache def __lowerCAmelCase ( self , snake_case_ ) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _a = self.cache[key] _a = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(snake_case_ ) return node.val self.miss += 1 return None def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _a = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(snake_case_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _a = DoubleLinkedListNode(snake_case_ , snake_case_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _a = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _a = value self.list.add(snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ = 1_2_8 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(snake_case_ ) -> Callable[..., U]: def cache_decorator_wrapper(*snake_case_ ) -> U: if func not in cls.decorator_function_to_instance_map: _a = LRUCache(snake_case_ ) _a = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _a = func(*snake_case_ ) cls.decorator_function_to_instance_map[func].put(args[0] , snake_case_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(snake_case_ , "cache_info" , snake_case_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = StableDiffusionXLImgaImgPipeline __magic_name__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __magic_name__ = PipelineTesterMixin.required_optional_params - {"latents"} __magic_name__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __magic_name__ = IMAGE_TO_IMAGE_IMAGE_PARAMS __magic_name__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=snake_case__ , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _lowerCAmelCase : List[Any] = EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=32 , ) _lowerCAmelCase : Optional[Any] = CLIPTextModel(snake_case__ ) _lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=snake_case__ ) _lowerCAmelCase : List[Any] = CLIPTextModelWithProjection(snake_case__ ) _lowerCAmelCase : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=snake_case__ ) _lowerCAmelCase : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Tuple = image / 2 + 0.5 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Dict = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : Any = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : str = self.get_dummy_components() _lowerCAmelCase : List[str] = StableDiffusionXLImgaImgPipeline(**snake_case__ ) _lowerCAmelCase : Tuple = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(snake_case__ ) _lowerCAmelCase : Optional[Any] = sd_pipe(**snake_case__ ).images _lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase : List[Any] = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.get_dummy_components() _lowerCAmelCase : str = StableDiffusionXLImgaImgPipeline(**snake_case__ ) _lowerCAmelCase : str = sd_pipe.to(snake_case__ ) _lowerCAmelCase : Any = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) # forward without prompt embeds _lowerCAmelCase : Any = self.get_dummy_inputs(snake_case__ ) _lowerCAmelCase : Union[str, Any] = 3 * ['this is a negative prompt'] _lowerCAmelCase : Any = negative_prompt _lowerCAmelCase : int = 3 * [inputs['prompt']] _lowerCAmelCase : Optional[Any] = sd_pipe(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds _lowerCAmelCase : List[str] = self.get_dummy_inputs(snake_case__ ) _lowerCAmelCase : int = 3 * ['this is a negative prompt'] _lowerCAmelCase : Optional[Any] = 3 * [inputs.pop('prompt' )] ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Tuple = sd_pipe.encode_prompt(snake_case__ , negative_prompt=snake_case__ ) _lowerCAmelCase : int = sd_pipe( **snake_case__ , prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , pooled_prompt_embeds=snake_case__ , negative_pooled_prompt_embeds=snake_case__ , ) _lowerCAmelCase : List[str] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self , snake_case__ , snake_case__="cpu" , snake_case__=torch.floataa , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : List[str] = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 64, 64) ) _lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) _lowerCAmelCase : int = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Any = self.get_inputs(snake_case__ ) _lowerCAmelCase : List[str] = pipe(**snake_case__ ).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : str = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
444
'''simple docstring''' import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets lowerCAmelCase : Optional[int] = datasets.logging.get_logger(__name__) lowerCAmelCase : List[str] = """\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } """ lowerCAmelCase : List[Any] = """\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project's README at https://github.com/google-research/bleurt#readme for more information. """ lowerCAmelCase : str = """ BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: 'scores': List of scores. Examples: >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> bleurt = datasets.load_metric(\"bleurt\") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results[\"scores\"]]) [1.03, 1.04] """ lowerCAmelCase : Optional[Any] = { """bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""", """bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""", """bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""", """bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""", """bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""", """bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""", """BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""", """BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""", """BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""", """BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def a ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , ) def a ( self , snake_case__ ): '''simple docstring''' if self.config_name == "default": logger.warning( 'Using default BLEURT-Base checkpoint for sequence maximum length 128. ' 'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').' ) _lowerCAmelCase : Tuple = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: _lowerCAmelCase : int = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: _lowerCAmelCase : str = self.config_name.upper() else: raise KeyError( F'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' ) # download the model checkpoint specified by self.config_name and set up the scorer _lowerCAmelCase : Optional[Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) _lowerCAmelCase : str = score.BleurtScorer(os.path.join(snake_case__ , snake_case__ ) ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = self.scorer.score(references=snake_case__ , candidates=snake_case__ ) return {"scores": scores}
444
1
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCamelCase : Optional[int] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCamelCase : List[str] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCamelCase : Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase : Optional[int] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase : List[str] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCamelCase : Dict = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase : Tuple = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCamelCase : Optional[int] = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase : List[Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCamelCase : Optional[int] = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase : List[Any] = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCamelCase : Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase : Tuple = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCamelCase : Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCamelCase : Tuple = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCamelCase : Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCamelCase : Union[str, Any] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCamelCase : List[str] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCamelCase : str = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCamelCase : List[str] = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase : Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCamelCase : List[str] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCamelCase : Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCamelCase : Optional[int] = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase : List[Any] = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCamelCase : Tuple = '''''' lowerCamelCase : int = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCamelCase : List[str] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCamelCase : Union[str, Any] = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __lowerCAmelCase ( __snake_case , __snake_case ): assert ReadMe.from_string(__snake_case , __snake_case ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __lowerCAmelCase ( __snake_case , __snake_case ): with pytest.raises(__snake_case , match=re.escape(expected_error.format(path="root" ) ) ): __lowerCAmelCase = ReadMe.from_string(__snake_case , __snake_case ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __lowerCAmelCase ( __snake_case , __snake_case ): with pytest.raises(__snake_case , match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(__snake_case , __snake_case ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __lowerCAmelCase ( __snake_case ): ReadMe.from_string(__snake_case , __snake_case , suppress_parsing_errors=__snake_case ) @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __lowerCAmelCase ( __snake_case , __snake_case ): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = Path(__snake_case ) / "README.md" with open(__snake_case , "w+" ) as readme_file: readme_file.write(__snake_case ) __lowerCAmelCase = ReadMe.from_readme(__snake_case , __snake_case ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __lowerCAmelCase ( __snake_case , __snake_case ): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = Path(__snake_case ) / "README.md" with open(__snake_case , "w+" ) as readme_file: readme_file.write(__snake_case ) __lowerCAmelCase = expected_error.format(path=__snake_case ) with pytest.raises(__snake_case , match=re.escape(__snake_case ) ): __lowerCAmelCase = ReadMe.from_readme(__snake_case , __snake_case ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __lowerCAmelCase ( __snake_case , __snake_case ): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = Path(__snake_case ) / "README.md" with open(__snake_case , "w+" ) as readme_file: readme_file.write(__snake_case ) __lowerCAmelCase = expected_error.format(path=__snake_case ) with pytest.raises(__snake_case , match=re.escape(__snake_case ) ): ReadMe.from_readme(__snake_case , __snake_case ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __lowerCAmelCase ( __snake_case ): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = Path(__snake_case ) / "README.md" with open(__snake_case , "w+" ) as readme_file: readme_file.write(__snake_case ) ReadMe.from_readme(__snake_case , __snake_case , suppress_parsing_errors=__snake_case )
290
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def __lowerCAmelCase ( __snake_case ): __lowerCAmelCase = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , __snake_case ).groups()[0] class _UpperCamelCase (a_ ): def __init__( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None )-> Dict: __lowerCAmelCase = file_names __lowerCAmelCase = image_transform __lowerCAmelCase = label_to_id def __len__( self )-> Optional[int]: return len(self.file_names ) def __getitem__( self , __UpperCamelCase )-> Union[str, Any]: __lowerCAmelCase = self.file_names[idx] __lowerCAmelCase = PIL.Image.open(__UpperCamelCase ) __lowerCAmelCase = raw_image.convert("RGB" ) if self.image_transform is not None: __lowerCAmelCase = self.image_transform(__UpperCamelCase ) __lowerCAmelCase = extract_label(__UpperCamelCase ) if self.label_to_id is not None: __lowerCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def __lowerCAmelCase ( __snake_case , __snake_case ): # Initialize accelerator if args.with_tracking: __lowerCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: __lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["lr"] __lowerCAmelCase = int(config["num_epochs"] ) __lowerCAmelCase = int(config["seed"] ) __lowerCAmelCase = int(config["batch_size"] ) __lowerCAmelCase = config["image_size"] if not isinstance(__snake_case , (list, tuple) ): __lowerCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": __lowerCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __lowerCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: __lowerCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __lowerCAmelCase = os.path.split(__snake_case )[-1].split("." )[0] accelerator.init_trackers(__snake_case , __snake_case ) # Grab all the image filenames __lowerCAmelCase = [os.path.join(args.data_dir , __snake_case ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences __lowerCAmelCase = [extract_label(__snake_case ) for fname in file_names] __lowerCAmelCase = list(set(__snake_case ) ) id_to_label.sort() __lowerCAmelCase = {lbl: i for i, lbl in enumerate(__snake_case )} # Set the seed before splitting the data. np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # Split our filenames between train and validation __lowerCAmelCase = np.random.permutation(len(__snake_case ) ) __lowerCAmelCase = int(0.8 * len(__snake_case ) ) __lowerCAmelCase = random_perm[:cut] __lowerCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop __lowerCAmelCase = Compose([RandomResizedCrop(__snake_case , scale=(0.5, 1.0) ), ToTensor()] ) __lowerCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=__snake_case , label_to_id=__snake_case ) # For evaluation, we use a deterministic Resize __lowerCAmelCase = Compose([Resize(__snake_case ), ToTensor()] ) __lowerCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__snake_case , label_to_id=__snake_case ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) __lowerCAmelCase = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = create_model("resnet50d" , pretrained=__snake_case , num_classes=len(__snake_case ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __lowerCAmelCase = False for param in model.get_classifier().parameters(): __lowerCAmelCase = True # We normalize the batches of images to be a bit faster. __lowerCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) __lowerCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler __lowerCAmelCase = OneCycleLR(optimizer=__snake_case , max_lr=__snake_case , epochs=__snake_case , steps_per_epoch=len(__snake_case ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over __lowerCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly __lowerCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) __lowerCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __lowerCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __lowerCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __lowerCAmelCase = os.path.splitext(__snake_case )[0] if "epoch" in training_difference: __lowerCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1 __lowerCAmelCase = None else: __lowerCAmelCase = int(training_difference.replace("step_" , "" ) ) __lowerCAmelCase = resume_step // len(__snake_case ) resume_step -= starting_epoch * len(__snake_case ) # Now we train the model for epoch in range(__snake_case , __snake_case ): model.train() if args.with_tracking: __lowerCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __lowerCAmelCase = accelerator.skip_first_batches(__snake_case , __snake_case ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __lowerCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __lowerCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __lowerCAmelCase = (batch["image"] - mean) / std __lowerCAmelCase = model(__snake_case ) __lowerCAmelCase = torch.nn.functional.cross_entropy(__snake_case , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__snake_case , __snake_case ): __lowerCAmelCase = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __lowerCAmelCase = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) model.eval() __lowerCAmelCase = 0 __lowerCAmelCase = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. __lowerCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __lowerCAmelCase = (batch["image"] - mean) / std with torch.no_grad(): __lowerCAmelCase = model(__snake_case ) __lowerCAmelCase = outputs.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) ) __lowerCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __lowerCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(__snake_case ), "epoch": epoch, } , step=__snake_case , ) if checkpointing_steps == "epoch": __lowerCAmelCase = F"""epoch_{epoch}""" if args.output_dir is not None: __lowerCAmelCase = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) if args.with_tracking: accelerator.end_training() def __lowerCAmelCase ( ): __lowerCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=__snake_case , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=__snake_case , default=__snake_case , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=__snake_case , default=__snake_case , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=__snake_case , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
290
1
import colorsys from PIL import Image # type: ignore def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[Any]: snake_case : Optional[int] = x snake_case : Tuple = y for step in range(lowerCAmelCase__ ): # noqa: B007 snake_case : Union[str, Any] = a * a - b * b + x snake_case : int = 2 * a * b + y snake_case : int = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ ,1 ,1 ) ) def SCREAMING_SNAKE_CASE__ ( lowercase = 800 ,lowercase = 600 ,lowercase = -0.6 ,lowercase = 0 ,lowercase = 3.2 ,lowercase = 50 ,lowercase = True ,) -> List[str]: snake_case : Tuple = Image.new("""RGB""" ,(image_width, image_height) ) snake_case : Optional[int] = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates snake_case : List[Any] = figure_width / image_width * image_height snake_case : List[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width snake_case : Dict = figure_center_y + (image_y / image_height - 0.5) * figure_height snake_case : Any = get_distance(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: snake_case : Any = get_color_coded_rgb(lowerCAmelCase__ ) else: snake_case : Optional[int] = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase : Optional[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
587
import argparse import os import re _lowercase : List[str] ="""src/diffusers""" # Pattern that looks at the indentation in a line. _lowercase : str =re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. _lowercase : Dict =re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowercase : Union[str, Any] =re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. _lowercase : Dict =re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowercase : Tuple =re.compile(r"""\[([^\]]+)\]""") def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): lowerCamelCase_ : int = _re_indent.search(lowerCAmelCase__ ) return "" if search is None else search.groups()[0] def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__="" ,lowerCAmelCase__=None ,lowerCAmelCase__=None ): lowerCamelCase_ : Optional[Any] = 0 lowerCamelCase_ : Union[str, Any] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(lowerCAmelCase__ ): index += 1 lowerCamelCase_ : Any = ['\n'.join(lines[:index] )] else: lowerCamelCase_ : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCamelCase_ : List[str] = [lines[index]] index += 1 while index < len(lowerCAmelCase__ ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCAmelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(lowerCAmelCase__ ) ) if index < len(lowerCAmelCase__ ) - 1: lowerCamelCase_ : int = [lines[index + 1]] index += 1 else: lowerCamelCase_ : List[str] = [] else: blocks.append('\n'.join(lowerCAmelCase__ ) ) lowerCamelCase_ : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCAmelCase__ ) > 0: blocks.append('\n'.join(lowerCAmelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCAmelCase__ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): def _inner(lowerCAmelCase__ ): return key(lowerCAmelCase__ ).lower().replace('_' ,'' ) return _inner def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__=None ): # If no key is provided, we use a noop. def noop(lowerCAmelCase__ ): return x if key is None: lowerCamelCase_ : int = noop # Constants are all uppercase, they go first. lowerCamelCase_ : Any = [obj for obj in objects if key(lowerCAmelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCamelCase_ : Dict = [obj for obj in objects if key(lowerCAmelCase__ )[0].isupper() and not key(lowerCAmelCase__ ).isupper()] # Functions begin with a lowercase, they go last. lowerCamelCase_ : Any = [obj for obj in objects if not key(lowerCAmelCase__ )[0].isupper()] lowerCamelCase_ : Optional[Any] = ignore_underscore(lowerCAmelCase__ ) return sorted(lowerCAmelCase__ ,key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ ,key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ ,key=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): # This inner function sort imports between [ ]. def _replace(lowerCAmelCase__ ): lowerCamelCase_ : Dict = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCamelCase_ : Optional[int] = [part.strip().replace('"' ,'' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCamelCase_ : str = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(lowerCAmelCase__ )] ) + "]" lowerCamelCase_ : Tuple = import_statement.split('\n' ) if len(lowerCAmelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCamelCase_ : int = 2 if lines[1].strip() == '[' else 1 lowerCamelCase_ : Any = [(i, _re_strip_line.search(lowerCAmelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCamelCase_ : str = sort_objects(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : x[1] ) lowerCamelCase_ : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCAmelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCamelCase_ : Optional[int] = _re_bracket_content.sub(_replace ,lines[1] ) else: lowerCamelCase_ : Any = [part.strip().replace('"' ,'' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCamelCase_ : List[Any] = keys[:-1] lowerCamelCase_ : Optional[Any] = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(lowerCAmelCase__ )] ) return "\n".join(lowerCAmelCase__ ) else: # Finally we have to deal with imports fitting on one line lowerCamelCase_ : Any = _re_bracket_content.sub(_replace ,lowerCAmelCase__ ) return import_statement def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__=True ): with open(lowerCAmelCase__ ,'r' ) as f: lowerCamelCase_ : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCamelCase_ : int = split_code_in_indented_blocks( lowerCAmelCase__ ,start_prompt='_import_structure = {' ,end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 ,len(lowerCAmelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCamelCase_ : Any = main_blocks[block_idx] lowerCamelCase_ : Tuple = block.split('\n' ) # Get to the start of the imports. lowerCamelCase_ : Optional[int] = 0 while line_idx < len(lowerCAmelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCamelCase_ : List[Any] = len(lowerCAmelCase__ ) else: line_idx += 1 if line_idx >= len(lowerCAmelCase__ ): continue # Ignore beginning and last line: they don't contain anything. lowerCamelCase_ : Tuple = '\n'.join(block_lines[line_idx:-1] ) lowerCamelCase_ : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCamelCase_ : Dict = split_code_in_indented_blocks(lowerCAmelCase__ ,indent_level=lowerCAmelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCamelCase_ : List[str] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCamelCase_ : Tuple = [(pattern.search(lowerCAmelCase__ ).groups()[0] if pattern.search(lowerCAmelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCamelCase_ : Any = [(i, key) for i, key in enumerate(lowerCAmelCase__ ) if key is not None] lowerCamelCase_ : Optional[Any] = [x[0] for x in sorted(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCamelCase_ : int = 0 lowerCamelCase_ : Dict = [] for i in range(len(lowerCAmelCase__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCamelCase_ : Tuple = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowerCAmelCase__ ) count += 1 # And we put our main block back together with its first and last line. lowerCamelCase_ : Tuple = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCAmelCase__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(lowerCAmelCase__ ,'w' ) as f: f.write('\n'.join(lowerCAmelCase__ ) ) def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__=True ): lowerCamelCase_ : Dict = [] for root, _, files in os.walk(lowerCAmelCase__ ): if "__init__.py" in files: lowerCamelCase_ : Optional[int] = sort_imports(os.path.join(lowerCAmelCase__ ,'__init__.py' ) ,check_only=lowerCAmelCase__ ) if result: lowerCamelCase_ : Dict = [os.path.join(lowerCAmelCase__ ,'__init__.py' )] if len(lowerCAmelCase__ ) > 0: raise ValueError(F"Would overwrite {len(lowerCAmelCase__ )} files, run `make style`." ) if __name__ == "__main__": _lowercase : int =argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") _lowercase : Union[str, Any] =parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
364
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
720
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
0
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __a: """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=64 ,_SCREAMING_SNAKE_CASE=None ) -> int: UpperCAmelCase_ : List[Any] = np.random.default_rng(_lowerCAmelCase ) UpperCAmelCase_ : str = length UpperCAmelCase_ : Tuple = rng.normal(size=(length,) ).astype(np.floataa ) UpperCAmelCase_ : Optional[int] = a * self.x + b + rng.normal(scale=0.1 ,size=(length,) ).astype(np.floataa ) def __len__( self ) -> List[str]: return self.length def __getitem__( self ,_SCREAMING_SNAKE_CASE ) -> Any: return {"x": self.x[i], "y": self.y[i]} class __a( torch.nn.Module ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=False ) -> Optional[int]: super().__init__() UpperCAmelCase_ : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCAmelCase_ : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCAmelCase_ : List[Any] = True def a__ ( self ,_SCREAMING_SNAKE_CASE=None ) -> int: if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) UpperCAmelCase_ : int = False return x * self.a[0] + self.b[0] class __a( torch.nn.Module ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=False ) -> List[Any]: super().__init__() UpperCAmelCase_ : Tuple = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) UpperCAmelCase_ : str = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) UpperCAmelCase_ : Optional[int] = True def a__ ( self ,_SCREAMING_SNAKE_CASE=None ) -> str: if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) UpperCAmelCase_ : Any = False return x * self.a + self.b def lowerCamelCase__ ( _lowercase , _lowercase = 16 ): '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase_ : Tuple = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} UpperCAmelCase_ : Tuple = load_dataset('''csv''' , data_files=__UpperCAmelCase ) UpperCAmelCase_ : int = datasets['''train'''].unique('''label''' ) UpperCAmelCase_ : str = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Tuple = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' ) if "label" in examples: UpperCAmelCase_ : Dict = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ : List[Any] = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ : List[Any] = DataLoader(tokenized_datasets['''train'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) UpperCAmelCase_ : Any = DataLoader(tokenized_datasets['''validation'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
30
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
0
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowercase : Dict = logging.get_logger(__name__) def A_ ( A__ ) -> int: a__ : Union[str, Any] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: a__ : Dict = 128 elif "12-12" in model_name: a__ : Optional[int] = 12 a__ : Optional[int] = 12 elif "14-14" in model_name: a__ : Any = 14 a__ : Dict = 14 elif "16-16" in model_name: a__ : List[str] = 16 a__ : List[Any] = 16 else: raise ValueError('Model not supported' ) a__ : Dict = """huggingface/label-files""" if "speech-commands" in model_name: a__ : str = 35 a__ : Union[str, Any] = """speech-commands-v2-id2label.json""" else: a__ : List[Any] = 527 a__ : Union[str, Any] = """audioset-id2label.json""" a__ : Optional[Any] = json.load(open(hf_hub_download(__A , __A , repo_type='dataset' ) , 'r' ) ) a__ : int = {int(__A ): v for k, v in idalabel.items()} a__ : Any = idalabel a__ : List[str] = {v: k for k, v in idalabel.items()} return config def A_ ( A__ ) -> List[str]: if "module.v" in name: a__ : Dict = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: a__ : List[str] = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: a__ : int = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: a__ : str = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: a__ : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: a__ : Any = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: a__ : Union[str, Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a__ : List[str] = name.replace('attn' , 'attention.self' ) if "norm1" in name: a__ : Optional[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a__ : Any = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a__ : int = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a__ : List[Any] = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: a__ : str = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: a__ : List[str] = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: a__ : Optional[Any] = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def A_ ( A__ , A__ ) -> Optional[int]: for key in orig_state_dict.copy().keys(): a__ : Dict = orig_state_dict.pop(__A ) if "qkv" in key: a__ : Tuple = key.split('.' ) a__ : int = int(key_split[3] ) a__ : Any = config.hidden_size if "weight" in key: a__ : Union[str, Any] = val[:dim, :] a__ : Union[str, Any] = val[dim : dim * 2, :] a__ : List[Any] = val[-dim:, :] else: a__ : Any = val[:dim] a__ : List[Any] = val[dim : dim * 2] a__ : Optional[Any] = val[-dim:] else: a__ : Dict = val return orig_state_dict def A_ ( A__ ) -> str: a__ : Union[str, Any] = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(__A , __A ) @torch.no_grad() def A_ ( A__ , A__ , A__=False ) -> List[Any]: a__ : Union[str, Any] = get_audio_spectrogram_transformer_config(__A ) a__ : List[str] = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict a__ : List[Any] = model_name_to_url[model_name] a__ : Union[str, Any] = torch.hub.load_state_dict_from_url(__A , map_location='cpu' ) # remove some keys remove_keys(__A ) # rename some keys a__ : str = convert_state_dict(__A , __A ) # load 🤗 model a__ : Tuple = ASTForAudioClassification(__A ) model.eval() model.load_state_dict(__A ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 a__ : Optional[int] = -4.2_67_73_93 if """speech-commands""" not in model_name else -6.84_59_78 a__ : Dict = 4.5_68_99_74 if """speech-commands""" not in model_name else 5.5_65_45_26 a__ : int = 1024 if """speech-commands""" not in model_name else 128 a__ : List[Any] = ASTFeatureExtractor(mean=__A , std=__A , max_length=__A ) if "speech-commands" in model_name: a__ : str = load_dataset('speech_commands' , 'v0.02' , split='validation' ) a__ : List[str] = dataset[0]["""audio"""]["""array"""] else: a__ : Tuple = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) a__ : Optional[Any] = torchaudio.load(__A ) a__ : int = waveform.squeeze().numpy() a__ : Optional[Any] = feature_extractor(__A , sampling_rate=1_6000 , return_tensors='pt' ) # forward pass a__ : Optional[int] = model(**__A ) a__ : Union[str, Any] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": a__ : Optional[Any] = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": a__ : Any = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": a__ : Tuple = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": a__ : Any = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": a__ : Optional[Any] = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": a__ : Any = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": a__ : int = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": a__ : Optional[Any] = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , __A , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(__A ).mkdir(exist_ok=__A ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(__A ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase : Tuple = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
715
import collections import os import re from pathlib import Path lowercase : int = """src/transformers""" # Matches is_xxx_available() lowercase : List[str] = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} lowercase : str = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowercase : List[str] = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available lowercase : List[Any] = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") lowercase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowercase : Optional[Any] = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", lowercase : List[Any] = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], lowercase : Tuple = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo lowercase : str = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: lowercase : int = re.compile(r"""^\s*try:""") # Catches a line with else: lowercase : List[str] = re.compile(r"""^\s*else:""") def A_ ( A__ ) -> Optional[int]: if _re_test_backend.search(A__ ) is None: return None a__ : Optional[Any] = [b[0] for b in _re_backend.findall(A__ )] backends.sort() return "_and_".join(A__ ) def A_ ( A__ ) -> str: with open(A__ , 'r' , encoding='utf-8' , newline='\n' ) as f: a__ : Optional[Any] = f.readlines() a__ : Optional[Any] = 0 while line_index < len(A__ ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(A__ ): return None # First grab the objects without a specific backend in _import_structure a__ : int = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: a__ : Optional[int] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(A__ ): a__ : Optional[int] = _re_one_line_import_struct.search(A__ ).groups()[0] a__ : List[str] = re.findall(R'\[([^\]]+)\]' , A__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue a__ : int = _re_import_struct_key_value.search(A__ ) if single_line_import_search is not None: a__ : List[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(A__ ) > 0] objects.extend(A__ ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 a__ : Any = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. a__ : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: a__ : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 a__ : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): a__ : Any = lines[line_index] if _re_import_struct_add_one.search(A__ ) is not None: objects.append(_re_import_struct_add_one.search(A__ ).groups()[0] ) elif _re_import_struct_add_many.search(A__ ) is not None: a__ : int = _re_import_struct_add_many.search(A__ ).groups()[0].split(', ' ) a__ : List[Any] = [obj[1:-1] for obj in imports if len(A__ ) > 0] objects.extend(A__ ) elif _re_between_brackets.search(A__ ) is not None: a__ : List[str] = _re_between_brackets.search(A__ ).groups()[0].split(', ' ) a__ : int = [obj[1:-1] for obj in imports if len(A__ ) > 0] objects.extend(A__ ) elif _re_quote_object.search(A__ ) is not None: objects.append(_re_quote_object.search(A__ ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 a__ : Optional[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend a__ : Union[str, Any] = [] while ( line_index < len(A__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): a__ : List[Any] = lines[line_index] a__ : List[str] = _re_import.search(A__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 a__ : Dict = {'none': objects} # Let's continue with backend-specific objects while line_index < len(A__ ): # If the line is an if is_backend_available, we grab all objects associated. a__ : Any = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: a__ : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 a__ : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): a__ : List[str] = lines[line_index] a__ : Union[str, Any] = _re_import.search(A__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 a__ : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def A_ ( A__ , A__ ) -> Dict: def find_duplicates(A__ ): return [k for k, v in collections.Counter(A__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] a__ : Union[str, Any] = [] for key in import_dict_objects.keys(): a__ : Union[str, Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) a__ : Optional[int] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): a__ : str = 'base imports' if key == 'none' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def A_ ( ) -> List[Any]: a__ : Tuple = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: a__ : Tuple = os.path.join(A__ , '__init__.py' ) a__ : Optional[int] = parse_init(A__ ) if objects is not None: a__ : List[Any] = analyze_results(*A__ ) if len(A__ ) > 0: a__ : List[Any] = F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(A__ ) ) if len(A__ ) > 0: raise ValueError('\n\n'.join(A__ ) ) def A_ ( ) -> List[Any]: a__ : List[str] = [] for path, directories, files in os.walk(A__ ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(A__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(A__ ) / folder).glob('*.py' ) ) ) == 0: continue a__ : List[str] = str((Path(A__ ) / folder).relative_to(A__ ) ) a__ : List[Any] = short_path.replace(os.path.sep , '.' ) submodules.append(A__ ) for fname in files: if fname == "__init__.py": continue a__ : str = str((Path(A__ ) / fname).relative_to(A__ ) ) a__ : Any = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(A__ ) return submodules lowercase : Union[str, Any] = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def A_ ( ) -> Dict: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import a__ : List[Any] = direct_transformers_import(A__ ) a__ : Optional[int] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(A__ , '__init__.py' ) , 'r' ) as f: a__ : Optional[Any] = f.read() import_structure_keys.update(set(re.findall(R'import_structure\[\"([^\"]*)\"\]' , A__ ) ) ) a__ : List[str] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(A__ ) > 0: a__ : Optional[int] = '\n'.join(F'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registed in the main init of Transformers:\n' F'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
392
0
'''simple docstring''' from __future__ import annotations import math A_ = "2020.9.26" A_ = "xcodz-dot, cclaus, dhruvmanila" def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> tuple[float, float]: if not all(isinstance(__UpperCamelCase ,(float, int) ) for val in locals().values() ): lowerCamelCase_ = f'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(__UpperCamelCase ) lowerCamelCase_ = ((x * distance) / (z + distance)) * scale lowerCamelCase_ = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> tuple[float, float, float]: if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError('Axis must be a str' ) lowerCamelCase_ = locals() del input_variables["axis"] if not all(isinstance(__UpperCamelCase ,(float, int) ) for val in input_variables.values() ): lowerCamelCase_ = ( 'Input values except axis must either be float or int: ' f'''{list(input_variables.values() )}''' ) raise TypeError(__UpperCamelCase ) lowerCamelCase_ = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": lowerCamelCase_ = x * math.cos(__UpperCamelCase ) - y * math.sin(__UpperCamelCase ) lowerCamelCase_ = y * math.cos(__UpperCamelCase ) + x * math.sin(__UpperCamelCase ) lowerCamelCase_ = z elif axis == "x": lowerCamelCase_ = y * math.cos(__UpperCamelCase ) - z * math.sin(__UpperCamelCase ) lowerCamelCase_ = z * math.cos(__UpperCamelCase ) + y * math.sin(__UpperCamelCase ) lowerCamelCase_ = x elif axis == "y": lowerCamelCase_ = x * math.cos(__UpperCamelCase ) - z * math.sin(__UpperCamelCase ) lowerCamelCase_ = z * math.cos(__UpperCamelCase ) + x * math.sin(__UpperCamelCase ) lowerCamelCase_ = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(f'''{rotate(1.0, 2.0, 3.0, "y", 90.0) = }''')
42
from random import shuffle import tensorflow as tf from numpy import array def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: UpperCamelCase : List[Any] = int(_lowerCAmelCase ) assert noofclusters < len(_lowerCAmelCase ) # Find out the dimensionality UpperCamelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors UpperCamelCase : List[str] = list(range(len(_lowerCAmelCase ) ) ) shuffle(_lowerCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCamelCase : Any = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCamelCase : Union[str, Any] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCamelCase : Optional[int] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCamelCase : Tuple = tf.placeholder("float64" , [dim] ) UpperCamelCase : str = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCAmelCase , _lowerCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCamelCase : List[str] = [tf.Variable(0 ) for i in range(len(_lowerCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value UpperCamelCase : Any = tf.placeholder("int32" ) UpperCamelCase : Optional[int] = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCAmelCase , _lowerCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCamelCase : Tuple = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCamelCase : List[str] = tf.reduce_mean(_lowerCAmelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input UpperCamelCase : Optional[int] = tf.placeholder("float" , [dim] ) UpperCamelCase : Any = tf.placeholder("float" , [dim] ) UpperCamelCase : List[str] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCAmelCase , _lowerCAmelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCamelCase : Tuple = tf.placeholder("float" , [noofclusters] ) UpperCamelCase : str = tf.argmin(_lowerCAmelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCamelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCamelCase : Any = 100 for _ in range(_lowerCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCAmelCase ) ): UpperCamelCase : Dict = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCamelCase : Optional[Any] = [ sess.run(_lowerCAmelCase , feed_dict={va: vect, va: sess.run(_lowerCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCamelCase : Tuple = sess.run( _lowerCAmelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCAmelCase ): # Collect all the vectors assigned to this cluster UpperCamelCase : str = [ vectors[i] for i in range(len(_lowerCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location UpperCamelCase : Optional[int] = sess.run( _lowerCAmelCase , feed_dict={mean_input: array(_lowerCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments UpperCamelCase : Union[str, Any] = sess.run(_lowerCAmelCase ) UpperCamelCase : Tuple = sess.run(_lowerCAmelCase ) return centroids, assignments
629
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer a__: Optional[int] = logging.get_logger(__name__) a__: str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} a__: int = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } a__: List[str] = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] __SCREAMING_SNAKE_CASE = RobertaTokenizer def __init__( self,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase="replace",__lowerCamelCase="<s>",__lowerCamelCase="</s>",__lowerCamelCase="</s>",__lowerCamelCase="<s>",__lowerCamelCase="<unk>",__lowerCamelCase="<pad>",__lowerCamelCase="<mask>",__lowerCamelCase=False,__lowerCamelCase=True,**__lowerCamelCase,): super().__init__( __lowerCamelCase,__lowerCamelCase,tokenizer_file=__lowerCamelCase,errors=__lowerCamelCase,bos_token=__lowerCamelCase,eos_token=__lowerCamelCase,sep_token=__lowerCamelCase,cls_token=__lowerCamelCase,unk_token=__lowerCamelCase,pad_token=__lowerCamelCase,mask_token=__lowerCamelCase,add_prefix_space=__lowerCamelCase,trim_offsets=__lowerCamelCase,**__lowerCamelCase,) A__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''',__lowerCamelCase ) != add_prefix_space: A__ = getattr(__lowerCamelCase,pre_tok_state.pop('''type''' ) ) A__ = add_prefix_space A__ = pre_tok_class(**__lowerCamelCase ) A__ = add_prefix_space A__ = '''post_processor''' A__ = getattr(self.backend_tokenizer,__lowerCamelCase,__lowerCamelCase ) if tokenizer_component_instance: A__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A__ = tuple(state['''sep'''] ) if "cls" in state: A__ = tuple(state['''cls'''] ) A__ = False if state.get('''add_prefix_space''',__lowerCamelCase ) != add_prefix_space: A__ = add_prefix_space A__ = True if state.get('''trim_offsets''',__lowerCamelCase ) != trim_offsets: A__ = trim_offsets A__ = True if changes_to_apply: A__ = getattr(__lowerCamelCase,state.pop('''type''' ) ) A__ = component_class(**__lowerCamelCase ) setattr(self.backend_tokenizer,__lowerCamelCase,__lowerCamelCase ) @property def UpperCamelCase ( self ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self,__lowerCamelCase ): A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else value A__ = value def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): A__ = kwargs.get('''is_split_into_words''',__lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): A__ = kwargs.get('''is_split_into_words''',__lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = self._tokenizer.model.save(__lowerCamelCase,name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None ): A__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
212
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) a__: Union[str, Any] = logging.getLogger(__name__) def UpperCamelCase__( )->List[Any]: A__ = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=UpperCamelCase__ , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=UpperCamelCase__ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=UpperCamelCase__ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=UpperCamelCase__ , default='''data/dump''' , help='''The dump file prefix.''' ) A__ = parser.parse_args() logger.info(f"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": A__ = BertTokenizer.from_pretrained(args.tokenizer_name ) A__ = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` A__ = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": A__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) A__ = tokenizer.special_tokens_map['''cls_token'''] # `<s>` A__ = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": A__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) A__ = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` A__ = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f"Loading text from {args.file_path}" ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: A__ = fp.readlines() logger.info('''Start encoding''' ) logger.info(f"{len(UpperCamelCase__ )} examples to process." ) A__ = [] A__ = 0 A__ = 1_00_00 A__ = time.time() for text in data: A__ = f"{bos} {text.strip()} {sep}" A__ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) rslt.append(UpperCamelCase__ ) iter += 1 if iter % interval == 0: A__ = time.time() logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) A__ = time.time() logger.info('''Finished binarization''' ) logger.info(f"{len(UpperCamelCase__ )} examples processed." ) A__ = f"{args.dump_file}.{args.tokenizer_name}.pickle" A__ = tokenizer.vocab_size if vocab_size < (1 << 16): A__ = [np.uintaa(UpperCamelCase__ ) for d in rslt] else: A__ = [np.intaa(UpperCamelCase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"Dump to {dp_file}" ) with open(UpperCamelCase__ , '''wb''' ) as handle: pickle.dump(rslt_ , UpperCamelCase__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
212
1
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __A = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __A = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def lowercase_ ( _lowerCamelCase: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase : List[Any] = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__snake_case )[0] @deprecated(__snake_case , "Please use tf.data to implement this functionality." ) def lowercase_ ( _lowerCamelCase: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=__snake_case ) as bytestream: __lowerCamelCase : Union[str, Any] = _readaa(__snake_case ) if magic != 2051: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) __lowerCamelCase : List[Any] = _readaa(__snake_case ) __lowerCamelCase : List[str] = _readaa(__snake_case ) __lowerCamelCase : List[Any] = _readaa(__snake_case ) __lowerCamelCase : int = bytestream.read(rows * cols * num_images ) __lowerCamelCase : List[Any] = numpy.frombuffer(__snake_case , dtype=numpy.uinta ) __lowerCamelCase : List[Any] = data.reshape(__snake_case , __snake_case , __snake_case , 1 ) return data @deprecated(__snake_case , "Please use tf.one_hot on tensors." ) def lowercase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: Any ) -> Dict: '''simple docstring''' __lowerCamelCase : str = labels_dense.shape[0] __lowerCamelCase : Optional[int] = numpy.arange(__snake_case ) * num_classes __lowerCamelCase : List[Any] = numpy.zeros((num_labels, num_classes) ) __lowerCamelCase : Tuple = 1 return labels_one_hot @deprecated(__snake_case , "Please use tf.data to implement this functionality." ) def lowercase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: Optional[Any]=False , _lowerCamelCase: Optional[int]=10 ) -> Any: '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=__snake_case ) as bytestream: __lowerCamelCase : str = _readaa(__snake_case ) if magic != 2049: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) __lowerCamelCase : Dict = _readaa(__snake_case ) __lowerCamelCase : str = bytestream.read(__snake_case ) __lowerCamelCase : Tuple = numpy.frombuffer(__snake_case , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__snake_case , __snake_case ) return labels class _snake_case : @deprecated( __lowerCAmelCase , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : int=False , UpperCAmelCase : List[Any]=False , UpperCAmelCase : int=dtypes.floataa , UpperCAmelCase : str=True , UpperCAmelCase : Tuple=None , ): __lowerCamelCase , __lowerCamelCase : List[str] = random_seed.get_seed(__lowerCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowerCamelCase : Optional[Any] = dtypes.as_dtype(__lowerCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: __lowerCamelCase : Optional[Any] = 10000 __lowerCamelCase : Any = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"""images.shape: {images.shape} labels.shape: {labels.shape}""" __lowerCamelCase : Optional[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCamelCase : List[str] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCamelCase : List[Any] = images.astype(numpy.floataa ) __lowerCamelCase : List[Any] = numpy.multiply(__lowerCAmelCase , 1.0 / 2_5_5.0 ) __lowerCamelCase : Union[str, Any] = images __lowerCamelCase : Optional[Any] = labels __lowerCamelCase : Tuple = 0 __lowerCamelCase : Any = 0 @property def lowerCamelCase__ ( self : str ): return self._images @property def lowerCamelCase__ ( self : List[Any] ): return self._labels @property def lowerCamelCase__ ( self : Dict ): return self._num_examples @property def lowerCamelCase__ ( self : Any ): return self._epochs_completed def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any=False , UpperCAmelCase : List[str]=True ): if fake_data: __lowerCamelCase : Tuple = [1] * 784 __lowerCamelCase : Optional[int] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowerCAmelCase )], [fake_label for _ in range(__lowerCAmelCase )], ) __lowerCamelCase : Any = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCamelCase : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCAmelCase ) __lowerCamelCase : Optional[Any] = self.images[perma] __lowerCamelCase : int = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCamelCase : int = self._num_examples - start __lowerCamelCase : Any = self._images[start : self._num_examples] __lowerCamelCase : Any = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCamelCase : Optional[int] = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCAmelCase ) __lowerCamelCase : List[str] = self.images[perm] __lowerCamelCase : Tuple = self.labels[perm] # Start next epoch __lowerCamelCase : Tuple = 0 __lowerCamelCase : Any = batch_size - rest_num_examples __lowerCamelCase : Optional[Any] = self._index_in_epoch __lowerCamelCase : str = self._images[start:end] __lowerCamelCase : List[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowerCamelCase : Dict = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__snake_case , "Please write your own downloading logic." ) def lowercase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: int , _lowerCamelCase: str ) -> str: '''simple docstring''' if not gfile.Exists(__snake_case ): gfile.MakeDirs(__snake_case ) __lowerCamelCase : Optional[int] = os.path.join(__snake_case , __snake_case ) if not gfile.Exists(__snake_case ): urllib.request.urlretrieve(__snake_case , __snake_case ) # noqa: S310 with gfile.GFile(__snake_case ) as f: __lowerCamelCase : Any = f.size() print("Successfully downloaded" , __snake_case , __snake_case , "bytes." ) return filepath @deprecated( __snake_case , "Please use alternatives such as:" " tensorflow_datasets.load(\'mnist\')" ) def lowercase_ ( _lowerCamelCase: Any , _lowerCamelCase: str=False , _lowerCamelCase: Dict=False , _lowerCamelCase: Dict=dtypes.floataa , _lowerCamelCase: Dict=True , _lowerCamelCase: Any=5000 , _lowerCamelCase: Union[str, Any]=None , _lowerCamelCase: Optional[Any]=DEFAULT_SOURCE_URL , ) -> int: '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__snake_case , one_hot=__snake_case , dtype=__snake_case , seed=__snake_case ) __lowerCamelCase : Tuple = fake() __lowerCamelCase : Union[str, Any] = fake() __lowerCamelCase : Union[str, Any] = fake() return _Datasets(train=__snake_case , validation=__snake_case , test=__snake_case ) if not source_url: # empty string check __lowerCamelCase : List[str] = DEFAULT_SOURCE_URL __lowerCamelCase : List[str] = "train-images-idx3-ubyte.gz" __lowerCamelCase : Optional[int] = "train-labels-idx1-ubyte.gz" __lowerCamelCase : str = "t10k-images-idx3-ubyte.gz" __lowerCamelCase : Union[str, Any] = "t10k-labels-idx1-ubyte.gz" __lowerCamelCase : Union[str, Any] = _maybe_download( __snake_case , __snake_case , source_url + train_images_file ) with gfile.Open(__snake_case , "rb" ) as f: __lowerCamelCase : Tuple = _extract_images(__snake_case ) __lowerCamelCase : int = _maybe_download( __snake_case , __snake_case , source_url + train_labels_file ) with gfile.Open(__snake_case , "rb" ) as f: __lowerCamelCase : str = _extract_labels(__snake_case , one_hot=__snake_case ) __lowerCamelCase : List[Any] = _maybe_download( __snake_case , __snake_case , source_url + test_images_file ) with gfile.Open(__snake_case , "rb" ) as f: __lowerCamelCase : List[Any] = _extract_images(__snake_case ) __lowerCamelCase : Union[str, Any] = _maybe_download( __snake_case , __snake_case , source_url + test_labels_file ) with gfile.Open(__snake_case , "rb" ) as f: __lowerCamelCase : Optional[Any] = _extract_labels(__snake_case , one_hot=__snake_case ) if not 0 <= validation_size <= len(__snake_case ): __lowerCamelCase : Union[str, Any] = ( "Validation size should be between 0 and " F"""{len(__snake_case )}. Received: {validation_size}.""" ) raise ValueError(__snake_case ) __lowerCamelCase : Optional[Any] = train_images[:validation_size] __lowerCamelCase : Optional[Any] = train_labels[:validation_size] __lowerCamelCase : Optional[Any] = train_images[validation_size:] __lowerCamelCase : int = train_labels[validation_size:] __lowerCamelCase : Dict = {"dtype": dtype, "reshape": reshape, "seed": seed} __lowerCamelCase : Any = _DataSet(__snake_case , __snake_case , **__snake_case ) __lowerCamelCase : Optional[int] = _DataSet(__snake_case , __snake_case , **__snake_case ) __lowerCamelCase : List[str] = _DataSet(__snake_case , __snake_case , **__snake_case ) return _Datasets(train=__snake_case , validation=__snake_case , test=__snake_case )
646
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCAmelCase__(__snake_case ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCamelCase__ = name.replace('''img_encoder.pos_embed''' ,'''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: lowerCamelCase__ = name.replace('''img_encoder.patch_embed.proj''' ,'''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: lowerCamelCase__ = name.replace('''img_encoder.patch_embed.norm''' ,'''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: lowerCamelCase__ = name.replace('''img_encoder.layers''' ,'''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: lowerCamelCase__ = name.replace('''blocks''' ,'''layers''' ) if "attn" in name and "pre_assign" not in name: lowerCamelCase__ = name.replace('''attn''' ,'''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCamelCase__ = name.replace('''proj''' ,'''out_proj''' ) if "pre_assign_attn.attn.proj" in name: lowerCamelCase__ = name.replace('''pre_assign_attn.attn.proj''' ,'''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: lowerCamelCase__ = name.replace('''norm1''' ,'''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: lowerCamelCase__ = name.replace('''norm2''' ,'''layer_norm2''' ) if "img_encoder.norm" in name: lowerCamelCase__ = name.replace('''img_encoder.norm''' ,'''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: lowerCamelCase__ = name.replace('''text_encoder.token_embedding''' ,'''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: lowerCamelCase__ = name.replace('''text_encoder.positional_embedding''' ,'''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: lowerCamelCase__ = name.replace('''text_encoder.transformer.resblocks.''' ,'''text_model.encoder.layers.''' ) if "ln_1" in name: lowerCamelCase__ = name.replace('''ln_1''' ,'''layer_norm1''' ) if "ln_2" in name: lowerCamelCase__ = name.replace('''ln_2''' ,'''layer_norm2''' ) if "c_fc" in name: lowerCamelCase__ = name.replace('''c_fc''' ,'''fc1''' ) if "c_proj" in name: lowerCamelCase__ = name.replace('''c_proj''' ,'''fc2''' ) if "text_encoder" in name: lowerCamelCase__ = name.replace('''text_encoder''' ,'''text_model''' ) if "ln_final" in name: lowerCamelCase__ = name.replace('''ln_final''' ,'''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: lowerCamelCase__ = name.replace('''img_projector.linear_hidden.''' ,'''visual_projection.''' ) if "img_projector.linear_out." in name: lowerCamelCase__ = name.replace('''img_projector.linear_out.''' ,'''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: lowerCamelCase__ = name.replace('''text_projector.linear_hidden''' ,'''text_projection''' ) if "text_projector.linear_out" in name: lowerCamelCase__ = name.replace('''text_projector.linear_out''' ,'''text_projection.3''' ) return name def lowerCAmelCase__(__snake_case ,__snake_case ) -> Optional[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCamelCase__ = orig_state_dict.pop(__snake_case ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCamelCase__ = key.split('''.''' ) lowerCamelCase__ , lowerCamelCase__ = int(key_split[2] ), int(key_split[4] ) lowerCamelCase__ = config.vision_config.hidden_size if "weight" in key: lowerCamelCase__ = val[:dim, :] lowerCamelCase__ = val[dim : dim * 2, :] lowerCamelCase__ = val[-dim:, :] else: lowerCamelCase__ = val[:dim] lowerCamelCase__ = val[dim : dim * 2] lowerCamelCase__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCamelCase__ = key.split('''.''' ) lowerCamelCase__ = int(key_split[3] ) lowerCamelCase__ = config.text_config.hidden_size if "weight" in key: lowerCamelCase__ = val[:dim, :] lowerCamelCase__ = val[ dim : dim * 2, : ] lowerCamelCase__ = val[-dim:, :] else: lowerCamelCase__ = val[:dim] lowerCamelCase__ = val[dim : dim * 2] lowerCamelCase__ = val[-dim:] else: lowerCamelCase__ = rename_key(__snake_case ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCamelCase__ = val.squeeze_() else: lowerCamelCase__ = val return orig_state_dict def lowerCAmelCase__() -> int: '''simple docstring''' lowerCamelCase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase__ = Image.open(requests.get(__snake_case ,stream=__snake_case ).raw ) return im @torch.no_grad() def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case="groupvit-gcc-yfcc" ,__snake_case=False ) -> Dict: '''simple docstring''' lowerCamelCase__ = GroupViTConfig() lowerCamelCase__ = GroupViTModel(__snake_case ).eval() lowerCamelCase__ = torch.load(__snake_case ,map_location='''cpu''' )['''model'''] lowerCamelCase__ = convert_state_dict(__snake_case ,__snake_case ) lowerCamelCase__ , lowerCamelCase__ = model.load_state_dict(__snake_case ,strict=__snake_case ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__snake_case ) == 0) # verify result lowerCamelCase__ = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = processor(text=['''a photo of a cat''', '''a photo of a dog'''] ,images=__snake_case ,padding=__snake_case ,return_tensors='''pt''' ) with torch.no_grad(): lowerCamelCase__ = model(**__snake_case ) if model_name == "groupvit-gcc-yfcc": lowerCamelCase__ = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": lowerCamelCase__ = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image ,__snake_case ,atol=1E-3 ) processor.save_pretrained(__snake_case ) model.save_pretrained(__snake_case ) print('''Successfully saved processor and model to''' ,__snake_case ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(__snake_case ,organization='''nielsr''' ) model.push_to_hub(__snake_case ,organization='''nielsr''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) _a = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
481
0
def A_ ( lowercase_ ) ->bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") __UpperCAmelCase = int(input("Enter number: ").strip()) print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
259
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv3FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
259
1
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase__ = input("""Enter image url: """).strip() print(F"""Downloading image from {url} ...""") lowerCamelCase__ = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase__ = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] lowerCamelCase__ = requests.get(image_url).content lowerCamelCase__ = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, """wb""") as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
225
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Tuple ='mra' def __init__( self : Dict , __lowercase : int=50265 , __lowercase : Dict=768 , __lowercase : str=12 , __lowercase : str=12 , __lowercase : Tuple=3072 , __lowercase : Optional[Any]="gelu" , __lowercase : str=0.1 , __lowercase : Optional[int]=0.1 , __lowercase : int=512 , __lowercase : Union[str, Any]=1 , __lowercase : List[str]=0.02 , __lowercase : Dict=1E-5 , __lowercase : Any="absolute" , __lowercase : Dict=4 , __lowercase : List[Any]="full" , __lowercase : List[str]=0 , __lowercase : Tuple=0 , __lowercase : str=1 , __lowercase : Union[str, Any]=0 , __lowercase : Optional[Any]=2 , **__lowercase : Any , ): '''simple docstring''' super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = type_vocab_size __a = layer_norm_eps __a = position_embedding_type __a = block_per_row __a = approx_mode __a = initial_prior_first_n_blocks __a = initial_prior_diagonal_n_blocks
225
1
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = DownBlockaD # noqa F405 __snake_case = """down""" def _snake_case ( self: List[str] ): __lowerCamelCase : List[Any] = [-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ResnetDownsampleBlockaD # noqa F405 __snake_case = """down""" def _snake_case ( self: Dict ): __lowerCamelCase : str = [0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = AttnDownBlockaD # noqa F405 __snake_case = """down""" def _snake_case ( self: Optional[int] ): __lowerCamelCase : List[str] = [0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = CrossAttnDownBlockaD # noqa F405 __snake_case = """down""" def _snake_case ( self: Any ): __lowerCamelCase : int = super().prepare_init_args_and_inputs_for_common() __lowerCamelCase : Dict = 32 return init_dict, inputs_dict def _snake_case ( self: Optional[Any] ): __lowerCamelCase : int = [0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = SimpleCrossAttnDownBlockaD # noqa F405 __snake_case = """down""" @property def _snake_case ( self: Any ): return super().get_dummy_input(include_encoder_hidden_states=a ) def _snake_case ( self: Any ): __lowerCamelCase : List[Any] = super().prepare_init_args_and_inputs_for_common() __lowerCamelCase : Optional[Any] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def _snake_case ( self: List[Any] ): __lowerCamelCase : List[str] = [0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = SkipDownBlockaD # noqa F405 __snake_case = """down""" @property def _snake_case ( self: Tuple ): return super().get_dummy_input(include_skip_sample=a ) def _snake_case ( self: Optional[int] ): __lowerCamelCase : Optional[Any] = [-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = AttnSkipDownBlockaD # noqa F405 __snake_case = """down""" @property def _snake_case ( self: Any ): return super().get_dummy_input(include_skip_sample=a ) def _snake_case ( self: Tuple ): __lowerCamelCase : str = [0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = DownEncoderBlockaD # noqa F405 __snake_case = """down""" @property def _snake_case ( self: Optional[Any] ): return super().get_dummy_input(include_temb=a ) def _snake_case ( self: Tuple ): __lowerCamelCase : str = { 'in_channels': 32, 'out_channels': 32, } __lowerCamelCase : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _snake_case ( self: Optional[Any] ): __lowerCamelCase : Tuple = [1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = AttnDownEncoderBlockaD # noqa F405 __snake_case = """down""" @property def _snake_case ( self: Union[str, Any] ): return super().get_dummy_input(include_temb=a ) def _snake_case ( self: List[str] ): __lowerCamelCase : Tuple = { 'in_channels': 32, 'out_channels': 32, } __lowerCamelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def _snake_case ( self: List[str] ): __lowerCamelCase : List[Any] = [0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = UNetMidBlockaD # noqa F405 __snake_case = """mid""" def _snake_case ( self: Any ): __lowerCamelCase : List[str] = { 'in_channels': 32, 'temb_channels': 128, } __lowerCamelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict def _snake_case ( self: Optional[Any] ): __lowerCamelCase : Union[str, Any] = [-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = UNetMidBlockaDCrossAttn # noqa F405 __snake_case = """mid""" def _snake_case ( self: Optional[int] ): __lowerCamelCase : Optional[Any] = super().prepare_init_args_and_inputs_for_common() __lowerCamelCase : Tuple = 32 return init_dict, inputs_dict def _snake_case ( self: Tuple ): __lowerCamelCase : Union[str, Any] = [0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = UNetMidBlockaDSimpleCrossAttn # noqa F405 __snake_case = """mid""" @property def _snake_case ( self: List[Any] ): return super().get_dummy_input(include_encoder_hidden_states=a ) def _snake_case ( self: Tuple ): __lowerCamelCase : Union[str, Any] = super().prepare_init_args_and_inputs_for_common() __lowerCamelCase : Tuple = 32 return init_dict, inputs_dict def _snake_case ( self: int ): __lowerCamelCase : Optional[int] = [0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = UpBlockaD # noqa F405 __snake_case = """up""" @property def _snake_case ( self: str ): return super().get_dummy_input(include_res_hidden_states_tuple=a ) def _snake_case ( self: List[str] ): __lowerCamelCase : Optional[int] = [-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ResnetUpsampleBlockaD # noqa F405 __snake_case = """up""" @property def _snake_case ( self: Optional[int] ): return super().get_dummy_input(include_res_hidden_states_tuple=a ) def _snake_case ( self: Optional[int] ): __lowerCamelCase : Tuple = [0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = CrossAttnUpBlockaD # noqa F405 __snake_case = """up""" @property def _snake_case ( self: Any ): return super().get_dummy_input(include_res_hidden_states_tuple=a ) def _snake_case ( self: Any ): __lowerCamelCase : str = super().prepare_init_args_and_inputs_for_common() __lowerCamelCase : Tuple = 32 return init_dict, inputs_dict def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : Tuple = [-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = SimpleCrossAttnUpBlockaD # noqa F405 __snake_case = """up""" @property def _snake_case ( self: str ): return super().get_dummy_input(include_res_hidden_states_tuple=a , include_encoder_hidden_states=a ) def _snake_case ( self: Dict ): __lowerCamelCase : Optional[Any] = super().prepare_init_args_and_inputs_for_common() __lowerCamelCase : Optional[int] = 32 return init_dict, inputs_dict def _snake_case ( self: Dict ): __lowerCamelCase : Optional[Any] = [0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = AttnUpBlockaD # noqa F405 __snake_case = """up""" @property def _snake_case ( self: Optional[Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=a ) @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def _snake_case ( self: Any ): __lowerCamelCase : Optional[int] = [0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = SkipUpBlockaD # noqa F405 __snake_case = """up""" @property def _snake_case ( self: Optional[int] ): return super().get_dummy_input(include_res_hidden_states_tuple=a ) def _snake_case ( self: List[str] ): __lowerCamelCase : Any = [-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = AttnSkipUpBlockaD # noqa F405 __snake_case = """up""" @property def _snake_case ( self: Tuple ): return super().get_dummy_input(include_res_hidden_states_tuple=a ) def _snake_case ( self: Any ): __lowerCamelCase : Dict = [0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = UpDecoderBlockaD # noqa F405 __snake_case = """up""" @property def _snake_case ( self: Optional[int] ): return super().get_dummy_input(include_temb=a ) def _snake_case ( self: List[str] ): __lowerCamelCase : int = {'in_channels': 32, 'out_channels': 32} __lowerCamelCase : Any = self.dummy_input return init_dict, inputs_dict def _snake_case ( self: Tuple ): __lowerCamelCase : str = [0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7] super().test_output(a ) class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = AttnUpDecoderBlockaD # noqa F405 __snake_case = """up""" @property def _snake_case ( self: Optional[Any] ): return super().get_dummy_input(include_temb=a ) def _snake_case ( self: str ): __lowerCamelCase : Optional[int] = {'in_channels': 32, 'out_channels': 32} __lowerCamelCase : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _snake_case ( self: List[str] ): __lowerCamelCase : List[Any] = [0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8] super().test_output(a )
713
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = 42 class A_ ( nn.Module ): '''simple docstring''' def __init__( self: List[Any] , a: Optional[Any]=3 , a: Tuple=3 , a: str=("DownEncoderBlock2D",) , a: str=(64,) , a: Optional[int]=2 , a: int=32 , a: str="silu" , a: Optional[Any]=True , ): super().__init__() __lowerCamelCase : int = layers_per_block __lowerCamelCase : List[Any] = torch.nn.Convad( a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) __lowerCamelCase : Tuple = None __lowerCamelCase : Dict = nn.ModuleList([] ) # down __lowerCamelCase : Optional[int] = block_out_channels[0] for i, down_block_type in enumerate(a ): __lowerCamelCase : str = output_channel __lowerCamelCase : Optional[int] = block_out_channels[i] __lowerCamelCase : Dict = i == len(a ) - 1 __lowerCamelCase : List[Any] = get_down_block( a , num_layers=self.layers_per_block , in_channels=a , out_channels=a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=a , resnet_groups=a , attention_head_dim=a , temb_channels=a , ) self.down_blocks.append(a ) # mid __lowerCamelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=a , temb_channels=a , ) # out __lowerCamelCase : str = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=a , eps=1e-6 ) __lowerCamelCase : Optional[Any] = nn.SiLU() __lowerCamelCase : int = 2 * out_channels if double_z else out_channels __lowerCamelCase : Tuple = nn.Convad(block_out_channels[-1] , a , 3 , padding=1 ) __lowerCamelCase : List[Any] = False def _snake_case ( self: List[str] , a: List[Any] ): __lowerCamelCase : List[str] = x __lowerCamelCase : Dict = self.conv_in(a ) if self.training and self.gradient_checkpointing: def create_custom_forward(a: int ): def custom_forward(*a: Optional[Any] ): return module(*a ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: __lowerCamelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(a ) , a , use_reentrant=a ) # middle __lowerCamelCase : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a , use_reentrant=a ) else: for down_block in self.down_blocks: __lowerCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(a ) , a ) # middle __lowerCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , a ) else: # down for down_block in self.down_blocks: __lowerCamelCase : List[Any] = down_block(a ) # middle __lowerCamelCase : Union[str, Any] = self.mid_block(a ) # post-process __lowerCamelCase : Tuple = self.conv_norm_out(a ) __lowerCamelCase : List[str] = self.conv_act(a ) __lowerCamelCase : int = self.conv_out(a ) return sample class A_ ( nn.Module ): '''simple docstring''' def __init__( self: int , a: List[str]=3 , a: Tuple=3 , a: str=("UpDecoderBlock2D",) , a: Union[str, Any]=(64,) , a: Optional[Any]=2 , a: Optional[Any]=32 , a: str="silu" , a: Union[str, Any]="group" , ): super().__init__() __lowerCamelCase : List[Any] = layers_per_block __lowerCamelCase : Any = nn.Convad( a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) __lowerCamelCase : Tuple = None __lowerCamelCase : int = nn.ModuleList([] ) __lowerCamelCase : Optional[Any] = in_channels if norm_type == 'spatial' else None # mid __lowerCamelCase : List[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=a , temb_channels=a , ) # up __lowerCamelCase : Any = list(reversed(a ) ) __lowerCamelCase : Dict = reversed_block_out_channels[0] for i, up_block_type in enumerate(a ): __lowerCamelCase : List[Any] = output_channel __lowerCamelCase : List[str] = reversed_block_out_channels[i] __lowerCamelCase : Optional[Any] = i == len(a ) - 1 __lowerCamelCase : Optional[Any] = get_up_block( a , num_layers=self.layers_per_block + 1 , in_channels=a , out_channels=a , prev_output_channel=a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=a , resnet_groups=a , attention_head_dim=a , temb_channels=a , resnet_time_scale_shift=a , ) self.up_blocks.append(a ) __lowerCamelCase : List[str] = output_channel # out if norm_type == "spatial": __lowerCamelCase : int = SpatialNorm(block_out_channels[0] , a ) else: __lowerCamelCase : Optional[Any] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=a , eps=1e-6 ) __lowerCamelCase : Union[str, Any] = nn.SiLU() __lowerCamelCase : List[Any] = nn.Convad(block_out_channels[0] , a , 3 , padding=1 ) __lowerCamelCase : List[str] = False def _snake_case ( self: Optional[int] , a: Tuple , a: List[str]=None ): __lowerCamelCase : List[str] = z __lowerCamelCase : Union[str, Any] = self.conv_in(a ) __lowerCamelCase : List[str] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(a: Any ): def custom_forward(*a: str ): return module(*a ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle __lowerCamelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a , a , use_reentrant=a ) __lowerCamelCase : str = sample.to(a ) # up for up_block in self.up_blocks: __lowerCamelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(a ) , a , a , use_reentrant=a ) else: # middle __lowerCamelCase : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a , a ) __lowerCamelCase : int = sample.to(a ) # up for up_block in self.up_blocks: __lowerCamelCase : List[str] = torch.utils.checkpoint.checkpoint(create_custom_forward(a ) , a , a ) else: # middle __lowerCamelCase : int = self.mid_block(a , a ) __lowerCamelCase : List[str] = sample.to(a ) # up for up_block in self.up_blocks: __lowerCamelCase : List[str] = up_block(a , a ) # post-process if latent_embeds is None: __lowerCamelCase : Optional[int] = self.conv_norm_out(a ) else: __lowerCamelCase : Dict = self.conv_norm_out(a , a ) __lowerCamelCase : Any = self.conv_act(a ) __lowerCamelCase : str = self.conv_out(a ) return sample class A_ ( nn.Module ): '''simple docstring''' def __init__( self: Optional[int] , a: List[Any] , a: List[Any] , a: List[Any] , a: Tuple=None , a: Tuple="random" , a: List[Any]=False , a: List[str]=True ): super().__init__() __lowerCamelCase : Optional[Any] = n_e __lowerCamelCase : Optional[int] = vq_embed_dim __lowerCamelCase : Tuple = beta __lowerCamelCase : List[str] = legacy __lowerCamelCase : str = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) __lowerCamelCase : str = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) __lowerCamelCase : Dict = self.used.shape[0] __lowerCamelCase : Optional[Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCamelCase : Any = self.re_embed __lowerCamelCase : Optional[int] = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: __lowerCamelCase : int = n_e __lowerCamelCase : Optional[Any] = sane_index_shape def _snake_case ( self: Tuple , a: Union[str, Any] ): __lowerCamelCase : Optional[Any] = inds.shape assert len(a ) > 1 __lowerCamelCase : List[Any] = inds.reshape(ishape[0] , -1 ) __lowerCamelCase : Any = self.used.to(a ) __lowerCamelCase : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long() __lowerCamelCase : Dict = match.argmax(-1 ) __lowerCamelCase : List[Any] = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCamelCase : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: __lowerCamelCase : str = self.unknown_index return new.reshape(a ) def _snake_case ( self: Tuple , a: Optional[int] ): __lowerCamelCase : List[Any] = inds.shape assert len(a ) > 1 __lowerCamelCase : Optional[int] = inds.reshape(ishape[0] , -1 ) __lowerCamelCase : Union[str, Any] = self.used.to(a ) if self.re_embed > self.used.shape[0]: # extra token __lowerCamelCase : Optional[Any] = 0 # simply set to zero __lowerCamelCase : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , a ) return back.reshape(a ) def _snake_case ( self: int , a: List[str] ): # reshape z -> (batch, height, width, channel) and flatten __lowerCamelCase : Union[str, Any] = z.permute(0 , 2 , 3 , 1 ).contiguous() __lowerCamelCase : List[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCamelCase : int = torch.argmin(torch.cdist(a , self.embedding.weight ) , dim=1 ) __lowerCamelCase : str = self.embedding(a ).view(z.shape ) __lowerCamelCase : str = None __lowerCamelCase : Any = None # compute loss for embedding if not self.legacy: __lowerCamelCase : int = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCamelCase : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCamelCase : int = z + (z_q - z).detach() # reshape back to match original input shape __lowerCamelCase : Any = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: __lowerCamelCase : Optional[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis __lowerCamelCase : Optional[Any] = self.remap_to_used(a ) __lowerCamelCase : Dict = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: __lowerCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _snake_case ( self: Tuple , a: Optional[int] , a: Any ): # shape specifying (batch, height, width, channel) if self.remap is not None: __lowerCamelCase : Any = indices.reshape(shape[0] , -1 ) # add batch axis __lowerCamelCase : Any = self.unmap_to_all(a ) __lowerCamelCase : int = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCamelCase : str = self.embedding(a ) if shape is not None: __lowerCamelCase : str = z_q.view(a ) # reshape back to match original input shape __lowerCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: str , a: Dict , a: Any=False ): __lowerCamelCase : Tuple = parameters __lowerCamelCase , __lowerCamelCase : Any = torch.chunk(a , 2 , dim=1 ) __lowerCamelCase : List[str] = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) __lowerCamelCase : int = deterministic __lowerCamelCase : Dict = torch.exp(0.5 * self.logvar ) __lowerCamelCase : str = torch.exp(self.logvar ) if self.deterministic: __lowerCamelCase : Optional[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _snake_case ( self: Union[str, Any] , a: Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype __lowerCamelCase : Union[str, Any] = randn_tensor( self.mean.shape , generator=a , device=self.parameters.device , dtype=self.parameters.dtype ) __lowerCamelCase : str = self.mean + self.std * sample return x def _snake_case ( self: List[str] , a: Union[str, Any]=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _snake_case ( self: Optional[Any] , a: str , a: Any=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) __lowerCamelCase : int = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=a ) def _snake_case ( self: Optional[int] ): return self.mean
230
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class __a ( _snake_case ): __UpperCamelCase : Union[List[PIL.Image.Image], np.ndarray] __UpperCamelCase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(">=", "0.0.12") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class __a ( _snake_case ): __UpperCamelCase : np.ndarray __UpperCamelCase : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
109
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
36
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A : int = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : int = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _A : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
330
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : List[str] = logging.get_logger(__name__) _A : Any = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = """nllb-moe""" _SCREAMING_SNAKE_CASE : Union[str, Any] = ["""past_key_values"""] _SCREAMING_SNAKE_CASE : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , SCREAMING_SNAKE_CASE__ : str=12_81_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=10_24 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE__ : List[str]=40_96 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=16 , SCREAMING_SNAKE_CASE__ : List[Any]=12 , SCREAMING_SNAKE_CASE__ : int=40_96 , SCREAMING_SNAKE_CASE__ : Tuple=16 , SCREAMING_SNAKE_CASE__ : List[str]=0.0_5 , SCREAMING_SNAKE_CASE__ : List[str]=0.0_5 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[str]="relu" , SCREAMING_SNAKE_CASE__ : Optional[int]=10_24 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Optional[Any]="float32" , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=1_28 , SCREAMING_SNAKE_CASE__ : Dict=64 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_0_1 , SCREAMING_SNAKE_CASE__ : List[str]=0.0_0_1 , SCREAMING_SNAKE_CASE__ : str="all" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Dict=1.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.2 , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Tuple=False , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> List[str]: __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = router_z_loss_coef __lowerCAmelCase = router_aux_loss_coef __lowerCAmelCase = decoder_sparse_step __lowerCAmelCase = encoder_sparse_step __lowerCAmelCase = num_experts __lowerCAmelCase = expert_capacity __lowerCAmelCase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) __lowerCAmelCase = router_dtype __lowerCAmelCase = router_ignore_padding_tokens __lowerCAmelCase = batch_prioritized_routing __lowerCAmelCase = second_expert_policy __lowerCAmelCase = normalize_router_prob_before_dropping __lowerCAmelCase = moe_eval_capacity_token_fraction __lowerCAmelCase = moe_token_dropout __lowerCAmelCase = output_router_logits super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
330
1
'''simple docstring''' # flake8: noqa # Lint as: python3 lowerCamelCase = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
474
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =[[1, 2, 4], [1, 2, 3, 4]] __lowercase =DisjunctiveConstraint(_lowerCAmelCase) self.assertTrue(isinstance(dc.token_ids , _lowerCAmelCase)) with self.assertRaises(_lowerCAmelCase): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(_lowerCAmelCase): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =[[1, 2], [1, 2, 3, 4]] with self.assertRaises(_lowerCAmelCase): DisjunctiveConstraint(_lowerCAmelCase) # fails here def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =[[1, 2, 3], [1, 2, 4]] __lowercase =DisjunctiveConstraint(_lowerCAmelCase) __lowercase , __lowercase , __lowercase =dc.update(1) __lowercase =stepped is True and completed is False and reset is False self.assertTrue(_lowerCAmelCase) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) __lowercase , __lowercase , __lowercase =dc.update(2) __lowercase =stepped is True and completed is False and reset is False self.assertTrue(_lowerCAmelCase) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) __lowercase , __lowercase , __lowercase =dc.update(3) __lowercase =stepped is True and completed is True and reset is False self.assertTrue(_lowerCAmelCase) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =[[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowercase =DisjunctiveConstraint(_lowerCAmelCase) __lowercase , __lowercase , __lowercase =dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) __lowercase , __lowercase , __lowercase =dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) __lowercase , __lowercase , __lowercase =dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) __lowercase , __lowercase , __lowercase =dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() __lowercase , __lowercase , __lowercase =dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) __lowercase , __lowercase , __lowercase =dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) __lowercase , __lowercase , __lowercase =dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
474
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar UpperCAmelCase = TypeVar("""T""") class UpperCAmelCase_ ( Generic[T]): def __init__( self : int , __UpperCamelCase : list[T] , __UpperCamelCase : Callable[[T, T], T] ) -> None: _UpperCamelCase = None _UpperCamelCase = len(__UpperCamelCase ) _UpperCamelCase = [any_type for _ in range(self.N )] + arr _UpperCamelCase = fnc self.build() def _UpperCamelCase ( self : Dict ) -> None: for p in range(self.N - 1 , 0 , -1 ): _UpperCamelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : T ) -> None: p += self.N _UpperCamelCase = v while p > 1: _UpperCamelCase = p // 2 _UpperCamelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _UpperCamelCase ( self : str , __UpperCamelCase : int , __UpperCamelCase : int ) -> T | None: # noqa: E741 _UpperCamelCase , _UpperCamelCase = l + self.N, r + self.N _UpperCamelCase = None while l <= r: if l % 2 == 1: _UpperCamelCase = self.st[l] if res is None else self.fn(__UpperCamelCase , self.st[l] ) if r % 2 == 0: _UpperCamelCase = self.st[r] if res is None else self.fn(__UpperCamelCase , self.st[r] ) _UpperCamelCase , _UpperCamelCase = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce UpperCAmelCase = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] UpperCAmelCase = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } UpperCAmelCase = SegmentTree(test_array, min) UpperCAmelCase = SegmentTree(test_array, max) UpperCAmelCase = SegmentTree(test_array, lambda a, b: a + b) def lowercase ( ) -> None: for i in range(len(a__ ) ): for j in range(a__ , len(a__ ) ): _UpperCamelCase = reduce(a__ , test_array[i : j + 1] ) _UpperCamelCase = reduce(a__ , test_array[i : j + 1] ) _UpperCamelCase = reduce(lambda a__ , a__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(a__ , a__ ) assert max_range == max_segment_tree.query(a__ , a__ ) assert sum_range == sum_segment_tree.query(a__ , a__ ) test_all_segments() for index, value in test_updates.items(): UpperCAmelCase = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
342
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase): def _UpperCamelCase ( self : List[Any] ) -> List[str]: _UpperCamelCase = 0 def _UpperCamelCase ( self : Any ) -> str: _UpperCamelCase = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Any ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] ) -> List[str]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : int ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ).to_dict() config_dict.pop('''image_processor_type''' ) _UpperCamelCase = CLIPImageProcessor(**__UpperCamelCase ) # save in new folder model_config.save_pretrained(__UpperCamelCase ) config.save_pretrained(__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) # make sure private variable is not incorrectly saved _UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : List[Any] ) -> List[Any]: with self.assertRaisesRegex( __UpperCamelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''clip-base''' ) def _UpperCamelCase ( self : Dict ) -> Union[str, Any]: with self.assertRaisesRegex( __UpperCamelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase , revision='''aaaaaa''' ) def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: with self.assertRaisesRegex( __UpperCamelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def _UpperCamelCase ( self : int ) -> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__UpperCamelCase ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCamelCase ): _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase , trust_remote_code=__UpperCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def _UpperCamelCase ( self : Optional[int] ) -> List[Any]: try: AutoConfig.register('''custom''' , __UpperCamelCase ) AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCamelCase ): AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) _UpperCamelCase = CustomImageProcessor.from_pretrained(__UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _UpperCamelCase ( self : List[str] ) -> Optional[Any]: class UpperCAmelCase_ ( _lowercase): snake_case__ = True try: AutoConfig.register('''custom''' , __UpperCamelCase ) AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) # If remote code is not set, the default is to use local _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(__UpperCamelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
342
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _a : Union[str, Any] = logging.get_logger(__name__) class _lowercase ( __lowercase ): def __init__( self : Dict , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : str ) -> None: warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
56
def __lowerCAmelCase ( A_ : int , A_ : int ) -> int: return x if y == 0 else greatest_common_divisor(A_ , x % y ) def __lowerCAmelCase ( A_ : int , A_ : int ) -> int: return (x * y) // greatest_common_divisor(A_ , A_ ) def __lowerCAmelCase ( A_ : int = 20 ) -> int: __UpperCAmelCase = 1 for i in range(1 , n + 1 ): __UpperCAmelCase = lcm(A_ , A_ ) return g if __name__ == "__main__": print(F"{solution() = }")
221
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _UpperCAmelCase ( __lowerCamelCase : Dict ) -> int: _snake_case = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : int ) -> Dict: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _snake_case = emb.weight.data return lin_layer def _UpperCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : Tuple="facebook/mbart-large-en-ro" , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Tuple=False ) -> List[str]: _snake_case = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model'''] remove_ignore_keys_(__lowerCamelCase ) _snake_case = state_dict['''encoder.embed_tokens.weight'''].shape[0] _snake_case = MBartConfig.from_pretrained(__lowerCamelCase , vocab_size=__lowerCamelCase ) if mbart_aa and finetuned: _snake_case = '''relu''' _snake_case = state_dict['''decoder.embed_tokens.weight'''] _snake_case = MBartForConditionalGeneration(__lowerCamelCase ) model.model.load_state_dict(__lowerCamelCase ) if finetuned: _snake_case = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
709
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
430
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ :Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ :Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class A( lowerCamelCase__ ): """simple docstring""" A = "megatron-bert" def __init__( self , SCREAMING_SNAKE_CASE__=2_90_56 , SCREAMING_SNAKE_CASE__=10_24 , SCREAMING_SNAKE_CASE__=24 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=40_96 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__="absolute" , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Union[str, Any] = vocab_size _UpperCamelCase :Optional[int] = hidden_size _UpperCamelCase :List[Any] = num_hidden_layers _UpperCamelCase :Optional[Any] = num_attention_heads _UpperCamelCase :List[str] = hidden_act _UpperCamelCase :List[str] = intermediate_size _UpperCamelCase :int = hidden_dropout_prob _UpperCamelCase :List[str] = attention_probs_dropout_prob _UpperCamelCase :Any = max_position_embeddings _UpperCamelCase :Dict = type_vocab_size _UpperCamelCase :Any = initializer_range _UpperCamelCase :Tuple = layer_norm_eps _UpperCamelCase :Tuple = position_embedding_type _UpperCamelCase :Any = use_cache
355
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ :str = logging.get_logger(__name__) UpperCamelCase__ :Optional[int] = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class A( lowerCamelCase__ ): """simple docstring""" A = "markuplm" def __init__( self , SCREAMING_SNAKE_CASE__=3_05_22 , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=10_24 , SCREAMING_SNAKE_CASE__=2_16 , SCREAMING_SNAKE_CASE__=10_01 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=50 , SCREAMING_SNAKE_CASE__="absolute" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: """simple docstring""" super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) _UpperCamelCase :Any = vocab_size _UpperCamelCase :Union[str, Any] = hidden_size _UpperCamelCase :List[Any] = num_hidden_layers _UpperCamelCase :int = num_attention_heads _UpperCamelCase :Tuple = hidden_act _UpperCamelCase :str = intermediate_size _UpperCamelCase :Optional[int] = hidden_dropout_prob _UpperCamelCase :Any = attention_probs_dropout_prob _UpperCamelCase :Union[str, Any] = max_position_embeddings _UpperCamelCase :Dict = type_vocab_size _UpperCamelCase :int = initializer_range _UpperCamelCase :Optional[int] = layer_norm_eps _UpperCamelCase :Any = position_embedding_type _UpperCamelCase :Any = use_cache _UpperCamelCase :List[str] = classifier_dropout # additional properties _UpperCamelCase :Union[str, Any] = max_depth _UpperCamelCase :Union[str, Any] = max_xpath_tag_unit_embeddings _UpperCamelCase :Optional[Any] = max_xpath_subs_unit_embeddings _UpperCamelCase :int = tag_pad_id _UpperCamelCase :str = subs_pad_id _UpperCamelCase :List[str] = xpath_unit_hidden_size
355
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __magic_name__ ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ =['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __magic_name__ =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
469
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _A ( __UpperCamelCase , __UpperCamelCase ): @register_to_config def __init__(self , SCREAMING_SNAKE_CASE_ = 768 , ) -> Tuple: '''simple docstring''' super().__init__() UpperCamelCase__ = nn.Parameter(torch.zeros(1 , SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = nn.Parameter(torch.ones(1 , SCREAMING_SNAKE_CASE_ ) ) def _a (self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ) -> Tuple: '''simple docstring''' UpperCamelCase__ = nn.Parameter(self.mean.to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = nn.Parameter(self.std.to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) ) return self def _a (self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' UpperCamelCase__ = (embeds - self.mean) * 1.0 / self.std return embeds def _a (self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' UpperCamelCase__ = (embeds * self.std) + self.mean return embeds
469
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
66
"""simple docstring""" def UpperCAmelCase_ ( __a : list ): '''simple docstring''' if len(__a ) <= 1: return lst _lowerCamelCase : str = 1 while i < len(__a ): if lst[i - 1] <= lst[i]: i += 1 else: _lowerCamelCase , _lowerCamelCase : Optional[Any] = lst[i], lst[i - 1] i -= 1 if i == 0: _lowerCamelCase : Dict = 1 return lst if __name__ == "__main__": a_ = input("""Enter numbers separated by a comma:\n""").strip() a_ = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
437
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _A : Union[str, Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_ ( snake_case_ : List[str] ) -> List[str]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __lowerCAmelCase = k.replace(snake_case_ , snake_case_ ) return k def UpperCamelCase_ ( snake_case_ : dict , snake_case_ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __lowerCAmelCase = DEFAULTS.copy() cfg_kwargs.update(snake_case_ ) __lowerCAmelCase = PegasusConfig(**snake_case_ ) __lowerCAmelCase = PegasusForConditionalGeneration(snake_case_ ) __lowerCAmelCase = torch_model.model.state_dict() __lowerCAmelCase = {} for k, v in tf_weights.items(): __lowerCAmelCase = rename_state_dict_key(snake_case_ ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCAmelCase = v.T __lowerCAmelCase = torch.tensor(snake_case_ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCAmelCase = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) __lowerCAmelCase = mapping["""shared.weight"""] __lowerCAmelCase = mapping["""shared.weight"""] __lowerCAmelCase = {k: torch.zeros_like(snake_case_ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = torch_model.model.load_state_dict(snake_case_ , strict=snake_case_ ) __lowerCAmelCase = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def UpperCamelCase_ ( snake_case_ : Dict="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __lowerCAmelCase = tf.train.list_variables(snake_case_ ) __lowerCAmelCase = {} __lowerCAmelCase = ["""Adafactor""", """global_step"""] for name, shape in tqdm(snake_case_ , desc="""converting tf checkpoint to dict""" ): __lowerCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCAmelCase = tf.train.load_variable(snake_case_ , snake_case_ ) __lowerCAmelCase = array return tf_weights def UpperCamelCase_ ( snake_case_ : str , snake_case_ : str ) -> Union[str, Any]: '''simple docstring''' __lowerCAmelCase = Path(snake_case_ ).parent.name __lowerCAmelCase = task_specific_params[f"""summarization_{dataset}"""]["""max_position_embeddings"""] __lowerCAmelCase = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=snake_case_ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case_ ) # convert model __lowerCAmelCase = get_tf_weights_as_numpy(snake_case_ ) __lowerCAmelCase = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": __lowerCAmelCase = task_specific_params __lowerCAmelCase = convert_pegasus(snake_case_ , snake_case_ ) torch_model.save_pretrained(snake_case_ ) __lowerCAmelCase = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(snake_case_ , Path(snake_case_ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _A : Any = parser.parse_args() if args.save_dir is None: _A : Dict = Path(args.tf_ckpt_path).parent.name _A : str = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Union[str, Any] = logging.get_logger(__name__) _A : Union[str, Any] = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = """dpr""" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple=3_05_22 , SCREAMING_SNAKE_CASE__ : List[Any]=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : List[str]=12 , SCREAMING_SNAKE_CASE__ : Tuple=30_72 , SCREAMING_SNAKE_CASE__ : int="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int="absolute" , SCREAMING_SNAKE_CASE__ : int = 0 , **SCREAMING_SNAKE_CASE__ : str , ) -> Tuple: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = projection_dim __lowerCAmelCase = position_embedding_type
330
1
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_a ) , 'Tatoeba directory does not exist.' ) class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : int = tempfile.mkdtemp() return TatoebaConverter(save_dir=__lowerCAmelCase ) @slow def _lowercase ( self: int ): '''simple docstring''' self.resolver.convert_models(["heb-eng"] ) @slow def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : int = self.resolver.write_model_card("opus-mt-he-en" ,dry_run=__lowerCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
46
from torch import nn class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , _snake_case : List[Any] , _snake_case : Tuple ): super().__init__() __lowercase : Any = class_size __lowercase : List[Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : Dict = nn.Linear(_snake_case , _snake_case ) def snake_case_ ( self : Any , _snake_case : str ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) __lowercase : Any = self.mlp(_snake_case ) return logits
509
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Tuple = (DDPMScheduler,) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )-> Tuple: lowerCamelCase_ ={ """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def _snake_case ( self )-> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[Any]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> int: self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def _snake_case ( self )-> Optional[int]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> str: for t in [0, 500, 999]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def _snake_case ( self )-> int: lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =len(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.dummy_model() lowerCamelCase_ =self.dummy_sample_deter lowerCamelCase_ =torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ =scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ =pred_prev_sample lowerCamelCase_ =torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ =torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =len(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.dummy_model() lowerCamelCase_ =self.dummy_sample_deter lowerCamelCase_ =torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ =scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ =pred_prev_sample lowerCamelCase_ =torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ =torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =scheduler.timesteps for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ): if i == len(_SCREAMING_SNAKE_CASE ) - 1: lowerCamelCase_ =-1 else: lowerCamelCase_ =timesteps[i + 1] lowerCamelCase_ =scheduler.previous_timestep(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =prev_t.item() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Dict: lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[100, 87, 50, 51, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[100, 87, 50, 1, 0] lowerCamelCase_ =len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> str: lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
75
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __A : int = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') __A : str = F"""https://www.google.com/search?q={query}&num=100""" __A : int = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: __A : str = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: __A : Any = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
75
1
'''simple docstring''' from __future__ import annotations def _A ( A__ ): """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(A__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(A__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
41
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str]=sys.maxsize): '''simple docstring''' snake_case__ = """bilinear""" snake_case__ = max_size snake_case__ = short_edge_length def __call__( self : List[str] , UpperCamelCase__ : Tuple): '''simple docstring''' snake_case__ = [] for img in imgs: snake_case__ , snake_case__ = img.shape[:2] # later: provide list and randomly choose index for resize snake_case__ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img snake_case__ = size * 1.0 / min(UpperCamelCase__ , UpperCamelCase__) if h < w: snake_case__ , snake_case__ = size, scale * w else: snake_case__ , snake_case__ = scale * h, size if max(UpperCamelCase__ , UpperCamelCase__) > self.max_size: snake_case__ = self.max_size * 1.0 / max(UpperCamelCase__ , UpperCamelCase__) snake_case__ = newh * scale snake_case__ = neww * scale snake_case__ = int(neww + 0.5) snake_case__ = int(newh + 0.5) if img.dtype == np.uinta: snake_case__ = Image.fromarray(UpperCamelCase__) snake_case__ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) snake_case__ = np.asarray(UpperCamelCase__) else: snake_case__ = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw snake_case__ = nn.functional.interpolate( UpperCamelCase__ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase__).squeeze(0) img_augs.append(UpperCamelCase__) return img_augs class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict , UpperCamelCase__ : Optional[int]): '''simple docstring''' snake_case__ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) snake_case__ = cfg.INPUT.FORMAT snake_case__ = cfg.SIZE_DIVISIBILITY snake_case__ = cfg.PAD_VALUE snake_case__ = cfg.INPUT.MAX_SIZE_TEST snake_case__ = cfg.MODEL.DEVICE snake_case__ = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) snake_case__ = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) snake_case__ = lambda UpperCamelCase__: (x - self.pixel_mean) / self.pixel_std def __magic_name__ ( self : Dict , UpperCamelCase__ : Dict): '''simple docstring''' snake_case__ = tuple(max(UpperCamelCase__) for s in zip(*[img.shape for img in images])) snake_case__ = [im.shape[-2:] for im in images] snake_case__ = [ nn.functional.pad( UpperCamelCase__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase__ , UpperCamelCase__) ] return torch.stack(UpperCamelCase__), torch.tensor(UpperCamelCase__) def __call__( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str=False): '''simple docstring''' with torch.no_grad(): if not isinstance(UpperCamelCase__ , UpperCamelCase__): snake_case__ = [images] if single_image: assert len(UpperCamelCase__) == 1 for i in range(len(UpperCamelCase__)): if isinstance(images[i] , torch.Tensor): images.insert(UpperCamelCase__ , images.pop(UpperCamelCase__).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( UpperCamelCase__ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase__) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge snake_case__ = torch.tensor([im.shape[:2] for im in images]) snake_case__ = self.aug(UpperCamelCase__) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic snake_case__ = [self.normalizer(UpperCamelCase__) for x in images] # now pad them to do the following operations snake_case__ , snake_case__ = self.pad(UpperCamelCase__) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad snake_case__ = torch.true_divide(UpperCamelCase__ , UpperCamelCase__) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _UpperCAmelCase ( a : Optional[Any] , a : Any ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _UpperCAmelCase ( a : Any , a : Tuple[int, int] ): assert torch.isfinite(a ).all(), "Box tensor contains infinite or NaN!" snake_case__ , snake_case__ = box_size tensor[:, 0].clamp_(min=0 , max=a ) tensor[:, 1].clamp_(min=0 , max=a ) tensor[:, 2].clamp_(min=0 , max=a ) tensor[:, 3].clamp_(min=0 , max=a )
654
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : Union[str, Any] = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __magic_name__ ( _UpperCamelCase ): UpperCamelCase : Any = "big_bird" def __init__( self , __magic_name__=5_0_3_5_8 , __magic_name__=7_6_8 , __magic_name__=1_2 , __magic_name__=1_2 , __magic_name__=3_0_7_2 , __magic_name__="gelu_new" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=4_0_9_6 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=1e-12 , __magic_name__=True , __magic_name__=0 , __magic_name__=1 , __magic_name__=2 , __magic_name__=6_6 , __magic_name__="block_sparse" , __magic_name__=True , __magic_name__=False , __magic_name__=6_4 , __magic_name__=3 , __magic_name__=None , **__magic_name__ , ): """simple docstring""" super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , sep_token_id=__magic_name__ , **__magic_name__ , ) _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = type_vocab_size _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = use_cache _lowerCAmelCase = rescale_embeddings _lowerCAmelCase = attention_type _lowerCAmelCase = use_bias _lowerCAmelCase = block_size _lowerCAmelCase = num_random_blocks _lowerCAmelCase = classifier_dropout class __magic_name__ ( _UpperCamelCase ): @property def _lowerCamelCase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
309
"""simple docstring""" import argparse from collections import defaultdict import yaml a__ : List[str] = """docs/source/en/_toctree.yml""" def A__ ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = defaultdict(__lowerCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 _lowerCAmelCase = [key for key, value in counts.items() if value > 1] _lowerCAmelCase = [] for duplicate_key in duplicates: _lowerCAmelCase = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__lowerCamelCase ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__lowerCamelCase, key=lambda __lowerCamelCase : s["title"].lower() ) def A__ ( __lowerCamelCase=False ): """simple docstring""" with open(__lowerCamelCase, encoding='utf-8' ) as f: _lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase = content[api_idx]['sections'] # Then to the model doc _lowerCAmelCase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _lowerCAmelCase = api_doc[model_idx]['sections'] _lowerCAmelCase = [(idx, section) for idx, section in enumerate(__lowerCamelCase ) if 'sections' in section] _lowerCAmelCase = False for idx, modality_doc in modalities_docs: _lowerCAmelCase = modality_doc['sections'] _lowerCAmelCase = clean_model_doc_toc(__lowerCamelCase ) if old_modality_doc != new_modality_doc: _lowerCAmelCase = True if overwrite: _lowerCAmelCase = new_modality_doc if diff: if overwrite: _lowerCAmelCase = model_doc _lowerCAmelCase = api_doc with open(__lowerCamelCase, 'w', encoding='utf-8' ) as f: f.write(yaml.dump(__lowerCamelCase, allow_unicode=__lowerCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a__ : str = parser.parse_args() check_model_doc(args.fix_and_overwrite)
309
1
def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" __lowercase , __lowercase = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __lowercase = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
534
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Tuple = 'M-CLIP' def __init__( self : Any , lowerCamelCase__ : List[Any]=1_024 , lowerCamelCase__ : List[str]=768 , **lowerCamelCase__ : Optional[int] ) -> int: """simple docstring""" __lowercase = transformerDimSize __lowercase = imageDimSize super().__init__(**lowerCamelCase__ ) class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Dict = MCLIPConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Tuple , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Any ) -> List[str]: """simple docstring""" super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) __lowercase = XLMRobertaModel(lowerCamelCase__ ) __lowercase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def UpperCAmelCase_ ( self : str , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = self.transformer(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] __lowercase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowerCamelCase__ ), embs
332
0
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ (_A , unittest.TestCase ): '''simple docstring''' _a = ConsistencyModelPipeline _a = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _a = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _a = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def _lowerCAmelCase ( self : Dict ) ->Dict: lowerCamelCase_ : Tuple = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet""" , ) return unet @property def _lowerCAmelCase ( self : int ) ->str: lowerCamelCase_ : Tuple = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , ) return unet def _lowerCAmelCase ( self : Dict , __a : int=False ) ->Tuple: if class_cond: lowerCamelCase_ : Tuple = self.dummy_cond_unet else: lowerCamelCase_ : Optional[int] = self.dummy_uncond_unet # Default to CM multistep sampler lowerCamelCase_ : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCamelCase_ : Tuple = { "unet": unet, "scheduler": scheduler, } return components def _lowerCAmelCase ( self : List[str] , __a : Any , __a : Optional[int]=0 ) ->str: if str(__a ).startswith("""mps""" ): lowerCamelCase_ : List[str] = torch.manual_seed(__a ) else: lowerCamelCase_ : Any = torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase_ : Any = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def _lowerCAmelCase ( self : Tuple ) ->List[Any]: lowerCamelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : Optional[Any] = self.get_dummy_components() lowerCamelCase_ : List[Any] = ConsistencyModelPipeline(**__a ) lowerCamelCase_ : Tuple = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase_ : Dict = self.get_dummy_inputs(__a ) lowerCamelCase_ : List[Any] = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) lowerCamelCase_ : Optional[int] = image[0, -3:, -3:, -1] lowerCamelCase_ : List[str] = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCAmelCase ( self : str ) ->Any: lowerCamelCase_ : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : Tuple = self.get_dummy_components(class_cond=__a ) lowerCamelCase_ : Tuple = ConsistencyModelPipeline(**__a ) lowerCamelCase_ : Dict = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase_ : List[Any] = self.get_dummy_inputs(__a ) lowerCamelCase_ : Optional[Any] = 0 lowerCamelCase_ : int = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) lowerCamelCase_ : int = image[0, -3:, -3:, -1] lowerCamelCase_ : str = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCAmelCase ( self : List[str] ) ->Optional[Any]: lowerCamelCase_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : List[str] = self.get_dummy_components() lowerCamelCase_ : Any = ConsistencyModelPipeline(**__a ) lowerCamelCase_ : Tuple = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase_ : int = self.get_dummy_inputs(__a ) lowerCamelCase_ : Optional[Any] = 1 lowerCamelCase_ : str = None lowerCamelCase_ : Dict = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) lowerCamelCase_ : Dict = image[0, -3:, -3:, -1] lowerCamelCase_ : List[Any] = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: lowerCamelCase_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : Union[str, Any] = self.get_dummy_components(class_cond=__a ) lowerCamelCase_ : Dict = ConsistencyModelPipeline(**__a ) lowerCamelCase_ : Any = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase_ : Tuple = self.get_dummy_inputs(__a ) lowerCamelCase_ : Optional[Any] = 1 lowerCamelCase_ : List[Any] = None lowerCamelCase_ : Dict = 0 lowerCamelCase_ : Dict = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) lowerCamelCase_ : Any = image[0, -3:, -3:, -1] lowerCamelCase_ : Optional[int] = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ (unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : int , __a : Any=0 , __a : Optional[Any]=False , __a : Optional[Any]="cpu" , __a : str=torch.floataa , __a : int=(1, 3, 64, 64) ) ->List[Any]: lowerCamelCase_ : str = torch.manual_seed(__a ) lowerCamelCase_ : str = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: lowerCamelCase_ : Any = self.get_fixed_latents(seed=__a , device=__a , dtype=__a , shape=__a ) lowerCamelCase_ : Union[str, Any] = latents return inputs def _lowerCAmelCase ( self : Any , __a : Optional[int]=0 , __a : Optional[Any]="cpu" , __a : Tuple=torch.floataa , __a : Any=(1, 3, 64, 64) ) ->Any: if type(__a ) == str: lowerCamelCase_ : int = torch.device(__a ) lowerCamelCase_ : List[Any] = torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase_ : Tuple = randn_tensor(__a , generator=__a , device=__a , dtype=__a ) return latents def _lowerCAmelCase ( self : int ) ->Any: lowerCamelCase_ : List[str] = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) lowerCamelCase_ : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCamelCase_ : int = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase_ : List[str] = self.get_inputs() lowerCamelCase_ : List[Any] = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) lowerCamelCase_ : Tuple = image[0, -3:, -3:, -1] lowerCamelCase_ : List[str] = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowerCAmelCase ( self : Dict ) ->Union[str, Any]: lowerCamelCase_ : Optional[int] = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) lowerCamelCase_ : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCamelCase_ : Union[str, Any] = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase_ : Union[str, Any] = self.get_inputs() lowerCamelCase_ : str = 1 lowerCamelCase_ : Tuple = None lowerCamelCase_ : str = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1] lowerCamelCase_ : Union[str, Any] = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _lowerCAmelCase ( self : int ) ->str: lowerCamelCase_ : List[str] = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) lowerCamelCase_ : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCamelCase_ : Union[str, Any] = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase_ : Any = self.get_inputs(get_fixed_latents=__a , device=__a ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__a , enable_math=__a , enable_mem_efficient=__a ): lowerCamelCase_ : Any = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) lowerCamelCase_ : Tuple = image[0, -3:, -3:, -1] lowerCamelCase_ : List[str] = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _lowerCAmelCase ( self : int ) ->Union[str, Any]: lowerCamelCase_ : Optional[int] = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) lowerCamelCase_ : int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCamelCase_ : Dict = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase_ : List[Any] = self.get_inputs(get_fixed_latents=__a , device=__a ) lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : int = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__a , enable_math=__a , enable_mem_efficient=__a ): lowerCamelCase_ : Any = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) lowerCamelCase_ : Dict = image[0, -3:, -3:, -1] lowerCamelCase_ : Tuple = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
713
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = "" _a = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self : Any , __a : Optional[DatasetInfo] = None , __a : Optional[str] = None , **__a : Any , ) ->Any: super().__init__(self , **__a ) lowerCamelCase_ : Tuple = repo_info lowerCamelCase_ : Any = token lowerCamelCase_ : Any = None def _lowerCAmelCase ( self : Optional[int] ) ->List[Any]: if self.dir_cache is None: lowerCamelCase_ : Dict = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowerCamelCase_ : int = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__a ): {"""name""": str(__a ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _lowerCAmelCase ( self : int , __a : str , __a : str = "rb" , **__a : Optional[Any] , ) ->Dict: if not isinstance(self.repo_info , __a ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) lowerCamelCase_ : int = hf_hub_url(self.repo_info.id , __a , revision=self.repo_info.sha ) return fsspec.open( __a , mode=__a , headers=get_authentication_headers_for_url(__a , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def _lowerCAmelCase ( self : Dict , __a : str , **__a : List[Any] ) ->List[Any]: self._get_dirs() lowerCamelCase_ : Tuple = self._strip_protocol(__a ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__a ) def _lowerCAmelCase ( self : Any , __a : Optional[Any] , __a : str=False , **__a : List[str] ) ->List[Any]: self._get_dirs() lowerCamelCase_ : Optional[Any] = PurePosixPath(path.strip("""/""" ) ) lowerCamelCase_ : Dict = {} for p, f in self.dir_cache.items(): lowerCamelCase_ : str = PurePosixPath(p.strip("""/""" ) ) lowerCamelCase_ : Dict = p.parent if root == path: lowerCamelCase_ : int = f lowerCamelCase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
171
0
def a_ ( __magic_name__ ) -> None: """simple docstring""" snake_case : Any = generate_pascal_triangle(__magic_name__ ) for row_idx in range(__magic_name__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def a_ ( __magic_name__ ) -> list[list[int]]: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) snake_case : list[list[int]] = [] for current_row_idx in range(__magic_name__ ): snake_case : Any = populate_current_row(__magic_name__ , __magic_name__ ) triangle.append(__magic_name__ ) return triangle def a_ ( __magic_name__ , __magic_name__ ) -> list[int]: """simple docstring""" snake_case : Union[str, Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case , snake_case : Any = 1, 1 for current_col_idx in range(1 , __magic_name__ ): calculate_current_element( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return current_row def a_ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> None: """simple docstring""" snake_case : List[str] = triangle[current_row_idx - 1][current_col_idx - 1] snake_case : Any = triangle[current_row_idx - 1][current_col_idx] snake_case : Optional[Any] = above_to_left_elt + above_to_right_elt def a_ ( __magic_name__ ) -> list[list[int]]: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) snake_case : list[list[int]] = [[1]] for row_index in range(1 , __magic_name__ ): snake_case : str = [0] + result[-1] + [0] snake_case : str = row_index + 1 # Calculate the number of distinct elements in a row snake_case : Any = sum(divmod(__magic_name__ , 2 ) ) snake_case : List[str] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case : int = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case : int = row_first_half + row_second_half result.append(__magic_name__ ) return result def a_ ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: snake_case : str = F"{func.__name__}({value})" snake_case : Dict = timeit(F"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
598
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=a ) class a_ ( a ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization A__ : str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) A__ : ClassVar[Features] = Features({'question': Value('string' ), 'context': Value('string' )} ) A__ : ClassVar[Features] = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) A__ : str = "question" A__ : str = "context" A__ : str = "answers" @property def lowerCAmelCase( self : Optional[int] ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
598
1
'''simple docstring''' from collections.abc import Sequence def _lowerCamelCase ( lowerCamelCase_ : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) UpperCAmelCase_ : Any = nums[0] for i in range(1 , len(lowerCamelCase_ ) ): UpperCAmelCase_ : Tuple = nums[i] UpperCAmelCase_ : Tuple = max(lowerCamelCase_ , ans + num , lowerCamelCase_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user snake_case__ : Tuple = int(input("Enter number of elements : ").strip()) snake_case__ : List[str] = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
715
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('xlm-roberta-base' ) UpperCAmelCase_ : Tuple = 'The dog is cute and lives in the garden house' UpperCAmelCase_ : Dict = jnp.array([tokenizer.encode(snake_case_ )] ) UpperCAmelCase_ : str = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ : List[str] = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) UpperCAmelCase_ : str = model(snake_case_ )['last_hidden_state'] self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , snake_case_ , atol=1E-3 ) )
389
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="megatron-bert" def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ): super().__init__(pad_token_id=a__ , **a__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache
51
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : torch.FloatTensor SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None def _UpperCamelCase ( lowercase__ , lowercase__=0.999 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class _lowercase ( A__ , A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = 1 @register_to_config def __init__( self :Dict , lowerCAmelCase__ :int = 1_000 , lowerCAmelCase__ :float = 0.0001 , lowerCAmelCase__ :float = 0.02 , lowerCAmelCase__ :str = "linear" , lowerCAmelCase__ :Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :str = "epsilon" , lowerCAmelCase__ :float = 1.0 , **lowerCAmelCase__ :int , ) -> Union[str, Any]: if kwargs.get('''set_alpha_to_one''' , lowerCAmelCase__ ) is not None: __SCREAMING_SNAKE_CASE : Optional[int] = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __SCREAMING_SNAKE_CASE : Any = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE : str = torch.linspace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE : List[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE : Optional[Any] = betas_for_alpha_bar(lowerCAmelCase__ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = 1.0 - self.betas __SCREAMING_SNAKE_CASE : int = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __SCREAMING_SNAKE_CASE : int = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __SCREAMING_SNAKE_CASE : Any = 1.0 # setable values __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(np.arange(0 , lowerCAmelCase__ ).copy().astype(np.intaa ) ) def __magic_name__( self :List[str] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :Optional[int] = None ) -> torch.FloatTensor: return sample def __magic_name__( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, torch.device] = None ) -> List[str]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = num_inference_steps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE : Optional[int] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round().copy().astype(np.intaa ) __SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) self.timesteps += self.config.steps_offset def __magic_name__( self :Tuple , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) __SCREAMING_SNAKE_CASE : Optional[Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __SCREAMING_SNAKE_CASE : Any = self.alphas_cumprod[timestep] __SCREAMING_SNAKE_CASE : str = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE : int = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __SCREAMING_SNAKE_CASE : List[Any] = model_output elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE : List[str] = model_output __SCREAMING_SNAKE_CASE : Optional[Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE : Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __SCREAMING_SNAKE_CASE : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __SCREAMING_SNAKE_CASE : Dict = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Dict = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __len__( self :Optional[int] ) -> List[Any]: return self.config.num_train_timesteps
696
0
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES _A : Any ='''tiny-wmt19-en-ru''' # Build # borrowed from a test _A : List[Any] =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _A : Any =dict(zip(vocab, range(len(vocab)))) _A : Optional[Any] =['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: _A : Optional[Any] =Path(tmpdirname) _A : Union[str, Any] =build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] _A : Tuple =build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] _A : Union[str, Any] =build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) _A : List[str] =FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) _A : List[str] =FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1_0_0_0, tgt_vocab_size=1_0_0_0, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) _A : Optional[Any] =FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test _A : Optional[int] =tokenizer(['''Making tiny model'''], return_tensors='''pt''') _A : List[Any] =tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
4
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[str] ='''pt''' elif is_tf_available(): _A : Tuple ='''tf''' else: _A : Optional[int] ='''jax''' class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = ByTaTokenizer A_ = False def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() _lowercase : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' _lowercase : Dict = [] for i in range(len(UpperCamelCase_ ) ): try: _lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) ) _lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) ) if max_length is not None and len(UpperCamelCase_ ) > max_length: _lowercase : List[Any] = toks[:max_length] if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0: while len(UpperCamelCase_ ) < min_length: _lowercase : Tuple = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Dict = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) if " " not in output_txt and len(UpperCamelCase_ ) > 1: _lowercase : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ ) ) if with_prefix_space: _lowercase : Union[str, Any] = ' ' + output_txt _lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) return output_txt, output_ids def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' _lowercase : List[str] = self.ta_base_tokenizer _lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = self.ta_base_tokenizer _lowercase : Tuple = 'Unicode €.' _lowercase : List[Any] = tokenizer(UpperCamelCase_ ) _lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : List[str] = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'Unicode €.</s>' ) _lowercase : Any = tokenizer('e è é ê ë' ) _lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : Tuple = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = self.ta_base_tokenizer _lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) if FRAMEWORK != "jax": _lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = self.ta_base_tokenizer _lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCamelCase_ ) self.assertIn('attention_mask' , UpperCamelCase_ ) self.assertNotIn('decoder_input_ids' , UpperCamelCase_ ) self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ ) def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' _lowercase : Tuple = self.ta_base_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : str = tokenizer( text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' _lowercase : str = self.ta_base_tokenizer _lowercase : str = ['A long paragraph for summarization. </s>'] _lowercase : Optional[int] = ['Summary of the text. </s>'] # fmt: off _lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] ) self.assertEqual(UpperCamelCase_ , batch['labels'][0] ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowercase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[Any] = tempfile.mkdtemp() _lowercase : Any = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) shutil.rmtree(UpperCamelCase_ ) _lowercase : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' _lowercase : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : int = json.load(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(UpperCamelCase_ ) _lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )] _lowercase : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : int = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[Any] = tokenizer_class.from_pretrained( UpperCamelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )] _lowercase : Tuple = tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) _lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Optional[int] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowercase : Optional[int] = 0 _lowercase : int = tokenizer.convert_ids_to_tokens( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for attr in attributes_list: setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
4
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _snake_case ( __a ): """simple docstring""" lowerCamelCase_ = (DEISMultistepScheduler,) lowerCamelCase_ = (('''num_inference_steps''', 2_5),) def lowercase_ ( self , **a ) -> List[Any]: """simple docstring""" _A = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**_lowercase ) return config def lowercase_ ( self , a=0 , **a ) -> str: """simple docstring""" _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('''num_inference_steps''' , _lowercase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config(**_lowercase ) _A = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals _A = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) _A = scheduler_class.from_pretrained(_lowercase ) new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals _A = dummy_past_residuals[: new_scheduler.config.solver_order] _A = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1 ): _A = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample _A = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" pass def lowercase_ ( self , a=0 , **a ) -> str: """simple docstring""" _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('''num_inference_steps''' , _lowercase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals (must be after setting timesteps) _A = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) _A = scheduler_class.from_pretrained(_lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residual (must be after setting timesteps) _A = dummy_past_residuals[: new_scheduler.config.solver_order] _A = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample _A = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase_ ( self , a=None , **a ) -> List[str]: """simple docstring""" if scheduler is None: _A = self.scheduler_classes[0] _A = self.get_scheduler_config(**_lowercase ) _A = scheduler_class(**_lowercase ) _A = self.scheduler_classes[0] _A = self.get_scheduler_config(**_lowercase ) _A = scheduler_class(**_lowercase ) _A = 1_0 _A = self.dummy_model() _A = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): _A = model(_lowercase , _lowercase ) _A = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample return sample def lowercase_ ( self ) -> List[Any]: """simple docstring""" _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('''num_inference_steps''' , _lowercase ) for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**_lowercase ) _A = self.dummy_sample _A = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps''' ): scheduler.set_timesteps(_lowercase ) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps''' ): _A = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _A = [residual + 0.2, residual + 0.15, residual + 0.10] _A = dummy_past_residuals[: scheduler.config.solver_order] _A = scheduler.timesteps[5] _A = scheduler.timesteps[6] _A = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample _A = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase_ ( self ) -> Tuple: """simple docstring""" _A = DEISMultistepScheduler(**self.get_scheduler_config() ) _A = self.full_loop(scheduler=_lowercase ) _A = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 _A = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _A = DPMSolverMultistepScheduler.from_config(scheduler.config ) _A = UniPCMultistepScheduler.from_config(scheduler.config ) _A = DEISMultistepScheduler.from_config(scheduler.config ) _A = self.full_loop(scheduler=_lowercase ) _A = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_lowercase ) def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''deis''' , solver_order=_lowercase , solver_type=_lowercase , ) def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def lowercase_ ( self ) -> List[str]: """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) _A = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase ).any(), "Samples have nan numbers" def lowercase_ ( self ) -> int: """simple docstring""" self.check_over_configs(lower_order_final=_lowercase ) self.check_over_configs(lower_order_final=_lowercase ) def lowercase_ ( self ) -> Tuple: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0 ) def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" _A = self.full_loop() _A = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 def lowercase_ ( self ) -> str: """simple docstring""" _A = self.full_loop(prediction_type='''v_prediction''' ) _A = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def lowercase_ ( self ) -> Optional[int]: """simple docstring""" _A = self.scheduler_classes[0] _A = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0 ) _A = scheduler_class(**_lowercase ) _A = 1_0 _A = self.dummy_model() _A = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): _A = model(_lowercase , _lowercase ) _A = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample assert sample.dtype == torch.floataa
317
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase_ = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( lowercase: Any , lowercase: Optional[int] , lowercase: Union[str, Any]=None , lowercase: int=None , lowercase: Any=None , lowercase: Optional[int]=None , lowercase: int=None , lowercase: int=None , ) -> int: '''simple docstring''' if attention_mask is None: _UpperCamelCase: Tuple = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _UpperCamelCase: Any = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _UpperCamelCase: List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase: Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCamelCase: Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __magic_name__ : """simple docstring""" def __init__( self : Optional[int] , _lowercase : Tuple , _lowercase : int=13 , _lowercase : Any=7 , _lowercase : List[str]=True , _lowercase : int=False , _lowercase : Union[str, Any]=99 , _lowercase : Optional[Any]=16 , _lowercase : int=2 , _lowercase : Any=4 , _lowercase : Any=4 , _lowercase : Optional[Any]="gelu" , _lowercase : Optional[Any]=0.1 , _lowercase : Any=0.1 , _lowercase : List[Any]=32 , _lowercase : str=2 , _lowercase : List[Any]=1 , _lowercase : int=0 , _lowercase : int=0.02 , ): """simple docstring""" _UpperCamelCase: int = parent _UpperCamelCase: Any = batch_size _UpperCamelCase: Union[str, Any] = seq_length _UpperCamelCase: List[Any] = is_training _UpperCamelCase: Any = use_labels _UpperCamelCase: Any = vocab_size _UpperCamelCase: List[Any] = hidden_size _UpperCamelCase: str = num_hidden_layers _UpperCamelCase: List[Any] = num_attention_heads _UpperCamelCase: Dict = intermediate_size _UpperCamelCase: str = hidden_act _UpperCamelCase: int = hidden_dropout_prob _UpperCamelCase: Dict = attention_probs_dropout_prob _UpperCamelCase: Dict = max_position_embeddings _UpperCamelCase: List[str] = eos_token_id _UpperCamelCase: str = pad_token_id _UpperCamelCase: List[Any] = bos_token_id _UpperCamelCase: List[Any] = initializer_range def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _UpperCamelCase: Union[str, Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _UpperCamelCase: Tuple = shift_tokens_right(_lowercase , 1 , 2 ) _UpperCamelCase: List[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowercase , ) _UpperCamelCase: int = prepare_blenderbot_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase , _UpperCamelCase: Dict = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[int] , _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : Any ): """simple docstring""" _UpperCamelCase: str = 20 _UpperCamelCase: Union[str, Any] = model_class_name(_lowercase ) _UpperCamelCase: Union[str, Any] = model.encode(inputs_dict['''input_ids'''] ) _UpperCamelCase , _UpperCamelCase: Optional[Any] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase: Tuple = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) _UpperCamelCase: Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _UpperCamelCase: List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase: List[str] = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) _UpperCamelCase: List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _UpperCamelCase: List[Any] = model.decode( decoder_input_ids[:, -1:] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowercase , ) _UpperCamelCase: List[Any] = model.decode(_lowercase , _lowercase ) _UpperCamelCase: List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def lowerCAmelCase ( self : List[str] , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Optional[Any] ): """simple docstring""" _UpperCamelCase: Dict = 20 _UpperCamelCase: int = model_class_name(_lowercase ) _UpperCamelCase: Union[str, Any] = model.encode(inputs_dict['''input_ids'''] ) _UpperCamelCase , _UpperCamelCase: Optional[int] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase: List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCamelCase: List[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) _UpperCamelCase: Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase: Tuple = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) _UpperCamelCase: str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _UpperCamelCase: Optional[int] = model.decode( decoder_input_ids[:, -1:] , _lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowercase , decoder_position_ids=_lowercase , ) _UpperCamelCase: Any = model.decode(_lowercase , _lowercase , decoder_attention_mask=_lowercase ) _UpperCamelCase: Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __magic_name__ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase : List[str] = 9_9 def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: Any = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _UpperCamelCase: Dict = input_ids.shape[0] _UpperCamelCase: int = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCAmelCase ( self : List[Any] ): """simple docstring""" _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: Optional[int] = self._get_config_and_data() _UpperCamelCase: Dict = FlaxBlenderbotForConditionalGeneration(_lowercase ) _UpperCamelCase: Any = lm_model(input_ids=_lowercase ) _UpperCamelCase: Optional[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _lowercase ) def lowerCAmelCase ( self : Dict ): """simple docstring""" _UpperCamelCase: List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _UpperCamelCase: int = FlaxBlenderbotForConditionalGeneration(_lowercase ) _UpperCamelCase: List[str] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _UpperCamelCase: Optional[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _UpperCamelCase: Tuple = lm_model(input_ids=_lowercase , decoder_input_ids=_lowercase ) _UpperCamelCase: Optional[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _lowercase ) def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase: Dict = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _UpperCamelCase: Dict = shift_tokens_right(_lowercase , 1 , 2 ) _UpperCamelCase: Tuple = np.equal(_lowercase , 1 ).astype(np.floataa ).sum() _UpperCamelCase: Optional[Any] = np.equal(_lowercase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowercase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __magic_name__ ( __a , unittest.TestCase , __a ): """simple docstring""" lowerCAmelCase : Optional[Any] = True lowerCAmelCase : Optional[int] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase : Optional[int] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCAmelCase ( self : List[Any] ): """simple docstring""" _UpperCamelCase: List[Any] = FlaxBlenderbotModelTester(self ) def lowerCAmelCase ( self : Tuple ): """simple docstring""" _UpperCamelCase , _UpperCamelCase: List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase ) def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase , _UpperCamelCase: Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowercase , _lowercase , _lowercase ) def lowerCAmelCase ( self : Any ): """simple docstring""" _UpperCamelCase , _UpperCamelCase: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase: Union[str, Any] = self._prepare_for_class(_lowercase , _lowercase ) _UpperCamelCase: Any = model_class(_lowercase ) @jax.jit def encode_jitted(_lowercase : Optional[Any] , _lowercase : Any=None , **_lowercase : List[Any] ): return model.encode(input_ids=_lowercase , attention_mask=_lowercase ) with self.subTest('''JIT Enabled''' ): _UpperCamelCase: List[Any] = encode_jitted(**_lowercase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCamelCase: str = encode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCamelCase , _UpperCamelCase: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase: Tuple = model_class(_lowercase ) _UpperCamelCase: Optional[Any] = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) _UpperCamelCase: Optional[int] = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_lowercase : Any , _lowercase : Union[str, Any] , _lowercase : str ): return model.decode( decoder_input_ids=_lowercase , decoder_attention_mask=_lowercase , encoder_outputs=_lowercase , ) with self.subTest('''JIT Enabled''' ): _UpperCamelCase: Union[str, Any] = decode_jitted(**_lowercase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCamelCase: Optional[Any] = decode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase ( self : List[Any] ): """simple docstring""" for model_class_name in self.all_model_classes: _UpperCamelCase: Optional[int] = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _UpperCamelCase: List[str] = np.ones((1, 1) ) * model.config.eos_token_id _UpperCamelCase: List[Any] = model(_lowercase ) self.assertIsNotNone(_lowercase ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" _UpperCamelCase: Union[str, Any] = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} _UpperCamelCase: Union[str, Any] = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} _UpperCamelCase: Union[str, Any] = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=_lowercase ) _UpperCamelCase: Any = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) _UpperCamelCase: Optional[Any] = ['''Sam'''] _UpperCamelCase: List[str] = tokenizer(_lowercase , return_tensors='''jax''' ) _UpperCamelCase: Dict = model.generate(**_lowercase , **_lowercase ) _UpperCamelCase: Dict = '''Sam is a great name. It means "sun" in Gaelic.''' _UpperCamelCase: List[Any] = tokenizer.batch_decode(_lowercase , **_lowercase ) assert generated_txt[0].strip() == tgt_text
271
0
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = {'vocab_file': 'vocab.txt'} snake_case_ = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } snake_case_ = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , "r" ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.read().splitlines() return [l.strip() for l in lines] class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ["input_ids", "attention_mask"] def __init__( self , lowercase__ , lowercase__="<unk>" , lowercase__="<cls>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__="<eos>" , **lowercase__ , ): """simple docstring""" super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = load_vocab_file(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE_ : Any = unk_token SCREAMING_SNAKE_CASE_ : str = cls_token SCREAMING_SNAKE_CASE_ : Dict = pad_token SCREAMING_SNAKE_CASE_ : Tuple = mask_token SCREAMING_SNAKE_CASE_ : Any = eos_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" return self._id_to_token.get(lowercase__ , self.unk_token ) def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" return self._token_to_id.get(lowercase__ , self._token_to_id.get(self.unk_token ) ) def __lowerCamelCase ( self , lowercase__ , **lowercase__ ): """simple docstring""" return text.split() def __lowerCamelCase ( self , lowercase__=False ): """simple docstring""" return len(self._id_to_token ) def __lowerCamelCase ( self ): """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" return self._token_to_id.get(lowercase__ , self._token_to_id.get(self.unk_token ) ) def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" return self._id_to_token.get(lowercase__ , self.unk_token ) def __lowerCamelCase ( self , lowercase__ , lowercase__ = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Dict = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __lowerCamelCase ( self , lowercase__ , lowercase__ = None , lowercase__ = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1] + ([0] * len(lowercase__ )) + [1] if token_ids_a is not None: mask += [0] * len(lowercase__ ) + [1] return mask def __lowerCamelCase ( self , lowercase__ , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(lowercase__ , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(lowercase__ , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def __lowerCamelCase ( self ): """simple docstring""" return self.get_vocab_size(with_added_tokens=lowercase__ ) def __lowerCamelCase ( self , lowercase__ , lowercase__ = False ): """simple docstring""" return super()._add_tokens(lowercase__ , special_tokens=lowercase__ )
721
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = logging.get_logger() # the current default level is logging.WARNING SCREAMING_SNAKE_CASE_ : Optional[int] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowercase__ ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = logging.get_verbosity() SCREAMING_SNAKE_CASE_ : List[Any] = logging.get_logger("transformers.models.bart.tokenization_bart" ) SCREAMING_SNAKE_CASE_ : List[Any] = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowercase__ ) as cl: logger.warning(lowercase__ ) self.assertEqual(cl.out , msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowercase__ ) as cl: logger.warning(lowercase__ ) self.assertEqual(cl.out , "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowercase__ ) as cl: logger.warning(lowercase__ ) self.assertEqual(cl.out , msg + "\n" ) # restore to the original level logging.set_verbosity(lowercase__ ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def __lowerCamelCase ( self ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var SCREAMING_SNAKE_CASE_ : Tuple = logging.get_logger("transformers.models.bart.tokenization_bart" ) SCREAMING_SNAKE_CASE_ : int = os.getenv("TRANSFORMERS_VERBOSITY" , lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = logging.log_levels[env_level_str] SCREAMING_SNAKE_CASE_ : str = logging.get_verbosity() self.assertEqual( lowercase__ , lowercase__ , F"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , ) # restore to the original level SCREAMING_SNAKE_CASE_ : Optional[int] = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def __lowerCamelCase ( self ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE_ : List[Any] = logging.logging.getLogger() with CaptureLogger(lowercase__ ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" , cl.out ) # no need to restore as nothing was changed def __lowerCamelCase ( self ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE_ : str = logging.get_logger("transformers.models.bart.tokenization_bart" ) SCREAMING_SNAKE_CASE_ : List[Any] = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(lowercase__ ) as cl: logger.warning_advice(lowercase__ ) self.assertEqual(cl.out , "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowercase__ ) as cl: logger.warning_advice(lowercase__ ) self.assertEqual(cl.out , msg + "\n" ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
68
0
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a : int = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = AlbertTokenizer __SCREAMING_SNAKE_CASE = AlbertTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def A ( self : Optional[Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __snake_case = AlbertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Union[str, Any] , a_ : Optional[int] ): """simple docstring""" __snake_case = "this is a test" __snake_case = "this is a test" return input_text, output_text def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = "<pad>" __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(a_ ) , 30_000 ) def A ( self : Any ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A ( self : str ): """simple docstring""" if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = "I was born in 92000, and this is falsé." __snake_case = tokenizer.tokenize(a_ ) __snake_case = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) __snake_case = tokenizer.encode(a_ , add_special_tokens=a_ ) __snake_case = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(a_ ) __snake_case = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) def A ( self : int ): """simple docstring""" __snake_case = AlbertTokenizer(a_ , keep_accents=a_ ) __snake_case = tokenizer.tokenize("This is a test" ) self.assertListEqual(a_ , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [48, 25, 21, 1_289] ) __snake_case = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) __snake_case = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual(a_ , [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) __snake_case = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = AlbertTokenizer(a_ ) __snake_case = tokenizer.encode("sequence builders" ) __snake_case = tokenizer.encode("multi-sequence build" ) __snake_case = tokenizer.build_inputs_with_special_tokens(a_ ) __snake_case = tokenizer.build_inputs_with_special_tokens(a_ , a_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def A ( self : Optional[Any] ): """simple docstring""" __snake_case = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
69
from dataclasses import dataclass, field from typing import Optional @dataclass class A : _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Model name or path of model to be trained."""} ) _SCREAMING_SNAKE_CASE = field( default="""./""" ,metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" ,metadata={"""help""": """Name or path of training dataset."""} ) _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" ,metadata={"""help""": """Name or path of validation dataset."""} ) _SCREAMING_SNAKE_CASE = field(default=2 ,metadata={"""help""": """Batch size for training."""} ) _SCREAMING_SNAKE_CASE = field(default=2 ,metadata={"""help""": """Batch size for evaluation."""} ) _SCREAMING_SNAKE_CASE = field(default=0.1 ,metadata={"""help""": """Value of weight decay."""} ) _SCREAMING_SNAKE_CASE = field( default=10_000 ,metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) _SCREAMING_SNAKE_CASE = field(default=2E-4 ,metadata={"""help""": """Learning rate fo training."""} ) _SCREAMING_SNAKE_CASE = field(default="""cosine""" ,metadata={"""help""": """Learning rate."""} ) _SCREAMING_SNAKE_CASE = field( default=750 ,metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) _SCREAMING_SNAKE_CASE = field( default=16 ,metadata={"""help""": """Number of gradient accumulation steps."""} ) _SCREAMING_SNAKE_CASE = field( default=__UpperCAmelCase ,metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) _SCREAMING_SNAKE_CASE = field(default=50_000 ,metadata={"""help""": """Maximum number of training steps."""} ) _SCREAMING_SNAKE_CASE = field( default=-1 ,metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) _SCREAMING_SNAKE_CASE = field(default=1_024 ,metadata={"""help""": """Sequence lengths used for training."""} ) _SCREAMING_SNAKE_CASE = field(default=1 ,metadata={"""help""": """Training seed."""} ) _SCREAMING_SNAKE_CASE = field( default=1_024 ,metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} ,) _SCREAMING_SNAKE_CASE = field( default=__UpperCAmelCase ,metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) _SCREAMING_SNAKE_CASE = field(default=__UpperCAmelCase ,metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class A : _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Model name or path of model to be evaluated."""} ) _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" ,metadata={"""help""": """Name or path of validation dataset."""} ) _SCREAMING_SNAKE_CASE = field(default=2 ,metadata={"""help""": """Batch size used for evaluation."""} ) _SCREAMING_SNAKE_CASE = field( default=-1 ,metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) _SCREAMING_SNAKE_CASE = field(default=1_024 ,metadata={"""help""": """Length of sequences to be evaluated."""} ) _SCREAMING_SNAKE_CASE = field(default=1 ,metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class A : _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Model name or path of model to be evaluated."""} ) _SCREAMING_SNAKE_CASE = field(default=__UpperCAmelCase ,metadata={"""help""": """Number of workers used for code evaluation."""} ) _SCREAMING_SNAKE_CASE = field( default=__UpperCAmelCase ,metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} ,) _SCREAMING_SNAKE_CASE = field( default=__UpperCAmelCase ,metadata={"""help""": """Sample from the language model's output distribution."""} ) _SCREAMING_SNAKE_CASE = field(default=0.2 ,metadata={"""help""": """Sampling temperature used for generation."""} ) _SCREAMING_SNAKE_CASE = field(default=256 ,metadata={"""help""": """Maximum number of newly generated tokens."""} ) _SCREAMING_SNAKE_CASE = field(default=0 ,metadata={"""help""": """Top-k parameter used for generation."""} ) _SCREAMING_SNAKE_CASE = field(default=0.9_5 ,metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) _SCREAMING_SNAKE_CASE = field(default=10 ,metadata={"""help""": """Number of generations to run in parallel."""} ) _SCREAMING_SNAKE_CASE = field( default=200 ,metadata={"""help""": """Number of completions to generate for each sample."""} ) _SCREAMING_SNAKE_CASE = field(default=1 ,metadata={"""help""": """Random seed used for evaluation."""} ) _SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" ,metadata={"""help""": """Random seed used for evaluation."""} ) _SCREAMING_SNAKE_CASE = field( default="""0""" ,metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) _SCREAMING_SNAKE_CASE = field( default=-1 ,metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } ,) @dataclass class A : _SCREAMING_SNAKE_CASE = field( default=__UpperCAmelCase ,metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } ,) _SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" ,metadata={"""help""": """Folder or name of dataset to process."""} ) _SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" ,metadata={"""help""": """Folder to save processed processed dataset."""} ) _SCREAMING_SNAKE_CASE = field( default=100_000 ,metadata={"""help""": """Number of files to save per JSON output file."""} ) _SCREAMING_SNAKE_CASE = field(default="""content""" ,metadata={"""help""": """Column containing text data to process."""} ) _SCREAMING_SNAKE_CASE = field( default=1_000 ,metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) _SCREAMING_SNAKE_CASE = field( default=100 ,metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) _SCREAMING_SNAKE_CASE = field( default=0.2_5 ,metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) _SCREAMING_SNAKE_CASE = field( default=1.5 ,metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) _SCREAMING_SNAKE_CASE = field( default=0.7 ,metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Name or path to the tokenizer."""} ,) _SCREAMING_SNAKE_CASE = field( default=__UpperCAmelCase ,metadata={"""help""": """If True, near-duplicate samples are removed."""} ) _SCREAMING_SNAKE_CASE = field( default=0.8_5 ,metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class A : _SCREAMING_SNAKE_CASE = field( default="""gpt2""" ,metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) _SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" ,metadata={"""help""": """Dataset to train tokenizer on."""} ) _SCREAMING_SNAKE_CASE = field(default="""content""" ,metadata={"""help""": """Column containing text data to process."""} ) _SCREAMING_SNAKE_CASE = field(default=200_000 ,metadata={"""help""": """Number of examples to train tokenizer on."""} ) _SCREAMING_SNAKE_CASE = field( default=32_768 ,metadata={"""help""": """Number of examples to train the tokenizer on."""} ) _SCREAMING_SNAKE_CASE = field(default="""codeparrot""" ,metadata={"""help""": """Name of new tokenizer."""} ) _SCREAMING_SNAKE_CASE = field(default=__UpperCAmelCase ,metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class A : _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Name or path to the tokenizer."""} ) _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" ,metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) _SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" ,metadata={"""help""": """Repo name of the pretokenized data."""} ) _SCREAMING_SNAKE_CASE = field(default=__UpperCAmelCase ,metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class A : _SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" ,metadata={"""help""": """Configuration to use for model initialization."""} ) _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Tokenizer attached to model."""} ) _SCREAMING_SNAKE_CASE = field(default="""codeparrot""" ,metadata={"""help""": """Name of the created model."""} ) _SCREAMING_SNAKE_CASE = field(default=__UpperCAmelCase ,metadata={"""help""": """Push saved tokenizer to the hub."""} )
326
0
"""simple docstring""" import re from filelock import FileLock try: import nltk A_ : List[str] =True except (ImportError, ModuleNotFoundError): A_ : str =False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def SCREAMING_SNAKE_CASE_ ( snake_case : str )-> str: re.sub('<n>' , '' , snake_case ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(snake_case ) )
222
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : float )-> float: if edge <= 0 or not isinstance(snake_case , snake_case ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def SCREAMING_SNAKE_CASE_ ( snake_case : float )-> float: if edge <= 0 or not isinstance(snake_case , snake_case ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
222
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : complex , SCREAMING_SNAKE_CASE__ : str = "x" , SCREAMING_SNAKE_CASE__ : float = 10**-10 , SCREAMING_SNAKE_CASE__ : int = 1 , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = symbols(lowercase__ ) SCREAMING_SNAKE_CASE__ : str = lambdify(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = lambdify(lowercase__ , diff(lowercase__ , lowercase__ ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = starting_point while True: if diff_function(lowercase__ ) != 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = prev_guess - multiplicity * func(lowercase__ ) / diff_function( lowercase__ ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess SCREAMING_SNAKE_CASE__ : Optional[int] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(f"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"{newton_raphson('exp(x) - 1', 1_0, precision=0.005)}", ) # Find root of cos(x) print(f"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
663
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
0
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class _snake_case ( lowercase__ , unittest.TestCase): UpperCamelCase__ : Optional[Any] =WavaVecaPhonemeCTCTokenizer UpperCamelCase__ : List[Any] =False def A__ ( self : str ): super().setUp() lowercase__ = ( "<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː " "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː " "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 " "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ " "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ " "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ " "əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ " "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ " "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ " "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ " "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ " "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ " "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4" ).split(" " ) lowercase__ = dict(zip(__lowercase, range(len(__lowercase ) ) ) ) lowercase__ = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(__lowercase ) + "\n" ) def A__ ( self : Optional[Any], __lowercase : Union[str, Any], __lowercase : Optional[int]=False, __lowercase : Optional[int]=20, __lowercase : str=5 ): lowercase__ = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=__lowercase )) for i in range(len(__lowercase ) )] lowercase__ = list(filter(lambda __lowercase : [t[0]] == tokenizer.encode(t[1], do_phonemize=__lowercase ), __lowercase ) ) if max_length is not None and len(__lowercase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(__lowercase ) < min_length and len(__lowercase ) > 0: while len(__lowercase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(__lowercase, clean_up_tokenization_spaces=__lowercase ) if " " not in output_txt and len(__lowercase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=__lowercase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=__lowercase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(__lowercase, add_special_tokens=__lowercase ) return output_txt, output_ids def A__ ( self : Dict, **__lowercase : Optional[int] ): kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname, **__lowercase ) def A__ ( self : Dict ): lowercase__ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) # check adding a single token tokenizer.add_tokens("xxx" ) lowercase__ = tokenizer("m xxx ɪ", do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase, [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(["aaa", "bbb", "ccc"] ) lowercase__ = tokenizer("m aaa ɪ ccc", do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase, [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa lowercase__ = tokenizer("maɪ c", do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase, [3, 200] ) # mai should be <unk> (=3) def A__ ( self : Union[str, Any] ): lowercase__ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowercase__ = "Hello how are you" lowercase__ = tokenizer.phonemize(__lowercase, phonemizer_lang="en-us" ) self.assertEqual(__lowercase, "h ə l oʊ h aʊ ɑːɹ j uː" ) def A__ ( self : List[str] ): lowercase__ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowercase__ = "Hello how are you" lowercase__ = tokenizer.phonemize(__lowercase, phonemizer_lang="en-us" ) self.assertEqual(tokenizer(__lowercase ).input_ids, tokenizer(__lowercase, do_phonemize=__lowercase ).input_ids ) def A__ ( self : str ): lowercase__ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowercase__ = "Hello how are you" lowercase__ = tokenizer.phonemize(__lowercase, phonemizer_lang="en-us" ) lowercase__ = tokenizer.decode(tokenizer(__lowercase ).input_ids ) self.assertEqual(__lowercase, __lowercase ) def A__ ( self : Any ): lowercase__ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowercase__ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] lowercase__ = tokenizer.decode(sample_ids[0] ) lowercase__ = tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase, batch_tokens[0] ) self.assertEqual(__lowercase, ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) def A__ ( self : str ): lowercase__ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|" ) lowercase__ = "Hello how are you" lowercase__ = tokenizer.phonemize(__lowercase, phonemizer_lang="en-us" ) self.assertEqual(__lowercase, "h ə l oʊ | h aʊ | ɑːɹ | j uː |" ) def A__ ( self : Union[str, Any] ): lowercase__ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|" ) lowercase__ = "Hello how are you" lowercase__ = tokenizer.phonemize(__lowercase, phonemizer_lang="en-us" ) self.assertEqual(tokenizer(__lowercase ).input_ids, tokenizer(__lowercase, do_phonemize=__lowercase ).input_ids ) def A__ ( self : Tuple ): lowercase__ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off lowercase__ = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter lowercase__ = tokenizer.decode(sample_ids[0] ) lowercase__ = tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase, batch_tokens[0] ) self.assertEqual(__lowercase, ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) # decode with no word_del_token filter lowercase__ = tokenizer.decode(sample_ids[0], filter_word_delimiter_token=__lowercase ) lowercase__ = tokenizer.batch_decode(__lowercase, filter_word_delimiter_token=__lowercase ) self.assertEqual(__lowercase, batch_tokens[0] ) self.assertEqual(__lowercase, ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"] ) def A__ ( self : int ): lowercase__ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|" ) lowercase__ = "Hello how are you" lowercase__ = tokenizer.phonemize(__lowercase, phonemizer_lang="en-us" ) lowercase__ = tokenizer.decode(tokenizer(__lowercase ).input_ids, filter_word_delimiter_token=__lowercase ) self.assertEqual(__lowercase, __lowercase ) def A__ ( self : Optional[int] ): lowercase__ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|" ) lowercase__ = "Hello how are you" lowercase__ = tokenizer.phonemize(__lowercase, phonemizer_lang="en-us" ) lowercase__ = tokenizer.decode(tokenizer(__lowercase ).input_ids, filter_word_delimiter_token=__lowercase ) self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |" )] ).strip(), __lowercase ) def A__ ( self : Optional[int] ): lowercase__ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token=__lowercase ) lowercase__ = "Hello how are you" lowercase__ = tokenizer(__lowercase, phonemizer_lang="en-us" ).input_ids lowercase__ = tokenizer(__lowercase, phonemizer_lang="fr-fr" ).input_ids self.assertNotEqual(__lowercase, __lowercase ) lowercase__ = tokenizer.decode(__lowercase ) lowercase__ = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase, "h ə l oʊ h aʊ ɑːɹ j uː" ) self.assertEqual(__lowercase, "ɛ l o h aʊ a ʁ j u" ) def A__ ( self : List[Any] ): lowercase__ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowercase__ = "Hello how Are you" lowercase__ = "hello how are you" lowercase__ = tokenizer(__lowercase ).input_ids lowercase__ = tokenizer(__lowercase ).input_ids self.assertEqual(__lowercase, __lowercase ) def A__ ( self : Dict ): lowercase__ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) tokenizer.add_tokens(["!", "?"] ) tokenizer.add_special_tokens({"cls_token": "$$$"} ) # fmt: off lowercase__ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on lowercase__ = tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase, ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"] ) @staticmethod def A__ ( __lowercase : Tuple, __lowercase : Any ): lowercase__ = [d[key] for d in offsets] return retrieved_list def A__ ( self : List[Any] ): lowercase__ = self.get_tokenizer(word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" lowercase__ = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on lowercase__ = tokenizer.decode(__lowercase, output_char_offsets=__lowercase, filter_word_delimiter_token=__lowercase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ), 2 ) self.assertTrue("text" in outputs ) self.assertTrue("char_offsets" in outputs ) self.assertTrue(isinstance(__lowercase, __lowercase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"], "char" ) ), outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"], "char" ), ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["char_offsets"], "start_offset" ), [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"], "end_offset" ), [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def A__ ( self : List[Any] ): lowercase__ = self.get_tokenizer(word_delimiter_token="|" ) def check_list_tuples_equal(__lowercase : Optional[int], __lowercase : Optional[int] ): self.assertTrue(isinstance(__lowercase, __lowercase ) ) self.assertTrue(isinstance(outputs_list[0], __lowercase ) ) # transform list to ModelOutput lowercase__ = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["text"], outputs_batch_a["text"] ) def recursive_check(__lowercase : Dict, __lowercase : Tuple ): if isinstance(__lowercase, __lowercase ): [recursive_check(__lowercase, __lowercase ) for la, la in zip(__lowercase, __lowercase )] self.assertEqual(__lowercase, __lowercase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["char_offsets"], outputs_batch_a["char_offsets"] ) # fmt: off lowercase__ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char lowercase__ = tokenizer.batch_decode(__lowercase, output_char_offsets=__lowercase ) lowercase__ = [tokenizer.decode(__lowercase, output_char_offsets=__lowercase ) for ids in sample_ids] check_list_tuples_equal(__lowercase, __lowercase ) @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes" ) def A__ ( self : Optional[int] ): pass @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes" ) def A__ ( self : Optional[int] ): pass @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency" ) def A__ ( self : Any ): pass @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing" ) def A__ ( self : Dict ): pass def A__ ( self : Optional[Any] ): lowercase__ = self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = tokenizer.vocab_size lowercase__ = len(__lowercase ) self.assertNotEqual(__lowercase, 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowercase__ = ["aaaaa bbbbbb", "cccccccccdddddddd"] lowercase__ = tokenizer.add_tokens(__lowercase ) lowercase__ = tokenizer.vocab_size lowercase__ = len(__lowercase ) self.assertNotEqual(__lowercase, 0 ) self.assertEqual(__lowercase, __lowercase ) self.assertEqual(__lowercase, len(__lowercase ) ) self.assertEqual(__lowercase, all_size + len(__lowercase ) ) lowercase__ = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ), 4 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) lowercase__ = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} lowercase__ = tokenizer.add_special_tokens(__lowercase ) lowercase__ = tokenizer.vocab_size lowercase__ = len(__lowercase ) self.assertNotEqual(__lowercase, 0 ) self.assertEqual(__lowercase, __lowercase ) self.assertEqual(__lowercase, len(__lowercase ) ) self.assertEqual(__lowercase, all_size_a + len(__lowercase ) ) lowercase__ = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ), 6 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0], tokens[1] ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokens[-4] ) self.assertEqual(tokens[0], tokenizer.eos_token_id ) self.assertEqual(tokens[-3], tokenizer.pad_token_id ) @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." ) def A__ ( self : List[Any] ): pass @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." ) def A__ ( self : str ): pass def A__ ( self : int ): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. lowercase__ = self.get_tokenizers(fast=__lowercase, do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"] lowercase__ = tokenizer.convert_tokens_to_string(__lowercase ) self.assertIsInstance(output["text"], __lowercase )
37
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _snake_case ( unittest.TestCase): def __init__( self : Dict, __lowercase : int, __lowercase : Union[str, Any]=7, __lowercase : Union[str, Any]=3, __lowercase : Any=18, __lowercase : Union[str, Any]=30, __lowercase : Any=400, __lowercase : List[str]=True, __lowercase : Dict=None, __lowercase : List[str]=True, __lowercase : int=False, __lowercase : Union[str, Any]=True, __lowercase : str=True, __lowercase : Optional[int]=[0.5, 0.5, 0.5], __lowercase : List[Any]=[0.5, 0.5, 0.5], ): lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size if size is not None else {"height": 18, "width": 20} lowercase__ = do_thumbnail lowercase__ = do_align_axis lowercase__ = do_pad lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def A__ ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _snake_case ( lowercase__ , unittest.TestCase): UpperCamelCase__ : Optional[int] =DonutImageProcessor if is_vision_available() else None def A__ ( self : str ): lowercase__ = DonutImageProcessingTester(self ) @property def A__ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : Optional[Any] ): lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase, "do_resize" ) ) self.assertTrue(hasattr(__lowercase, "size" ) ) self.assertTrue(hasattr(__lowercase, "do_thumbnail" ) ) self.assertTrue(hasattr(__lowercase, "do_align_long_axis" ) ) self.assertTrue(hasattr(__lowercase, "do_pad" ) ) self.assertTrue(hasattr(__lowercase, "do_normalize" ) ) self.assertTrue(hasattr(__lowercase, "image_mean" ) ) self.assertTrue(hasattr(__lowercase, "image_std" ) ) def A__ ( self : str ): lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"height": 18, "width": 20} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=(42, 84) ) self.assertEqual(image_processor.size, {"height": 84, "width": 42} ) def A__ ( self : List[str] ): pass @is_flaky() def A__ ( self : Dict ): # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched lowercase__ = image_processing(__lowercase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) @is_flaky() def A__ ( self : Optional[Any] ): # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase, numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched lowercase__ = image_processing(__lowercase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) @is_flaky() def A__ ( self : Tuple ): # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase, torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched lowercase__ = image_processing(__lowercase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), )
37
1
"""simple docstring""" def a__ ( lowerCAmelCase ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : Any = 1 while repunit: UpperCAmelCase__ : Union[str, Any] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def a__ ( lowerCAmelCase = 1_00_00_00 ) -> int: UpperCAmelCase__ : Optional[Any] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
182
"""simple docstring""" from __future__ import annotations import math class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[str] = size # approximate the overall size of segment tree with given value UpperCAmelCase__ : Tuple = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCAmelCase__ : int = [0 for i in range(0 , 4 * size )] UpperCAmelCase__ : Tuple = [0 for i in range(0 , 4 * size )] # flag for lazy update def _a (self , _lowerCamelCase ): """simple docstring""" return idx * 2 def _a (self , _lowerCamelCase ): """simple docstring""" return idx * 2 + 1 def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if left_element == right_element: UpperCAmelCase__ : Union[str, Any] = a[left_element - 1] else: UpperCAmelCase__ : List[str] = (left_element + right_element) // 2 self.build(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.build(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : int = max( self.segment_tree[self.left(_lowerCamelCase )] , self.segment_tree[self.right(_lowerCamelCase )] ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if self.flag[idx] is True: UpperCAmelCase__ : Union[str, Any] = self.lazy[idx] UpperCAmelCase__ : Dict = False if left_element != right_element: UpperCAmelCase__ : Optional[Any] = self.lazy[idx] UpperCAmelCase__ : Optional[int] = self.lazy[idx] UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : str = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCAmelCase__ : Union[str, Any] = val if left_element != right_element: UpperCAmelCase__ : Union[str, Any] = val UpperCAmelCase__ : List[Any] = val UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : List[Any] = True return True UpperCAmelCase__ : Tuple = (left_element + right_element) // 2 self.update(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.update(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Dict = max( self.segment_tree[self.left(_lowerCamelCase )] , self.segment_tree[self.right(_lowerCamelCase )] ) return True def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if self.flag[idx] is True: UpperCAmelCase__ : List[Any] = self.lazy[idx] UpperCAmelCase__ : Optional[Any] = False if left_element != right_element: UpperCAmelCase__ : Tuple = self.lazy[idx] UpperCAmelCase__ : Union[str, Any] = self.lazy[idx] UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : str = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCAmelCase__ : Union[str, Any] = (left_element + right_element) // 2 UpperCAmelCase__ : Tuple = self.query(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : List[Any] = self.query(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return max(_lowerCamelCase , _lowerCamelCase ) def __str__(self ): """simple docstring""" return str([self.query(1 , 1 , self.size , _lowerCamelCase , _lowerCamelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _A = 15 _A = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
182
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str: # ===== initialization ===== _lowercase : Tuple = Mock() _lowercase : Optional[Any] = conn, Mock() _lowercase : Any = iter([1, None] ) _lowercase : Dict = lambda lowerCamelCase_ : next(lowerCamelCase_ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=lowerCamelCase_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
720
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
354
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} __lowerCAmelCase : Optional[int] = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } __lowerCAmelCase : List[Any] = { """abeja/gpt-neox-japanese-2.7b""": 20_48, } def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" with open(lowerCamelCase__ , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase__ = json.loads(f.read() ) lowerCAmelCase__ = collections.OrderedDict() lowerCAmelCase__ = collections.OrderedDict() lowerCAmelCase__ = collections.OrderedDict() with open(lowerCamelCase__ , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [[t.rstrip("""\n""" )] if (t == ''',''' or ''',''' not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(lowerCamelCase__ ): lowerCAmelCase__ = b lowerCAmelCase__ = idx for wd in b: lowerCAmelCase__ = idx return vocab, raw_vocab, ids_to_tokens, emoji class a_ ( a_ ): UpperCamelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCamelCase_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[str] = ['input_ids', 'attention_mask'] def __init__( self : str , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : List[Any]="<|endoftext|>" , snake_case__ : Optional[Any]="<|endoftext|>" , snake_case__ : Optional[int]="<|startoftext|>" , snake_case__ : List[str]="<|endoftext|>" , snake_case__ : Dict=False , **snake_case__ : List[Any] , ): super().__init__( unk_token=_snake_case , pad_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , do_clean_text=_snake_case , **_snake_case , ) if not os.path.isfile(_snake_case ): raise ValueError( F"""Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained""" """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(_snake_case ): raise ValueError( F"""Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google""" """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) lowerCAmelCase__ = do_clean_text lowerCAmelCase__ = load_vocab_and_emoji(_snake_case , _snake_case ) lowerCAmelCase__ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def _SCREAMING_SNAKE_CASE ( self : int ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Tuple ): return self.subword_tokenizer.tokenize(_snake_case , clean=self.do_clean_text ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Dict ): return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Union[str, Any] ): return self.subword_tokenizer.convert_id_to_token(_snake_case ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Tuple ): lowerCAmelCase__ = ''''''.join(_snake_case ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Dict ): lowerCAmelCase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case , add_special_tokens=_snake_case ) + [self.eos_token_id] ) if len(_snake_case ) > self.model_max_length: lowerCAmelCase__ = input_ids[-self.model_max_length :] return input_ids def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Tuple , snake_case__ : Optional[int] = None ): lowerCAmelCase__ = 0 if os.path.isdir(_snake_case ): lowerCAmelCase__ = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase__ = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: lowerCAmelCase__ = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(_snake_case , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) lowerCAmelCase__ = token_index writer.write(""",""".join(_snake_case ) + """\n""" ) index += 1 with open(_snake_case , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , _snake_case ) return vocab_file, emoji_file class a_ ( a_ ): def __init__( self : Dict , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ): lowerCAmelCase__ = vocab # same as swe lowerCAmelCase__ = ids_to_tokens # same as bpe lowerCAmelCase__ = emoji lowerCAmelCase__ = np.max([len(_snake_case ) for w in self.vocab.keys()] ) lowerCAmelCase__ = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) lowerCAmelCase__ = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) lowerCAmelCase__ = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) lowerCAmelCase__ = re.compile( R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) lowerCAmelCase__ = re.compile( R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) lowerCAmelCase__ = re.compile( R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) lowerCAmelCase__ = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' lowerCAmelCase__ = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' lowerCAmelCase__ = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self : int ): return len(self.ids_to_tokens ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ): lowerCAmelCase__ = self.content_repattera.sub("""<URL>""" , _snake_case ) lowerCAmelCase__ = self.content_repattera.sub("""<EMAIL>""" , _snake_case ) lowerCAmelCase__ = self.content_repattera.sub("""<TEL>""" , _snake_case ) lowerCAmelCase__ = self.content_repattera.sub("""<DATE>""" , _snake_case ) lowerCAmelCase__ = self.content_repattera.sub("""<DATE>""" , _snake_case ) lowerCAmelCase__ = self.content_repattera.sub("""<PRICE>""" , _snake_case ) lowerCAmelCase__ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCAmelCase__ = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : List[str]=False ): lowerCAmelCase__ = text.replace(""" """ , """<SP>""" ) lowerCAmelCase__ = text.replace(""" """ , """<SP>""" ) lowerCAmelCase__ = text.replace("""\r\n""" , """<BR>""" ) lowerCAmelCase__ = text.replace("""\n""" , """<BR>""" ) lowerCAmelCase__ = text.replace("""\r""" , """<BR>""" ) lowerCAmelCase__ = text.replace("""\t""" , """<TAB>""" ) lowerCAmelCase__ = text.replace("""—""" , """ー""" ) lowerCAmelCase__ = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCAmelCase__ = text.replace(_snake_case , _snake_case ) if clean: lowerCAmelCase__ = self.clean_text(_snake_case ) def check_simbol(snake_case__ : List[str] ): lowerCAmelCase__ = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 2: lowerCAmelCase__ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2_A1 and c <= 0XC2_BF) or (c >= 0XC7_80 and c <= 0XC7_83) or (c >= 0XCA_B9 and c <= 0XCB_BF) or (c >= 0XCC_80 and c <= 0XCD_A2) ): return True return False def checkuae(snake_case__ : Tuple ): lowerCAmelCase__ = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 3: lowerCAmelCase__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_80_80 and c <= 0XE2_B0_7F: return True return False lowerCAmelCase__ = 0 lowerCAmelCase__ = [] while pos < len(_snake_case ): lowerCAmelCase__ = min(len(_snake_case ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 lowerCAmelCase__ = [] # (token_id, token, pos) for e in range(_snake_case , _snake_case , -1 ): lowerCAmelCase__ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_snake_case ) > 2: lowerCAmelCase__ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_snake_case ) > 0: # the smallest token_id is adopted lowerCAmelCase__ = sorted(_snake_case , key=lambda snake_case__ : x[0] )[0] result.append(_snake_case ) lowerCAmelCase__ = e else: lowerCAmelCase__ = pos + 1 lowerCAmelCase__ = text[pos:end] if check_simbol(_snake_case ): result.append("""<KIGOU>""" ) elif checkuae(_snake_case ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) lowerCAmelCase__ = end return result def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : int="\n" ): lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode("""utf-8""" , errors="""replace""" ) ) lowerCAmelCase__ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(_snake_case ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(_snake_case ) if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode("""utf-8""" , errors="""replace""" ) ) lowerCAmelCase__ = ''''''.join(_snake_case ) return text
644
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _UpperCAmelCase : Union[str, Any] = (720, 1280) # Height, Width _UpperCAmelCase : str = (0.4, 0.6) # if height or width lower than this scale, drop it. _UpperCAmelCase : Optional[Any] = 1 / 100 _UpperCAmelCase : Optional[Any] = """""" _UpperCAmelCase : int = """""" _UpperCAmelCase : Union[str, Any] = """""" _UpperCAmelCase : List[Any] = 250 def snake_case__ ( ) -> None: _UpperCamelCase, _UpperCamelCase : List[Any] = get_dataset(UpperCamelCase ,UpperCamelCase ) for index in range(UpperCamelCase ): _UpperCamelCase : List[str] = random.sample(range(len(UpperCamelCase ) ) ,4 ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[str] = update_image_and_anno( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,filter_scale=UpperCamelCase ,) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _UpperCamelCase : List[str] = random_chars(32 ) _UpperCamelCase : List[str] = path.split(os.sep )[-1].rsplit('''.''' ,1 )[0] _UpperCamelCase : Any = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' ,UpperCamelCase ,[cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) _UpperCamelCase : Any = [] for anno in new_annos: _UpperCamelCase : List[Any] = anno[3] - anno[1] _UpperCamelCase : int = anno[4] - anno[2] _UpperCamelCase : int = anno[1] + width / 2 _UpperCamelCase : int = anno[2] + height / 2 _UpperCamelCase : Optional[Any] = f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(UpperCamelCase ) with open(f'''{file_root}.txt''' ,'''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def snake_case__ ( UpperCamelCase ,UpperCamelCase ) -> tuple[list, list]: _UpperCamelCase : List[str] = [] _UpperCamelCase : Union[str, Any] = [] for label_file in glob.glob(os.path.join(UpperCamelCase ,'''*.txt''' ) ): _UpperCamelCase : int = label_file.split(os.sep )[-1].rsplit('''.''' ,1 )[0] with open(UpperCamelCase ) as in_file: _UpperCamelCase : Dict = in_file.readlines() _UpperCamelCase : Tuple = os.path.join(UpperCamelCase ,f'''{label_name}.jpg''' ) _UpperCamelCase : Tuple = [] for obj_list in obj_lists: _UpperCamelCase : List[Any] = obj_list.rstrip('''\n''' ).split(''' ''' ) _UpperCamelCase : Tuple = float(obj[1] ) - float(obj[3] ) / 2 _UpperCamelCase : Any = float(obj[2] ) - float(obj[4] ) / 2 _UpperCamelCase : Tuple = float(obj[1] ) + float(obj[3] ) / 2 _UpperCamelCase : List[Any] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(UpperCamelCase ) labels.append(UpperCamelCase ) return img_paths, labels def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = 0.0 ,) -> tuple[list, list, str]: _UpperCamelCase : Optional[int] = np.zeros([output_size[0], output_size[1], 3] ,dtype=np.uinta ) _UpperCamelCase : str = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _UpperCamelCase : Dict = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _UpperCamelCase : Dict = int(scale_x * output_size[1] ) _UpperCamelCase : Dict = int(scale_y * output_size[0] ) _UpperCamelCase : int = [] _UpperCamelCase : Union[str, Any] = [] for i, index in enumerate(UpperCamelCase ): _UpperCamelCase : Optional[int] = all_img_list[index] path_list.append(UpperCamelCase ) _UpperCamelCase : str = all_annos[index] _UpperCamelCase : Tuple = cva.imread(UpperCamelCase ) if i == 0: # top-left _UpperCamelCase : Any = cva.resize(UpperCamelCase ,(divid_point_x, divid_point_y) ) _UpperCamelCase : Any = img for bbox in img_annos: _UpperCamelCase : List[Any] = bbox[1] * scale_x _UpperCamelCase : Dict = bbox[2] * scale_y _UpperCamelCase : Any = bbox[3] * scale_x _UpperCamelCase : Any = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _UpperCamelCase : Union[str, Any] = cva.resize(UpperCamelCase ,(output_size[1] - divid_point_x, divid_point_y) ) _UpperCamelCase : List[Any] = img for bbox in img_annos: _UpperCamelCase : Any = scale_x + bbox[1] * (1 - scale_x) _UpperCamelCase : Optional[Any] = bbox[2] * scale_y _UpperCamelCase : Any = scale_x + bbox[3] * (1 - scale_x) _UpperCamelCase : Optional[int] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _UpperCamelCase : Dict = cva.resize(UpperCamelCase ,(divid_point_x, output_size[0] - divid_point_y) ) _UpperCamelCase : List[str] = img for bbox in img_annos: _UpperCamelCase : int = bbox[1] * scale_x _UpperCamelCase : Optional[Any] = scale_y + bbox[2] * (1 - scale_y) _UpperCamelCase : int = bbox[3] * scale_x _UpperCamelCase : Any = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _UpperCamelCase : Dict = cva.resize( UpperCamelCase ,(output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _UpperCamelCase : Union[str, Any] = img for bbox in img_annos: _UpperCamelCase : Optional[int] = scale_x + bbox[1] * (1 - scale_x) _UpperCamelCase : Union[str, Any] = scale_y + bbox[2] * (1 - scale_y) _UpperCamelCase : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) _UpperCamelCase : List[str] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _UpperCamelCase : Optional[Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def snake_case__ ( UpperCamelCase ) -> str: assert number_char > 1, "The number of character should greater than 1" _UpperCamelCase : Tuple = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase ) for _ in range(UpperCamelCase ) ) if __name__ == "__main__": main() print("""DONE ✅""")
683
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = ["image_processor", "tokenizer"] __lowerCAmelCase : Optional[Any] = "BridgeTowerImageProcessor" __lowerCAmelCase : List[Any] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _A , _A): super().__init__(_snake_case , _snake_case) def __call__( self , _A , _A = None , _A = True , _A = False , _A = None , _A = None , _A = 0 , _A = None , _A = None , _A = None , _A = False , _A = False , _A = False , _A = False , _A = True , _A = None , **_A , ): SCREAMING_SNAKE_CASE_ = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) # add pixel_values + pixel_mask SCREAMING_SNAKE_CASE_ = self.image_processor( _snake_case , return_tensors=_snake_case , do_normalize=_snake_case , do_center_crop=_snake_case , **_snake_case) encoding.update(_snake_case) return encoding def lowerCAmelCase__ ( self , *_A , **_A): return self.tokenizer.batch_decode(*_snake_case , **_snake_case) def lowerCAmelCase__ ( self , *_A , **_A): return self.tokenizer.decode(*_snake_case , **_snake_case) @property def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
708
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase__ : int = Lock() def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_SCREAMING_SNAKE_CASE ) process_lock.release() # receive your right neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left SCREAMING_SNAKE_CASE_ = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_SCREAMING_SNAKE_CASE ) process_lock.release() # receive your left neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right SCREAMING_SNAKE_CASE_ = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # after all swaps are performed, send the values back to main result_pipe[1].send(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop SCREAMING_SNAKE_CASE_ = Pipe() SCREAMING_SNAKE_CASE_ = Pipe() process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) SCREAMING_SNAKE_CASE_ = temp_rs SCREAMING_SNAKE_CASE_ = temp_rr for i in range(1 , len(_SCREAMING_SNAKE_CASE ) - 1 ): SCREAMING_SNAKE_CASE_ = Pipe() SCREAMING_SNAKE_CASE_ = Pipe() process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) SCREAMING_SNAKE_CASE_ = temp_rs SCREAMING_SNAKE_CASE_ = temp_rr process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=( len(_SCREAMING_SNAKE_CASE ) - 1, arr[len(_SCREAMING_SNAKE_CASE ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_SCREAMING_SNAKE_CASE ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_SCREAMING_SNAKE_CASE ) ): SCREAMING_SNAKE_CASE_ = result_pipe[p][0].recv() process_array_[p].join() return arr def _UpperCAmelCase ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = odd_even_transposition(_SCREAMING_SNAKE_CASE ) print('Sorted List\n' ) print(*_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
620
0
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging a : List[Any] = logging.get_logger(__name__) def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: __lowercase = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) __lowercase = torch.load(_UpperCamelCase , map_location='''cpu''' ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) __lowercase = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __lowercase = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm __lowercase = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __lowercase = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __lowercase = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding __lowercase = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer __lowercase = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): __lowercase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __lowercase = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): __lowercase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __lowercase = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __lowercase = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __lowercase = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __lowercase = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __lowercase = pt_tuple_key[-2] + '''_v''' if name is not None: __lowercase = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowercase = {k: v.numpy() for k, v in pt_state_dict.items()} __lowercase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __lowercase = flax_model.params['''params'''] else: __lowercase = flax_model.params __lowercase = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __lowercase = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(_UpperCamelCase ) __lowercase = {} __lowercase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) __lowercase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __lowercase = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary __lowercase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __lowercase = pt_tuple_key[1:] # Correctly rename weight parameters __lowercase , __lowercase = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary __lowercase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __lowercase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __lowercase = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown __lowercase = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown __lowercase = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' import torch # Load the index __lowercase = {} for shard_file in shard_filenames: # load using msgpack utils __lowercase = torch.load(_UpperCamelCase ) __lowercase = {k: v.numpy() for k, v in pt_state_dict.items()} __lowercase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __lowercase = flax_model.params['''params'''] __lowercase = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: __lowercase = flax_model.params __lowercase = flatten_dict(_UpperCamelCase ) __lowercase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) __lowercase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __lowercase = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary __lowercase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __lowercase = pt_tuple_key[1:] # Correctly rename weight parameters __lowercase , __lowercase = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary __lowercase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __lowercase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __lowercase = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: __lowercase = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown __lowercase = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown __lowercase = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowercase = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class __lowercase = getattr(_UpperCamelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , '''rb''' ) as state_f: try: __lowercase = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights __lowercase = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) __lowercase = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) __lowercase = flatten_dict(_UpperCamelCase ) __lowercase = pt_model.state_dict() __lowercase = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) __lowercase = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __lowercase = [] __lowercase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __lowercase = flax_key_tuple[0] == pt_model.base_model_prefix __lowercase = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __lowercase = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __lowercase = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer __lowercase = flax_key_tuple[:-1] + ('''weight''',) __lowercase = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer __lowercase = flax_key_tuple[:-1] + ('''weight''',) __lowercase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowercase = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __lowercase = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: __lowercase = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: __lowercase = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __lowercase = '''.'''.join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __lowercase = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __lowercase = key.split('''.''' ) __lowercase = None if key_components[-3::2] == ["parametrizations", "original0"]: __lowercase = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: __lowercase = key_components[-2] + '''_v''' if name is not None: __lowercase = key_components[:-3] + [name] __lowercase = '''.'''.join(_UpperCamelCase ) __lowercase = key if flax_key in special_pt_names: __lowercase = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict __lowercase = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor __lowercase = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list __lowercase = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCamelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' '''If your task is similar to the task the model of the checkpoint was trained on, ''' F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
639
from __future__ import annotations class lowerCamelCase_ : '''simple docstring''' def __init__( self , snake_case_ ) -> None: '''simple docstring''' __lowercase = order # a_{0} ... a_{k} __lowercase = [1.0] + [0.0] * order # b_{0} ... b_{k} __lowercase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] __lowercase = [0.0] * self.order # y[n-1] ... y[n-k] __lowercase = [0.0] * self.order def A ( self , snake_case_ , snake_case_ ) -> None: '''simple docstring''' if len(snake_case_ ) < self.order: __lowercase = [1.0, *a_coeffs] if len(snake_case_ ) != self.order + 1: __lowercase = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case_ )}' ) raise ValueError(snake_case_ ) if len(snake_case_ ) != self.order + 1: __lowercase = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case_ )}' ) raise ValueError(snake_case_ ) __lowercase = a_coeffs __lowercase = b_coeffs def A ( self , snake_case_ ) -> float: '''simple docstring''' __lowercase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) __lowercase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] __lowercase = self.input_history[:-1] __lowercase = self.output_history[:-1] __lowercase = sample __lowercase = result return result
639
1
"""simple docstring""" import functools def lowercase ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(_SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(_SCREAMING_SNAKE_CASE ) == 0: return 0 if min(_SCREAMING_SNAKE_CASE ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(_SCREAMING_SNAKE_CASE ) >= 366: raise ValueError('''All days elements should be less than 366''' ) _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(_SCREAMING_SNAKE_CASE : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
95
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' random.seed(_SCREAMING_SNAKE_CASE ) np.random.seed(_SCREAMING_SNAKE_CASE ) torch.manual_seed(_SCREAMING_SNAKE_CASE ) torch.cuda.manual_seed_all(_SCREAMING_SNAKE_CASE ) # ^^ safe to call this function even if cuda is not available class _a : """simple docstring""" def __init__( self : Optional[Any] , __UpperCamelCase : Iterable[torch.nn.Parameter] , __UpperCamelCase : float = 0.9_9_9_9 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 0 , __UpperCamelCase : bool = False , __UpperCamelCase : Union[float, int] = 1.0 , __UpperCamelCase : Union[float, int] = 2 / 3 , __UpperCamelCase : Optional[Any] = None , __UpperCamelCase : Dict[str, Any] = None , **__UpperCamelCase : Optional[Any] , )->Tuple: if isinstance(__UpperCamelCase , torch.nn.Module ): _UpperCAmelCase = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase , ) _UpperCAmelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _UpperCAmelCase = True if kwargs.get('''max_value''' , __UpperCamelCase ) is not None: _UpperCAmelCase = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''max_value'''] if kwargs.get('''min_value''' , __UpperCamelCase ) is not None: _UpperCAmelCase = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''min_value'''] _UpperCAmelCase = list(__UpperCamelCase ) _UpperCAmelCase = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , __UpperCamelCase ) is not None: _UpperCAmelCase = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) self.to(device=kwargs['''device'''] ) _UpperCAmelCase = None _UpperCAmelCase = decay _UpperCAmelCase = min_decay _UpperCAmelCase = update_after_step _UpperCAmelCase = use_ema_warmup _UpperCAmelCase = inv_gamma _UpperCAmelCase = power _UpperCAmelCase = 0 _UpperCAmelCase = None # set in `step()` _UpperCAmelCase = model_cls _UpperCAmelCase = model_config @classmethod def lowercase__ ( cls : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Any )->"EMAModel": _UpperCAmelCase , _UpperCAmelCase = model_cls.load_config(__UpperCamelCase , return_unused_kwargs=__UpperCamelCase ) _UpperCAmelCase = model_cls.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = cls(model.parameters() , model_cls=__UpperCamelCase , model_config=model.config ) ema_model.load_state_dict(__UpperCamelCase ) return ema_model def lowercase__ ( self : str , __UpperCamelCase : Any )->Optional[Any]: if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) _UpperCAmelCase = self.model_cls.from_config(self.model_config ) _UpperCAmelCase = self.state_dict() state_dict.pop('''shadow_params''' , __UpperCamelCase ) model.register_to_config(**__UpperCamelCase ) self.copy_to(model.parameters() ) model.save_pretrained(__UpperCamelCase ) def lowercase__ ( self : int , __UpperCamelCase : int )->float: _UpperCAmelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _UpperCAmelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: _UpperCAmelCase = (1 + step) / (1_0 + step) _UpperCAmelCase = min(__UpperCamelCase , self.decay ) # make sure decay is not smaller than min_decay _UpperCAmelCase = max(__UpperCamelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : List[Any] , __UpperCamelCase : Iterable[torch.nn.Parameter] )->Optional[Any]: if isinstance(__UpperCamelCase , torch.nn.Module ): _UpperCAmelCase = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase , ) _UpperCAmelCase = parameters.parameters() _UpperCAmelCase = list(__UpperCamelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _UpperCAmelCase = self.get_decay(self.optimization_step ) _UpperCAmelCase = decay _UpperCAmelCase = 1 - decay _UpperCAmelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __UpperCamelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _UpperCAmelCase = deepspeed.zero.GatheredParameters(__UpperCamelCase , modifier_rank=__UpperCamelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__UpperCamelCase ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Iterable[torch.nn.Parameter] )->None: _UpperCAmelCase = list(__UpperCamelCase ) for s_param, param in zip(self.shadow_params , __UpperCamelCase ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : List[str] , __UpperCamelCase : str=None , __UpperCamelCase : Union[str, Any]=None )->None: _UpperCAmelCase = [ p.to(device=__UpperCamelCase , dtype=__UpperCamelCase ) if p.is_floating_point() else p.to(device=__UpperCamelCase ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] )->dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Any , __UpperCamelCase : Iterable[torch.nn.Parameter] )->None: _UpperCAmelCase = [param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[Any] , __UpperCamelCase : Iterable[torch.nn.Parameter] )->None: if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , __UpperCamelCase ): param.data.copy_(c_param.data ) # Better memory-wise. _UpperCAmelCase = None def lowercase__ ( self : Any , __UpperCamelCase : dict )->None: _UpperCAmelCase = copy.deepcopy(__UpperCamelCase ) _UpperCAmelCase = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) _UpperCAmelCase = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , __UpperCamelCase ): raise ValueError('''Invalid min_decay''' ) _UpperCAmelCase = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , __UpperCamelCase ): raise ValueError('''Invalid optimization_step''' ) _UpperCAmelCase = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , __UpperCamelCase ): raise ValueError('''Invalid update_after_step''' ) _UpperCAmelCase = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , __UpperCamelCase ): raise ValueError('''Invalid use_ema_warmup''' ) _UpperCAmelCase = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) _UpperCAmelCase = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) _UpperCAmelCase = state_dict.get('''shadow_params''' , __UpperCamelCase ) if shadow_params is not None: _UpperCAmelCase = shadow_params if not isinstance(self.shadow_params , __UpperCamelCase ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(__UpperCamelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
95
1
'''simple docstring''' import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging A__ : List[Any] = logging.get_logger(__name__) A__ : List[str] = R''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class snake_case__ ( SCREAMING_SNAKE_CASE_ ): @add_start_docstrings(__a ) def __call__( self : int , __a : torch.LongTensor , __a : torch.FloatTensor , **__a : Union[str, Any] ) -> bool: '''simple docstring''' raise NotImplementedError('StoppingCriteria needs to be subclassed' ) class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[Any] , __a : int , __a : Optional[int] = None ) -> List[Any]: '''simple docstring''' __snake_case : int = max_length __snake_case : List[str] = max_position_embeddings @add_start_docstrings(__a ) def __call__( self : Dict , __a : torch.LongTensor , __a : torch.FloatTensor , **__a : List[Any] ) -> bool: '''simple docstring''' __snake_case : Any = input_ids.shape[-1] __snake_case : Union[str, Any] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( 'This is a friendly reminder - the current text generation call will exceed the model\'s predefined ' f'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' 'exceptions, performance degradation, or nothing at all.' ) return is_done class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[int] , __a : int , __a : int ) -> List[Any]: '''simple docstring''' warnings.warn( 'The class `MaxNewTokensCriteria` is deprecated. ' f'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' 'with `max_length = start_length + max_new_tokens` instead.' , __a , ) __snake_case : List[Any] = start_length __snake_case : Dict = max_new_tokens __snake_case : Tuple = start_length + max_new_tokens @add_start_docstrings(__a ) def __call__( self : str , __a : torch.LongTensor , __a : torch.FloatTensor , **__a : Optional[int] ) -> bool: '''simple docstring''' return input_ids.shape[-1] >= self.max_length class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[Any] , __a : float , __a : Optional[float] = None ) -> Any: '''simple docstring''' __snake_case : Tuple = max_time __snake_case : List[str] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__a ) def __call__( self : List[Any] , __a : torch.LongTensor , __a : torch.FloatTensor , **__a : Union[str, Any] ) -> bool: '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class snake_case__ ( SCREAMING_SNAKE_CASE_ ): @add_start_docstrings(__a ) def __call__( self : str , __a : torch.LongTensor , __a : torch.FloatTensor , **__a : Dict ) -> bool: '''simple docstring''' return any(criteria(__a , __a ) for criteria in self ) @property def A_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' for stopping_criterium in self: if isinstance(__a , __a ): return stopping_criterium.max_length elif isinstance(__a , __a ): return stopping_criterium.max_length return None def a_ ( _UpperCAmelCase : StoppingCriteriaList ,_UpperCAmelCase : int ) -> StoppingCriteriaList: __snake_case : Union[str, Any] = stopping_criteria.max_length __snake_case : Optional[int] = deepcopy(_UpperCAmelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('You set different `max_length` for stopping criteria and `max_length` parameter' ,_UpperCAmelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_UpperCAmelCase ) ) return new_stopping_criteria
286
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = KandinskyVaaInpaintPipeline A__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] A__ = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] A__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] A__ = False @property def A_ ( self : int ) -> int: '''simple docstring''' return 32 @property def A_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return 32 @property def A_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim @property def A_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim * 4 @property def A_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' return 100 @property def A_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __snake_case : Optional[Any] = UNetaDConditionModel(**__a ) return model @property def A_ ( self : Any ) -> Any: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A_ ( self : str ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __snake_case : str = VQModel(**self.dummy_movq_kwargs ) return model def A_ ( self : List[str] ) -> Dict: '''simple docstring''' __snake_case : int = self.dummy_unet __snake_case : Dict = self.dummy_movq __snake_case : int = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__a , set_alpha_to_one=__a , steps_offset=1 , prediction_type='epsilon' , thresholding=__a , ) __snake_case : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def A_ ( self : str , __a : Union[str, Any] , __a : List[str]=0 ) -> List[Any]: '''simple docstring''' __snake_case : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__a ) ).to(__a ) __snake_case : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __a ) # create init_image __snake_case : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__a ) ).to(__a ) __snake_case : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[Any] = Image.fromarray(np.uinta(__a ) ).convert('RGB' ).resize((256, 256) ) # create mask __snake_case : Optional[int] = np.ones((64, 64) , dtype=np.floataa ) __snake_case : List[str] = 0 if str(__a ).startswith('mps' ): __snake_case : Optional[int] = torch.manual_seed(__a ) else: __snake_case : List[Any] = torch.Generator(device=__a ).manual_seed(__a ) __snake_case : Optional[Any] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def A_ ( self : List[str] ) -> int: '''simple docstring''' __snake_case : Tuple = 'cpu' __snake_case : Dict = self.get_dummy_components() __snake_case : List[Any] = self.pipeline_class(**__a ) __snake_case : List[Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : Optional[Any] = pipe(**self.get_dummy_inputs(__a ) ) __snake_case : Union[str, Any] = output.images __snake_case : Optional[int] = pipe( **self.get_dummy_inputs(__a ) , return_dict=__a , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) __snake_case : Union[str, Any] = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def A_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): def A_ ( self : Optional[int] ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' __snake_case : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) __snake_case : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __snake_case : int = np.ones((768, 768) , dtype=np.floataa ) __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = 'a hat' __snake_case : Optional[int] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__a ) __snake_case : Optional[Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) __snake_case : Optional[Any] = pipeline.to(__a ) pipeline.set_progress_bar_config(disable=__a ) __snake_case : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) __snake_case , __snake_case : Optional[int] = pipe_prior( __a , generator=__a , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __snake_case : List[str] = pipeline( image=__a , mask_image=__a , image_embeds=__a , negative_image_embeds=__a , generator=__a , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) __snake_case : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__a , __a )
286
1
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : int = logging.get_logger(__name__) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[Any] = ["""input_features"""] def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=80 , SCREAMING_SNAKE_CASE__ : Dict=1_60_00 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_60 , SCREAMING_SNAKE_CASE__ : List[Any]=30 , SCREAMING_SNAKE_CASE__ : List[str]=4_00 , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Tuple: super().__init__( feature_size=SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , padding_value=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = n_fft __lowerCAmelCase = hop_length __lowerCAmelCase = chunk_length __lowerCAmelCase = chunk_length * sampling_rate __lowerCAmelCase = self.n_samples // hop_length __lowerCAmelCase = sampling_rate __lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=SCREAMING_SNAKE_CASE__ , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=SCREAMING_SNAKE_CASE__ , norm="""slaney""" , mel_scale="""slaney""" , ) def a ( self : str , SCREAMING_SNAKE_CASE__ : np.array ) -> np.ndarray: __lowerCAmelCase = spectrogram( SCREAMING_SNAKE_CASE__ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) __lowerCAmelCase = log_spec[:, :-1] __lowerCAmelCase = np.maximum(SCREAMING_SNAKE_CASE__ , log_spec.max() - 8.0 ) __lowerCAmelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def a ( SCREAMING_SNAKE_CASE__ : List[np.ndarray] , SCREAMING_SNAKE_CASE__ : List[np.ndarray] , SCREAMING_SNAKE_CASE__ : float = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: __lowerCAmelCase = np.array(SCREAMING_SNAKE_CASE__ , np.intaa ) __lowerCAmelCase = [] for vector, length in zip(SCREAMING_SNAKE_CASE__ , attention_mask.sum(-1 ) ): __lowerCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: __lowerCAmelCase = padding_value normed_input_values.append(SCREAMING_SNAKE_CASE__ ) else: __lowerCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "max_length" , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __lowerCAmelCase = isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __lowerCAmelCase = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): __lowerCAmelCase = np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCAmelCase = [np.asarray([raw_speech] ).T] __lowerCAmelCase = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding __lowerCAmelCase = self.pad( SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=max_length if max_length else self.n_samples , truncation=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __lowerCAmelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) __lowerCAmelCase = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format __lowerCAmelCase = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) __lowerCAmelCase = [self._np_extract_fbank_features(SCREAMING_SNAKE_CASE__ ) for waveform in input_features[0]] if isinstance(input_features[0] , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.floataa ) for feature in input_features] else: __lowerCAmelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __lowerCAmelCase = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: __lowerCAmelCase = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE__ ) return padded_inputs def a ( self : Optional[int] ) -> Dict[str, Any]: __lowerCAmelCase = copy.deepcopy(self.__dict__ ) __lowerCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
704
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _A : Union[str, Any] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' _A : Dict = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' _A : Any = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' _A : int = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' _A : List[str] = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def a ( self : Optional[int] ) -> Optional[Any]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any]=[1, 10, 1_00] , SCREAMING_SNAKE_CASE__ : Tuple=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3.0 ) -> Optional[int]: if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE__ ) as executor: __lowerCAmelCase = [] __lowerCAmelCase = Counter() __lowerCAmelCase = 0 __lowerCAmelCase = defaultdict(SCREAMING_SNAKE_CASE__ ) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): for candidate in candidates: __lowerCAmelCase = candidate + """\n""" + test_case __lowerCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) __lowerCAmelCase = executor.submit(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) futures.append(SCREAMING_SNAKE_CASE__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) __lowerCAmelCase , __lowerCAmelCase = [], [] for result in results.values(): result.sort() __lowerCAmelCase = [r[1]["""passed"""] for r in result] total.append(len(SCREAMING_SNAKE_CASE__ ) ) correct.append(sum(SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = np.array(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = np.array(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = k __lowerCAmelCase = {f"""pass@{k}""": estimate_pass_at_k(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : int ) -> Dict: '''simple docstring''' def estimator(snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case_ , snake_case_ ): __lowerCAmelCase = itertools.repeat(snake_case_ , len(snake_case_ ) ) else: assert len(snake_case_ ) == len(snake_case_ ) __lowerCAmelCase = iter(snake_case_ ) return np.array([estimator(int(snake_case_ ) , int(snake_case_ ) , snake_case_ ) for n, c in zip(snake_case_ , snake_case_ )] )
330
0
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (__A ): """simple docstring""" _a : Tuple = (DDPMParallelScheduler,) def _a ( self , **UpperCamelCase__ ): """simple docstring""" a_ = { 'num_train_timesteps': 1_000, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**UpperCamelCase__ ) return config def _a ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def _a ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def _a ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def _a ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def _a ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def _a ( self ): """simple docstring""" self.check_over_configs(thresholding=UpperCamelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase__ , prediction_type=UpperCamelCase__ , sample_max_value=UpperCamelCase__ , ) def _a ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def _a ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCamelCase__ ) def _a ( self ): """simple docstring""" a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _a ( self ): """simple docstring""" a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**UpperCamelCase__ ) a_ = len(UpperCamelCase__ ) a_ = self.dummy_model() a_ = self.dummy_sample_deter a_ = self.dummy_sample_deter + 0.1 a_ = self.dummy_sample_deter - 0.1 a_ = samplea.shape[0] a_ = torch.stack([samplea, samplea, samplea] , dim=0 ) a_ = torch.arange(UpperCamelCase__ )[0:3, None].repeat(1 , UpperCamelCase__ ) a_ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) a_ = scheduler.batch_step_no_noise(UpperCamelCase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) a_ = torch.sum(torch.abs(UpperCamelCase__ ) ) a_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 1_153.1_833 ) < 1e-2 assert abs(result_mean.item() - 0.5_005 ) < 1e-3 def _a ( self ): """simple docstring""" a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**UpperCamelCase__ ) a_ = len(UpperCamelCase__ ) a_ = self.dummy_model() a_ = self.dummy_sample_deter a_ = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase__ ) ): # 1. predict noise residual a_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 a_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample a_ = pred_prev_sample a_ = torch.sum(torch.abs(UpperCamelCase__ ) ) a_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def _a ( self ): """simple docstring""" a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(prediction_type='v_prediction' ) a_ = scheduler_class(**UpperCamelCase__ ) a_ = len(UpperCamelCase__ ) a_ = self.dummy_model() a_ = self.dummy_sample_deter a_ = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase__ ) ): # 1. predict noise residual a_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 a_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample a_ = pred_prev_sample a_ = torch.sum(torch.abs(UpperCamelCase__ ) ) a_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def _a ( self ): """simple docstring""" a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**UpperCamelCase__ ) a_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase__ ) a_ = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase__ ): if i == len(UpperCamelCase__ ) - 1: a_ = -1 else: a_ = timesteps[i + 1] a_ = scheduler.previous_timestep(UpperCamelCase__ ) a_ = prev_t.item() self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def _a ( self ): """simple docstring""" a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**UpperCamelCase__ ) a_ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCamelCase__ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=UpperCamelCase__ ) def _a ( self ): """simple docstring""" a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**UpperCamelCase__ ) a_ = [100, 87, 50, 1, 0] a_ = len(UpperCamelCase__ ) with self.assertRaises(UpperCamelCase__ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase__ , timesteps=UpperCamelCase__ ) def _a ( self ): """simple docstring""" a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**UpperCamelCase__ ) a_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase__ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=UpperCamelCase__ )
536
'''simple docstring''' def __UpperCamelCase ( lowercase_ : list[int] , lowercase_ : list[int] , lowercase_ : int ): """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowercase_ ) ) def __UpperCamelCase ( lowercase_ : list[list[int]] , lowercase_ : int , lowercase_ : list[int] , lowercase_ : int ): """simple docstring""" if index == len(lowercase_ ): return True # Recursive Step for i in range(lowercase_ ): if valid_coloring(graph[index] , lowercase_ , lowercase_ ): # Color current vertex a_ = i # Validate coloring if util_color(lowercase_ , lowercase_ , lowercase_ , index + 1 ): return True # Backtrack a_ = -1 return False def __UpperCamelCase ( lowercase_ : list[list[int]] , lowercase_ : int ): """simple docstring""" a_ = [-1] * len(lowercase_ ) if util_color(lowercase_ , lowercase_ , lowercase_ , 0 ): return colored_vertices return []
536
1
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase_ ( a_ , a_ ): @register_to_config def __init__( self , *, snake_case__ = 4 , snake_case__ = 7_68 , snake_case__ , snake_case__ , ) -> Optional[Any]: """simple docstring""" super().__init__() UpperCAmelCase = nn.Parameter(torch.zeros(snake_case__ ) ) # parameters for additional clip time embeddings UpperCAmelCase = nn.Linear(snake_case__ , snake_case__ ) UpperCAmelCase = nn.Linear(snake_case__ , snake_case__ ) # parameters for encoder hidden states UpperCAmelCase = clip_extra_context_tokens UpperCAmelCase = nn.Linear( snake_case__ , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase = nn.Linear(snake_case__ , snake_case__ ) UpperCAmelCase = nn.LayerNorm(snake_case__ ) def UpperCamelCase_ ( self , *, snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase = image_embeddings.shape[0] UpperCAmelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase = classifier_free_guidance_embeddings.expand( snake_case__ , -1 ) UpperCAmelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase = self.embedding_proj(snake_case__ ) UpperCAmelCase = self.clip_image_embeddings_project_to_time_embeddings(snake_case__ ) UpperCAmelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase = self.clip_extra_context_tokens_proj(snake_case__ ) UpperCAmelCase = clip_extra_context_tokens.reshape(snake_case__ , -1 , self.clip_extra_context_tokens ) UpperCAmelCase = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase = self.encoder_hidden_states_proj(snake_case__ ) UpperCAmelCase = self.text_encoder_hidden_states_norm(snake_case__ ) UpperCAmelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
378
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase_ ( a_ ): _A : List[str] = ['pixel_values'] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = 0.9 , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = True , snake_case__ = None , snake_case__ = 1 / 2_55 , snake_case__ = True , snake_case__ = True , snake_case__ = None , snake_case__ = None , **snake_case__ , ) -> None: """simple docstring""" super().__init__(**snake_case__ ) UpperCAmelCase = size if size is not None else {"""shortest_edge""": 2_24} UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} UpperCAmelCase = get_size_dict(snake_case__ , param_name="""crop_size""" ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = crop_pct UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ) -> np.ndarray: """simple docstring""" UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: UpperCAmelCase = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: UpperCAmelCase = int(size["""height"""] / crop_pct ) else: UpperCAmelCase = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(snake_case__ ) ) UpperCAmelCase = get_resize_output_image_size(snake_case__ , size=snake_case__ , default_to_square=snake_case__ ) else: if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(snake_case__ , size=size["""shortest_edge"""] , default_to_square=snake_case__ ) elif "height" in size and "width" in size: UpperCAmelCase = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(snake_case__ ) ) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> np.ndarray: """simple docstring""" UpperCAmelCase = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(snake_case__ , size=(size["""height"""], size["""width"""]) , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> Tuple: """simple docstring""" return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> np.ndarray: """simple docstring""" return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ) -> PIL.Image.Image: """simple docstring""" UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(snake_case__ , param_name="""crop_size""" ) UpperCAmelCase = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(snake_case__ ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=snake_case__ , size=snake_case__ , crop_pct=snake_case__ , resample=snake_case__ ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=snake_case__ , size=snake_case__ ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] UpperCAmelCase = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] UpperCAmelCase = {"""pixel_values""": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
378
1
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _UpperCamelCase (_lowerCamelCase : Union[dict, list, tuple, torch.Tensor] )-> List[Tuple[int, ...]]: '''simple docstring''' __snake_case = [] if isinstance(_lowerCamelCase , _lowerCamelCase ): for v in tree.values(): shapes.extend(_fetch_dims(_lowerCamelCase ) ) elif isinstance(_lowerCamelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(_lowerCamelCase ) ) elif isinstance(_lowerCamelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : Tuple[int, ...] )-> Tuple[int, ...]: '''simple docstring''' __snake_case = [] for d in reversed(_lowerCamelCase ): idx.append(flat_idx % d ) __snake_case = flat_idx // d return tuple(reversed(_lowerCamelCase ) ) @torch.jit.ignore def _UpperCamelCase (_lowerCamelCase : Sequence[int] , _lowerCamelCase : Sequence[int] , _lowerCamelCase : Sequence[int] , _lowerCamelCase : Optional[Sequence[bool]] = None , _lowerCamelCase : Optional[Sequence[bool]] = None , )-> List[Tuple[slice, ...]]: '''simple docstring''' def reduce_edge_list(_lowerCamelCase : List[bool] ) -> None: __snake_case = True for i in range(len(_lowerCamelCase ) ): __snake_case = -1 * (i + 1) l[reversed_idx] &= tally __snake_case = l[reversed_idx] if start_edges is None: __snake_case = [s == 0 for s in start] reduce_edge_list(_lowerCamelCase ) if end_edges is None: __snake_case = [e == (d - 1) for e, d in zip(_lowerCamelCase , _lowerCamelCase )] reduce_edge_list(_lowerCamelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(_lowerCamelCase ) == 0: return [()] elif len(_lowerCamelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __snake_case = [] __snake_case = [] # Dimensions common to start and end can be selected directly for s, e in zip(_lowerCamelCase , _lowerCamelCase ): if s == e: path_list.append(slice(_lowerCamelCase , s + 1 ) ) else: break __snake_case = tuple(_lowerCamelCase ) __snake_case = len(_lowerCamelCase ) # start == end, and we're done if divergence_idx == len(_lowerCamelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __snake_case = start[divergence_idx] return tuple( path + (slice(_lowerCamelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __snake_case = end[divergence_idx] return tuple( path + (slice(_lowerCamelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __snake_case = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _UpperCamelCase (_lowerCamelCase : torch.Tensor , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int )-> torch.Tensor: '''simple docstring''' __snake_case = t.shape[:no_batch_dims] __snake_case = list(_flat_idx_to_idx(_lowerCamelCase , _lowerCamelCase ) ) # _get_minimal_slice_set is inclusive __snake_case = list(_flat_idx_to_idx(flat_end - 1 , _lowerCamelCase ) ) # Get an ordered list of slices to perform __snake_case = _get_minimal_slice_set( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) __snake_case = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _UpperCamelCase (_lowerCamelCase : Callable , _lowerCamelCase : Dict[str, Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : bool = False , _lowerCamelCase : Any = None , _lowerCamelCase : bool = False , )-> Any: '''simple docstring''' if not (len(_lowerCamelCase ) > 0): raise ValueError('''Must provide at least one input''' ) __snake_case = [shape[:no_batch_dims] for shape in _fetch_dims(_lowerCamelCase )] __snake_case = tuple([max(_lowerCamelCase ) for s in zip(*_lowerCamelCase )] ) def _prep_inputs(_lowerCamelCase : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __snake_case = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __snake_case = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __snake_case = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __snake_case = tensor_tree_map(_prep_inputs , _lowerCamelCase ) __snake_case = None if _out is not None: __snake_case = tensor_tree_map(lambda _lowerCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __snake_case = 1 for d in orig_batch_dims: flat_batch_dim *= d __snake_case = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_lowerCamelCase : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __snake_case = 0 __snake_case = prepped_outputs for _ in range(_lowerCamelCase ): # Chunk the input if not low_mem: __snake_case = _select_chunk else: __snake_case = partial( _chunk_slice , flat_start=_lowerCamelCase , flat_end=min(_lowerCamelCase , i + chunk_size ) , no_batch_dims=len(_lowerCamelCase ) , ) __snake_case = tensor_tree_map(_lowerCamelCase , _lowerCamelCase ) # Run the layer on the chunk __snake_case = layer(**_lowerCamelCase ) # Allocate space for the output if out is None: __snake_case = tensor_tree_map(lambda _lowerCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , _lowerCamelCase ) # Put the chunk in its pre-allocated space if isinstance(_lowerCamelCase , _lowerCamelCase ): def assign(_lowerCamelCase : dict , _lowerCamelCase : dict ) -> None: for k, v in da.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): assign(_lowerCamelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __snake_case = da[k] assign(_lowerCamelCase , _lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): for xa, xa in zip(_lowerCamelCase , _lowerCamelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: __snake_case = xa elif isinstance(_lowerCamelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __snake_case = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size __snake_case = tensor_tree_map(lambda _lowerCamelCase : t.view(orig_batch_dims + t.shape[1:] ) , _lowerCamelCase ) return out class lowerCAmelCase : def __init__( self , __SCREAMING_SNAKE_CASE = 512 , ) -> List[Any]: '''simple docstring''' __snake_case = max_chunk_size __snake_case = None __snake_case = None def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __snake_case = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __snake_case = [c for c in candidates if c > min_chunk_size] __snake_case = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__SCREAMING_SNAKE_CASE ) -> bool: try: with torch.no_grad(): fn(*__SCREAMING_SNAKE_CASE , chunk_size=__SCREAMING_SNAKE_CASE ) return True except RuntimeError: return False __snake_case = 0 __snake_case = len(__SCREAMING_SNAKE_CASE ) - 1 while i > min_viable_chunk_size_index: __snake_case = test_chunk_size(candidates[i] ) if not viable: __snake_case = (min_viable_chunk_size_index + i) // 2 else: __snake_case = i __snake_case = (i + len(__SCREAMING_SNAKE_CASE ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' __snake_case = True for aa, aa in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert type(__SCREAMING_SNAKE_CASE ) == type(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): consistent &= self._compare_arg_caches(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case = [v for _, v in sorted(aa.items() , key=lambda __SCREAMING_SNAKE_CASE : x[0] )] __snake_case = [v for _, v in sorted(aa.items() , key=lambda __SCREAMING_SNAKE_CASE : x[0] )] consistent &= self._compare_arg_caches(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: consistent &= aa == aa return consistent def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> int: '''simple docstring''' __snake_case = True __snake_case = tree_map(lambda __SCREAMING_SNAKE_CASE : a.shape if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) else a , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__SCREAMING_SNAKE_CASE ) __snake_case = self._compare_arg_caches(self.cached_arg_data , __SCREAMING_SNAKE_CASE ) else: # Otherwise, we can reuse the precomputed value __snake_case = False if not consistent: __snake_case = self._determine_favorable_chunk_size( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) __snake_case = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
24
'''simple docstring''' def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 __snake_case = 1 __snake_case = 1 while repunit: __snake_case = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _UpperCamelCase (_lowerCamelCase : int = 1_00_00_00 )-> int: '''simple docstring''' __snake_case = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_lowerCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
24
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
import numpy as np def lowerCAmelCase__ ( UpperCamelCase_ : np.array )-> np.array: return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase_ : np.array )-> np.array: return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
526
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[Any] = KandinskyVaaPriorPipeline lowercase__ : List[str] = ["prompt"] lowercase__ : Union[str, Any] = ["prompt", "negative_prompt"] lowercase__ : Optional[int] = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase__ : str = False @property def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return 32 @property def __SCREAMING_SNAKE_CASE ( self ) -> str: return 32 @property def __SCREAMING_SNAKE_CASE ( self ) -> int: return self.time_input_dim @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: return 1_00 @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(lowerCamelCase_ ) @property def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } lowerCAmelCase__ = PriorTransformer(**lowerCamelCase_ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowerCAmelCase__ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __SCREAMING_SNAKE_CASE ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_24 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) lowerCAmelCase__ = CLIPVisionModelWithProjection(lowerCamelCase_ ) return model @property def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = CLIPImageProcessor( crop_size=2_24 , do_center_crop=lowerCamelCase_ , do_normalize=lowerCamelCase_ , do_resize=lowerCamelCase_ , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=2_24 , ) return image_processor def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = self.dummy_prior lowerCAmelCase__ = self.dummy_image_encoder lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = self.dummy_tokenizer lowerCAmelCase__ = self.dummy_image_processor lowerCAmelCase__ = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=lowerCamelCase_ , clip_sample_range=10.0 , ) lowerCAmelCase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=0 ) -> int: if str(lowerCamelCase_ ).startswith('''mps''' ): lowerCAmelCase__ = torch.manual_seed(lowerCamelCase_ ) else: lowerCAmelCase__ = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCAmelCase__ = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = '''cpu''' lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**lowerCamelCase_ ) lowerCAmelCase__ = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCAmelCase__ = output.image_embeds lowerCAmelCase__ = pipe( **self.get_dummy_inputs(lowerCamelCase_ ) , return_dict=lowerCamelCase_ , )[0] lowerCAmelCase__ = image[0, -10:] lowerCAmelCase__ = image_from_tuple[0, -10:] assert image.shape == (1, 32) lowerCAmelCase__ = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = torch_device == '''cpu''' lowerCAmelCase__ = True lowerCAmelCase__ = False self._test_inference_batch_single_identical( test_max_difference=lowerCamelCase_ , relax_max_difference=lowerCamelCase_ , test_mean_pixel_difference=lowerCamelCase_ , ) @skip_mps def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = torch_device == '''cpu''' lowerCAmelCase__ = False self._test_attention_slicing_forward_pass( test_max_difference=lowerCamelCase_ , test_mean_pixel_difference=lowerCamelCase_ , )
90
'''simple docstring''' from __future__ import annotations from typing import TypedDict class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): __a =42 __a =42 def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str ) -> list[str]: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str ) -> BWTTransformDict: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) __a = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation __a = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str, SCREAMING_SNAKE_CASE__: int ) -> str: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: __a = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) __a = [''] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __a = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __UpperCamelCase : Any = """Provide a string that I will generate its BWT transform: """ __UpperCamelCase : Dict = input(entry_msg).strip() __UpperCamelCase : Optional[int] = bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result["bwt_string"]}'""" ) __UpperCamelCase : Dict = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( f"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """ f"""we get original string '{original_string}'""" )
448
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __UpperCamelCase : Tuple = """base_with_context""" def a_ ( _A , _A ) -> Optional[int]: """simple docstring""" snake_case__ = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) snake_case__ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_A ) for lyr_num, lyr in enumerate(model.encoders ): snake_case__ = weights[f'''layers_{lyr_num}'''] snake_case__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) snake_case__ = ly_weight['attention'] snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) snake_case__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def a_ ( _A , _A ) -> Optional[Any]: """simple docstring""" snake_case__ = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) snake_case__ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_A ) for lyr_num, lyr in enumerate(model.encoders ): snake_case__ = weights[f'''layers_{lyr_num}'''] snake_case__ = ly_weight['attention'] snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) snake_case__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) snake_case__ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def a_ ( _A , _A ) -> Any: """simple docstring""" snake_case__ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) snake_case__ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_A ) snake_case__ = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): snake_case__ = weights[f'''layers_{lyr_num}'''] snake_case__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) snake_case__ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) snake_case__ = ly_weight['self_attention'] snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case__ = ly_weight['MultiHeadDotProductAttention_0'] snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) snake_case__ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) snake_case__ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) snake_case__ = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) snake_case__ = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def a_ ( _A ) -> Optional[Any]: """simple docstring""" snake_case__ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) snake_case__ = jnp.tree_util.tree_map(onp.array , _A ) snake_case__ = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] snake_case__ = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) snake_case__ = inference.parse_training_gin_file(_A , _A ) snake_case__ = inference.InferenceModel(args.checkpoint_path , _A ) snake_case__ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) snake_case__ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) snake_case__ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) snake_case__ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) snake_case__ = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , _A ) snake_case__ = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , _A ) snake_case__ = load_decoder(ta_checkpoint['target']['decoder'] , _A ) snake_case__ = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) snake_case__ = SpectrogramDiffusionPipeline( notes_encoder=_A , continuous_encoder=_A , decoder=_A , scheduler=_A , melgan=_A , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) __UpperCamelCase : Dict = parser.parse_args() main(args)
701
def a_ ( _A , _A ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(_A ) , _A ) return number - int(_A ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
372
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowerCAmelCase_ ( *lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =list(lowerCamelCase ) for i in range(len(lowerCamelCase ) ): __magic_name__ : Dict =None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowerCamelCase , lowerCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowerCAmelCase_ ( lowerCamelCase = None , lowerCamelCase = 128 ): if function is None: return functools.partial(lowerCamelCase , starting_batch_size=lowerCamelCase ) __magic_name__ : List[Any] =starting_batch_size def decorator(*lowerCamelCase , **lowerCamelCase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __magic_name__ : Optional[Any] =list(inspect.signature(lowerCamelCase ).parameters.keys() ) # Guard against user error if len(lowerCamelCase ) < (len(lowerCamelCase ) + 1): __magic_name__ : Optional[int] =""", """.join([F"{arg}={value}" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F"Batch size was passed into `{function.__name__}` as the first argument when called." F"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) except Exception as e: if should_reduce_batch_size(lowerCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
21
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , snake_case ) -> Dict: """simple docstring""" super().__init__() a__ : int = model a__ : Any = 2 a__ : List[str] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _snake_case ( self ) -> List[str]: """simple docstring""" pass def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load longformer model from model identifier a__ : List[str] = LongformerModel.from_pretrained(lowerCamelCase ) a__ : Dict = LightningModel(lowerCamelCase ) a__ : str = torch.load(lowerCamelCase , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model a__ : Dict = LongformerForQuestionAnswering.from_pretrained(lowerCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCamelCase ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
112
0
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _a : Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt') def a_ ( __magic_name__ , __magic_name__ , __magic_name__ = 16_000 ) -> Any: """simple docstring""" snake_case : str = int(round(sample_rate * max_length ) ) if len(__magic_name__ ) <= sample_length: return wav snake_case : int = randint(0 , len(__magic_name__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class a_ : A__ : Optional[str] = field(default=a , metadata={'help': 'Name of a dataset from the datasets package'} ) A__ : Optional[str] = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) A__ : Optional[str] = field( default=a , metadata={'help': 'A file containing the training audio paths and labels.'} ) A__ : Optional[str] = field( default=a , metadata={'help': 'A file containing the validation audio paths and labels.'} ) A__ : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) A__ : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) A__ : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) A__ : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) A__ : Optional[int] = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A__ : Optional[int] = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) A__ : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class a_ : A__ : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) A__ : Optional[str] = field( default=a , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A__ : Optional[str] = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) A__ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A__ : Optional[str] = field( default=a , metadata={'help': 'Name or path of preprocessor config.'} ) A__ : bool = field( default=a , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) A__ : bool = field( default=a , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) A__ : bool = field( default=a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) A__ : Optional[bool] = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) A__ : bool = field( default=a , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCAmelCase( self : str ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , UpperCAmelCase__ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def a_ ( ) -> str: """simple docstring""" snake_case : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , __magic_name__ , __magic_name__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__magic_name__ ) transformers.utils.logging.set_verbosity(__magic_name__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. snake_case : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. snake_case : Any = DatasetDict() snake_case : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) snake_case : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " '''Make sure to set `--label_column_name` to the correct text column - one of ''' F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. snake_case : int = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) snake_case : int = feature_extractor.model_input_names[0] def train_transforms(__magic_name__ ): snake_case : Optional[Any] = [] for audio in batch[data_args.audio_column_name]: snake_case : Any = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__magic_name__ ) snake_case : Dict = feature_extractor(__magic_name__ , sampling_rate=feature_extractor.sampling_rate ) snake_case : Optional[Any] = {model_input_name: inputs.get(__magic_name__ )} snake_case : List[Any] = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__magic_name__ ): snake_case : str = [audio['''array'''] for audio in batch[data_args.audio_column_name]] snake_case : Union[str, Any] = feature_extractor(__magic_name__ , sampling_rate=feature_extractor.sampling_rate ) snake_case : str = {model_input_name: inputs.get(__magic_name__ )} snake_case : Dict = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. snake_case : int = raw_datasets['''train'''].features[data_args.label_column_name].names snake_case : int = {}, {} for i, label in enumerate(__magic_name__ ): snake_case : str = str(__magic_name__ ) snake_case : Optional[int] = label # Load the accuracy metric from the datasets package snake_case : Union[str, Any] = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__magic_name__ ): snake_case : Any = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__magic_name__ , references=eval_pred.label_ids ) snake_case : Tuple = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__magic_name__ ) , labelaid=__magic_name__ , idalabel=__magic_name__ , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case : int = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: snake_case : Dict = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__magic_name__ , output_all_columns=__magic_name__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: snake_case : Dict = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__magic_name__ , output_all_columns=__magic_name__ ) # Initialize our trainer snake_case : str = Trainer( model=__magic_name__ , args=__magic_name__ , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=__magic_name__ , tokenizer=__magic_name__ , ) # Training if training_args.do_train: snake_case : List[Any] = None if training_args.resume_from_checkpoint is not None: snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case : Optional[int] = last_checkpoint snake_case : List[str] = trainer.train(resume_from_checkpoint=__magic_name__ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case : Dict = trainer.evaluate() trainer.log_metrics('''eval''' , __magic_name__ ) trainer.save_metrics('''eval''' , __magic_name__ ) # Write model card and (optionally) push to hub snake_case : Tuple = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**__magic_name__ ) else: trainer.create_model_card(**__magic_name__ ) if __name__ == "__main__": main()
705
def a_ ( __magic_name__ ) -> bool: """simple docstring""" if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True snake_case : int = 4 snake_case : Optional[Any] = (1 << p) - 1 for _ in range(p - 2 ): snake_case : Optional[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
84
0
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class a ( __snake_case ): SCREAMING_SNAKE_CASE : Union[str, Any] = """encodec""" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=[1.5, 3.0, 6.0, 12.0, 24.0] , __SCREAMING_SNAKE_CASE : List[Any]=24000 , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Any=128 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : Tuple=1 , __SCREAMING_SNAKE_CASE : Optional[int]=[8, 5, 4, 2] , __SCREAMING_SNAKE_CASE : Any="weight_norm" , __SCREAMING_SNAKE_CASE : Optional[int]=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : int="reflect" , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=1.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=1024 , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Any=True , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> Union[str, Any]: lowerCamelCase_ = target_bandwidths lowerCamelCase_ = sampling_rate lowerCamelCase_ = audio_channels lowerCamelCase_ = normalize lowerCamelCase_ = chunk_length_s lowerCamelCase_ = overlap lowerCamelCase_ = hidden_size lowerCamelCase_ = num_filters lowerCamelCase_ = num_residual_layers lowerCamelCase_ = upsampling_ratios lowerCamelCase_ = norm_type lowerCamelCase_ = kernel_size lowerCamelCase_ = last_kernel_size lowerCamelCase_ = residual_kernel_size lowerCamelCase_ = dilation_growth_rate lowerCamelCase_ = use_causal_conv lowerCamelCase_ = pad_mode lowerCamelCase_ = compress lowerCamelCase_ = num_lstm_layers lowerCamelCase_ = trim_right_ratio lowerCamelCase_ = codebook_size lowerCamelCase_ = codebook_dim if codebook_dim is not None else hidden_size lowerCamelCase_ = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**__SCREAMING_SNAKE_CASE ) @property def UpperCamelCase ( self : Tuple ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def UpperCamelCase ( self : List[Any] ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def UpperCamelCase ( self : List[str] ) -> int: lowerCamelCase_ = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def UpperCamelCase ( self : List[Any] ) -> int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
549
"""simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = 8.314_4598 def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float ) -> float: if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _SCREAMING_SNAKE_CASE : List[Any] = 300 _SCREAMING_SNAKE_CASE : Dict = 28 _SCREAMING_SNAKE_CASE : List[str] = rms_speed_of_molecule(temperature, molar_mass) print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
549
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Any = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def _UpperCAmelCase ( UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ): """simple docstring""" for attribute in key.split(""".""" ): __lowerCamelCase : Optional[Any] = getattr(UpperCAmelCase , UpperCAmelCase ) if weight_type is not None: __lowerCamelCase : Optional[Any] = getattr(UpperCAmelCase , UpperCAmelCase ).shape else: __lowerCamelCase : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase : Union[str, Any] = value elif weight_type == "weight_g": __lowerCamelCase : Any = value elif weight_type == "weight_v": __lowerCamelCase : Dict = value elif weight_type == "bias": __lowerCamelCase : int = value else: __lowerCamelCase : Optional[Any] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _UpperCAmelCase ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ): """simple docstring""" __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : List[Any] = fairseq_model.state_dict() __lowerCamelCase : str = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCamelCase : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase : Tuple = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowerCamelCase : Union[str, Any] = True if "*" in mapped_key: __lowerCamelCase : Dict = name.split(UpperCAmelCase )[0].split(""".""" )[-2] __lowerCamelCase : Any = mapped_key.replace("""*""" , UpperCAmelCase ) if "weight_g" in name: __lowerCamelCase : str = """weight_g""" elif "weight_v" in name: __lowerCamelCase : Union[str, Any] = """weight_v""" elif "weight" in name: __lowerCamelCase : Any = """weight""" elif "bias" in name: __lowerCamelCase : Any = """bias""" else: __lowerCamelCase : Union[str, Any] = None set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _UpperCAmelCase ( UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] ): """simple docstring""" __lowerCamelCase : int = full_name.split("""conv_layers.""" )[-1] __lowerCamelCase : Optional[Any] = name.split(""".""" ) __lowerCamelCase : Optional[int] = int(items[0] ) __lowerCamelCase : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowerCamelCase : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase ) def _UpperCAmelCase ( UpperCAmelCase : Dict , UpperCAmelCase : Tuple ): """simple docstring""" __lowerCamelCase : List[str] = SEWConfig() if is_finetuned: __lowerCamelCase : Dict = model.wav_encoder.wav_model.cfg else: __lowerCamelCase : Any = model.cfg __lowerCamelCase : List[str] = fs_config.conv_bias __lowerCamelCase : List[str] = eval(fs_config.conv_feature_layers ) __lowerCamelCase : Any = [x[0] for x in conv_layers] __lowerCamelCase : Tuple = [x[1] for x in conv_layers] __lowerCamelCase : List[str] = [x[2] for x in conv_layers] __lowerCamelCase : Dict = """gelu""" __lowerCamelCase : str = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __lowerCamelCase : Any = 0.0 __lowerCamelCase : Optional[int] = fs_config.activation_fn.name __lowerCamelCase : Optional[Any] = fs_config.encoder_embed_dim __lowerCamelCase : List[str] = 0.0_2 __lowerCamelCase : Dict = fs_config.encoder_ffn_embed_dim __lowerCamelCase : Dict = 1e-5 __lowerCamelCase : str = fs_config.encoder_layerdrop __lowerCamelCase : int = fs_config.encoder_attention_heads __lowerCamelCase : List[str] = fs_config.conv_pos_groups __lowerCamelCase : Tuple = fs_config.conv_pos __lowerCamelCase : Optional[Any] = len(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = fs_config.encoder_layers __lowerCamelCase : str = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __lowerCamelCase : Any = model.cfg __lowerCamelCase : Dict = fs_config.final_dropout __lowerCamelCase : Any = fs_config.layerdrop __lowerCamelCase : Union[str, Any] = fs_config.activation_dropout __lowerCamelCase : Tuple = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __lowerCamelCase : List[str] = fs_config.attention_dropout __lowerCamelCase : Union[str, Any] = fs_config.dropout_input __lowerCamelCase : List[Any] = fs_config.dropout __lowerCamelCase : List[str] = fs_config.mask_channel_length __lowerCamelCase : Optional[Any] = fs_config.mask_channel_prob __lowerCamelCase : Optional[Any] = fs_config.mask_length __lowerCamelCase : Optional[Any] = fs_config.mask_prob __lowerCamelCase : str = """Wav2Vec2FeatureExtractor""" __lowerCamelCase : List[str] = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _UpperCAmelCase ( UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=True ): """simple docstring""" if is_finetuned: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __lowerCamelCase : List[str] = SEWConfig.from_pretrained(UpperCAmelCase ) else: __lowerCamelCase : List[Any] = convert_config(model[0] , UpperCAmelCase ) __lowerCamelCase : Dict = model[0].eval() __lowerCamelCase : Any = True if config.feat_extract_norm == """layer""" else False __lowerCamelCase : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) if is_finetuned: if dict_path: __lowerCamelCase : Union[str, Any] = Dictionary.load(UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowerCamelCase : int = target_dict.pad_index __lowerCamelCase : Optional[Any] = target_dict.bos_index __lowerCamelCase : Union[str, Any] = target_dict.pad_index __lowerCamelCase : Union[str, Any] = target_dict.bos_index __lowerCamelCase : List[str] = target_dict.eos_index __lowerCamelCase : Tuple = len(target_dict.symbols ) __lowerCamelCase : Optional[int] = os.path.join(UpperCAmelCase , """vocab.json""" ) if not os.path.isdir(UpperCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(UpperCAmelCase ) ) return os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) with open(UpperCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , UpperCAmelCase ) __lowerCamelCase : int = WavaVecaCTCTokenizer( UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=UpperCAmelCase , ) __lowerCamelCase : List[str] = WavaVecaProcessor(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) __lowerCamelCase : Tuple = SEWForCTC(UpperCAmelCase ) else: __lowerCamelCase : Any = SEWModel(UpperCAmelCase ) feature_extractor.save_pretrained(UpperCAmelCase ) recursively_load_weights(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) hf_model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __UpperCamelCase : int = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
458
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _UpperCamelCase : '''simple docstring''' def __init__( self : int , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Dict=1_0 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : Tuple=3_2 * 8 , _lowerCamelCase : int=3_2 * 8 , _lowerCamelCase : str=4 , _lowerCamelCase : List[Any]=6_4 , ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : List[str] = is_training __lowerCamelCase : Dict = use_auxiliary_loss __lowerCamelCase : Optional[int] = num_queries __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Dict = min_size __lowerCamelCase : Optional[Any] = max_size __lowerCamelCase : str = num_labels __lowerCamelCase : Optional[Any] = hidden_dim __lowerCamelCase : Optional[Any] = hidden_dim def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) __lowerCamelCase : Optional[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) __lowerCamelCase : int = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() __lowerCamelCase : List[Any] = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() __lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase : List[Any] = self.num_queries __lowerCamelCase : List[str] = self.num_labels __lowerCamelCase : List[str] = [1, 1, 1, 1] __lowerCamelCase : Optional[int] = self.num_channels __lowerCamelCase : Optional[int] = 6_4 __lowerCamelCase : int = 1_2_8 __lowerCamelCase : Any = self.hidden_dim __lowerCamelCase : List[str] = self.hidden_dim __lowerCamelCase : List[Any] = self.hidden_dim return config def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = self.prepare_config_and_inputs() __lowerCamelCase : Optional[int] = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def _snake_case ( self : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int] ): '''simple docstring''' __lowerCamelCase : Tuple = output.encoder_hidden_states __lowerCamelCase : Any = output.pixel_decoder_hidden_states __lowerCamelCase : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def _snake_case ( self : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : List[str]=False ): '''simple docstring''' with torch.no_grad(): __lowerCamelCase : Any = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowerCamelCase : Dict = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) __lowerCamelCase : Optional[Any] = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def _snake_case ( self : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ): '''simple docstring''' __lowerCamelCase : List[Any] = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : Optional[int] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase : Optional[int] = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) __lowerCamelCase : Tuple = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) __lowerCamelCase : str = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _UpperCamelCase ( A,A,unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () a_ : Union[str, Any] = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} a_ : Optional[Any] = False a_ : int = False a_ : List[str] = False a_ : List[Any] = False def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : Dict = MaskaFormerModelTester(self ) __lowerCamelCase : int = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def _snake_case ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def _snake_case ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def _snake_case ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def _snake_case ( self : str ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _snake_case ( self : int ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _snake_case ( self : Any ): '''simple docstring''' pass def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(_lowerCamelCase ) __lowerCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Any = [*signature.parameters.keys()] __lowerCamelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase : Dict = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : List[Any] = (self.model_tester.min_size,) * 2 __lowerCamelCase : Optional[Any] = { """pixel_values""": torch.randn((2, 3, *size) , device=_lowerCamelCase ), """mask_labels""": torch.randn((2, 1_0, *size) , device=_lowerCamelCase ), """class_labels""": torch.zeros(2 , 1_0 , device=_lowerCamelCase ).long(), } __lowerCamelCase : Any = self.model_tester.get_config() __lowerCamelCase : Tuple = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(_lowerCamelCase ).to(_lowerCamelCase ) __lowerCamelCase : int = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def _snake_case ( self : Any ): '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase : str = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() __lowerCamelCase : List[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() __lowerCamelCase : Tuple = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowerCamelCase : List[Any] = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() __lowerCamelCase : Optional[int] = True __lowerCamelCase : Any = True __lowerCamelCase : Any = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() __lowerCamelCase : Optional[Any] = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase : Any = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase : Optional[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase : List[str] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __UpperCamelCase : str = 1E-4 def _UpperCAmelCase ( ): """simple docstring""" __lowerCamelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def _snake_case ( self : Dict ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) __lowerCamelCase : str = self.default_image_processor __lowerCamelCase : Dict = prepare_img() __lowerCamelCase : List[Any] = image_processor(_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) __lowerCamelCase : Optional[int] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): __lowerCamelCase : str = model(**_lowerCamelCase ) __lowerCamelCase : Dict = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) __lowerCamelCase : Union[str, Any] = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) __lowerCamelCase : Tuple = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : int = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() __lowerCamelCase : Any = self.default_image_processor __lowerCamelCase : Union[str, Any] = prepare_img() __lowerCamelCase : int = image_processor(_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) __lowerCamelCase : int = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): __lowerCamelCase : Dict = model(**_lowerCamelCase ) # masks_queries_logits __lowerCamelCase : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase : Any = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] __lowerCamelCase : List[str] = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits __lowerCamelCase : Union[str, Any] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase : List[Any] = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowerCamelCase : Tuple = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() __lowerCamelCase : Dict = self.default_image_processor __lowerCamelCase : List[Any] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors="""pt""" , ) __lowerCamelCase : int = inputs["""pixel_values"""].to(_lowerCamelCase ) __lowerCamelCase : Optional[Any] = [el.to(_lowerCamelCase ) for el in inputs["""mask_labels"""]] __lowerCamelCase : Union[str, Any] = [el.to(_lowerCamelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): __lowerCamelCase : Dict = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
458
1
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _snake_case = _symbol_database.Default() _snake_case = _descriptor_pool.Default().AddSerializedFile( b'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03''' ) _snake_case = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _snake_case = None _snake_case = b'''H\003''' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _snake_case = 4_5 _snake_case = 1_5_8_1 _snake_case = 1_5_1_7 _snake_case = 1_5_7_0 _snake_case = 1_5_8_4 _snake_case = 1_7_9_3 _snake_case = 1_7_9_5 _snake_case = 1_9_1_6 _snake_case = 1_8_6_4 _snake_case = 1_9_0_5 _snake_case = 1_9_1_9 _snake_case = 2_4_2_9 _snake_case = 2_2_0_8 _snake_case = 2_4_1_8 _snake_case = 2_3_2_3 _snake_case = 2_4_0_7 # @@protoc_insertion_point(module_scope)
580
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
580
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = 'sew-d' def __init__(self , lowercase__=32 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__=2 , lowercase__=5_12 , lowercase__=2_56 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_28 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_56 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) snake_case_ : Dict = hidden_size snake_case_ : List[str] = feat_extract_norm snake_case_ : List[str] = feat_extract_activation snake_case_ : int = list(UpperCAmelCase__ ) snake_case_ : Optional[Any] = list(UpperCAmelCase__ ) snake_case_ : Any = list(UpperCAmelCase__ ) snake_case_ : Union[str, Any] = conv_bias snake_case_ : Dict = num_conv_pos_embeddings snake_case_ : List[str] = num_conv_pos_embedding_groups snake_case_ : Any = len(self.conv_dim ) snake_case_ : Optional[int] = num_hidden_layers snake_case_ : Dict = intermediate_size snake_case_ : List[str] = squeeze_factor snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : str = position_buckets snake_case_ : str = share_att_key snake_case_ : Optional[int] = relative_attention snake_case_ : Dict = norm_rel_ebd snake_case_ : str = list(UpperCAmelCase__ ) snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : str = hidden_dropout snake_case_ : Optional[int] = attention_dropout snake_case_ : Any = activation_dropout snake_case_ : Optional[Any] = feat_proj_dropout snake_case_ : List[Any] = final_dropout snake_case_ : Any = layer_norm_eps snake_case_ : Optional[int] = feature_layer_norm_eps snake_case_ : str = initializer_range snake_case_ : Tuple = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ : List[str] = apply_spec_augment snake_case_ : Optional[int] = mask_time_prob snake_case_ : Union[str, Any] = mask_time_length snake_case_ : List[Any] = mask_time_min_masks snake_case_ : Dict = mask_feature_prob snake_case_ : Optional[Any] = mask_feature_length snake_case_ : int = mask_feature_min_masks # ctc loss snake_case_ : Optional[Any] = ctc_loss_reduction snake_case_ : int = ctc_zero_infinity # sequence classification snake_case_ : str = use_weighted_layer_sum snake_case_ : List[Any] = classifier_proj_size @property def __UpperCamelCase (self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
717
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> Dict: """simple docstring""" for param, grad_param in zip(model_a.parameters(), model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase=True )-> List[Any]: """simple docstring""" model.train() lowercase = model(UpperCAmelCase ) lowercase = F.mse_loss(UpperCAmelCase, target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCAmelCase ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase=False )-> Tuple: """simple docstring""" set_seed(42 ) lowercase = RegressionModel() lowercase = deepcopy(UpperCAmelCase ) lowercase = RegressionDataset(length=80 ) lowercase = DataLoader(UpperCAmelCase, batch_size=16 ) model.to(accelerator.device ) if sched: lowercase = AdamW(params=model.parameters(), lr=1e-3 ) lowercase = AdamW(params=ddp_model.parameters(), lr=1e-3 ) lowercase = LambdaLR(UpperCAmelCase, lr_lambda=lambda UpperCAmelCase : epoch**0.65 ) lowercase = LambdaLR(UpperCAmelCase, lr_lambda=lambda UpperCAmelCase : epoch**0.65 ) # Make a copy of `model` if sched: lowercase ,lowercase ,lowercase ,lowercase = accelerator.prepare(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) else: lowercase ,lowercase = accelerator.prepare(UpperCAmelCase, UpperCAmelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __UpperCAmelCase ( UpperCAmelCase )-> Optional[int]: """simple docstring""" lowercase ,lowercase ,lowercase = get_training_setup(UpperCAmelCase ) # Use a single batch lowercase ,lowercase = next(iter(UpperCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowercase ,lowercase = accelerator.gather((ddp_input, ddp_target) ) lowercase ,lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCAmelCase ): step_model(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) else: # Sync grads step_model(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad, ddp_param.grad ), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowercase = ddp_input[torch.randperm(len(UpperCAmelCase ) )] def __UpperCAmelCase ( UpperCAmelCase )-> List[Any]: """simple docstring""" lowercase ,lowercase ,lowercase = get_training_setup(UpperCAmelCase ) # Use a single batch lowercase ,lowercase = next(iter(UpperCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowercase ,lowercase = accelerator.gather((ddp_input, ddp_target) ) lowercase ,lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCAmelCase ): step_model(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) else: # Sync grads step_model(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), f'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowercase = ddp_input[torch.randperm(len(UpperCAmelCase ) )] def __UpperCAmelCase ( UpperCAmelCase=False, UpperCAmelCase=False )-> List[str]: """simple docstring""" lowercase = Accelerator( split_batches=UpperCAmelCase, dispatch_batches=UpperCAmelCase, gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowercase ,lowercase ,lowercase = get_training_setup(UpperCAmelCase ) for iteration, batch in enumerate(UpperCAmelCase ): lowercase ,lowercase = batch.values() # Gather the distributed inputs and targs for the base model lowercase ,lowercase = accelerator.gather((ddp_input, ddp_target) ) lowercase ,lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCAmelCase ): step_model(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCAmelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowercase = ddp_input[torch.randperm(len(UpperCAmelCase ) )] GradientState._reset_state() def __UpperCAmelCase ( UpperCAmelCase=False, UpperCAmelCase=False )-> str: """simple docstring""" lowercase = Accelerator( split_batches=UpperCAmelCase, dispatch_batches=UpperCAmelCase, gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase = get_training_setup(UpperCAmelCase, UpperCAmelCase ) for iteration, batch in enumerate(UpperCAmelCase ): lowercase ,lowercase = batch.values() # Gather the distributed inputs and targs for the base model lowercase ,lowercase = accelerator.gather((ddp_input, ddp_target) ) lowercase ,lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCAmelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCAmelCase ): step_model(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCAmelCase )) if accelerator.num_processes > 1: check_model_parameters(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def __UpperCAmelCase ( )-> Tuple: """simple docstring""" lowercase = Accelerator() lowercase = RegressionDataset(length=80 ) lowercase = DataLoader(UpperCAmelCase, batch_size=16 ) lowercase = RegressionDataset(length=96 ) lowercase = DataLoader(UpperCAmelCase, batch_size=16 ) lowercase ,lowercase = accelerator.prepare(UpperCAmelCase, UpperCAmelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCAmelCase ) if iteration < len(UpperCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCAmelCase ) if batch_num < len(UpperCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __UpperCAmelCase ( )-> int: """simple docstring""" lowercase = Accelerator() lowercase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(UpperCAmelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(UpperCAmelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''', f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**', ) test_gradient_accumulation(UpperCAmelCase, UpperCAmelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''', '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''', '''`split_batches=False`, `dispatch_batches=False`**''', ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''', f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**', ) test_gradient_accumulation_with_opt_and_scheduler(UpperCAmelCase, UpperCAmelCase ) def __UpperCAmelCase ( UpperCAmelCase )-> int: """simple docstring""" main() if __name__ == "__main__": main()
604
def __UpperCAmelCase ( UpperCAmelCase = 50 )-> int: """simple docstring""" lowercase = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2, 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
604
1
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCamelCase_ : def _lowercase( self , A ) -> Optional[int]: raise NotImplementedError() def _lowercase( self ) -> Any: raise NotImplementedError() class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A = False , **A ) -> List[Any]: UpperCAmelCase : Any = tokenizer UpperCAmelCase : List[str] = skip_prompt UpperCAmelCase : int = decode_kwargs # variables used in the streaming process UpperCAmelCase : int = [] UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = True def _lowercase( self , A ) -> Optional[Any]: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: UpperCAmelCase : int = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase : Optional[int] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase : Optional[int] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): UpperCAmelCase : List[str] = text[self.print_len :] UpperCAmelCase : Any = [] UpperCAmelCase : List[Any] = 0 # If the last token is a CJK character, we print the characters. elif len(A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase : Tuple = text[self.print_len :] self.print_len += len(A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase : Dict = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(A ) self.on_finalized_text(A ) def _lowercase( self ) -> int: # Flush the cache, if it exists if len(self.token_cache ) > 0: UpperCAmelCase : Dict = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) UpperCAmelCase : List[Any] = text[self.print_len :] UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Union[str, Any] = 0 else: UpperCAmelCase : List[Any] = """""" UpperCAmelCase : Dict = True self.on_finalized_text(A , stream_end=A ) def _lowercase( self , A , A = False ) -> Dict: print(A , flush=A , end="""""" if not stream_end else None ) def _lowercase( self , A ) -> Tuple: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X20000 and cp <= 0X2a6df) # or (cp >= 0X2a700 and cp <= 0X2b73f) # or (cp >= 0X2b740 and cp <= 0X2b81f) # or (cp >= 0X2b820 and cp <= 0X2ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2f800 and cp <= 0X2fa1f) # ): # return True return False class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A = False , A = None , **A ) -> Dict: super().__init__(A , A , **A ) UpperCAmelCase : Optional[int] = Queue() UpperCAmelCase : Dict = None UpperCAmelCase : List[str] = timeout def _lowercase( self , A , A = False ) -> Union[str, Any]: self.text_queue.put(A , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> List[str]: return self def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
672
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
1
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCamelCase : str = logging.get_logger(__name__) @add_end_docstrings(A__ ) class A__ ( A__ ): """simple docstring""" def __init__( self : Optional[Any] , *lowerCamelCase__ : Any , **lowerCamelCase__ : int ): super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) requires_backends(self , "vision" ) self.check_model_type(lowerCamelCase__ ) def __call__( self : List[Any] , lowerCamelCase__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase__ : Optional[int] ): return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : List[str] , **lowerCamelCase__ : int ): return {}, {}, {} def _UpperCamelCase( self : int , lowerCamelCase__ : Any ): a__ : str = load_image(lowerCamelCase__ ) a__ : int = image.size a__ : Optional[Any] = self.image_processor(images=lowerCamelCase__ , return_tensors=self.framework ) return model_inputs def _UpperCamelCase( self : str , lowerCamelCase__ : int ): a__ : List[Any] = self.model(**lowerCamelCase__ ) return model_outputs def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int ): a__ : Tuple = model_outputs.predicted_depth a__ : Tuple = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=lowerCamelCase__ ) a__ : Optional[Any] = prediction.squeeze().cpu().numpy() a__ : Tuple = (output * 255 / np.max(lowerCamelCase__ )).astype("uint8" ) a__ : List[Any] = Image.fromarray(lowerCamelCase__ ) a__ : Optional[Any] = {} a__ : List[str] = predicted_depth a__ : Tuple = depth return output_dict
37
"""simple docstring""" from __future__ import annotations class __magic_name__ : def __init__( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = order # a_{0} ... a_{k} _lowerCAmelCase = [1.0] + [0.0] * order # b_{0} ... b_{k} _lowerCAmelCase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _lowerCAmelCase = [0.0] * self.order # y[n-1] ... y[n-k] _lowerCAmelCase = [0.0] * self.order def _lowerCamelCase ( self , __magic_name__ , __magic_name__ ): """simple docstring""" if len(__magic_name__ ) < self.order: _lowerCAmelCase = [1.0, *a_coeffs] if len(__magic_name__ ) != self.order + 1: _lowerCAmelCase = ( F'''Expected a_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(__magic_name__ )}''' ) raise ValueError(__magic_name__ ) if len(__magic_name__ ) != self.order + 1: _lowerCAmelCase = ( F'''Expected b_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(__magic_name__ )}''' ) raise ValueError(__magic_name__ ) _lowerCAmelCase = a_coeffs _lowerCAmelCase = b_coeffs def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _lowerCAmelCase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _lowerCAmelCase = self.input_history[:-1] _lowerCAmelCase = self.output_history[:-1] _lowerCAmelCase = sample _lowerCAmelCase = result return result
589
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
707
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
0
"""simple docstring""" import math def __A ( a_ :int) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def __A ( a_ :float = 0.1) -> int: __a : List[str] = 3 __a : List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
52
"""simple docstring""" def __A ( a_ :Tuple , a_ :Union[str, Any] , a_ :int=False) -> List[str]: if isinstance(a_ , a_) and isinstance(a_ , a_): __a : List[str] = len(set_a.intersection(a_)) if alternative_union: __a : List[str] = len(a_) + len(a_) else: __a : int = len(set_a.union(a_)) return intersection / union if isinstance(a_ , (list, tuple)) and isinstance(a_ , (list, tuple)): __a : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: __a : Union[str, Any] = len(a_) + len(a_) return len(a_) / union else: __a : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(a_) / len(a_) return len(a_) / len(a_) return None if __name__ == "__main__": A = {'''a''', '''b''', '''c''', '''d''', '''e'''} A = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
52
1
'''simple docstring''' from collections.abc import Callable import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.ndarray: lowerCamelCase : List[Any] =int(np.ceil((x_end - xa) / step_size ) ) lowerCamelCase : Tuple =np.zeros((n + 1,) ) lowerCamelCase : Dict =ya lowerCamelCase : Any =xa for k in range(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : List[str] =y[k] + step_size * ode_func(SCREAMING_SNAKE_CASE_ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
715
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets snake_case_ = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' snake_case_ = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' snake_case_ = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A__ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: def remove_articles(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Tuple =re.compile(R'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(SCREAMING_SNAKE_CASE_ , ''' ''' , SCREAMING_SNAKE_CASE_ ) def white_space_fix(SCREAMING_SNAKE_CASE_ ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : int =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE_ ) ) ) ) def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return int(normalize_answer(SCREAMING_SNAKE_CASE_ ) == normalize_answer(SCREAMING_SNAKE_CASE_ ) ) def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] =[any(compute_exact(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for ref in refs ) for pred, refs in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return (sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ )) * 1_0_0 def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCamelCase : Any =[rgram for rgrams in rgramslist for rgram in rgrams] lowerCamelCase : int =Counter(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict =Counter(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Any =Counter() for sgram, scount in sgramcounter.items(): lowerCamelCase : Tuple =scount * numref lowerCamelCase : Optional[int] =Counter(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Tuple =Counter() for cgram, ccount in cgramcounter.items(): lowerCamelCase : Tuple =ccount * numref # KEEP lowerCamelCase : str =sgramcounter_rep & cgramcounter_rep lowerCamelCase : Union[str, Any] =keepgramcounter_rep & rgramcounter lowerCamelCase : Optional[Any] =sgramcounter_rep & rgramcounter lowerCamelCase : Optional[Any] =0 lowerCamelCase : List[Any] =0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase : Tuple =1 lowerCamelCase : int =1 if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCamelCase : Tuple =keeptmpscorea / len(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowerCamelCase : Any =keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowerCamelCase : Optional[Any] =0 if keepscore_precision > 0 or keepscore_recall > 0: lowerCamelCase : Optional[int] =2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowerCamelCase : int =sgramcounter_rep - cgramcounter_rep lowerCamelCase : Dict =delgramcounter_rep - rgramcounter lowerCamelCase : Dict =sgramcounter_rep - rgramcounter lowerCamelCase : Optional[int] =0 lowerCamelCase : List[Any] =0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase : str =1 if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCamelCase : Optional[int] =deltmpscorea / len(SCREAMING_SNAKE_CASE_ ) # ADDITION lowerCamelCase : List[Any] =set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : int =set(SCREAMING_SNAKE_CASE_ ) & set(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[Any] =set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : int =0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase : int =1 lowerCamelCase : List[Any] =1 if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCamelCase : str =addtmpscore / len(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCamelCase : List[str] =addtmpscore / len(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[Any] =0 if addscore_precision > 0 or addscore_recall > 0: lowerCamelCase : Optional[Any] =2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: lowerCamelCase : Optional[int] =len(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict =ssent.split(''' ''' ) lowerCamelCase : Any =csent.split(''' ''' ) lowerCamelCase : str =[] lowerCamelCase : Optional[Any] =[] lowerCamelCase : List[Any] =[] lowerCamelCase : List[str] =[] lowerCamelCase : Tuple =[] lowerCamelCase : Optional[Any] =[] lowerCamelCase : int =[] lowerCamelCase : List[str] =[] lowerCamelCase : Dict =[] lowerCamelCase : Any =[] for rsent in rsents: lowerCamelCase : Any =rsent.split(''' ''' ) lowerCamelCase : int =[] lowerCamelCase : Optional[Any] =[] lowerCamelCase : List[Any] =[] ragramslist.append(SCREAMING_SNAKE_CASE_ ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ): if i < len(SCREAMING_SNAKE_CASE_ ) - 1: lowerCamelCase : Optional[int] =ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(SCREAMING_SNAKE_CASE_ ) if i < len(SCREAMING_SNAKE_CASE_ ) - 2: lowerCamelCase : str =ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(SCREAMING_SNAKE_CASE_ ) if i < len(SCREAMING_SNAKE_CASE_ ) - 3: lowerCamelCase : int =ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(SCREAMING_SNAKE_CASE_ ) ragramslist.append(SCREAMING_SNAKE_CASE_ ) ragramslist.append(SCREAMING_SNAKE_CASE_ ) ragramslist.append(SCREAMING_SNAKE_CASE_ ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ): if i < len(SCREAMING_SNAKE_CASE_ ) - 1: lowerCamelCase : Optional[int] =sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(SCREAMING_SNAKE_CASE_ ) if i < len(SCREAMING_SNAKE_CASE_ ) - 2: lowerCamelCase : List[Any] =sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(SCREAMING_SNAKE_CASE_ ) if i < len(SCREAMING_SNAKE_CASE_ ) - 3: lowerCamelCase : Optional[int] =sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(SCREAMING_SNAKE_CASE_ ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ): if i < len(SCREAMING_SNAKE_CASE_ ) - 1: lowerCamelCase : Optional[int] =cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(SCREAMING_SNAKE_CASE_ ) if i < len(SCREAMING_SNAKE_CASE_ ) - 2: lowerCamelCase : List[str] =cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(SCREAMING_SNAKE_CASE_ ) if i < len(SCREAMING_SNAKE_CASE_ ) - 3: lowerCamelCase : str =cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(SCREAMING_SNAKE_CASE_ ) ((lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase)) : Any =SARIngram(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase)) : Optional[Any] =SARIngram(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase)) : List[Any] =SARIngram(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase)) : List[str] =SARIngram(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] =sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowerCamelCase : List[str] =sum([delascore, delascore, delascore, delascore] ) / 4 lowerCamelCase : int =sum([addascore, addascore, addascore, addascore] ) / 4 lowerCamelCase : Any =(avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = "13a" , SCREAMING_SNAKE_CASE_ = True ) -> Any: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: lowerCamelCase : Union[str, Any] =sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowerCamelCase : List[Any] =sacrebleu.metrics.bleu._get_tokenizer(SCREAMING_SNAKE_CASE_ )()(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase : Any =sacrebleu.TOKENIZERS[tokenizer]()(SCREAMING_SNAKE_CASE_ ) elif tokenizer == "moses": lowerCamelCase : int =sacremoses.MosesTokenizer().tokenize(SCREAMING_SNAKE_CASE_ , return_str=SCREAMING_SNAKE_CASE_ , escape=SCREAMING_SNAKE_CASE_ ) elif tokenizer == "penn": lowerCamelCase : Any =sacremoses.MosesTokenizer().penn_tokenize(SCREAMING_SNAKE_CASE_ , return_str=SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase : Optional[int] =sentence if not return_str: lowerCamelCase : Union[str, Any] =normalized_sent.split() return normalized_sent def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if not (len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ )): raise ValueError('''Sources length must match predictions and references lengths.''' ) lowerCamelCase : Dict =0 for src, pred, refs in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): sari_score += SARIsent(normalize(SCREAMING_SNAKE_CASE_ ) , normalize(SCREAMING_SNAKE_CASE_ ) , [normalize(SCREAMING_SNAKE_CASE_ ) for sent in refs] ) lowerCamelCase : str =sari_score / len(SCREAMING_SNAKE_CASE_ ) return 1_0_0 * sari_score def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="exp" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , ) -> Dict: lowerCamelCase : Optional[int] =len(references[0] ) if any(len(SCREAMING_SNAKE_CASE_ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) lowerCamelCase : Optional[int] =[[refs[i] for refs in references] for i in range(SCREAMING_SNAKE_CASE_ )] lowerCamelCase : Union[str, Any] =sacrebleu.corpus_bleu( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , smooth_method=SCREAMING_SNAKE_CASE_ , smooth_value=SCREAMING_SNAKE_CASE_ , force=SCREAMING_SNAKE_CASE_ , lowercase=SCREAMING_SNAKE_CASE_ , use_effective_order=SCREAMING_SNAKE_CASE_ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class snake_case_ ( datasets.Metric): def __lowercase ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowercase ( self , __lowercase , __lowercase , __lowercase ) -> Tuple: lowerCamelCase : str ={} result.update({'''sari''': compute_sari(sources=__lowercase , predictions=__lowercase , references=__lowercase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__lowercase , references=__lowercase )} ) result.update({'''exact''': compute_em(predictions=__lowercase , references=__lowercase )} ) return result
262
0
def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): __UpperCAmelCase : int = 0 while b > 0: if b & 1: __UpperCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
63
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _lowerCamelCase : '''simple docstring''' def __init__( self , __lowercase , __lowercase , __lowercase ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) __A : Dict = img __A : Dict = img.shape[1] __A : Tuple = img.shape[0] __A : List[str] = dst_width __A : Tuple = dst_height __A : Optional[Any] = self.src_w / self.dst_w __A : List[str] = self.src_h / self.dst_h __A : Dict = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def snake_case__ ( self ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): __A : List[str] = self.img[self.get_y(__lowercase )][self.get_x(__lowercase )] def snake_case__ ( self , __lowercase ): """simple docstring""" return int(self.ratio_x * x ) def snake_case__ ( self , __lowercase ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": UpperCAmelCase_ , UpperCAmelCase_ : str = 8_0_0, 6_0_0 UpperCAmelCase_ : str = imread('image_data/lena.jpg', 1) UpperCAmelCase_ : List[str] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
365
0
from ...processing_utils import ProcessorMixin class lowercase_ ( A ): __lowerCamelCase = ["image_processor", "feature_extractor"] __lowerCamelCase = "TvltImageProcessor" __lowerCamelCase = "TvltFeatureExtractor" def __init__( self , __A , __A ) -> Union[str, Any]: super().__init__(image_processor=__A , feature_extractor=__A ) SCREAMING_SNAKE_CASE_ : Optional[int] =image_processor SCREAMING_SNAKE_CASE_ : str =feature_extractor def __call__( self , __A=None , __A=None , __A=None , __A=None , __A=False , __A=False , *__A , **__A , ) -> Tuple: if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) SCREAMING_SNAKE_CASE_ : List[Any] =None if images is not None: SCREAMING_SNAKE_CASE_ : List[str] =self.image_processor(__A , mask_pixel=__A , *__A , **__A ) if images_mixed is not None: SCREAMING_SNAKE_CASE_ : Any =self.image_processor(__A , is_mixed=__A , *__A , **__A ) if audio is not None: SCREAMING_SNAKE_CASE_ : List[Any] =self.feature_extractor( __A , *__A , sampling_rate=__A , mask_audio=__A , **__A ) SCREAMING_SNAKE_CASE_ : int ={} if audio is not None: output_dict.update(__A ) if images is not None: output_dict.update(__A ) if images_mixed_dict is not None: output_dict.update(__A ) return output_dict @property def _snake_case ( self ) -> Dict: SCREAMING_SNAKE_CASE_ : Tuple =self.image_processor.model_input_names SCREAMING_SNAKE_CASE_ : Optional[int] =self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
431
import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Union[str, Any] =[x.strip() for x in open(UpperCAmelCase_ ).readlines()] SCREAMING_SNAKE_CASE_ : Dict =[x.strip() for x in open(UpperCAmelCase_ ).readlines()][: len(UpperCAmelCase_ )] SCREAMING_SNAKE_CASE_ : Union[str, Any] =calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) if save_path is not None: save_json(UpperCAmelCase_ , UpperCAmelCase_ , indent=UpperCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
431
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['PoolFormerFeatureExtractor'] UpperCAmelCase_ = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
603
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
603
1
import logging import os from .state import PartialState class SCREAMING_SNAKE_CASE__ ( logging.LoggerAdapter ): @staticmethod def SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ : Any ) -> int: a_ : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str: if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) a_ : str = kwargs.pop('main_process_only' , SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = kwargs.pop('in_order' , SCREAMING_SNAKE_CASE__ ) if self.isEnabledFor(SCREAMING_SNAKE_CASE__ ): if self._should_log(SCREAMING_SNAKE_CASE__ ): a_ , a_ : Tuple = self.process(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.logger.log(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) elif in_order: a_ : Optional[Any] = PartialState() for i in range(state.num_processes ): if i == state.process_index: a_ , a_ : Dict = self.process(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.logger.log(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) state.wait_for_everyone() def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str = None ) -> List[str]: """simple docstring""" if log_level is None: a_ : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , __A ) a_ : List[Any] = logging.getLogger(__A ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__A , {} )
443
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] , __A : Tuple , __A : Tuple=8 ) -> Dict: """simple docstring""" a_ : Optional[int] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a_ : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : str , SCREAMING_SNAKE_CASE__ : UNetaDConditionModel , SCREAMING_SNAKE_CASE__ : DDPMScheduler , SCREAMING_SNAKE_CASE__ : VQModel , ) -> Any: super().__init__() self.register_modules( unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , movq=SCREAMING_SNAKE_CASE__ , ) a_ : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str: if latents is None: a_ : List[str] = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) a_ : Any = latents.to(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ) -> Dict: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) a_ : Union[str, Any] = torch.device(F"""cuda:{gpu_id}""" ) a_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int]=0 ) -> Dict: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) a_ : Tuple = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=SCREAMING_SNAKE_CASE__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a_ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: a_ , a_ : Optional[Any] = cpu_offload_with_hook(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , prev_module_hook=SCREAMING_SNAKE_CASE__ ) # We'll offload the last model manually. a_ : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE__ ) def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , SCREAMING_SNAKE_CASE__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : int = 5_1_2 , SCREAMING_SNAKE_CASE__ : int = 5_1_2 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 4.0 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , ) -> int: a_ : Dict = self._execution_device a_ : int = guidance_scale > 1.0 if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Union[str, Any] = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Optional[Any] = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Optional[int] = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) a_ : Dict = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: a_ : Optional[Any] = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) a_ : Optional[Any] = negative_image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) a_ : int = hint.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) a_ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=SCREAMING_SNAKE_CASE__ ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = self.scheduler.timesteps a_ : Optional[int] = self.movq.config.latent_channels a_ , a_ : Dict = downscale_height_and_width(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.movq_scale_factor ) # create initial latent a_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE__ ) ): # expand the latents if we are doing classifier free guidance a_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a_ : int = {'image_embeds': image_embeds, 'hint': hint} a_ : str = self.unet( sample=SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , added_cond_kwargs=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , )[0] if do_classifier_free_guidance: a_ , a_ : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) a_ , a_ : str = noise_pred.chunk(2 ) a_ , a_ : Union[str, Any] = variance_pred.chunk(2 ) a_ : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a_ , a_ : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a_ : str = self.scheduler.step( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , )[0] # post-processing a_ : str = self.movq.decode(SCREAMING_SNAKE_CASE__ , force_not_quantize=SCREAMING_SNAKE_CASE__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: a_ : str = image * 0.5 + 0.5 a_ : Union[str, Any] = image.clamp(0 , 1 ) a_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a_ : List[str] = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
443
1
"""simple docstring""" from collections.abc import Sequence def UpperCamelCase ( SCREAMING_SNAKE_CASE_ = None ) ->int: if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) _lowerCamelCase : str = nums[0] for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): _lowerCamelCase : Optional[int] = nums[i] _lowerCamelCase : Union[str, Any] = max(SCREAMING_SNAKE_CASE_ , ans + num , SCREAMING_SNAKE_CASE_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user SCREAMING_SNAKE_CASE__ : List[Any] =int(input('Enter number of elements : ').strip()) SCREAMING_SNAKE_CASE__ : List[Any] =list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
434
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 SCREAMING_SNAKE_CASE__ : Tuple =sys.version_info >= (3, 10) def UpperCamelCase ( SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) ->Optional[int]: return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = 42 __snake_case = 42 __snake_case = 42 __snake_case = 42 @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = 42 __snake_case = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = False __snake_case = True __snake_case = None class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """titi""" __snake_case = """toto""" class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """titi""" __snake_case = """toto""" __snake_case = 42 @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = "toto" def a__ ( self ) -> Optional[Any]: _lowerCamelCase : List[Any] = BasicEnum(self.foo ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = "toto" def a__ ( self ) -> Dict: _lowerCamelCase : Union[str, Any] = MixedTypeEnum(self.foo ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = None __snake_case = field(default=a_ , metadata={"""help""": """help message"""} ) __snake_case = None __snake_case = list_field(default=[] ) __snake_case = list_field(default=[] ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = list_field(default=[] ) __snake_case = list_field(default=[1, 2, 3] ) __snake_case = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) __snake_case = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = field() __snake_case = field() __snake_case = field() def a__ ( self ) -> Dict: _lowerCamelCase : str = BasicEnum(self.required_enum ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = 42 __snake_case = field() __snake_case = None __snake_case = field(default="""toto""" , metadata={"""help""": """help message"""} ) __snake_case = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = False __snake_case = True __snake_case = None @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = None __snake_case = field(default=a_ , metadata={"""help""": """help message"""} ) __snake_case = None __snake_case = list_field(default=[] ) __snake_case = list_field(default=[] ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def a__ ( self , _lowercase , _lowercase ) -> Optional[Any]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _lowerCamelCase : List[str] = {k: v for k, v in vars(_lowercase ).items() if k != '''container'''} _lowerCamelCase : str = {k: v for k, v in vars(_lowercase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowercase ) and yy.get('''choices''' , _lowercase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowercase ) , yy['''type'''](_lowercase ) ) del xx["type"], yy["type"] self.assertEqual(_lowercase , _lowercase ) def a__ ( self ) -> Optional[Any]: _lowerCamelCase : str = HfArgumentParser(_lowercase ) _lowerCamelCase : Dict = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , required=_lowercase ) expected.add_argument('''--bar''' , type=_lowercase , required=_lowercase ) expected.add_argument('''--baz''' , type=_lowercase , required=_lowercase ) expected.add_argument('''--flag''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''' ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : str = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((_lowerCamelCase), ) : Union[str, Any] = parser.parse_args_into_dataclasses(_lowercase , look_for_args_file=_lowercase ) self.assertFalse(example.flag ) def a__ ( self ) -> Optional[int]: _lowerCamelCase : Dict = HfArgumentParser(_lowercase ) _lowerCamelCase : List[str] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowercase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowercase , help='''help message''' ) self.argparsersEqual(_lowercase , _lowercase ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowercase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowercase , default=_lowercase ) _lowerCamelCase : Optional[Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowercase ) for dataclass_type in dataclass_types: _lowerCamelCase : Optional[Any] = HfArgumentParser(_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : List[Any] = parser.parse_args([] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) _lowerCamelCase : Dict = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) _lowerCamelCase : int = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) _lowerCamelCase : Any = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) _lowerCamelCase : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : Union[str, Any] = HfArgumentParser(_lowercase ) _lowerCamelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : Dict = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _lowerCamelCase : int = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _lowerCamelCase : Optional[Any] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _lowerCamelCase : Any = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _lowerCamelCase : str = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) _lowerCamelCase : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def a__ ( self ) -> Dict: @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = "toto" _lowerCamelCase : Dict = HfArgumentParser(_lowercase ) _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _lowerCamelCase : Optional[int] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _lowerCamelCase : Optional[int] = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : int = HfArgumentParser(_lowercase ) _lowerCamelCase : Any = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowercase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowercase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowercase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : int = parser.parse_args([] ) self.assertEqual( _lowercase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) _lowerCamelCase : List[Any] = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowercase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def a__ ( self ) -> Optional[Any]: _lowerCamelCase : str = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowercase , type=_lowercase ) expected.add_argument('''--bar''' , default=_lowercase , type=_lowercase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowercase , type=_lowercase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowercase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowercase ) _lowerCamelCase : str = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowercase ) for dataclass_type in dataclass_types: _lowerCamelCase : Union[str, Any] = HfArgumentParser(_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : List[str] = parser.parse_args([] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , bar=_lowercase , baz=_lowercase , ces=[] , des=[] ) ) _lowerCamelCase : List[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowercase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def a__ ( self ) -> Any: _lowerCamelCase : str = HfArgumentParser(_lowercase ) _lowerCamelCase : List[str] = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowercase , required=_lowercase ) expected.add_argument('''--required_str''' , type=_lowercase , required=_lowercase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowercase , ) self.argparsersEqual(_lowercase , _lowercase ) def a__ ( self ) -> Dict: _lowerCamelCase : Tuple = HfArgumentParser(_lowercase ) _lowerCamelCase : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , required=_lowercase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowercase , ) expected.add_argument('''--opt''' , type=_lowercase , default=_lowercase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowercase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : List[Any] = HfArgumentParser(_lowercase ) _lowerCamelCase : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } _lowerCamelCase : Optional[int] = parser.parse_dict(_lowercase )[0] _lowerCamelCase : str = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def a__ ( self ) -> Optional[int]: _lowerCamelCase : Tuple = HfArgumentParser(_lowercase ) _lowerCamelCase : Dict = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowercase , parser.parse_dict , _lowercase , allow_extra_keys=_lowercase ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : Any = HfArgumentParser(_lowercase ) _lowerCamelCase : Dict = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Union[str, Any] = os.path.join(_lowercase , '''temp_json''' ) os.mkdir(_lowercase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowercase , _lowercase ) _lowerCamelCase : str = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] _lowerCamelCase : Optional[int] = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def a__ ( self ) -> Tuple: _lowerCamelCase : int = HfArgumentParser(_lowercase ) _lowerCamelCase : int = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : List[str] = os.path.join(_lowercase , '''temp_yaml''' ) os.mkdir(_lowercase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowercase , _lowercase ) _lowerCamelCase : Optional[int] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] _lowerCamelCase : Tuple = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def a__ ( self ) -> str: _lowerCamelCase : List[Any] = HfArgumentParser(_lowercase ) self.assertIsNotNone(_lowercase )
434
1
'''simple docstring''' __snake_case: Optional[int] = [ 9_99, 8_00, 7_99, 6_00, 5_99, 5_00, 4_00, 3_99, 3_77, 3_55, 3_33, 3_11, 2_88, 2_66, 2_44, 2_22, 2_00, 1_99, 1_77, 1_55, 1_33, 1_11, 88, 66, 44, 22, 0, ] __snake_case: Any = [ 9_99, 9_76, 9_52, 9_28, 9_05, 8_82, 8_58, 8_57, 8_10, 7_62, 7_15, 7_14, 5_72, 4_29, 4_28, 2_86, 2_85, 2_38, 1_90, 1_43, 1_42, 1_18, 95, 71, 47, 24, 0, ] __snake_case: Dict = [ 9_99, 9_88, 9_77, 9_66, 9_55, 9_44, 9_33, 9_22, 9_11, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_50, 3_00, 2_99, 2_66, 2_33, 2_00, 1_99, 1_79, 1_59, 1_40, 1_20, 1_00, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __snake_case: Union[str, Any] = [ 9_99, 9_95, 9_92, 9_89, 9_85, 9_81, 9_78, 9_75, 9_71, 9_67, 9_64, 9_61, 9_57, 9_56, 9_51, 9_47, 9_42, 9_37, 9_33, 9_28, 9_23, 9_19, 9_14, 9_13, 9_08, 9_03, 8_97, 8_92, 8_87, 8_81, 8_76, 8_71, 8_70, 8_64, 8_58, 8_52, 8_46, 8_40, 8_34, 8_28, 8_27, 8_20, 8_13, 8_06, 7_99, 7_92, 7_85, 7_84, 7_77, 7_70, 7_63, 7_56, 7_49, 7_42, 7_41, 7_33, 7_24, 7_16, 7_07, 6_99, 6_98, 6_88, 6_77, 6_66, 6_56, 6_55, 6_45, 6_34, 6_23, 6_13, 6_12, 5_98, 5_84, 5_70, 5_69, 5_55, 5_41, 5_27, 5_26, 5_05, 4_84, 4_83, 4_62, 4_40, 4_39, 3_96, 3_95, 3_52, 3_51, 3_08, 3_07, 2_64, 2_63, 2_20, 2_19, 1_76, 1_32, 88, 44, 0, ] __snake_case: Any = [ 9_99, 9_97, 9_95, 9_92, 9_90, 9_88, 9_86, 9_84, 9_81, 9_79, 9_77, 9_75, 9_72, 9_70, 9_68, 9_66, 9_64, 9_61, 9_59, 9_57, 9_56, 9_54, 9_51, 9_49, 9_46, 9_44, 9_41, 9_39, 9_36, 9_34, 9_31, 9_29, 9_26, 9_24, 9_21, 9_19, 9_16, 9_14, 9_13, 9_10, 9_07, 9_05, 9_02, 8_99, 8_96, 8_93, 8_91, 8_88, 8_85, 8_82, 8_79, 8_77, 8_74, 8_71, 8_70, 8_67, 8_64, 8_61, 8_58, 8_55, 8_52, 8_49, 8_46, 8_43, 8_40, 8_37, 8_34, 8_31, 8_28, 8_27, 8_24, 8_21, 8_17, 8_14, 8_11, 8_08, 8_04, 8_01, 7_98, 7_95, 7_91, 7_88, 7_85, 7_84, 7_80, 7_77, 7_74, 7_70, 7_66, 7_63, 7_60, 7_56, 7_52, 7_49, 7_46, 7_42, 7_41, 7_37, 7_33, 7_30, 7_26, 7_22, 7_18, 7_14, 7_10, 7_07, 7_03, 6_99, 6_98, 6_94, 6_90, 6_85, 6_81, 6_77, 6_73, 6_69, 6_64, 6_60, 6_56, 6_55, 6_50, 6_46, 6_41, 6_36, 6_32, 6_27, 6_22, 6_18, 6_13, 6_12, 6_07, 6_02, 5_96, 5_91, 5_86, 5_80, 5_75, 5_70, 5_69, 5_63, 5_57, 5_51, 5_45, 5_39, 5_33, 5_27, 5_26, 5_19, 5_12, 5_05, 4_98, 4_91, 4_84, 4_83, 4_74, 4_66, 4_57, 4_49, 4_40, 4_39, 4_28, 4_18, 4_07, 3_96, 3_95, 3_81, 3_66, 3_52, 3_51, 3_30, 3_08, 3_07, 2_86, 2_64, 2_63, 2_42, 2_20, 2_19, 1_76, 1_75, 1_32, 1_31, 88, 44, 0, ] __snake_case: Union[str, Any] = [ 9_99, 9_91, 9_82, 9_74, 9_66, 9_58, 9_50, 9_41, 9_33, 9_25, 9_16, 9_08, 9_00, 8_99, 8_74, 8_50, 8_25, 8_00, 7_99, 7_00, 6_00, 5_00, 4_00, 3_00, 2_00, 1_00, 0, ] __snake_case: str = [ 9_99, 9_92, 9_85, 9_78, 9_71, 9_64, 9_57, 9_49, 9_42, 9_35, 9_28, 9_21, 9_14, 9_07, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_00, 2_99, 2_00, 1_99, 1_00, 99, 0, ] __snake_case: Optional[Any] = [ 9_99, 9_96, 9_92, 9_89, 9_85, 9_82, 9_79, 9_75, 9_72, 9_68, 9_65, 9_61, 9_58, 9_55, 9_51, 9_48, 9_44, 9_41, 9_38, 9_34, 9_31, 9_27, 9_24, 9_20, 9_17, 9_14, 9_10, 9_07, 9_03, 9_00, 8_99, 8_91, 8_84, 8_76, 8_69, 8_61, 8_53, 8_46, 8_38, 8_30, 8_23, 8_15, 8_08, 8_00, 7_99, 7_88, 7_77, 7_66, 7_55, 7_44, 7_33, 7_22, 7_11, 7_00, 6_99, 6_88, 6_77, 6_66, 6_55, 6_44, 6_33, 6_22, 6_11, 6_00, 5_99, 5_85, 5_71, 5_57, 5_42, 5_28, 5_14, 5_00, 4_99, 4_85, 4_71, 4_57, 4_42, 4_28, 4_14, 4_00, 3_99, 3_79, 3_59, 3_40, 3_20, 3_00, 2_99, 2_79, 2_59, 2_40, 2_20, 2_00, 1_99, 1_66, 1_33, 1_00, 99, 66, 33, 0, ]
460
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __snake_case: List[str] = logging.get_logger(__name__) __snake_case: Dict = "https://openaipublic.azureedge.net/jukebox/models/" __snake_case: List[str] = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def _snake_case ( A_ : str ): """simple docstring""" if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: a_ : Optional[Any] = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: a_ : Tuple = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: a_ : Union[str, Any] = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: a_ : List[str] = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: a_ : str = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: a_ : Any = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: a_ : Optional[Any] = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: a_ : Optional[Any] = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def _snake_case ( A_ : str , A_ : int , A_ : str , A_ : List[Any] ): """simple docstring""" a_ : List[str] = {} import re a_ : Optional[Any] = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) a_ : int = re.compile( R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) a_ : Optional[Any] = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) a_ : int = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) a_ : List[str] = re.compile( R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) a_ : List[Any] = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) a_ : Tuple = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) a_ : Dict = re.compile( R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) a_ : Any = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(A_ ): a_ : Any = re_encoder_block_conv_in.match(A_ ) a_ : str = regex_match.groups() a_ : Tuple = int(groups[2] ) * 2 + int(groups[3] ) a_ : Optional[Any] = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' a_ : Any = re_encoder_block_conv_in.sub(A_ , A_ ) elif re_encoder_block_resnet.fullmatch(A_ ): a_ : Tuple = re_encoder_block_resnet.match(A_ ) a_ : Optional[Any] = regex_match.groups() a_ : str = int(groups[2] ) * 2 + int(groups[3] ) a_ : str = {"""1""": 1, """3""": 2}[groups[-2]] a_ : str = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' a_ : List[Any] = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' a_ : List[str] = prefix + resnet_block a_ : Optional[Any] = re_encoder_block_resnet.sub(A_ , A_ ) elif re_encoder_block_proj_out.fullmatch(A_ ): a_ : Tuple = re_encoder_block_proj_out.match(A_ ) a_ : List[str] = regex_match.groups() a_ : int = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' a_ : Optional[Any] = re_encoder_block_proj_out.sub(A_ , A_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(A_ ): a_ : Union[str, Any] = re_decoder_block_conv_out.match(A_ ) a_ : Union[str, Any] = regex_match.groups() a_ : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 a_ : Optional[int] = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' a_ : int = re_decoder_block_conv_out.sub(A_ , A_ ) elif re_decoder_block_resnet.fullmatch(A_ ): a_ : Tuple = re_decoder_block_resnet.match(A_ ) a_ : str = regex_match.groups() a_ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 a_ : Optional[Any] = {"""1""": 1, """3""": 2}[groups[-2]] a_ : Any = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' a_ : int = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' a_ : Optional[Any] = prefix + resnet_block a_ : Any = re_decoder_block_resnet.sub(A_ , A_ ) elif re_decoder_block_proj_in.fullmatch(A_ ): a_ : Tuple = re_decoder_block_proj_in.match(A_ ) a_ : Any = regex_match.groups() a_ : Dict = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' a_ : Tuple = re_decoder_block_proj_in.sub(A_ , A_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(A_ ): a_ : int = re_prior_cond_conv_out.match(A_ ) a_ : Dict = regex_match.groups() a_ : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 a_ : Any = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' a_ : str = re_prior_cond_conv_out.sub(A_ , A_ ) elif re_prior_cond_resnet.fullmatch(A_ ): a_ : List[str] = re_prior_cond_resnet.match(A_ ) a_ : List[str] = regex_match.groups() a_ : List[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 a_ : Tuple = {"""1""": 1, """3""": 2}[groups[-2]] a_ : Optional[Any] = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' a_ : Union[str, Any] = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' a_ : List[str] = prefix + resnet_block a_ : Optional[Any] = re_prior_cond_resnet.sub(A_ , A_ ) elif re_prior_cond_proj_in.fullmatch(A_ ): a_ : List[Any] = re_prior_cond_proj_in.match(A_ ) a_ : int = regex_match.groups() a_ : Any = f'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' a_ : Union[str, Any] = re_prior_cond_proj_in.sub(A_ , A_ ) # keep original key else: a_ : str = original_key a_ : Any = replace_key(A_ ) if f'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(f'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[f'''{key_prefix}.{key}'''].shape: a_ : Tuple = model_state_dict[f'''{key_prefix}.{key}'''] print(f'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) a_ : Optional[Any] = original_key a_ : Tuple = original_key a_ : Union[str, Any] = value return new_dict @torch.no_grad() def _snake_case ( A_ : Dict=None , A_ : Optional[Any]=None ): """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): a_ : Any = requests.get(f'''{PREFIX}{file}''' , allow_redirects=A_ ) os.makedirs(f'''{pytorch_dump_folder_path}/''' , exist_ok=A_ ) open(f'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , """wb""" ).write(r.content ) a_ : List[Any] = MODEL_MAPPING[model_name.split("""/""" )[-1]] a_ : Optional[Any] = JukeboxConfig.from_pretrained(A_ ) a_ : List[Any] = JukeboxModel(A_ ) a_ : Optional[Any] = [] a_ : Optional[Any] = {} for i, dict_name in enumerate(A_ ): a_ : int = torch.load(f'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )["""model"""] a_ : Optional[int] = {} for k in old_dic.keys(): if k.endswith(""".b""" ): a_ : int = old_dic[k] elif k.endswith(""".w""" ): a_ : Dict = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: a_ : Dict = old_dic[k] else: a_ : Optional[int] = old_dic[k] a_ : List[Any] = """vqvae""" if i == 0 else f'''priors.{3 - i}''' a_ : Any = fix_jukebox_keys(A_ , model.state_dict() , A_ , A_ ) weight_dict.append(A_ ) a_ : str = weight_dict.pop(0 ) model.vqvae.load_state_dict(A_ ) for i in range(len(A_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(A_ ).mkdir(exist_ok=A_ ) with open(f'''{pytorch_dump_folder_path}/mapping.json''' , """w""" ) as txtfile: json.dump(A_ , A_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) return weight_dict if __name__ == "__main__": __snake_case: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) __snake_case: Any = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
460
1