code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowercase__( __UpperCamelCase: Tuple ): """simple docstring""" return x + 2 class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 'x = 3' SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : Union[str, Any] = evaluate(A, {}, state=A ) assert result == 3 self.assertDictEqual(A, {'x': 3} ) SCREAMING_SNAKE_CASE : Any = 'x = y' SCREAMING_SNAKE_CASE : Tuple = {'y': 5} SCREAMING_SNAKE_CASE : Dict = evaluate(A, {}, state=A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A, {'x': 5, 'y': 5} ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 'y = add_two(x)' SCREAMING_SNAKE_CASE : str = {'x': 3} SCREAMING_SNAKE_CASE : Optional[Any] = evaluate(A, {'add_two': add_two}, state=A ) assert result == 5 self.assertDictEqual(A, {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE : Dict = evaluate(A, {}, state=A ) assert result is None assert "tried to execute add_two" in out.out def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 'x = 3' SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : Dict = evaluate(A, {}, state=A ) assert result == 3 self.assertDictEqual(A, {'x': 3} ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' SCREAMING_SNAKE_CASE : List[Any] = {'x': 3} SCREAMING_SNAKE_CASE : List[Any] = evaluate(A, {'add_two': add_two}, state=A ) self.assertDictEqual(A, {'x': 3, 'y': 5} ) self.assertDictEqual(A, {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = 'x = 3\ny = 5' SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : str = evaluate(A, {}, state=A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A, {'x': 3, 'y': 5} ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 'text = f\'This is x: {x}.\'' SCREAMING_SNAKE_CASE : Any = {'x': 3} SCREAMING_SNAKE_CASE : Union[str, Any] = evaluate(A, {}, state=A ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(A, {'x': 3, 'text': 'This is x: 3.'} ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'if x <= 3:\n y = 2\nelse:\n y = 5' SCREAMING_SNAKE_CASE : List[Any] = {'x': 3} SCREAMING_SNAKE_CASE : List[str] = evaluate(A, {}, state=A ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(A, {'x': 3, 'y': 2} ) SCREAMING_SNAKE_CASE : Optional[int] = {'x': 8} SCREAMING_SNAKE_CASE : str = evaluate(A, {}, state=A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A, {'x': 8, 'y': 5} ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'test_list = [x, add_two(x)]' SCREAMING_SNAKE_CASE : Dict = {'x': 3} SCREAMING_SNAKE_CASE : List[str] = evaluate(A, {'add_two': add_two}, state=A ) self.assertListEqual(A, [3, 5] ) self.assertDictEqual(A, {'x': 3, 'test_list': [3, 5]} ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 'y = x' SCREAMING_SNAKE_CASE : Any = {'x': 3} SCREAMING_SNAKE_CASE : Dict = evaluate(A, {}, state=A ) assert result == 3 self.assertDictEqual(A, {'x': 3, 'y': 3} ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = 'test_list = [x, add_two(x)]\ntest_list[1]' SCREAMING_SNAKE_CASE : Any = {'x': 3} SCREAMING_SNAKE_CASE : str = evaluate(A, {'add_two': add_two}, state=A ) assert result == 5 self.assertDictEqual(A, {'x': 3, 'test_list': [3, 5]} ) SCREAMING_SNAKE_CASE : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' SCREAMING_SNAKE_CASE : Optional[int] = {'x': 3} SCREAMING_SNAKE_CASE : List[Any] = evaluate(A, {'add_two': add_two}, state=A ) assert result == 5 self.assertDictEqual(A, {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 'x = 0\nfor i in range(3):\n x = i' SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : List[str] = evaluate(A, {'range': range}, state=A ) assert result == 2 self.assertDictEqual(A, {'x': 2, 'i': 2} )
28
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
100
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCAmelCase__ ( lowerCamelCase_ : int ): def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: __a : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __a : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) # The ratio of the area for circle to square is pi/4. __a : int = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ): return mean( function_to_integrate(uniform(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) * (max_value - min_value) def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ): def identity_function(lowerCamelCase_ : float ) -> float: return x __a : int = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Tuple = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('******************' ) def UpperCAmelCase__ ( lowerCamelCase_ : int ): def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) __a : str = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
707
def UpperCAmelCase__ ( lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 7 , lowerCamelCase_ : int = 1_0_0_0_0_0_0 ): __a : Optional[int] = 0 __a : Any = 1 for current_denominator in range(1 , limit + 1 ): __a : Optional[Any] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __a : int = current_numerator __a : List[str] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
577
0
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def a ( __UpperCAmelCase : Any ) -> Optional[Any]: print("""Loading config file...""" ) def flatten_yaml_as_dict(__UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict="" , __UpperCAmelCase : Dict="." ): __magic_name__: List[str] = [] for k, v in d.items(): __magic_name__: str = parent_key + sep + k if parent_key else k if isinstance(lowerCamelCase_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(lowerCamelCase_ , lowerCamelCase_ , sep=lowerCamelCase_ ).items() ) else: items.append((new_key, v) ) return dict(lowerCamelCase_ ) __magic_name__: Optional[int] = argparse.Namespace() with open(lowerCamelCase_ , """r""" ) as yaml_file: try: __magic_name__: Union[str, Any] = yaml.load(lowerCamelCase_ , Loader=yaml.FullLoader ) __magic_name__: Optional[Any] = flatten_yaml_as_dict(lowerCamelCase_ ) for k, v in flat_cfg.items(): setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(lowerCamelCase_ , str(lowerCamelCase_ ) ) ) return config def a ( __UpperCAmelCase : int , __UpperCAmelCase : str ) -> Dict: __magic_name__: Optional[int] = MobileViTVaConfig() __magic_name__: int = False # dataset if task_name.startswith("""imagenet1k_""" ): __magic_name__: Any = 1_0_0_0 if int(task_name.strip().split("""_""" )[-1] ) == 3_8_4: __magic_name__: Optional[int] = 3_8_4 else: __magic_name__: Optional[Any] = 2_5_6 __magic_name__: int = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): __magic_name__: Optional[int] = 2_1_0_0_0 if int(task_name.strip().split("""_""" )[-1] ) == 3_8_4: __magic_name__: Optional[Any] = 3_8_4 else: __magic_name__: Optional[int] = 2_5_6 __magic_name__: str = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): __magic_name__: Union[str, Any] = 1_5_1 __magic_name__: Optional[Any] = 5_1_2 __magic_name__: str = """ade20k-id2label.json""" __magic_name__: Optional[Any] = True elif task_name.startswith("""voc_""" ): __magic_name__: Optional[Any] = 2_1 __magic_name__: int = 5_1_2 __magic_name__: Tuple = """pascal-voc-id2label.json""" __magic_name__: Dict = True # orig_config __magic_name__: Tuple = load_orig_config_file(lowerCamelCase_ ) assert getattr(lowerCamelCase_ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" __magic_name__: Optional[int] = getattr(lowerCamelCase_ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(lowerCamelCase_ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __magic_name__: Union[str, Any] = getattr(lowerCamelCase_ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __magic_name__: int = getattr(lowerCamelCase_ , """model.segmentation.output_stride""" , 1_6 ) if "_deeplabv3" in task_name: __magic_name__: int = getattr(lowerCamelCase_ , """model.segmentation.deeplabv3.aspp_rates""" , [1_2, 2_4, 3_6] ) __magic_name__: List[Any] = getattr(lowerCamelCase_ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_1_2 ) __magic_name__: Union[str, Any] = getattr(lowerCamelCase_ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label __magic_name__: str = """huggingface/label-files""" __magic_name__: Optional[int] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) __magic_name__: List[str] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} __magic_name__: Any = idalabel __magic_name__: Union[str, Any] = {v: k for k, v in idalabel.items()} return config def a ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : str ) -> Any: __magic_name__: Optional[int] = dct.pop(lowerCamelCase_ ) __magic_name__: Optional[int] = val def a ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any]=False ) -> int: if base_model: __magic_name__: int = """""" else: __magic_name__: str = """mobilevitv2.""" __magic_name__: Optional[Any] = [] for k in state_dict.keys(): if k[:8] == "encoder.": __magic_name__: Tuple = k[8:] else: __magic_name__: List[str] = k if ".block." in k: __magic_name__: List[Any] = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: __magic_name__: Any = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: __magic_name__: Tuple = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: __magic_name__: str = k_new.replace("""conv_1.""" , f'{model_prefix}conv_stem.' ) for i in [1, 2]: if f'layer_{i}.' in k: __magic_name__: List[Any] = k_new.replace(f'layer_{i}.' , f'{model_prefix}encoder.layer.{i-1}.layer.' ) if ".exp_1x1." in k: __magic_name__: Any = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: __magic_name__: Optional[int] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if f'layer_{i}.0.' in k: __magic_name__: Tuple = k_new.replace(f'layer_{i}.0.' , f'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' ) if f'layer_{i}.1.local_rep.0.' in k: __magic_name__: Union[str, Any] = k_new.replace(f'layer_{i}.1.local_rep.0.' , f'{model_prefix}encoder.layer.{i-1}.conv_kxk.' ) if f'layer_{i}.1.local_rep.1.' in k: __magic_name__: str = k_new.replace(f'layer_{i}.1.local_rep.1.' , f'{model_prefix}encoder.layer.{i-1}.conv_1x1.' ) for i in [3, 4, 5]: if i == 3: __magic_name__: Any = [0, 1] elif i == 4: __magic_name__: Optional[int] = [0, 1, 2, 3] elif i == 5: __magic_name__: Tuple = [0, 1, 2] for j in j_in: if f'layer_{i}.1.global_rep.{j}.' in k: __magic_name__: Any = k_new.replace( f'layer_{i}.1.global_rep.{j}.' , f'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' ) if f'layer_{i}.1.global_rep.{j+1}.' in k: __magic_name__: Optional[Any] = k_new.replace( f'layer_{i}.1.global_rep.{j+1}.' , f'{model_prefix}encoder.layer.{i-1}.layernorm.' ) if f'layer_{i}.1.conv_proj.' in k: __magic_name__: List[Any] = k_new.replace(f'layer_{i}.1.conv_proj.' , f'{model_prefix}encoder.layer.{i-1}.conv_projection.' ) if "pre_norm_attn.0." in k: __magic_name__: Tuple = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: __magic_name__: Optional[Any] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: __magic_name__: int = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: __magic_name__: Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: __magic_name__: Tuple = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: __magic_name__: Optional[Any] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: __magic_name__: Tuple = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: __magic_name__: Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: __magic_name__: Union[str, Any] = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def a ( __UpperCAmelCase : List[Any] ) -> int: __magic_name__: int = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(lowerCamelCase_ ) for k in keys_to_ignore: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def a ( ) -> str: __magic_name__: Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __magic_name__: Optional[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def a ( __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) -> Optional[int]: __magic_name__: Optional[Any] = get_mobilevitva_config(lowerCamelCase_ , lowerCamelCase_ ) # load original state_dict __magic_name__: str = torch.load(lowerCamelCase_ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): __magic_name__: str = MobileViTVaForSemanticSegmentation(lowerCamelCase_ ).eval() __magic_name__: Any = False else: __magic_name__: List[str] = MobileViTVaForImageClassification(lowerCamelCase_ ).eval() __magic_name__: Dict = False # remove and rename some keys of load the original model __magic_name__: List[str] = checkpoint remove_unused_keys(lowerCamelCase_ ) __magic_name__: Any = create_rename_keys(lowerCamelCase_ , base_model=lowerCamelCase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # load modified state_dict model.load_state_dict(lowerCamelCase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor __magic_name__: int = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 ) __magic_name__: Any = image_processor(images=prepare_img() , return_tensors="""pt""" ) __magic_name__: Dict = model(**lowerCamelCase_ ) # verify classification model if task_name.startswith("""imagenet""" ): __magic_name__: Union[str, Any] = outputs.logits __magic_name__: Optional[int] = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant __magic_name__: int = torch.tensor([-1.6_3_3_6E0_0, -7.3_2_0_4E-0_2, -5.1_8_8_3E-0_1] ) assert torch.allclose(logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) print(f'Saving model {task_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) __lowerCamelCase = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
96
'''simple docstring''' __A : List[Any] = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def UpperCAmelCase ( lowerCamelCase_ :float ): '''simple docstring''' assert type(lowerCamelCase_ ) in (int, float) and decimal == int(lowerCamelCase_ ) snake_case_ : int = int(lowerCamelCase_ ) snake_case_ : int = """""" snake_case_ : List[str] = False if decimal < 0: snake_case_ : Any = True decimal *= -1 while decimal > 0: snake_case_ , snake_case_ : List[str] = divmod(lowerCamelCase_ , 16 ) snake_case_ : Tuple = values[remainder] + hexadecimal snake_case_ : Dict = """0x""" + hexadecimal if negative: snake_case_ : Optional[int] = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
334
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
113
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput __A ='scheduler_config.json' class _snake_case ( a__ ): lowerCAmelCase :Union[str, Any] = 1 lowerCAmelCase :Union[str, Any] = 2 lowerCAmelCase :Optional[int] = 3 lowerCAmelCase :Optional[int] = 4 lowerCAmelCase :Any = 5 lowerCAmelCase :Tuple = 6 lowerCAmelCase :List[Any] = 7 lowerCAmelCase :str = 8 lowerCAmelCase :List[Any] = 9 lowerCAmelCase :List[str] = 10 lowerCAmelCase :Union[str, Any] = 11 lowerCAmelCase :Optional[int] = 12 lowerCAmelCase :str = 13 lowerCAmelCase :Dict = 14 @dataclass class _snake_case ( a__ ): lowerCAmelCase :torch.FloatTensor class _snake_case : lowerCAmelCase :str = SCHEDULER_CONFIG_NAME lowerCAmelCase :Union[str, Any] = [] lowerCAmelCase :List[str] = True @classmethod def snake_case__ ( cls , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase=False , **_lowerCamelCase , ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = cls.load_config( pretrained_model_name_or_path=_lowerCamelCase , subfolder=_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , return_commit_hash=_lowerCamelCase , **_lowerCamelCase , ) return cls.from_config(_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = False , **_lowerCamelCase): self.save_config(save_directory=_lowerCamelCase , push_to_hub=_lowerCamelCase , **_lowerCamelCase) @property def snake_case__ ( self): return self._get_compatibles() @classmethod def snake_case__ ( cls): UpperCAmelCase__ : List[Any] = list(set([cls.__name__] + cls._compatibles)) UpperCAmelCase__ : int = importlib.import_module(__name__.split(""".""")[0]) UpperCAmelCase__ : Dict = [ getattr(_lowerCamelCase , _lowerCamelCase) for c in compatible_classes_str if hasattr(_lowerCamelCase , _lowerCamelCase) ] return compatible_classes
113
1
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class a__ ( a_, a_, unittest.TestCase ): __lowerCAmelCase = IFPipeline __lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} __lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCAmelCase = PipelineTesterMixin.required_optional_params - {"""latents"""} def __magic_name__ ( self ): return self._get_dummy_components() def __magic_name__ ( self , _a , _a=0 ): if str(_a ).startswith("mps" ): lowercase : List[str] = torch.manual_seed(_a ) else: lowercase : Dict = torch.Generator(device=_a ).manual_seed(_a ) lowercase : str = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __magic_name__ ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __magic_name__ ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __magic_name__ ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __magic_name__ ( self ): self._test_save_load_local() def __magic_name__ ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __magic_name__ ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __magic_name__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ): # if lowercase : Tuple = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) lowercase : List[str] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=_a , tokenizer=_a ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) lowercase , lowercase : int = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowercase : List[str] = None lowercase : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_a , _a , _a , _a ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowercase : Optional[int] = IFImgaImgPipeline(**pipe_a.components ) lowercase : Dict = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_a , _a , _a , _a ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowercase : List[str] = IFInpaintingPipeline(**pipe_a.components ) lowercase : Optional[Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_a , _a , _a , _a ) def __magic_name__ ( self , _a , _a , _a , _a ): # pipeline 1 _start_torch_memory_measurement() lowercase : Optional[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase : Optional[Any] = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , num_inference_steps=2 , generator=_a , output_type="np" , ) lowercase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) lowercase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 lowercase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(_a , _a ) # pipeline 2 _start_torch_memory_measurement() lowercase : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) lowercase : Optional[int] = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , generator=_a , num_inference_steps=2 , output_type="np" , ) lowercase : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) lowercase : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_a , _a ) def __magic_name__ ( self , _a , _a , _a , _a ): # pipeline 1 _start_torch_memory_measurement() lowercase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) lowercase : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase : Union[str, Any] = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , num_inference_steps=2 , generator=_a , output_type="np" , ) lowercase : Optional[Any] = output.images[0] assert image.shape == (64, 64, 3) lowercase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowercase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(_a , _a ) # pipeline 2 _start_torch_memory_measurement() lowercase : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase : Dict = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_a ) lowercase : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) lowercase : Dict = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , original_image=_a , generator=_a , num_inference_steps=2 , output_type="np" , ) lowercase : int = output.images[0] assert image.shape == (256, 256, 3) lowercase : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_a , _a ) def __magic_name__ ( self , _a , _a , _a , _a ): # pipeline 1 _start_torch_memory_measurement() lowercase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) lowercase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(_a ) lowercase : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase : Dict = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , mask_image=_a , num_inference_steps=2 , generator=_a , output_type="np" , ) lowercase : Dict = output.images[0] assert image.shape == (64, 64, 3) lowercase : int = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowercase : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(_a , _a ) # pipeline 2 _start_torch_memory_measurement() lowercase : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) lowercase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_a ) lowercase : str = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(_a ) lowercase : Dict = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , mask_image=_a , original_image=_a , generator=_a , num_inference_steps=2 , output_type="np" , ) lowercase : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) lowercase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_a , _a ) def __magic_name__ ( ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
361
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _A : List[str] = get_logger(__name__) class a__ : __lowerCAmelCase = """dummy_data""" __lowerCAmelCase = """datasets""" __lowerCAmelCase = False def __init__( self , _a , _a , _a , _a = None , _a = False , _a = True , _a = None , ): lowercase : int = 0 lowercase : Optional[Any] = dataset_name lowercase : List[str] = cache_dir lowercase : Union[str, Any] = use_local_dummy_data lowercase : str = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : List[Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Tuple = str(_a ) # to be downloaded lowercase : Tuple = None lowercase : List[Any] = None @property def __magic_name__ ( self ): if self._dummy_file is None: lowercase : Optional[int] = self.download_dummy_data() return self._dummy_file @property def __magic_name__ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def __magic_name__ ( self ): return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def __magic_name__ ( self ): lowercase : Optional[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : str = cached_path( _a , cache_dir=self.cache_dir , extract_compressed_file=_a , force_extract=_a ) return os.path.join(_a , self.dummy_file_name ) @property def __magic_name__ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __magic_name__ ( self ): if self._bucket_url is None: lowercase : Dict = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def __magic_name__ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def __magic_name__ ( self , _a , *_a ): if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Optional[int] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_a , _a ): return self.create_dummy_data_dict(_a , _a ) elif isinstance(_a , (list, tuple) ): return self.create_dummy_data_list(_a , _a ) else: return self.create_dummy_data_single(_a , _a ) def __magic_name__ ( self , _a , *_a ): return self.download_and_extract(_a ) def __magic_name__ ( self , _a , _a ): return self.download_and_extract(_a ) def __magic_name__ ( self , _a , *_a , **_a ): return path def __magic_name__ ( self ): return {} def __magic_name__ ( self , _a , _a ): lowercase : List[str] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_a , _a ): for single_url in single_urls: download_callback(_a ) else: lowercase : Union[str, Any] = single_urls download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_a , _a ): lowercase : Any = [os.path.join(_a , urllib.parse.quote_plus(Path(_a ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Tuple = os.path.join(_a , urllib.parse.quote_plus(Path(_a ).name ) ) lowercase : List[str] = value # make sure that values are unique if all(isinstance(_a , _a ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __magic_name__ ( self , _a , _a ): lowercase : Union[str, Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Any = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , _a ) ) for url in data_url ) lowercase : List[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : Tuple = [data_url[0]] * len(_a ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Union[str, Any] = os.path.join(_a , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(_a ) return dummy_data_list def __magic_name__ ( self , _a , _a ): for download_callback in self.download_callbacks: download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Tuple = os.path.join(_a , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(_a ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __magic_name__ ( self ): pass def __magic_name__ ( self ): pass def __magic_name__ ( self , _a ): def _iter_archive_members(_a ): # this preserves the order of the members inside the ZIP archive lowercase : Optional[int] = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_a ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : List[str] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_a ) lowercase : Union[str, Any] = Path(_a ) lowercase : List[Any] = _iter_archive_members(_a ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(_a ).as_posix(), file_path.open("rb" ) def __magic_name__ ( self , _a ): if not isinstance(_a , _a ): lowercase : Any = [paths] for path in paths: if os.path.isfile(_a ): if os.path.basename(_a ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(_a ): if os.path.basename(_a ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(_a ): if filename.startswith((".", "__") ): continue yield os.path.join(_a , _a )
361
1
'''simple docstring''' lowerCAmelCase_ : Union[str, Any] = tuple[float, float, float] lowerCAmelCase_ : List[Any] = tuple[float, float, float] def __a ( __lowerCamelCase : Pointad , __lowerCamelCase : Pointad ) -> Vectorad: '''simple docstring''' lowercase_ = end_pointa[0] - end_pointa[0] lowercase_ = end_pointa[1] - end_pointa[1] lowercase_ = end_pointa[2] - end_pointa[2] return (x, y, z) def __a ( __lowerCamelCase : Vectorad , __lowerCamelCase : Vectorad ) -> Vectorad: '''simple docstring''' lowercase_ = ab[1] * ac[2] - ab[2] * ac[1] # *i lowercase_ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowercase_ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __a ( __lowerCamelCase : Vectorad , __lowerCamelCase : int ) -> bool: '''simple docstring''' return tuple(round(__lowerCamelCase , __lowerCamelCase ) for x in vector ) == (0, 0, 0) def __a ( __lowerCamelCase : Pointad , __lowerCamelCase : Pointad , __lowerCamelCase : Pointad , __lowerCamelCase : int = 10 ) -> bool: '''simple docstring''' lowercase_ = create_vector(__lowerCamelCase , __lowerCamelCase ) lowercase_ = create_vector(__lowerCamelCase , __lowerCamelCase ) return is_zero_vector(get_ad_vectors_cross(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
461
'''simple docstring''' def __a ( __lowerCamelCase : int = 200 ) -> int: '''simple docstring''' lowercase_ = [1, 2, 5, 10, 20, 50, 100, 200] lowercase_ = [0] * (pence + 1) lowercase_ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowerCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
461
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowercase_ : Union[str, Any] = logging.get_logger(__name__) logging.set_verbosity_info() def A__ ( snake_case_ : str , snake_case_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: SCREAMING_SNAKE_CASE__: Dict= XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case_ ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Any= XLMProphetNetForConditionalGeneration.from_pretrained( snake_case_ , output_loading_info=snake_case_ ) else: SCREAMING_SNAKE_CASE__: int= ProphetNetForConditionalGenerationOld.from_pretrained(snake_case_ ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Dict= ProphetNetForConditionalGeneration.from_pretrained( snake_case_ , output_loading_info=snake_case_ ) SCREAMING_SNAKE_CASE__: Tuple= ['''key_proj''', '''value_proj''', '''query_proj'''] SCREAMING_SNAKE_CASE__: Optional[int]= { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: SCREAMING_SNAKE_CASE__: Optional[int]= key.split('''.''' ) if attributes[0] == "lm_head": SCREAMING_SNAKE_CASE__: List[str]= prophet SCREAMING_SNAKE_CASE__: List[Any]= prophet_old else: SCREAMING_SNAKE_CASE__: List[Any]= prophet.prophetnet SCREAMING_SNAKE_CASE__: Dict= prophet_old.model SCREAMING_SNAKE_CASE__: Tuple= False for attribute in attributes: if attribute in mapping: SCREAMING_SNAKE_CASE__: Optional[Any]= mapping[attribute] if not hasattr(snake_case_ , snake_case_ ) and len(snake_case_ ) > 0: SCREAMING_SNAKE_CASE__: Optional[int]= attribute elif hasattr(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE__: Optional[int]= attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" SCREAMING_SNAKE_CASE__: Tuple= old_model.weight logger.info(F'{attribute} is initialized.' ) SCREAMING_SNAKE_CASE__: Optional[Any]= True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" SCREAMING_SNAKE_CASE__: Dict= old_model.bias logger.info(F'{attribute} is initialized' ) SCREAMING_SNAKE_CASE__: Tuple= True break elif attribute in special_keys and hasattr(snake_case_ , '''in_proj_weight''' ): SCREAMING_SNAKE_CASE__: Any= old_model.in_proj_weight.shape[0] // 3 SCREAMING_SNAKE_CASE__: List[str]= getattr(snake_case_ , snake_case_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": SCREAMING_SNAKE_CASE__: Any= nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) SCREAMING_SNAKE_CASE__: Optional[Any]= nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": SCREAMING_SNAKE_CASE__: List[str]= nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) SCREAMING_SNAKE_CASE__: Dict= nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": SCREAMING_SNAKE_CASE__: Union[str, Any]= nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) SCREAMING_SNAKE_CASE__: str= nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) SCREAMING_SNAKE_CASE__: Union[str, Any]= True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." SCREAMING_SNAKE_CASE__: Dict= nn.Parameter(old_model.embed_positions.weight[:512, :] ) SCREAMING_SNAKE_CASE__: Any= True break if attribute.isdigit(): SCREAMING_SNAKE_CASE__: Tuple= model[int(snake_case_ )] SCREAMING_SNAKE_CASE__: Tuple= old_model[int(snake_case_ )] else: SCREAMING_SNAKE_CASE__: List[str]= getattr(snake_case_ , snake_case_ ) if old_attribute == "": SCREAMING_SNAKE_CASE__: List[Any]= old_model else: if not hasattr(snake_case_ , snake_case_ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) SCREAMING_SNAKE_CASE__: int= getattr(snake_case_ , snake_case_ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case_ ) if __name__ == "__main__": lowercase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase_ : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
64
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 48 lowerCAmelCase = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 60 lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 126 lowerCAmelCase = 7 lowerCAmelCase = 255.0 lowerCAmelCase = '' return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCAmelCase = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCAmelCase = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ): for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase = key.split('.' ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[4] ) lowerCAmelCase = config.embed_dim if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] pass else: lowerCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): lowerCAmelCase = get_config(_UpperCAmelCase ) lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __UpperCamelCase : Optional[int] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Any = XCLIPTextConfig() # derive patch size from model name snake_case_ : List[str] = model_name.find("""patch""" ) snake_case_ : Optional[Any] = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) snake_case_ : Tuple = XCLIPVisionConfig(patch_size=__UpperCamelCase , num_frames=__UpperCamelCase ) if "large" in model_name: snake_case_ : int = 7_6_8 snake_case_ : Optional[int] = 3_0_7_2 snake_case_ : List[Any] = 1_2 snake_case_ : List[Any] = 1_0_2_4 snake_case_ : List[str] = 4_0_9_6 snake_case_ : Tuple = 1_6 snake_case_ : Optional[Any] = 2_4 snake_case_ : Any = 7_6_8 snake_case_ : Optional[Any] = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": snake_case_ : int = 3_3_6 snake_case_ : str = XCLIPConfig.from_text_vision_configs(__UpperCamelCase , __UpperCamelCase ) if "large" in model_name: snake_case_ : Any = 7_6_8 return config def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' if name == "token_embedding.weight": snake_case_ : List[Any] = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": snake_case_ : Tuple = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: snake_case_ : str = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: snake_case_ : Any = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: snake_case_ : Dict = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: snake_case_ : Optional[Any] = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): snake_case_ : Tuple = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: snake_case_ : List[Any] = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: snake_case_ : List[str] = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": snake_case_ : Optional[Any] = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": snake_case_ : Optional[Any] = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): snake_case_ : List[Any] = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: snake_case_ : List[Any] = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: snake_case_ : str = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: snake_case_ : Optional[Any] = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: snake_case_ : Dict = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: snake_case_ : Optional[Any] = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: snake_case_ : Dict = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: snake_case_ : Optional[Any] = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": snake_case_ : Dict = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): snake_case_ : Tuple = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): snake_case_ : int = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Tuple ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case_ : str = orig_state_dict.pop(__UpperCamelCase ) if "attn.in_proj" in key: snake_case_ : List[Any] = key.split(""".""" ) if key.startswith("""visual""" ): snake_case_ : Union[str, Any] = key_split[3] snake_case_ : Optional[Any] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: snake_case_ : str = val[ :dim, : ] snake_case_ : Dict = val[ dim : dim * 2, : ] snake_case_ : Union[str, Any] = val[ -dim:, : ] else: snake_case_ : Tuple = val[ :dim ] snake_case_ : int = val[ dim : dim * 2 ] snake_case_ : Any = val[ -dim: ] else: if "weight" in key: snake_case_ : Optional[Any] = val[ :dim, : ] snake_case_ : List[str] = val[ dim : dim * 2, : ] snake_case_ : str = val[ -dim:, : ] else: snake_case_ : List[Any] = val[:dim] snake_case_ : List[Any] = val[ dim : dim * 2 ] snake_case_ : Any = val[-dim:] elif key.startswith("""mit""" ): snake_case_ : Tuple = key_split[2] snake_case_ : Any = config.vision_config.mit_hidden_size if "weight" in key: snake_case_ : Dict = val[:dim, :] snake_case_ : str = val[dim : dim * 2, :] snake_case_ : Optional[int] = val[-dim:, :] else: snake_case_ : int = val[:dim] snake_case_ : Optional[Any] = val[dim : dim * 2] snake_case_ : int = val[-dim:] else: snake_case_ : Any = key_split[2] snake_case_ : int = config.text_config.hidden_size if "weight" in key: snake_case_ : List[str] = val[:dim, :] snake_case_ : List[str] = val[ dim : dim * 2, : ] snake_case_ : Tuple = val[-dim:, :] else: snake_case_ : Tuple = val[:dim] snake_case_ : int = val[ dim : dim * 2 ] snake_case_ : Tuple = val[-dim:] else: snake_case_ : str = rename_key(__UpperCamelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: snake_case_ : Tuple = val.T snake_case_ : Any = val return orig_state_dict def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' if num_frames == 8: snake_case_ : Optional[int] = """eating_spaghetti_8_frames.npy""" elif num_frames == 1_6: snake_case_ : Tuple = """eating_spaghetti.npy""" elif num_frames == 3_2: snake_case_ : Union[str, Any] = """eating_spaghetti_32_frames.npy""" snake_case_ : str = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=__UpperCamelCase , repo_type="""dataset""" , ) snake_case_ : str = np.load(__UpperCamelCase ) return list(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : List[str]=None , __UpperCamelCase : Any=False ): '''simple docstring''' snake_case_ : int = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } snake_case_ : Optional[int] = model_to_url[model_name] snake_case_ : str = 8 if "16-frames" in model_name: snake_case_ : str = 1_6 elif "shot" in model_name: snake_case_ : Optional[int] = 3_2 snake_case_ : Optional[Any] = get_xclip_config(__UpperCamelCase , __UpperCamelCase ) snake_case_ : List[str] = XCLIPModel(__UpperCamelCase ) model.eval() if "drive" in checkpoint_url: snake_case_ : Any = """pytorch_model.bin""" gdown.cached_download(__UpperCamelCase , __UpperCamelCase , quiet=__UpperCamelCase ) snake_case_ : List[Any] = torch.load(__UpperCamelCase , map_location="""cpu""" )["""model"""] else: snake_case_ : List[Any] = torch.hub.load_state_dict_from_url(__UpperCamelCase )["""model"""] snake_case_ : int = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) snake_case_ : int = XCLIPModel(__UpperCamelCase ) snake_case_ , snake_case_ : int = model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() snake_case_ : Union[str, Any] = 3_3_6 if model_name == """xclip-large-patch14-16-frames""" else 2_2_4 snake_case_ : List[Any] = VideoMAEImageProcessor(size=__UpperCamelCase ) snake_case_ : List[str] = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) snake_case_ : Tuple = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) snake_case_ : List[str] = XCLIPProcessor(image_processor=__UpperCamelCase , tokenizer=__UpperCamelCase ) snake_case_ : List[str] = prepare_video(__UpperCamelCase ) snake_case_ : List[str] = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=__UpperCamelCase , return_tensors="""pt""" , padding=__UpperCamelCase ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): snake_case_ : str = model(**__UpperCamelCase ) # Verify outputs snake_case_ : Optional[Any] = outputs.logits_per_video snake_case_ : List[Any] = logits_per_video.softmax(dim=1 ) print("""Probs:""" , __UpperCamelCase ) # kinetics-400 if model_name == "xclip-base-patch32": snake_case_ : Optional[Any] = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": snake_case_ : List[str] = torch.tensor([[7.0_9_9_9E-0_4, 9.9_8_8_3E-0_1, 4.5_5_8_0E-0_4]] ) elif model_name == "xclip-base-patch16": snake_case_ : int = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": snake_case_ : Tuple = torch.tensor([[7.6_9_3_7E-0_4, 9.9_7_2_8E-0_1, 1.9_4_7_3E-0_3]] ) elif model_name == "xclip-large-patch14": snake_case_ : int = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": snake_case_ : str = torch.tensor([[3.3_8_7_7E-0_4, 9.9_9_3_7E-0_1, 2.8_8_8_8E-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": snake_case_ : Optional[Any] = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": snake_case_ : Optional[Any] = torch.tensor([[3.8_5_5_4E-0_4, 9.9_9_2_9E-0_1, 3.2_7_5_4E-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": snake_case_ : Dict = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": snake_case_ : List[str] = torch.tensor([[7.1_8_9_0E-0_6, 9.9_9_9_4E-0_1, 5.6_5_5_9E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": snake_case_ : Optional[int] = torch.tensor([[1.0_3_2_0E-0_5, 9.9_9_9_3E-0_1, 6.2_4_3_5E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": snake_case_ : str = torch.tensor([[4.1_3_7_7E-0_6, 9.9_9_9_0E-0_1, 9.8_3_8_6E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": snake_case_ : Optional[Any] = torch.tensor([[4.1_3_4_7E-0_5, 9.9_9_6_2E-0_1, 3.3_4_1_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": snake_case_ : Optional[int] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": snake_case_ : List[str] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": snake_case_ : Tuple = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": snake_case_ : List[Any] = torch.tensor([[9.8_2_1_9E-0_4, 9.9_5_9_3E-0_1, 3.0_8_6_3E-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": snake_case_ : Union[str, Any] = torch.tensor([[3.5_0_8_2E-0_4, 9.9_7_8_5E-0_1, 1.7_9_6_6E-0_3]] ) else: raise ValueError(F'Model name {model_name} not supported' ) assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCamelCase ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(__UpperCamelCase , organization="""nielsr""" ) processor.push_to_hub(__UpperCamelCase , organization="""nielsr""" ) slow_tokenizer.push_to_hub(__UpperCamelCase , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowerCAmelCase : List[Any] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
21
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
1
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
526
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__( lowerCamelCase__ ): lowercase__ = """naver-clova-ix/donut-base-finetuned-docvqa""" lowercase__ = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) lowercase__ = """document_qa""" lowercase__ = AutoProcessor lowercase__ = VisionEncoderDecoderModel lowercase__ = ["""image""", """text"""] lowercase__ = ["""text"""] def __init__( self : str , *__snake_case : Any , **__snake_case : List[Any] ): if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*__snake_case , **__snake_case ) def lowercase_ ( self : Union[str, Any] , __snake_case : "Image" , __snake_case : str ): a : Union[str, Any] = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' a : Any = task_prompt.replace('{user_input}' , __snake_case ) a : Dict = self.pre_processor.tokenizer( __snake_case , add_special_tokens=__snake_case , return_tensors='pt' ).input_ids a : Tuple = self.pre_processor(__snake_case , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowercase_ ( self : Any , __snake_case : int ): return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__snake_case , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__snake_case , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__snake_case , ).sequences def lowercase_ ( self : List[str] , __snake_case : Tuple ): a : str = self.pre_processor.batch_decode(__snake_case )[0] a : str = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) a : Union[str, Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) a : List[str] = re.sub(r'<.*?>' , '' , __snake_case , count=1 ).strip() # remove first task start token a : Dict = self.pre_processor.tokenajson(__snake_case ) return sequence["answer"]
526
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = torch.device("""cpu""") def SCREAMING_SNAKE_CASE ( ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : List[str] = dct.pop(_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = val def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Dict = [] for k in state_dict.keys(): lowerCamelCase__ : Tuple = k if ".pwconv" in k: lowerCamelCase__ : Union[str, Any] = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: lowerCamelCase__ : Any = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: lowerCamelCase__ : int = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: lowerCamelCase__ : Optional[int] = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: lowerCamelCase__ : Any = k_new.split('.' ) if ls[2].isdigit(): lowerCamelCase__ : Optional[Any] = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: lowerCamelCase__ : Tuple = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ : str = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowerCamelCase__ : Dict = 1000 lowerCamelCase__ : Union[str, Any] = 'huggingface/label-files' lowerCamelCase__ : List[str] = 'imagenet-1k-id2label.json' lowerCamelCase__ : Optional[int] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : List[str] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : str = idalabel lowerCamelCase__ : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowerCamelCase__ : Dict = [3, 3, 6, 4] lowerCamelCase__ : List[str] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": lowerCamelCase__ : Tuple = [3, 3, 9, 6] lowerCamelCase__ : Dict = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": lowerCamelCase__ : Optional[int] = [4, 3, 10, 5] lowerCamelCase__ : Any = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": lowerCamelCase__ : Optional[Any] = [4, 4, 12, 6] lowerCamelCase__ : Dict = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' , check_hash=_UpperCAmelCase ) else: lowerCamelCase__ : Dict = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCamelCase__ : Optional[int] = checkpoint lowerCamelCase__ : int = create_rename_keys(_UpperCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # load HuggingFace model lowerCamelCase__ : Optional[Any] = SwiftFormerForImageClassification(_UpperCAmelCase ).eval() hf_model.load_state_dict(_UpperCAmelCase ) # prepare test inputs lowerCamelCase__ : List[Any] = prepare_img() lowerCamelCase__ : Dict = ViTImageProcessor.from_pretrained('preprocessor_config' ) lowerCamelCase__ : Any = processor(images=_UpperCAmelCase , return_tensors='pt' ) # compare outputs from both models lowerCamelCase__ : Optional[int] = get_expected_output(_UpperCAmelCase ) lowerCamelCase__ : Any = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , _UpperCAmelCase , atol=1e-3 ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": _UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") _UpperCAmelCase : str = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
707
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : str=32 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Dict=10 , UpperCAmelCase : List[str]=[10, 20, 30, 40] , UpperCAmelCase : Any=[1, 1, 2, 1] , UpperCAmelCase : List[str]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict="relu" , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Dict=None , ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : int = num_channels lowerCamelCase__ : int = embeddings_size lowerCamelCase__ : str = hidden_sizes lowerCamelCase__ : Any = depths lowerCamelCase__ : str = is_training lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Dict = num_labels lowerCamelCase__ : Dict = scope lowerCamelCase__ : List[str] = len(UpperCAmelCase ) def A_ ( self : Optional[int] ) -> Optional[int]: lowerCamelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : str = self.get_config() return config, pixel_values def A_ ( self : Optional[int] ) -> Dict: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A_ ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ) -> Optional[Any]: lowerCamelCase__ : Optional[Any] = FlaxRegNetModel(config=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = model(UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A_ ( self : str , UpperCAmelCase : int , UpperCAmelCase : Tuple ) -> Tuple: lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : str = FlaxRegNetForImageClassification(config=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : Dict ) -> str: lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ : Any = config_and_inputs lowerCamelCase__ : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def A_ ( self : List[Any] ) -> None: lowerCamelCase__ : List[Any] = FlaxRegNetModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def A_ ( self : int ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self : Any ) -> str: return def A_ ( self : Optional[Any] ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A_ ( self : Dict ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def A_ ( self : Dict ) -> Dict: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def A_ ( self : Any ) -> Tuple: pass def A_ ( self : Union[str, Any] ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[Any] = [*signature.parameters.keys()] lowerCamelCase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A_ ( self : int ) -> List[str]: def check_hidden_states_output(UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ): lowerCamelCase__ : Any = model_class(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowerCamelCase__ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : List[Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Dict ) -> int: lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase : Tuple , **UpperCAmelCase : Tuple ): return model(pixel_values=UpperCAmelCase , **UpperCAmelCase ) with self.subTest('JIT Enabled' ): lowerCamelCase__ : Dict = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCamelCase__ : Optional[int] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: lowerCamelCase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class lowerCAmelCase ( unittest.TestCase ): @cached_property def A_ ( self : Any ) -> List[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def A_ ( self : Dict ) -> Tuple: lowerCamelCase__ : Union[str, Any] = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) lowerCamelCase__ : Dict = self.default_image_processor lowerCamelCase__ : List[Any] = prepare_img() lowerCamelCase__ : List[str] = image_processor(images=UpperCAmelCase , return_tensors='np' ) lowerCamelCase__ : List[Any] = model(**UpperCAmelCase ) # verify the logits lowerCamelCase__ : Union[str, Any] = (1, 1000) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCamelCase__ : Tuple = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
188
0
import math def UpperCamelCase ( ): '''simple docstring''' A_ : Optional[Any] = input('Enter message: ' ) A_ : List[Any] = int(input(f'''Enter key [2-{len(lowercase_ ) - 1}]: ''' ) ) A_ : Tuple = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): A_ : List[str] = encrypt_message(lowercase_ ,lowercase_ ) elif mode.lower().startswith('d' ): A_ : Any = decrypt_message(lowercase_ ,lowercase_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f'''Output:\n{text + '|'}''' ) def UpperCamelCase ( __lowercase : int ,__lowercase : str ): '''simple docstring''' A_ : Optional[int] = [''] * key for col in range(lowercase_ ): A_ : str = col while pointer < len(lowercase_ ): cipher_text[col] += message[pointer] pointer += key return "".join(lowercase_ ) def UpperCamelCase ( __lowercase : int ,__lowercase : str ): '''simple docstring''' A_ : int = math.ceil(len(lowercase_ ) / key ) A_ : Any = key A_ : Optional[int] = (num_cols * num_rows) - len(lowercase_ ) A_ : str = [''] * num_cols A_ : List[str] = 0 A_ : Any = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): A_ : List[str] = 0 row += 1 return "".join(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
558
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : int = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'encodec' def __init__( self , snake_case_=[1.5, 3.0, 6.0, 12.0, 24.0] , snake_case_=2_40_00 , snake_case_=1 , snake_case_=False , snake_case_=None , snake_case_=None , snake_case_=1_28 , snake_case_=32 , snake_case_=1 , snake_case_=[8, 5, 4, 2] , snake_case_="weight_norm" , snake_case_=7 , snake_case_=7 , snake_case_=3 , snake_case_=2 , snake_case_=True , snake_case_="reflect" , snake_case_=2 , snake_case_=2 , snake_case_=1.0 , snake_case_=10_24 , snake_case_=None , snake_case_=True , **snake_case_ , ): lowercase =target_bandwidths lowercase =sampling_rate lowercase =audio_channels lowercase =normalize lowercase =chunk_length_s lowercase =overlap lowercase =hidden_size lowercase =num_filters lowercase =num_residual_layers lowercase =upsampling_ratios lowercase =norm_type lowercase =kernel_size lowercase =last_kernel_size lowercase =residual_kernel_size lowercase =dilation_growth_rate lowercase =use_causal_conv lowercase =pad_mode lowercase =compress lowercase =num_lstm_layers lowercase =trim_right_ratio lowercase =codebook_size lowercase =codebook_dim if codebook_dim is not None else hidden_size lowercase =use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**snake_case_ ) @property def _A( self ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _A( self ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _A( self ): lowercase =np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _A( self ): return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
72
0
"""simple docstring""" def lowerCamelCase_( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] _lowerCAmelCase : str = generate_large_matrix() _lowerCAmelCase : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' assert all(row == sorted(_lowerCamelCase , reverse=_lowerCamelCase ) for row in grid ) assert all(list(_lowerCamelCase ) == sorted(_lowerCamelCase , reverse=_lowerCamelCase ) for col in zip(*_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : str = 0 _lowerCamelCase : str = len(_lowerCamelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowerCamelCase : int = (left + right) // 2 _lowerCamelCase : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowerCamelCase : str = mid + 1 else: _lowerCamelCase : int = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = len(grid[0] ) for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(_lowerCamelCase ) * len(grid[0] )) - total def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = 0 for row in grid: for i, number in enumerate(_lowerCamelCase ): if number < 0: total += len(_lowerCamelCase ) - i break return total def lowerCamelCase_( ) -> None: '''simple docstring''' from timeit import timeit print("Running benchmarks" ) _lowerCamelCase : List[Any] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowerCamelCase : Tuple = timeit(F"""{func}(grid=grid)""" , setup=_lowerCamelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
708
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MvpTokenizer lowerCAmelCase__ = MvpTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = filter_roberta_detectors def _lowercase ( self: Tuple ): '''simple docstring''' super().setUp() _lowerCamelCase : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _lowerCamelCase : Optional[int] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : Any = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : str = {"unk_token": "<unk>"} _lowerCamelCase : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCAmelCase ) ) def _lowercase ( self: int ,**__lowerCAmelCase: str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: str ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def _lowercase ( self: Any ): '''simple docstring''' return MvpTokenizer.from_pretrained("RUCAIBox/mvp" ) @cached_property def _lowercase ( self: Any ): '''simple docstring''' return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp" ) @require_torch def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = ["A long paragraph for summarization.", "Another paragraph for summarization."] _lowerCamelCase : Dict = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : int = tokenizer(__lowerCAmelCase ,max_length=len(__lowerCAmelCase ) ,padding=__lowerCAmelCase ,return_tensors="pt" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowerCamelCase : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) # Test that special tokens are reset @require_torch def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : Any = tokenizer(__lowerCAmelCase ,padding=__lowerCAmelCase ,return_tensors="pt" ) # check if input_ids are returned and no labels self.assertIn("input_ids" ,__lowerCAmelCase ) self.assertIn("attention_mask" ,__lowerCAmelCase ) self.assertNotIn("labels" ,__lowerCAmelCase ) self.assertNotIn("decoder_attention_mask" ,__lowerCAmelCase ) @require_torch def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : Dict = tokenizer(text_target=__lowerCAmelCase ,max_length=32 ,padding="max_length" ,return_tensors="pt" ) self.assertEqual(32 ,targets["input_ids"].shape[1] ) @require_torch def _lowercase ( self: List[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : Any = tokenizer( ["I am a small frog" * 1_024, "I am a small frog"] ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase ,return_tensors="pt" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(batch.input_ids.shape ,(2, 1_024) ) @require_torch def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Dict = ["A long paragraph for summarization."] _lowerCamelCase : str = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : List[Any] = tokenizer(__lowerCAmelCase ,text_target=__lowerCAmelCase ,return_tensors="pt" ) _lowerCamelCase : List[Any] = inputs["input_ids"] _lowerCamelCase : Optional[Any] = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[int] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : Tuple = self.tokenizer_class.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : str = "A, <mask> AllenNLP sentence." _lowerCamelCase : Optional[Any] = tokenizer_r.encode_plus(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer_p.encode_plus(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) ,sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) ,sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) ,) _lowerCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) _lowerCamelCase : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( __lowerCAmelCase ,["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( __lowerCAmelCase ,["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
386
0
"""simple docstring""" def A__ ( __lowerCamelCase ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(__lowerCamelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
589
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
589
1
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase ( UpperCamelCase__ : Tuple="ro" , UpperCamelCase__ : Any="en" , UpperCamelCase__ : Dict="wmt16" , UpperCamelCase__ : Dict=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) __UpperCAmelCase = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) __UpperCAmelCase = datasets.load_dataset(UpperCamelCase__ , UpperCamelCase__ ) if save_dir is None: __UpperCAmelCase = f"""{dataset}-{pair}""" __UpperCAmelCase = Path(UpperCamelCase__ ) save_dir.mkdir(exist_ok=UpperCamelCase__ ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets __UpperCAmelCase = '''val''' if split == '''validation''' else split __UpperCAmelCase = save_dir.joinpath(f"""{fn}.source""" ) __UpperCAmelCase = save_dir.joinpath(f"""{fn}.target""" ) __UpperCAmelCase = src_path.open('''w+''' ) __UpperCAmelCase = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __UpperCAmelCase = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
654
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
1
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> list[list]: '''simple docstring''' UpperCAmelCase = current_set.copy() for row_index, row in enumerate(UpperCamelCase__ ): UpperCAmelCase = row[0] for column_index, column in enumerate(UpperCamelCase__ ): if magnitude == 0: UpperCAmelCase = column continue UpperCAmelCase = column / magnitude # Subtract to cancel term UpperCAmelCase = current_set[0] UpperCAmelCase = [first_row] UpperCAmelCase = current_set[1::] for row in current_set: UpperCAmelCase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(UpperCamelCase__ ) continue for column_index in range(len(UpperCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(UpperCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: UpperCAmelCase = final_set[0] UpperCAmelCase = [] UpperCAmelCase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) UpperCAmelCase = simplify(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , UpperCamelCase__ ) UpperCAmelCase = resultant return final_set def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> list: '''simple docstring''' if len(UpperCamelCase__ ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) UpperCAmelCase = len(UpperCamelCase__ ) + 1 if any(len(UpperCamelCase__ ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(UpperCamelCase__ , (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(UpperCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] UpperCAmelCase = equations.copy() if any(0 in row for row in data_set ): UpperCAmelCase = data_set.copy() UpperCAmelCase = [] for row_index, row in enumerate(UpperCamelCase__ ): if 0 not in row: UpperCAmelCase = data_set.pop(UpperCamelCase__ ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0 , UpperCamelCase__ ) UpperCAmelCase = data_set.copy() UpperCAmelCase = simplify(UpperCamelCase__ ) UpperCAmelCase = simplified[::-1] UpperCAmelCase = [] for row in simplified: UpperCAmelCase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue UpperCAmelCase = row.copy()[: len(UpperCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(UpperCamelCase__ ) == 0: solutions.append(0 ) continue UpperCAmelCase = temp_row[1::] UpperCAmelCase = temp_row[::-1] for column_index, column in enumerate(UpperCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(UpperCamelCase__ ) UpperCAmelCase = [] for item in solutions: final.append(float(round(UpperCamelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __A : Any = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
130
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: __A : int = None __A : int = logging.get_logger(__name__) __A : Any = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __A : List[str] = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } __A : Any = { "xlnet-base-cased": None, "xlnet-large-cased": None, } __A : List[str] = "▁" # Segments (not really needed) __A : Tuple = 0 __A : str = 1 __A : Any = 2 __A : Dict = 3 __A : Any = 4 class A_ (a_ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = '''left''' UpperCAmelCase__ = XLNetTokenizer def __init__( self , _A=None , _A=None , _A=False , _A=True , _A=False , _A="<s>" , _A="</s>" , _A="<unk>" , _A="<sep>" , _A="<pad>" , _A="<cls>" , _A="<mask>" , _A=["<eop>", "<eod>"] , **_A , ): '''simple docstring''' UpperCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( vocab_file=_A , tokenizer_file=_A , do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , additional_special_tokens=_A , **_A , ) UpperCAmelCase = 3 UpperCAmelCase = do_lower_case UpperCAmelCase = remove_space UpperCAmelCase = keep_accents UpperCAmelCase = vocab_file UpperCAmelCase = False if not self.vocab_file else True def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self , _A , _A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
130
1
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=4 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : str = seq_length __A : Tuple = is_training __A : Optional[int] = use_attention_mask __A : Dict = use_token_type_ids __A : Union[str, Any] = use_labels __A : Tuple = vocab_size __A : int = hidden_size __A : Optional[Any] = num_hidden_layers __A : List[Any] = num_attention_heads __A : Union[str, Any] = intermediate_size __A : List[str] = hidden_act __A : Optional[Any] = hidden_dropout_prob __A : Any = attention_probs_dropout_prob __A : Optional[int] = max_position_embeddings __A : Optional[Any] = type_vocab_size __A : Tuple = type_sequence_label_size __A : str = initializer_range __A : List[Any] = num_choices def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : Tuple = None if self.use_attention_mask: __A : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_UpperCAmelCase , ) return config, input_ids, attention_mask def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.prepare_config_and_inputs() __A ,__A ,__A : Any = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = FlaxDistilBertModelTester(self) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_class_name in self.all_model_classes: __A : Dict = model_class_name.from_pretrained('distilbert-base-uncased') __A : Tuple = model(np.ones((1, 1))) self.assertIsNotNone(_UpperCAmelCase) @require_flax class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased') __A : Union[str, Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) __A : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) __A : Dict = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase)[0] __A : Union[str, Any] = (1, 11, 768) self.assertEqual(output.shape , _UpperCAmelCase) __A : List[Any] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4))
338
'''simple docstring''' import sys import turtle def _lowerCAmelCase ( __snake_case : tuple[float, float] , __snake_case : tuple[float, float] ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def _lowerCAmelCase ( __snake_case : tuple[float, float] , __snake_case : tuple[float, float] , __snake_case : tuple[float, float] , __snake_case : int , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(__snake_case , get_mid(__snake_case , __snake_case ) , get_mid(__snake_case , __snake_case ) , depth - 1 ) triangle(__snake_case , get_mid(__snake_case , __snake_case ) , get_mid(__snake_case , __snake_case ) , depth - 1 ) triangle(__snake_case , get_mid(__snake_case , __snake_case ) , get_mid(__snake_case , __snake_case ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) lowercase__ : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') lowercase__ : Optional[Any] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
338
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def a ( ): '''simple docstring''' lowercase__ = '''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) return image def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') ) # fmt: on return rename_keys def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = dct.pop(lowerCamelCase_ ) lowercase__ = val def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase__ = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowercase__ = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowercase__ = torch.cat((q_bias, torch.zeros_like(lowerCamelCase_ , requires_grad=lowerCamelCase_ ), v_bias) ) lowercase__ = qkv_bias def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 364 if '''coco''' in model_name else 224 lowercase__ = InstructBlipVisionConfig(image_size=lowerCamelCase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: lowercase__ = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase__ = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: lowercase__ = LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''' , vocab_size=3_2001 ).to_dict() elif "vicuna-13b" in model_name: lowercase__ = LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''' , vocab_size=3_2001 ).to_dict() else: raise ValueError('''Model name not supported''' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 lowercase__ = InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict() lowercase__ = InstructBlipConfig(vision_config=lowerCamelCase_ , text_config=lowerCamelCase_ , qformer_config=lowerCamelCase_ ) return config, image_size @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=False ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained('''bert-base-uncased''' , truncation_side='''left''' ) qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} ) if "t5" in model_name: lowercase__ = TaTokenizerFast.from_pretrained('''google/flan-t5-xl''' , truncation_side='''left''' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) lowercase__ = LlamaTokenizerFast.from_pretrained( '''huggyllama/llama-7b''' , truncation_side='''left''' , bos_token='''</s>''' , unk_token='''</s>''' ) tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} ) lowercase__ , lowercase__ = get_blipa_config(lowerCamelCase_ ) lowercase__ = InstructBlipForConditionalGeneration(lowerCamelCase_ ).eval() lowercase__ = { '''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''), '''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''), '''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''), '''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''), } lowercase__ , lowercase__ = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) lowercase__ = '''cuda:1''' if torch.cuda.is_available() else '''cpu''' lowercase__ = '''cuda:2''' if torch.cuda.is_available() else '''cpu''' lowercase__ , lowercase__ , lowercase__ = load_model_and_preprocess( name=lowerCamelCase_ , model_type=lowerCamelCase_ , is_eval=lowerCamelCase_ , device=lowerCamelCase_ ) original_model.eval() print('''Done!''' ) # update state dict keys lowercase__ = original_model.state_dict() lowercase__ = create_rename_keys(lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase__ = state_dict.pop(lowerCamelCase_ ) if key.startswith('''Qformer.bert''' ): lowercase__ = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: lowercase__ = key.replace('''self''' , '''attention''' ) if "llm_proj" in key: lowercase__ = key.replace('''llm_proj''' , '''language_projection''' ) if "t5_proj" in key: lowercase__ = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''llm_model''' ): lowercase__ = key.replace('''llm_model''' , '''language_model''' ) if key.startswith('''t5''' ): lowercase__ = key.replace('''t5''' , '''language''' ) lowercase__ = val # read in qv biases read_in_q_v_bias(lowerCamelCase_ , lowerCamelCase_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) lowercase__ = load_demo_image() lowercase__ = '''What is unusual about this image?''' # create processor lowercase__ = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=lowerCamelCase_ , image_std=lowerCamelCase_ ) lowercase__ = InstructBlipProcessor( image_processor=lowerCamelCase_ , tokenizer=lowerCamelCase_ , qformer_tokenizer=lowerCamelCase_ , ) lowercase__ = processor(images=lowerCamelCase_ , text=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) # make sure processor creates exact same pixel values lowercase__ = vis_processors['''eval'''](lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) lowercase__ = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) hf_model.to(lowerCamelCase_ ) with torch.no_grad(): if "vicuna" in model_name: lowercase__ = original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits lowercase__ = hf_model(**lowerCamelCase_ ).logits else: lowercase__ = original_model( {'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits lowercase__ = tokenizer('''\n''' , return_tensors='''pt''' ).input_ids.to(lowerCamelCase_ ) lowercase__ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) lowercase__ = hf_model(**lowerCamelCase_ , labels=lowerCamelCase_ ).logits print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape lowercase__ = 1e-4 if '''vicuna''' in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , lowerCamelCase_ , atol=lowerCamelCase_ ) print('''Looks ok!''' ) print('''Generating with original model...''' ) lowercase__ = original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('''Generating with HF model...''' ) lowercase__ = hf_model.generate( **lowerCamelCase_ , do_sample=lowerCamelCase_ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? lowercase__ = 2 print('''Original generation:''' , lowerCamelCase_ ) lowercase__ = processor.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) lowercase__ = [text.strip() for text in output_text] print('''HF generation:''' , lowerCamelCase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if push_to_hub: processor.push_to_hub(F"""Salesforce/{model_name}""" ) hf_model.push_to_hub(F"""Salesforce/{model_name}""" ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() A__ : Dict = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( '--model_name', default='instructblip-flan-t5-xl', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) A__ : Optional[int] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
183
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = (IPNDMScheduler,) lowercase__ = (("""num_inference_steps""", 50),) def lowercase__ ( self : Union[str, Any], **lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = {'''num_train_timesteps''': 1_000} config.update(**lowerCamelCase ) return config def lowercase__ ( self : Any, lowerCamelCase : Any=0, **lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**lowerCamelCase ) lowercase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowercase__ = scheduler_class.from_pretrained(lowerCamelCase ) new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : str ): '''simple docstring''' pass def lowercase__ ( self : Dict, lowerCamelCase : Optional[int]=0, **lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowercase__ = scheduler_class.from_pretrained(lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : int, **lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCamelCase ) lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(lowerCamelCase, lowerCamelCase ) lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(lowerCamelCase, lowerCamelCase ) lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample return sample def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase, '''set_timesteps''' ): scheduler.set_timesteps(lowerCamelCase ) elif num_inference_steps is not None and not hasattr(lowerCamelCase, '''set_timesteps''' ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def lowercase__ ( self : Dict ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase, time_step=lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCamelCase, time_step=lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
183
1
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class UpperCamelCase_ : def UpperCamelCase_ ( self ) -> Any: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_001 , beta_end=0.02 , thresholding=snake_case__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase_ ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.414 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_001 , beta_end=0.02 , thresholding=snake_case__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_001 , beta_end=0.02 , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) UpperCAmelCase = inputs["""prompt"""] UpperCAmelCase = inputs["""generator"""] UpperCAmelCase = inputs["""num_inference_steps"""] UpperCAmelCase = inputs["""output_type"""] if "image" in inputs: UpperCAmelCase = inputs["""image"""] else: UpperCAmelCase = None if "mask_image" in inputs: UpperCAmelCase = inputs["""mask_image"""] else: UpperCAmelCase = None if "original_image" in inputs: UpperCAmelCase = inputs["""original_image"""] else: UpperCAmelCase = None UpperCAmelCase , UpperCAmelCase = pipe.encode_prompt(snake_case__ ) # inputs with prompt converted to embeddings UpperCAmelCase = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase = pipe(**snake_case__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case__ ) UpperCAmelCase = self.pipeline_class.from_pretrained(snake_case__ ) pipe_loaded.to(snake_case__ ) pipe_loaded.set_progress_bar_config(disable=snake_case__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(snake_case__ , snake_case__ ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) UpperCAmelCase = inputs["""generator"""] UpperCAmelCase = inputs["""num_inference_steps"""] UpperCAmelCase = inputs["""output_type"""] # inputs with prompt converted to embeddings UpperCAmelCase = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image UpperCAmelCase = pipe_loaded(**snake_case__ )[0] UpperCAmelCase = np.abs(to_np(snake_case__ ) - to_np(snake_case__ ) ).max() self.assertLess(snake_case__ , 1e-4 ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) UpperCAmelCase = pipe(**snake_case__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case__ ) UpperCAmelCase = self.pipeline_class.from_pretrained(snake_case__ ) pipe_loaded.to(snake_case__ ) pipe_loaded.set_progress_bar_config(disable=snake_case__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) UpperCAmelCase = pipe_loaded(**snake_case__ )[0] UpperCAmelCase = np.abs(to_np(snake_case__ ) - to_np(snake_case__ ) ).max() self.assertLess(snake_case__ , 1e-4 )
378
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : Tuple = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json''', '''google/bigbird-roberta-large''': '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json''', '''google/bigbird-base-trivia-itc''': '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json''', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class UpperCamelCase_ ( a_ ): _A : Any = 'big_bird' def __init__( self , snake_case__=5_03_58 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu_new" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=40_96 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=66 , snake_case__="block_sparse" , snake_case__=True , snake_case__=False , snake_case__=64 , snake_case__=3 , snake_case__=None , **snake_case__ , ) -> List[str]: """simple docstring""" super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , sep_token_id=snake_case__ , **snake_case__ , ) UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = type_vocab_size UpperCAmelCase = layer_norm_eps UpperCAmelCase = use_cache UpperCAmelCase = rescale_embeddings UpperCAmelCase = attention_type UpperCAmelCase = use_bias UpperCAmelCase = block_size UpperCAmelCase = num_random_blocks UpperCAmelCase = classifier_dropout class UpperCamelCase_ ( a_ ): @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
378
1
'''simple docstring''' def __a ( _UpperCamelCase: str , _UpperCamelCase: str ) -> bool: """simple docstring""" _snake_case = len(_UpperCamelCase ) + 1 _snake_case = len(_UpperCamelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _snake_case = [[0 for i in range(_UpperCamelCase )] for j in range(_UpperCamelCase )] # since string of zero length match pattern of zero length _snake_case = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _UpperCamelCase ): _snake_case = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _UpperCamelCase ): _snake_case = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _UpperCamelCase ): for j in range(1 , _UpperCamelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _snake_case = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _snake_case = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _snake_case = dp[i - 1][j] else: _snake_case = 0 else: _snake_case = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") UpperCamelCase_ : Tuple = '''aab''' UpperCamelCase_ : Optional[int] = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'{input_string} matches the given pattern {pattern}') else: print(F'{input_string} does not match with the given pattern {pattern}')
185
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCamelCase_ : Dict = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' UpperCamelCase_ : int = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' UpperCamelCase_ : Optional[Any] = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' UpperCamelCase_ : Optional[int] = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' UpperCamelCase_ : List[Any] = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def _lowercase ( self ) -> Optional[int]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) ,homepage="https://github.com/openai/human-eval" ,codebase_urls=["https://github.com/openai/human-eval"] ,reference_urls=["https://github.com/openai/human-eval"] ,license=_LICENSE ,) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=[1, 10, 100] ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=3.0 ) -> Any: if os.getenv("HF_ALLOW_CODE_EVAL" ,0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=_SCREAMING_SNAKE_CASE ) as executor: _snake_case = [] _snake_case = Counter() _snake_case = 0 _snake_case = defaultdict(_SCREAMING_SNAKE_CASE ) for task_id, (candidates, test_case) in enumerate(zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ): for candidate in candidates: _snake_case = candidate + "\n" + test_case _snake_case = (test_program, timeout, task_id, completion_id[task_id]) _snake_case = executor.submit(_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ) futures.append(_SCREAMING_SNAKE_CASE ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_SCREAMING_SNAKE_CASE ): _snake_case = future.result() results[result["task_id"]].append((result["completion_id"], result) ) _snake_case , _snake_case = [], [] for result in results.values(): result.sort() _snake_case = [r[1]["passed"] for r in result] total.append(len(_SCREAMING_SNAKE_CASE ) ) correct.append(sum(_SCREAMING_SNAKE_CASE ) ) _snake_case = np.array(_SCREAMING_SNAKE_CASE ) _snake_case = np.array(_SCREAMING_SNAKE_CASE ) _snake_case = k _snake_case = {f"""pass@{k}""": estimate_pass_at_k(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def __a ( _UpperCamelCase: Optional[int] , _UpperCamelCase: Any , _UpperCamelCase: List[str] ) -> List[Any]: """simple docstring""" def estimator(_UpperCamelCase: int , _UpperCamelCase: int , _UpperCamelCase: int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(_UpperCamelCase , _UpperCamelCase ): _snake_case = itertools.repeat(_UpperCamelCase , len(_UpperCamelCase ) ) else: assert len(_UpperCamelCase ) == len(_UpperCamelCase ) _snake_case = iter(_UpperCamelCase ) return np.array([estimator(int(_UpperCamelCase ) , int(_UpperCamelCase ) , _UpperCamelCase ) for n, c in zip(_UpperCamelCase , _UpperCamelCase )] )
185
1
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase__ : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase__ : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase__ : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase__ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCAmelCase_ ( _lowerCamelCase: list[int] , _lowerCamelCase: tuple[int, ...] ): __SCREAMING_SNAKE_CASE : str = "" __SCREAMING_SNAKE_CASE : int __SCREAMING_SNAKE_CASE : int __SCREAMING_SNAKE_CASE : int for keychar, cipherchar in zip(cycle(_lowerCamelCase ) , _lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_lowerCamelCase ) return decoded def lowerCAmelCase_ ( _lowerCamelCase: list[int] ): __SCREAMING_SNAKE_CASE : list[str] = [] for key in product(_lowerCamelCase , repeat=3 ): __SCREAMING_SNAKE_CASE : Optional[int] = try_key(_lowerCamelCase , _lowerCamelCase ) if encoded is not None: possibles.append(_lowerCamelCase ) return possibles def lowerCAmelCase_ ( _lowerCamelCase: list[str] , _lowerCamelCase: str ): return [possible for possible in possibles if common_word in possible.lower()] def lowerCAmelCase_ ( _lowerCamelCase: str = "p059_cipher.txt" ): __SCREAMING_SNAKE_CASE : list[int] __SCREAMING_SNAKE_CASE : list[str] __SCREAMING_SNAKE_CASE : str __SCREAMING_SNAKE_CASE : str __SCREAMING_SNAKE_CASE : str = Path(_lowerCamelCase ).parent.joinpath(_lowerCamelCase ).read_text(encoding="""utf-8""" ) __SCREAMING_SNAKE_CASE : List[Any] = [int(_lowerCamelCase ) for number in data.strip().split(""",""" )] __SCREAMING_SNAKE_CASE : Tuple = filter_valid_chars(_lowerCamelCase ) for common_word in COMMON_WORDS: __SCREAMING_SNAKE_CASE : Dict = filter_common_word(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) == 1: break __SCREAMING_SNAKE_CASE : str = possibles[0] return sum(ord(_lowerCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
178
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCamelCase__ : List[str] = logging.get_logger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , *lowerCAmelCase__ : str , **lowerCAmelCase__ : Any ): """simple docstring""" warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
178
1
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase_ : Any = logging.getLogger() def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = {} lowercase = os.path.join(lowercase_ , """all_results.json""" ) if os.path.exists(lowercase_ ): with open(lowercase_ , """r""" ) as f: lowercase = json.load(lowercase_ ) else: raise ValueError(F"""can't find {path}""" ) return results lowercase_ : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __UpperCamelCase (_UpperCAmelCase ): def _a ( self ) -> Any: '''simple docstring''' import xla_spawn lowercase = self.get_auto_remove_tmp_dir() lowercase = F""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_lowerCAmelCase , """argv""" , _lowerCAmelCase ): lowercase = time() xla_spawn.main() lowercase = time() lowercase = get_results(_lowerCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def _a ( self ) -> Tuple: '''simple docstring''' import xla_spawn lowercase = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(_lowerCAmelCase , """argv""" , _lowerCAmelCase ): xla_spawn.main()
588
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class __UpperCamelCase (unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=4 , ) -> List[Any]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_choices def _a ( self ) -> str: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_attention_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _a ( self ) -> Any: '''simple docstring''' lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = True lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = True __A = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _a ( self ) -> Any: '''simple docstring''' lowercase = FlaxBertModelTester(self ) @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
588
1
from __future__ import annotations def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int ) -> list[list[int]]: UpperCamelCase__ : list[list[int]] = [] UpperCamelCase__ : list[int] = [] UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = sum(__UpperCAmelCase ) create_state_space_tree(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return result def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: list[int] , __UpperCAmelCase: list[list[int]] , __UpperCAmelCase: int , ) -> None: if sum(__UpperCAmelCase ) > max_sum or (remaining_nums_sum + sum(__UpperCAmelCase )) < max_sum: return if sum(__UpperCAmelCase ) == max_sum: result.append(__UpperCAmelCase ) return for index in range(__UpperCAmelCase , len(__UpperCAmelCase ) ): create_state_space_tree( __UpperCAmelCase , __UpperCAmelCase , index + 1 , [*path, nums[index]] , __UpperCAmelCase , remaining_nums_sum - nums[index] , ) UpperCAmelCase_ = [3, 34, 4, 12, 5, 2] UpperCAmelCase_ = 9 UpperCAmelCase_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
369
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__=2, __magic_name__=56, __magic_name__=True, __magic_name__=True, __magic_name__=True, __magic_name__=True, __magic_name__=99, __magic_name__=32, __magic_name__=2, __magic_name__=2, __magic_name__=7, __magic_name__="gelu_new", __magic_name__=0.1, __magic_name__=0.1, __magic_name__=512, __magic_name__=16, __magic_name__=2, __magic_name__=0.02, __magic_name__=4, __magic_name__="block_sparse", __magic_name__=True, __magic_name__=False, __magic_name__=2, __magic_name__=3, ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[str] = parent UpperCamelCase__ : List[Any] = batch_size UpperCamelCase__ : str = seq_length UpperCamelCase__ : List[str] = is_training UpperCamelCase__ : List[Any] = use_attention_mask UpperCamelCase__ : Any = use_token_type_ids UpperCamelCase__ : Tuple = use_labels UpperCamelCase__ : Any = vocab_size UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Union[str, Any] = num_hidden_layers UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : List[str] = intermediate_size UpperCamelCase__ : List[str] = hidden_act UpperCamelCase__ : Union[str, Any] = hidden_dropout_prob UpperCamelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase__ : int = max_position_embeddings UpperCamelCase__ : List[Any] = type_vocab_size UpperCamelCase__ : Tuple = type_sequence_label_size UpperCamelCase__ : Optional[Any] = initializer_range UpperCamelCase__ : Dict = num_choices UpperCamelCase__ : Dict = rescale_embeddings UpperCamelCase__ : Tuple = attention_type UpperCamelCase__ : Union[str, Any] = use_bias UpperCamelCase__ : Union[str, Any] = block_size UpperCamelCase__ : Optional[int] = num_random_blocks def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase__ : int = None if self.use_attention_mask: UpperCamelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCamelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCamelCase__ : str = BigBirdConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__magic_name__, initializer_range=self.initializer_range, attention_type=self.attention_type, block_size=self.block_size, num_random_blocks=self.num_random_blocks, use_bias=self.use_bias, rescale_embeddings=self.rescale_embeddings, ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Tuple = config_and_inputs UpperCamelCase__ : Union[str, Any] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class lowercase__ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : Any = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) a : List[str] = False a : str = False def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Union[str, Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" super().test_hidden_states_output() @slow def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase__ : List[str] = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(__magic_name__ ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ : Union[str, Any] = self._prepare_for_class(__magic_name__, __magic_name__ ) UpperCamelCase__ : Tuple = model_class(__magic_name__ ) @jax.jit def model_jitted(__magic_name__, __magic_name__=None, **__magic_name__ ): return model(input_ids=__magic_name__, attention_mask=__magic_name__, **__magic_name__ ) with self.subTest('''JIT Enabled''' ): UpperCamelCase__ : str = model_jitted(**__magic_name__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCamelCase__ : Dict = model_jitted(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ), len(__magic_name__ ) ) for jitted_output, output in zip(__magic_name__, __magic_name__ ): self.assertEqual(jitted_output.shape, output.shape ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__=1E-5, __magic_name__="outputs", __magic_name__=None ) -> List[Any]: """simple docstring""" # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(__magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__ )
369
1
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase__: int = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class snake_case_ : __lowerCamelCase : List[Any] = PegasusConfig __lowerCamelCase : List[Any] = {} __lowerCamelCase : List[str] = '''gelu''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=20 , __lowerCAmelCase=2 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , ): SCREAMING_SNAKE_CASE_ : Optional[int] = parent SCREAMING_SNAKE_CASE_ : Tuple = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Optional[Any] = is_training SCREAMING_SNAKE_CASE_ : Dict = use_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = eos_token_id SCREAMING_SNAKE_CASE_ : List[Any] = pad_token_id SCREAMING_SNAKE_CASE_ : int = bos_token_id def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE_ : Dict = np.concatenate([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE_ : Any = prepare_pegasus_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, inputs_dict def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = 20 SCREAMING_SNAKE_CASE_ : Tuple = model_class_name(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = model.encode(inputs_dict['input_ids'] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) SCREAMING_SNAKE_CASE_ : Dict = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) SCREAMING_SNAKE_CASE_ : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ : Tuple = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ : Any = model.decode(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = 20 SCREAMING_SNAKE_CASE_ : List[str] = model_class_name(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = model.encode(inputs_dict['input_ids'] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) SCREAMING_SNAKE_CASE_ : Tuple = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ : Tuple = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) SCREAMING_SNAKE_CASE_ : str = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ : List[Any] = model.decode(__lowerCAmelCase , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Tuple: if attention_mask is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = np.not_equal(UpperCamelCase__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ : List[Any] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class snake_case_ ( lowercase_ , unittest.TestCase ): __lowerCamelCase : str = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __lowerCamelCase : Optional[Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __lowerCamelCase : Optional[Any] = True __lowerCamelCase : List[str] = False __lowerCamelCase : str = False __lowerCamelCase : int = False def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = FlaxPegasusModelTester(self ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ConfigTester(self , config_class=__lowerCAmelCase ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = model_class(__lowerCAmelCase ) @jax.jit def encode_jitted(__lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ): return model.encode(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = encode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ : Optional[int] = encode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __A ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ : Any = model_class(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) SCREAMING_SNAKE_CASE_ : int = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): return model.decode( decoder_input_ids=__lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , encoder_outputs=__lowerCAmelCase , ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = decode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ : str = decode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __A ( self ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Tuple = model_class_name.from_pretrained('google/pegasus-large' , from_pt=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.ones((1, 1) ) SCREAMING_SNAKE_CASE_ : Any = model(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @slow def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) SCREAMING_SNAKE_CASE_ : List[str] = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] SCREAMING_SNAKE_CASE_ : Dict = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] SCREAMING_SNAKE_CASE_ : Dict = tokenizer(__lowerCAmelCase , return_tensors='np' , truncation=__lowerCAmelCase , max_length=512 , padding=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(**__lowerCAmelCase , num_beams=2 ).sequences SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) assert tgt_text == decoded
345
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : Dict = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class lowercase ( lowercase_ , lowercase_ ): __SCREAMING_SNAKE_CASE : List[str] = '''resnet''' __SCREAMING_SNAKE_CASE : Dict = ['''basic''', '''bottleneck'''] def __init__( self , snake_case=3 , snake_case=64 , snake_case=[256, 512, 1024, 2048] , snake_case=[3, 4, 6, 3] , snake_case="bottleneck" , snake_case="relu" , snake_case=False , snake_case=None , snake_case=None , **snake_case , ): super().__init__(**snake_case ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(snake_case ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : List[Any] = version.parse('''1.11''' ) @property def a ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a ( self ): return 1e-3
362
0
'''simple docstring''' import string def _lowerCAmelCase( UpperCAmelCase_ : str ) -> str: lowerCAmelCase__ = """""" for i in sequence: lowerCAmelCase__ = ord(UpperCAmelCase_ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def _lowerCAmelCase( UpperCAmelCase_ : str ) -> str: lowerCAmelCase__ = string.ascii_letters lowerCAmelCase__ = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(UpperCAmelCase_ )] if c in letters else c for c in sequence ) def _lowerCAmelCase( ) -> None: from timeit import timeit print("""Running performance benchmarks...""" ) lowerCAmelCase__ = """from string import printable ; from __main__ import atbash, atbash_slow""" print(F'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=UpperCAmelCase_ )} seconds''' ) print(F'''> atbash(): {timeit("atbash(printable)" , setup=UpperCAmelCase_ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'{example} encrypted in atbash: {atbash(example)}') benchmark()
211
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _UpperCamelCase = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _UpperCamelCase = logging.get_logger(__name__) class lowerCamelCase__ ( _A ): '''simple docstring''' A__ = '''maskformer''' A__ = {'''hidden_size''': '''mask_feature_size'''} A__ = ['''resnet''', '''swin'''] A__ = ['''detr'''] def __init__( self : Tuple , __A : int = 256 , __A : int = 256 , __A : float = 0.1 , __A : bool = False , __A : Optional[Dict] = None , __A : Optional[Dict] = None , __A : float = 0.0_2 , __A : float = 1.0 , __A : float = 1.0 , __A : float = 1.0 , __A : float = 2_0.0 , __A : Optional[bool] = None , **__A : Tuple , ) -> List[Any]: '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowerCAmelCase__ = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__A , __A ): lowerCAmelCase__ = backbone_config.pop("""model_type""" ) lowerCAmelCase__ = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase__ = config_class.from_dict(__A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowerCAmelCase__ = DetrConfig() else: # verify that the decoder is supported lowerCAmelCase__ = ( decoder_config.pop("""model_type""" ) if isinstance(__A , __A ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {",".join(self.decoders_supported )}''' ) if isinstance(__A , __A ): lowerCAmelCase__ = CONFIG_MAPPING[decoder_type] lowerCAmelCase__ = config_class.from_dict(__A ) lowerCAmelCase__ = backbone_config lowerCAmelCase__ = decoder_config # main feature dimension for the model lowerCAmelCase__ = fpn_feature_size lowerCAmelCase__ = mask_feature_size # initializer lowerCAmelCase__ = init_std lowerCAmelCase__ = init_xavier_std # Hungarian matcher && loss lowerCAmelCase__ = cross_entropy_weight lowerCAmelCase__ = dice_weight lowerCAmelCase__ = mask_weight lowerCAmelCase__ = use_auxiliary_loss lowerCAmelCase__ = no_object_weight lowerCAmelCase__ = output_auxiliary_logits lowerCAmelCase__ = self.decoder_config.encoder_attention_heads lowerCAmelCase__ = self.decoder_config.num_hidden_layers super().__init__(**__A ) @classmethod def lowercase__ ( cls : List[Any] , __A : PretrainedConfig , __A : PretrainedConfig , **__A : Tuple ) -> Any: '''simple docstring''' return cls( backbone_config=__A , decoder_config=__A , **__A , ) def lowercase__ ( self : Optional[int] ) -> Dict[str, any]: '''simple docstring''' lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ = self.backbone_config.to_dict() lowerCAmelCase__ = self.decoder_config.to_dict() lowerCAmelCase__ = self.__class__.model_type return output
211
1
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class snake_case ( nn.Module ): def __init__( self :Optional[Any] , _lowerCamelCase :int , _lowerCamelCase :int , _lowerCamelCase :int , _lowerCamelCase :Union[str, Any]=0.0 , _lowerCamelCase :Optional[int] = None , _lowerCamelCase :str = "geglu" , _lowerCamelCase :Optional[int] = None , _lowerCamelCase :bool = False , _lowerCamelCase :bool = False , _lowerCamelCase :bool = False , _lowerCamelCase :bool = False , _lowerCamelCase :bool = True , _lowerCamelCase :str = "layer_norm" , _lowerCamelCase :bool = False , ): super().__init__() __SCREAMING_SNAKE_CASE : Optional[Any] = only_cross_attention __SCREAMING_SNAKE_CASE : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' __SCREAMING_SNAKE_CASE : Optional[int] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __SCREAMING_SNAKE_CASE : Union[str, Any] = AdaLayerNorm(_lowerCamelCase , _lowerCamelCase ) elif self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE : Any = AdaLayerNormZero(_lowerCamelCase , _lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : List[Any] = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = Attention( query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , dropout=_lowerCamelCase , bias=_lowerCamelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_lowerCamelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __SCREAMING_SNAKE_CASE : Union[str, Any] = ( AdaLayerNorm(_lowerCamelCase , _lowerCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) ) __SCREAMING_SNAKE_CASE : int = Attention( query_dim=_lowerCamelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_lowerCamelCase , dim_head=_lowerCamelCase , dropout=_lowerCamelCase , bias=_lowerCamelCase , upcast_attention=_lowerCamelCase , ) # is self-attn if encoder_hidden_states is none else: __SCREAMING_SNAKE_CASE : Tuple = None __SCREAMING_SNAKE_CASE : List[str] = None # 3. Feed-forward __SCREAMING_SNAKE_CASE : Dict = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = FeedForward(_lowerCamelCase , dropout=_lowerCamelCase , activation_fn=_lowerCamelCase , final_dropout=_lowerCamelCase ) # let chunk size default to None __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Optional[Any] = 0 def SCREAMING_SNAKE_CASE_ ( self :Tuple , _lowerCamelCase :Optional[int] , _lowerCamelCase :int ): # Sets chunk feed-forward __SCREAMING_SNAKE_CASE : Union[str, Any] = chunk_size __SCREAMING_SNAKE_CASE : Any = dim def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , _lowerCamelCase :torch.FloatTensor , _lowerCamelCase :Optional[torch.FloatTensor] = None , _lowerCamelCase :Optional[torch.FloatTensor] = None , _lowerCamelCase :Optional[torch.FloatTensor] = None , _lowerCamelCase :Optional[torch.LongTensor] = None , _lowerCamelCase :Dict[str, Any] = None , _lowerCamelCase :Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: __SCREAMING_SNAKE_CASE : Optional[Any] = self.norma(_lowerCamelCase , _lowerCamelCase ) elif self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self.norma( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hidden_dtype=hidden_states.dtype ) else: __SCREAMING_SNAKE_CASE : List[str] = self.norma(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = cross_attention_kwargs if cross_attention_kwargs is not None else {} __SCREAMING_SNAKE_CASE : Optional[int] = self.attna( _lowerCamelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_lowerCamelCase , **_lowerCamelCase , ) if self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE : List[Any] = gate_msa.unsqueeze(1 ) * attn_output __SCREAMING_SNAKE_CASE : Tuple = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __SCREAMING_SNAKE_CASE : int = ( self.norma(_lowerCamelCase , _lowerCamelCase ) if self.use_ada_layer_norm else self.norma(_lowerCamelCase ) ) __SCREAMING_SNAKE_CASE : int = self.attna( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , attention_mask=_lowerCamelCase , **_lowerCamelCase , ) __SCREAMING_SNAKE_CASE : Optional[int] = attn_output + hidden_states # 3. Feed-forward __SCREAMING_SNAKE_CASE : str = self.norma(_lowerCamelCase ) if self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE : Tuple = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __SCREAMING_SNAKE_CASE : str = torch.cat( [self.ff(_lowerCamelCase ) for hid_slice in norm_hidden_states.chunk(_lowerCamelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __SCREAMING_SNAKE_CASE : int = self.ff(_lowerCamelCase ) if self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output __SCREAMING_SNAKE_CASE : Optional[int] = ff_output + hidden_states return hidden_states class snake_case ( nn.Module ): def __init__( self :Any , _lowerCamelCase :int , _lowerCamelCase :Optional[int] = None , _lowerCamelCase :int = 4 , _lowerCamelCase :float = 0.0 , _lowerCamelCase :str = "geglu" , _lowerCamelCase :bool = False , ): super().__init__() __SCREAMING_SNAKE_CASE : Optional[Any] = int(dim * mult ) __SCREAMING_SNAKE_CASE : Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": __SCREAMING_SNAKE_CASE : Optional[Any] = GELU(_lowerCamelCase , _lowerCamelCase ) if activation_fn == "gelu-approximate": __SCREAMING_SNAKE_CASE : Tuple = GELU(_lowerCamelCase , _lowerCamelCase , approximate='''tanh''' ) elif activation_fn == "geglu": __SCREAMING_SNAKE_CASE : Tuple = GEGLU(_lowerCamelCase , _lowerCamelCase ) elif activation_fn == "geglu-approximate": __SCREAMING_SNAKE_CASE : Optional[Any] = ApproximateGELU(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList([] ) # project in self.net.append(_lowerCamelCase ) # project dropout self.net.append(nn.Dropout(_lowerCamelCase ) ) # project out self.net.append(nn.Linear(_lowerCamelCase , _lowerCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :Dict ): for module in self.net: __SCREAMING_SNAKE_CASE : Any = module(_lowerCamelCase ) return hidden_states class snake_case ( nn.Module ): def __init__( self :Any , _lowerCamelCase :int , _lowerCamelCase :int , _lowerCamelCase :str = "none" ): super().__init__() __SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = approximate def SCREAMING_SNAKE_CASE_ ( self :Tuple , _lowerCamelCase :List[str] ): if gate.device.type != "mps": return F.gelu(_lowerCamelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def SCREAMING_SNAKE_CASE_ ( self :int , _lowerCamelCase :Optional[Any] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = self.proj(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = self.gelu(_lowerCamelCase ) return hidden_states class snake_case ( nn.Module ): def __init__( self :Any , _lowerCamelCase :int , _lowerCamelCase :int ): super().__init__() __SCREAMING_SNAKE_CASE : Any = nn.Linear(_lowerCamelCase , dim_out * 2 ) def SCREAMING_SNAKE_CASE_ ( self :List[str] , _lowerCamelCase :str ): if gate.device.type != "mps": return F.gelu(_lowerCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def SCREAMING_SNAKE_CASE_ ( self :str , _lowerCamelCase :List[str] ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self.proj(_lowerCamelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_lowerCamelCase ) class snake_case ( nn.Module ): def __init__( self :Any , _lowerCamelCase :int , _lowerCamelCase :int ): super().__init__() __SCREAMING_SNAKE_CASE : str = nn.Linear(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] , _lowerCamelCase :Union[str, Any] ): __SCREAMING_SNAKE_CASE : str = self.proj(_lowerCamelCase ) return x * torch.sigmoid(1.7_0_2 * x ) class snake_case ( nn.Module ): def __init__( self :str , _lowerCamelCase :Optional[int] , _lowerCamelCase :str ): super().__init__() __SCREAMING_SNAKE_CASE : str = nn.Embedding(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = nn.SiLU() __SCREAMING_SNAKE_CASE : Tuple = nn.Linear(_lowerCamelCase , embedding_dim * 2 ) __SCREAMING_SNAKE_CASE : Tuple = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] , _lowerCamelCase :Tuple , _lowerCamelCase :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Optional[int] = self.linear(self.silu(self.emb(_lowerCamelCase ) ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = torch.chunk(_lowerCamelCase , 2 ) __SCREAMING_SNAKE_CASE : List[str] = self.norm(_lowerCamelCase ) * (1 + scale) + shift return x class snake_case ( nn.Module ): def __init__( self :Optional[int] , _lowerCamelCase :int , _lowerCamelCase :List[str] ): super().__init__() __SCREAMING_SNAKE_CASE : List[Any] = CombinedTimestepLabelEmbeddings(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = nn.SiLU() __SCREAMING_SNAKE_CASE : Any = nn.Linear(_lowerCamelCase , 6 * embedding_dim , bias=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase , eps=1e-6 ) def SCREAMING_SNAKE_CASE_ ( self :Tuple , _lowerCamelCase :str , _lowerCamelCase :List[str] , _lowerCamelCase :Dict , _lowerCamelCase :Dict=None ): __SCREAMING_SNAKE_CASE : Tuple = self.linear(self.silu(self.emb(_lowerCamelCase , _lowerCamelCase , hidden_dtype=_lowerCamelCase ) ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = emb.chunk(6 , dim=1 ) __SCREAMING_SNAKE_CASE : int = self.norm(_lowerCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class snake_case ( nn.Module ): def __init__( self :List[Any] , _lowerCamelCase :int , _lowerCamelCase :int , _lowerCamelCase :int , _lowerCamelCase :Optional[str] = None , _lowerCamelCase :float = 1e-5 ): super().__init__() __SCREAMING_SNAKE_CASE : int = num_groups __SCREAMING_SNAKE_CASE : List[str] = eps if act_fn is None: __SCREAMING_SNAKE_CASE : Tuple = None else: __SCREAMING_SNAKE_CASE : int = get_activation(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = nn.Linear(_lowerCamelCase , out_dim * 2 ) def SCREAMING_SNAKE_CASE_ ( self :int , _lowerCamelCase :Dict , _lowerCamelCase :Any ): if self.act: __SCREAMING_SNAKE_CASE : int = self.act(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = self.linear(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = emb[:, :, None, None] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = emb.chunk(2 , dim=1 ) __SCREAMING_SNAKE_CASE : Tuple = F.group_norm(_lowerCamelCase , self.num_groups , eps=self.eps ) __SCREAMING_SNAKE_CASE : Optional[Any] = x * (1 + scale) + shift return x
674
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'''vocab_file''': '''spiece.model'''} _lowerCamelCase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 _lowerCamelCase = { '''t5-small''': 5_12, '''t5-base''': 5_12, '''t5-large''': 5_12, '''t5-3b''': 5_12, '''t5-11b''': 5_12, } _lowerCamelCase = '''▁''' class snake_case ( __UpperCAmelCase ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self :int , _lowerCamelCase :Optional[Any] , _lowerCamelCase :Union[str, Any]="</s>" , _lowerCamelCase :List[Any]="<unk>" , _lowerCamelCase :Union[str, Any]="<pad>" , _lowerCamelCase :int=1_0_0 , _lowerCamelCase :Union[str, Any]=None , _lowerCamelCase :Optional[Dict[str, Any]] = None , _lowerCamelCase :int=True , **_lowerCamelCase :List[Any] , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = [f'''<extra_id_{i}>''' for i in range(_lowerCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __SCREAMING_SNAKE_CASE : Optional[int] = len(set(filter(lambda _lowerCamelCase : bool('''extra_id''' in str(_lowerCamelCase ) ) , _lowerCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = legacy __SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , extra_ids=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_lowerCamelCase , **_lowerCamelCase , ) __SCREAMING_SNAKE_CASE : Tuple = vocab_file __SCREAMING_SNAKE_CASE : List[str] = extra_ids __SCREAMING_SNAKE_CASE : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @staticmethod def SCREAMING_SNAKE_CASE_ ( _lowerCamelCase :str , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :int ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __SCREAMING_SNAKE_CASE : Any = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _lowerCamelCase , ) return max_model_length @property def SCREAMING_SNAKE_CASE_ ( self :Tuple ): return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): __SCREAMING_SNAKE_CASE : str = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None , _lowerCamelCase :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_lowerCamelCase )) + [1] return ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] def SCREAMING_SNAKE_CASE_ ( self :List[str] ): return list( set(filter(lambda _lowerCamelCase : bool(re.search(r'''<extra_id_\d+>''' , _lowerCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): return [self._convert_token_to_id(_lowerCamelCase ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE_ ( self :Any , _lowerCamelCase :List[int] ): if len(_lowerCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None ): __SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE_ ( self :List[Any] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None ): __SCREAMING_SNAKE_CASE : Optional[Any] = self._add_eos_if_not_present(_lowerCamelCase ) if token_ids_a is None: return token_ids_a else: __SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_eos_if_not_present(_lowerCamelCase ) return token_ids_a + token_ids_a def __getstate__( self :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Any = self.__dict__.copy() __SCREAMING_SNAKE_CASE : List[str] = None return state def __setstate__( self :Optional[Any] , _lowerCamelCase :List[str] ): __SCREAMING_SNAKE_CASE : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_ ( self :int , _lowerCamelCase :"TextInput" , **_lowerCamelCase :str ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: __SCREAMING_SNAKE_CASE : Dict = SPIECE_UNDERLINE + text.replace(_lowerCamelCase , ''' ''' ) return super().tokenize(_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :List[Any] , **_lowerCamelCase :Dict ): if not self.legacy: __SCREAMING_SNAKE_CASE : str = text.startswith(_lowerCamelCase ) if is_first: __SCREAMING_SNAKE_CASE : str = text[1:] __SCREAMING_SNAKE_CASE : Tuple = self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :Optional[Any] ): if token.startswith('''<extra_id_''' ): __SCREAMING_SNAKE_CASE : Tuple = re.match(r'''<extra_id_(\d+)>''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :str , _lowerCamelCase :Optional[int] ): if index < self.sp_model.get_piece_size(): __SCREAMING_SNAKE_CASE : List[Any] = self.sp_model.IdToPiece(_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : Dict = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def SCREAMING_SNAKE_CASE_ ( self :Tuple , _lowerCamelCase :Any ): __SCREAMING_SNAKE_CASE : str = [] __SCREAMING_SNAKE_CASE : Dict = '''''' __SCREAMING_SNAKE_CASE : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCamelCase ) + token __SCREAMING_SNAKE_CASE : List[str] = True __SCREAMING_SNAKE_CASE : str = [] else: current_sub_tokens.append(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = False out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :str , _lowerCamelCase :Optional[str] = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : List[str] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE : Any = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
674
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : Any = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : str = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys UpperCAmelCase__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
545
"""simple docstring""" from math import pi, sqrt, tan def lowercase_ ( _snake_case ): if side_length < 0: raise ValueError("""surface_area_cube() only accepts non-negative values""" ) return 6 * side_length**2 def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): if length < 0 or breadth < 0 or height < 0: raise ValueError("""surface_area_cuboid() only accepts non-negative values""" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowercase_ ( _snake_case ): if radius < 0: raise ValueError("""surface_area_sphere() only accepts non-negative values""" ) return 4 * pi * radius**2 def lowercase_ ( _snake_case ): if radius < 0: raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" ) return 3 * pi * radius**2 def lowercase_ ( _snake_case ,_snake_case ): if radius < 0 or height < 0: raise ValueError("""surface_area_cone() only accepts non-negative values""" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( """surface_area_conical_frustum() only accepts non-negative values""" ) SCREAMING_SNAKE_CASE__ : int = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowercase_ ( _snake_case ,_snake_case ): if radius < 0 or height < 0: raise ValueError("""surface_area_cylinder() only accepts non-negative values""" ) return 2 * pi * radius * (height + radius) def lowercase_ ( _snake_case ,_snake_case ): if torus_radius < 0 or tube_radius < 0: raise ValueError("""surface_area_torus() only accepts non-negative values""" ) if torus_radius < tube_radius: raise ValueError( """surface_area_torus() does not support spindle or self intersecting tori""" ) return 4 * pow(_snake_case ,2 ) * torus_radius * tube_radius def lowercase_ ( _snake_case ,_snake_case ): if length < 0 or width < 0: raise ValueError("""area_rectangle() only accepts non-negative values""" ) return length * width def lowercase_ ( _snake_case ): if side_length < 0: raise ValueError("""area_square() only accepts non-negative values""" ) return side_length**2 def lowercase_ ( _snake_case ,_snake_case ): if base < 0 or height < 0: raise ValueError("""area_triangle() only accepts non-negative values""" ) return (base * height) / 2 def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("""Given three sides do not form a triangle""" ) SCREAMING_SNAKE_CASE__ : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE__ : List[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowercase_ ( _snake_case ,_snake_case ): if base < 0 or height < 0: raise ValueError("""area_parallelogram() only accepts non-negative values""" ) return base * height def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): if basea < 0 or basea < 0 or height < 0: raise ValueError("""area_trapezium() only accepts non-negative values""" ) return 1 / 2 * (basea + basea) * height def lowercase_ ( _snake_case ): if radius < 0: raise ValueError("""area_circle() only accepts non-negative values""" ) return pi * radius**2 def lowercase_ ( _snake_case ,_snake_case ): if radius_x < 0 or radius_y < 0: raise ValueError("""area_ellipse() only accepts non-negative values""" ) return pi * radius_x * radius_y def lowercase_ ( _snake_case ,_snake_case ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("""area_rhombus() only accepts non-negative values""" ) return 1 / 2 * diagonal_a * diagonal_a def lowercase_ ( _snake_case ,_snake_case ): if not isinstance(_snake_case ,_snake_case ) or sides < 3: raise ValueError( """area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides""" ) elif length < 0: raise ValueError( """area_reg_polygon() only accepts non-negative values as \ length of a side""" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f"""Rectangle: {area_rectangle(1_0, 2_0) = }""") print(f"""Square: {area_square(1_0) = }""") print(f"""Triangle: {area_triangle(1_0, 1_0) = }""") print(f"""Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }""") print(f"""Parallelogram: {area_parallelogram(1_0, 2_0) = }""") print(f"""Rhombus: {area_rhombus(1_0, 2_0) = }""") print(f"""Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }""") print(f"""Circle: {area_circle(2_0) = }""") print(f"""Ellipse: {area_ellipse(1_0, 2_0) = }""") print('\nSurface Areas of various geometric shapes: \n') print(f"""Cube: {surface_area_cube(2_0) = }""") print(f"""Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }""") print(f"""Sphere: {surface_area_sphere(2_0) = }""") print(f"""Hemisphere: {surface_area_hemisphere(2_0) = }""") print(f"""Cone: {surface_area_cone(1_0, 2_0) = }""") print(f"""Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }""") print(f"""Cylinder: {surface_area_cylinder(1_0, 2_0) = }""") print(f"""Torus: {surface_area_torus(2_0, 1_0) = }""") print(f"""Equilateral Triangle: {area_reg_polygon(3, 1_0) = }""") print(f"""Square: {area_reg_polygon(4, 1_0) = }""") print(f"""Reqular Pentagon: {area_reg_polygon(5, 1_0) = }""")
545
1
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = tmp_path / '''cache''' _UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = tmp_path / '''cache''' _UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' with contextlib.closing(sqlitea.connect(_SCREAMING_SNAKE_CASE ) ) as con: _UpperCAmelCase = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = tmp_path / '''cache''' _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''tmp.sql''' ) _UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(_SCREAMING_SNAKE_CASE , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() _UpperCAmelCase = iter_sql_file(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = iter_sql_file(_SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = tmp_path / '''cache''' _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''tmp.sql''' ) _UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(_SCREAMING_SNAKE_CASE , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() _UpperCAmelCase = iter_sql_file(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = iter_sql_file(_SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = tmp_path / '''cache''' _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''tmp.sql''' ) _UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_SCREAMING_SNAKE_CASE ).read() with pytest.raises(_SCREAMING_SNAKE_CASE ): SqlDatasetWriter(_SCREAMING_SNAKE_CASE , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
602
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : Optional[Any] = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """vivit""" def __init__( self : int , __UpperCamelCase : Union[str, Any]=2_2_4 , __UpperCamelCase : Any=3_2 , __UpperCamelCase : str=[2, 1_6, 1_6] , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : int=7_6_8 , __UpperCamelCase : List[str]=1_2 , __UpperCamelCase : str=1_2 , __UpperCamelCase : Optional[Any]=3_0_7_2 , __UpperCamelCase : Optional[Any]="gelu_fast" , __UpperCamelCase : Union[str, Any]=0.0 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : List[str]=1e-06 , __UpperCamelCase : Union[str, Any]=True , **__UpperCamelCase : Any , )->Optional[int]: _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = num_frames _UpperCAmelCase = tubelet_size _UpperCAmelCase = num_channels _UpperCAmelCase = qkv_bias super().__init__(**__UpperCamelCase )
602
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase_ : Tuple = logging.get_logger(__name__) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = ["""input_features"""] def __init__( self , snake_case__=80 , snake_case__=16000 , snake_case__=160 , snake_case__=30 , snake_case__=400 , snake_case__=0.0 , snake_case__=False , **snake_case__ , ): """simple docstring""" super().__init__( feature_size=snake_case__ , sampling_rate=snake_case__ , padding_value=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) _SCREAMING_SNAKE_CASE : str = n_fft _SCREAMING_SNAKE_CASE : int = hop_length _SCREAMING_SNAKE_CASE : Tuple = chunk_length _SCREAMING_SNAKE_CASE : Optional[int] = chunk_length * sampling_rate _SCREAMING_SNAKE_CASE : Tuple = self.n_samples // hop_length _SCREAMING_SNAKE_CASE : Any = sampling_rate _SCREAMING_SNAKE_CASE : int = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=snake_case__ , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=snake_case__ , norm="slaney" , mel_scale="slaney" , ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = spectrogram( snake_case__ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) _SCREAMING_SNAKE_CASE : str = log_spec[:, :-1] _SCREAMING_SNAKE_CASE : Union[str, Any] = np.maximum(snake_case__ , log_spec.max() - 8.0 ) _SCREAMING_SNAKE_CASE : Optional[Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ = 0.0 ): """simple docstring""" if attention_mask is not None: _SCREAMING_SNAKE_CASE : int = np.array(snake_case__ , np.intaa ) _SCREAMING_SNAKE_CASE : str = [] for vector, length in zip(snake_case__ , attention_mask.sum(-1 ) ): _SCREAMING_SNAKE_CASE : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _SCREAMING_SNAKE_CASE : Optional[Any] = padding_value normed_input_values.append(snake_case__ ) else: _SCREAMING_SNAKE_CASE : Optional[int] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self , snake_case__ , snake_case__ = True , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = "max_length" , snake_case__ = None , snake_case__ = None , snake_case__ = None , **snake_case__ , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _SCREAMING_SNAKE_CASE : int = isinstance(snake_case__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _SCREAMING_SNAKE_CASE : List[Any] = is_batched_numpy or ( isinstance(snake_case__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _SCREAMING_SNAKE_CASE : Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(snake_case__ , np.ndarray ): _SCREAMING_SNAKE_CASE : Dict = np.asarray(snake_case__ , dtype=np.floataa ) elif isinstance(snake_case__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _SCREAMING_SNAKE_CASE : Any = [np.asarray([raw_speech] ).T] _SCREAMING_SNAKE_CASE : Union[str, Any] = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding _SCREAMING_SNAKE_CASE : List[str] = self.pad( snake_case__ , padding=snake_case__ , max_length=max_length if max_length else self.n_samples , truncation=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _SCREAMING_SNAKE_CASE : Tuple = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format _SCREAMING_SNAKE_CASE : str = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) _SCREAMING_SNAKE_CASE : List[Any] = [self._np_extract_fbank_features(snake_case__ ) for waveform in input_features[0]] if isinstance(input_features[0] , snake_case__ ): _SCREAMING_SNAKE_CASE : Any = [np.asarray(snake_case__ , dtype=np.floataa ) for feature in input_features] else: _SCREAMING_SNAKE_CASE : int = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _SCREAMING_SNAKE_CASE : Dict = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: _SCREAMING_SNAKE_CASE : Optional[int] = padded_inputs.convert_to_tensors(snake_case__ ) return padded_inputs def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
295
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = """naver-clova-ix/donut-base-finetuned-docvqa""" A__ = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) A__ = """document_qa""" A__ = AutoProcessor A__ = VisionEncoderDecoderModel A__ = ["""image""", """text"""] A__ = ["""text"""] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*snake_case__ , **snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" _SCREAMING_SNAKE_CASE : Optional[int] = task_prompt.replace("{user_input}" , snake_case__ ) _SCREAMING_SNAKE_CASE : Tuple = self.pre_processor.tokenizer( snake_case__ , add_special_tokens=snake_case__ , return_tensors="pt" ).input_ids _SCREAMING_SNAKE_CASE : Union[str, Any] = self.pre_processor(snake_case__ , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=snake_case__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=snake_case__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=snake_case__ , ).sequences def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = self.pre_processor.batch_decode(snake_case__ )[0] _SCREAMING_SNAKE_CASE : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) _SCREAMING_SNAKE_CASE : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) _SCREAMING_SNAKE_CASE : Dict = re.sub(r"<.*?>" , "" , snake_case__ , count=1 ).strip() # remove first task start token _SCREAMING_SNAKE_CASE : Dict = self.pre_processor.tokenajson(snake_case__ ) return sequence["answer"]
295
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ :Union[str, Any] = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ :Any = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase__ :Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
150
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = TypeVar("""DatasetType""", Dataset, IterableDataset) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = "first_exhausted" ,): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(_lowerCAmelCase ): if not isinstance(_lowerCAmelCase ,(Dataset, IterableDataset) ): if isinstance(_lowerCAmelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(_lowerCAmelCase )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_lowerCAmelCase ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_lowerCAmelCase ).__name__}.""" ) if i == 0: A_ , A_ : Optional[int] = ( (Dataset, IterableDataset) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,info=_lowerCAmelCase ,split=_lowerCAmelCase ,stopping_strategy=_lowerCAmelCase ) else: return _interleave_iterable_datasets( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,info=_lowerCAmelCase ,split=_lowerCAmelCase ,stopping_strategy=_lowerCAmelCase ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = 0 ,): '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(_lowerCAmelCase ): if not isinstance(_lowerCAmelCase ,(Dataset, IterableDataset) ): if isinstance(_lowerCAmelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(_lowerCAmelCase )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_lowerCAmelCase ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_lowerCAmelCase ).__name__}.""" ) if i == 0: A_ , A_ : Dict = ( (Dataset, IterableDataset) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_lowerCAmelCase ,info=_lowerCAmelCase ,split=_lowerCAmelCase ,axis=_lowerCAmelCase ) else: return _concatenate_iterable_datasets(_lowerCAmelCase ,info=_lowerCAmelCase ,split=_lowerCAmelCase ,axis=_lowerCAmelCase )
569
0
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=False , __a=True , __a="None" , __a=3 , __a=4 , __a=None , ): __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : Optional[Any] = batch_size __lowerCamelCase : Tuple = seq_length __lowerCamelCase : str = is_training __lowerCamelCase : int = use_input_mask __lowerCamelCase : List[str] = use_token_type_ids __lowerCamelCase : Any = use_labels __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : Optional[Any] = hidden_size __lowerCamelCase : Any = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : List[Any] = intermediate_size __lowerCamelCase : Optional[int] = hidden_act __lowerCamelCase : Tuple = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : List[Any] = max_position_embeddings __lowerCamelCase : Optional[int] = type_vocab_size __lowerCamelCase : Dict = type_sequence_label_size __lowerCamelCase : Optional[int] = initializer_range __lowerCamelCase : str = num_labels __lowerCamelCase : List[str] = num_choices __lowerCamelCase : Tuple = relative_attention __lowerCamelCase : Tuple = position_biased_input __lowerCamelCase : Dict = pos_att_type __lowerCamelCase : int = scope def snake_case_ ( self ): __lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase : Optional[Any] = None if self.use_input_mask: __lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowerCamelCase : int = None if self.use_token_type_ids: __lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase : Any = None __lowerCamelCase : Dict = None __lowerCamelCase : Union[str, Any] = None if self.use_labels: __lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase : int = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def snake_case_ ( self ): __lowerCamelCase : Any = self.get_config() __lowerCamelCase : Dict = 300 return config def snake_case_ ( self , __a ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def snake_case_ ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCamelCase : Tuple = DebertaModel(config=__a ) model.to(__a ) model.eval() __lowerCamelCase : Tuple = model(__a , attention_mask=__a , token_type_ids=__a )[0] __lowerCamelCase : Optional[Any] = model(__a , token_type_ids=__a )[0] __lowerCamelCase : Dict = model(__a )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def snake_case_ ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCamelCase : List[Any] = DebertaForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowerCamelCase : Optional[Any] = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCamelCase : int = self.num_labels __lowerCamelCase : List[str] = DebertaForSequenceClassification(__a ) model.to(__a ) model.eval() __lowerCamelCase : Dict = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__a ) def snake_case_ ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCamelCase : Optional[int] = self.num_labels __lowerCamelCase : str = DebertaForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowerCamelCase : List[Any] = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCamelCase : List[str] = DebertaForQuestionAnswering(config=__a ) model.to(__a ) model.eval() __lowerCamelCase : Tuple = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self ): __lowerCamelCase : Dict = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : List[str] = config_and_inputs __lowerCamelCase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' __a : Tuple = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __a : int = ( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) __a : int = True __a : Optional[Any] = False __a : Tuple = False __a : Optional[Any] = False __a : Tuple = False def snake_case_ ( self ): __lowerCamelCase : Union[str, Any] = DebertaModelTester(self ) __lowerCamelCase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def snake_case_ ( self ): self.config_tester.run_common_tests() def snake_case_ ( self ): __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__a ) def snake_case_ ( self ): __lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__a ) def snake_case_ ( self ): __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__a ) def snake_case_ ( self ): __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__a ) def snake_case_ ( self ): __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__a ) @slow def snake_case_ ( self ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Any = DebertaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_torch @require_sentencepiece @require_tokenizers class __lowercase( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def snake_case_ ( self ): pass @slow def snake_case_ ( self ): __lowerCamelCase : Dict = DebertaModel.from_pretrained('microsoft/deberta-base' ) __lowerCamelCase : str = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __lowerCamelCase : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCamelCase : List[Any] = model(__a , attention_mask=__a )[0] # compare the actual values for a slice. __lowerCamelCase : Optional[int] = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1E-4 ) , f'''{output[:, 1:4, 1:4]}''' )
263
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig a_ : Tuple = logging.get_logger(__name__) # General docstring a_ : List[str] = '''PoolFormerConfig''' # Base docstring a_ : Optional[Any] = '''sail/poolformer_s12''' a_ : List[Any] = [1, 5_12, 7, 7] # Image classification docstring a_ : Any = '''sail/poolformer_s12''' a_ : Optional[int] = '''tabby, tabby cat''' a_ : Optional[Any] = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCAmelCase ( A__: Optional[Any] , A__: float = 0.0 , A__: bool = False ) -> Tuple: if drop_prob == 0.0 or not training: return input __lowerCamelCase : Dict = 1 - drop_prob __lowerCamelCase : List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __lowerCamelCase : List[Any] = keep_prob + torch.rand(A__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize __lowerCamelCase : Any = input.div(A__ ) * random_tensor return output class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a = None ): super().__init__() __lowerCamelCase : int = drop_prob def snake_case_ ( self , __a ): return drop_path(__a , self.drop_prob , self.training ) def snake_case_ ( self ): return "p={}".format(self.drop_prob ) class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a , __a , __a , __a , __a , __a=None ): super().__init__() __lowerCamelCase : int = patch_size if isinstance(__a , collections.abc.Iterable ) else (patch_size, patch_size) __lowerCamelCase : int = stride if isinstance(__a , collections.abc.Iterable ) else (stride, stride) __lowerCamelCase : Optional[int] = padding if isinstance(__a , collections.abc.Iterable ) else (padding, padding) __lowerCamelCase : Optional[Any] = nn.Convad(__a , __a , kernel_size=__a , stride=__a , padding=__a ) __lowerCamelCase : List[str] = norm_layer(__a ) if norm_layer else nn.Identity() def snake_case_ ( self , __a ): __lowerCamelCase : List[Any] = self.projection(__a ) __lowerCamelCase : Dict = self.norm(__a ) return embeddings class __lowercase( nn.GroupNorm ): '''simple docstring''' def __init__( self , __a , **__a ): super().__init__(1 , __a , **__a ) class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a ): super().__init__() __lowerCamelCase : str = nn.AvgPoolad(__a , stride=1 , padding=pool_size // 2 , count_include_pad=__a ) def snake_case_ ( self , __a ): return self.pool(__a ) - hidden_states class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a , __a , __a , __a ): super().__init__() __lowerCamelCase : Any = nn.Convad(__a , __a , 1 ) __lowerCamelCase : Dict = nn.Convad(__a , __a , 1 ) __lowerCamelCase : List[Any] = PoolFormerDropPath(__a ) if isinstance(config.hidden_act , __a ): __lowerCamelCase : List[str] = ACTaFN[config.hidden_act] else: __lowerCamelCase : str = config.hidden_act def snake_case_ ( self , __a ): __lowerCamelCase : int = self.conva(__a ) __lowerCamelCase : Dict = self.act_fn(__a ) __lowerCamelCase : List[str] = self.drop(__a ) __lowerCamelCase : int = self.conva(__a ) __lowerCamelCase : str = self.drop(__a ) return hidden_states class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a , __a , __a , __a , __a , __a ): super().__init__() __lowerCamelCase : Tuple = PoolFormerPooling(__a ) __lowerCamelCase : Union[str, Any] = PoolFormerOutput(__a , __a , __a , __a ) __lowerCamelCase : List[Any] = PoolFormerGroupNorm(__a ) __lowerCamelCase : List[Any] = PoolFormerGroupNorm(__a ) # Useful for training neural nets __lowerCamelCase : Any = PoolFormerDropPath(__a ) if drop_path > 0.0 else nn.Identity() __lowerCamelCase : Tuple = config.use_layer_scale if config.use_layer_scale: __lowerCamelCase : List[str] = nn.Parameter( config.layer_scale_init_value * torch.ones((__a) ) , requires_grad=__a ) __lowerCamelCase : Optional[int] = nn.Parameter( config.layer_scale_init_value * torch.ones((__a) ) , requires_grad=__a ) def snake_case_ ( self , __a ): if self.use_layer_scale: __lowerCamelCase : Union[str, Any] = self.pooling(self.before_norm(__a ) ) __lowerCamelCase : Any = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection __lowerCamelCase : Optional[Any] = hidden_states + self.drop_path(__a ) __lowerCamelCase : Tuple = () __lowerCamelCase : Optional[Any] = self.output(self.after_norm(__a ) ) __lowerCamelCase : List[Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection __lowerCamelCase : List[Any] = hidden_states + self.drop_path(__a ) __lowerCamelCase : Optional[Any] = (output,) + outputs return outputs else: __lowerCamelCase : Tuple = self.drop_path(self.pooling(self.before_norm(__a ) ) ) # First residual connection __lowerCamelCase : List[str] = pooling_output + hidden_states __lowerCamelCase : int = () # Second residual connection inside the PoolFormerOutput block __lowerCamelCase : List[str] = self.drop_path(self.output(self.after_norm(__a ) ) ) __lowerCamelCase : str = hidden_states + layer_output __lowerCamelCase : int = (output,) + outputs return outputs class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a ): super().__init__() __lowerCamelCase : int = config # stochastic depth decay rule __lowerCamelCase : int = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings __lowerCamelCase : List[str] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) __lowerCamelCase : Optional[int] = nn.ModuleList(__a ) # Transformer blocks __lowerCamelCase : Any = [] __lowerCamelCase : int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers __lowerCamelCase : Optional[int] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __a , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__a ) ) __lowerCamelCase : str = nn.ModuleList(__a ) def snake_case_ ( self , __a , __a=False , __a=True ): __lowerCamelCase : Union[str, Any] = () if output_hidden_states else None __lowerCamelCase : int = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): __lowerCamelCase , __lowerCamelCase : Any = layers # Get patch embeddings from hidden_states __lowerCamelCase : Any = embedding_layer(__a ) # Send the embeddings through the blocks for _, blk in enumerate(__a ): __lowerCamelCase : Optional[int] = blk(__a ) __lowerCamelCase : Tuple = layer_outputs[0] if output_hidden_states: __lowerCamelCase : Union[str, Any] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__a , hidden_states=__a ) class __lowercase( lowercase__ ): '''simple docstring''' __a : Tuple = PoolFormerConfig __a : Tuple = 'poolformer' __a : Optional[int] = 'pixel_values' __a : Optional[Any] = True def snake_case_ ( self , __a ): if isinstance(__a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__a , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def snake_case_ ( self , __a , __a=False ): if isinstance(__a , __a ): __lowerCamelCase : Union[str, Any] = value a_ : Union[str, Any] = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a_ : List[str] = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , lowercase__ , ) class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , __a ): super().__init__(__a ) __lowerCamelCase : Optional[Any] = config __lowerCamelCase : Any = PoolFormerEncoder(__a ) # Initialize weights and apply final processing self.post_init() def snake_case_ ( self ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__a , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case_ ( self , __a = None , __a = None , __a = None , ): __lowerCamelCase : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : Dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) __lowerCamelCase : Any = self.encoder( __a , output_hidden_states=__a , return_dict=__a , ) __lowerCamelCase : int = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__a , hidden_states=encoder_outputs.hidden_states , ) class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a ): super().__init__() __lowerCamelCase : Optional[Any] = nn.Linear(config.hidden_size , config.hidden_size ) def snake_case_ ( self , __a ): __lowerCamelCase : List[Any] = self.dense(__a ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , lowercase__ , ) class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , __a ): super().__init__(__a ) __lowerCamelCase : str = config.num_labels __lowerCamelCase : Optional[Any] = PoolFormerModel(__a ) # Final norm __lowerCamelCase : str = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head __lowerCamelCase : Optional[Any] = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case_ ( self , __a = None , __a = None , __a = None , __a = None , ): __lowerCamelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : Tuple = self.poolformer( __a , output_hidden_states=__a , return_dict=__a , ) __lowerCamelCase : int = outputs[0] __lowerCamelCase : Optional[int] = self.classifier(self.norm(__a ).mean([-2, -1] ) ) __lowerCamelCase : Union[str, Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCamelCase : Any = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCamelCase : Any = 'single_label_classification' else: __lowerCamelCase : Optional[Any] = 'multi_label_classification' if self.config.problem_type == "regression": __lowerCamelCase : int = MSELoss() if self.num_labels == 1: __lowerCamelCase : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowerCamelCase : Optional[Any] = loss_fct(__a , __a ) elif self.config.problem_type == "single_label_classification": __lowerCamelCase : Tuple = CrossEntropyLoss() __lowerCamelCase : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowerCamelCase : List[Any] = BCEWithLogitsLoss() __lowerCamelCase : Optional[Any] = loss_fct(__a , __a ) if not return_dict: __lowerCamelCase : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__a , logits=__a , hidden_states=outputs.hidden_states )
263
1
"""simple docstring""" class UpperCamelCase__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ = "" , SCREAMING_SNAKE_CASE__ = False ) -> None: # Mapping from the first character of the prefix of the node A__ = {} # A node will be a leaf if the tree contains its word A__ = is_leaf A__ = prefix def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> tuple[str, str, str]: A__ = 0 for q, w in zip(self.prefix , SCREAMING_SNAKE_CASE__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> None: for word in words: self.insert(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: A__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: A__ = RadixNode(prefix=SCREAMING_SNAKE_CASE__ , is_leaf=SCREAMING_SNAKE_CASE__ ) else: A__ = self.nodes[word[0]] A__ , A__ , A__ = incoming_node.match( SCREAMING_SNAKE_CASE__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: A__ = remaining_prefix A__ = self.nodes[matching_string[0]] A__ = RadixNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = aux_node if remaining_word == "": A__ = True else: self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> bool: A__ = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE__ ) if not incoming_node: return False else: A__ , A__ , A__ = incoming_node.match( SCREAMING_SNAKE_CASE__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> bool: A__ = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE__ ) if not incoming_node: return False else: A__ , A__ , A__ = incoming_node.match( SCREAMING_SNAKE_CASE__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(SCREAMING_SNAKE_CASE__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: A__ = list(self.nodes.values() )[0] A__ = merging_node.is_leaf self.prefix += merging_node.prefix A__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: A__ = False # If there is 1 edge, we merge it with its child else: A__ = list(incoming_node.nodes.values() )[0] A__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix A__ = merging_node.nodes return True def snake_case__ ( self , SCREAMING_SNAKE_CASE__ = 0 ) -> None: if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def _lowerCamelCase ( ) -> bool: """simple docstring""" A__ = "banana bananas bandana band apple all beast".split() A__ = RadixNode() root.insert_many(UpperCAmelCase_ ) assert all(root.find(UpperCAmelCase_ ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def _lowerCamelCase ( ) -> None: """simple docstring""" assert test_trie() def _lowerCamelCase ( ) -> None: """simple docstring""" A__ = RadixNode() A__ = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(UpperCAmelCase_ ) print("Words:", UpperCAmelCase_ ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
104
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCAmelCase : List[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: __lowercase : Union[str, Any] = state_dict.pop(__lowerCAmelCase ) __lowercase : Optional[Any] = val def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: __lowercase : List[str] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowercase : List[Any] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) __lowercase : Tuple = value else: __lowercase : Union[str, Any] = value return new_state_dict def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=False ) -> List[Any]: __lowercase : Tuple = '''''' if is_panoptic: __lowercase : Optional[int] = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowercase : List[str] = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) __lowercase : Union[str, Any] = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase : int = in_proj_weight[:256, :] __lowercase : List[str] = in_proj_bias[:256] __lowercase : Tuple = in_proj_weight[256:512, :] __lowercase : Tuple = in_proj_bias[256:512] __lowercase : str = in_proj_weight[-256:, :] __lowercase : Optional[Any] = in_proj_bias[-256:] def UpperCAmelCase_ ( ) -> List[str]: __lowercase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase : List[str] = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> int: __lowercase : Optional[int] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __lowercase : int = '''resnet101''' if "dc5" in model_name: __lowercase : Optional[Any] = True __lowercase : int = '''panoptic''' in model_name if is_panoptic: __lowercase : Optional[int] = 250 else: __lowercase : List[Any] = 91 __lowercase : int = '''huggingface/label-files''' __lowercase : int = '''coco-detection-id2label.json''' __lowercase : Optional[int] = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) __lowercase : Union[str, Any] = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} __lowercase : List[Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load image processor __lowercase : Optional[Any] = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __lowercase : List[str] = ConditionalDetrImageProcessor(format=__lowerCAmelCase ) # prepare image __lowercase : Union[str, Any] = prepare_img() __lowercase : List[Any] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ) __lowercase : str = encoding['''pixel_values'''] logger.info(F'Converting model {model_name}...' ) # load original model from torch hub __lowercase : Tuple = torch.hub.load('''DeppMeng/ConditionalDETR''' , __lowerCAmelCase , pretrained=__lowerCAmelCase ).eval() __lowercase : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __lowercase : Tuple = '''conditional_detr.''' + src rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowercase : Any = rename_backbone_keys(__lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowerCAmelCase , is_panoptic=__lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowercase : Any = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __lowercase : Union[str, Any] = state_dict.pop(__lowerCAmelCase ) __lowercase : Tuple = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowercase : str = state_dict.pop(__lowerCAmelCase ) __lowercase : Tuple = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __lowercase : Any = state_dict.pop(__lowerCAmelCase ) __lowercase : List[str] = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __lowercase : Any = state_dict.pop(__lowerCAmelCase ) __lowercase : List[str] = val # finally, create HuggingFace model and load state dict __lowercase : Union[str, Any] = ConditionalDetrForSegmentation(__lowerCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() model.push_to_hub(repo_id=__lowerCAmelCase , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion __lowercase : Optional[Any] = conditional_detr(__lowerCAmelCase ) __lowercase : Dict = model(__lowerCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
509
0
class __lowerCAmelCase : def __init__( self ): '''simple docstring''' __lowerCamelCase = {} def lowerCamelCase ( self ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(__UpperCAmelCase , ''' -> ''' , ''' -> '''.join([str(__UpperCAmelCase ) for j in self.vertex[i]] ) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__UpperCAmelCase ) else: # else make a new vertex __lowerCamelCase = [to_vertex] def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = True print(__UpperCAmelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": a_ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
708
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = RoFormerTokenizer lowerCAmelCase__ = RoFormerTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **__UpperCAmelCase ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''永和服装饰品有限公司,今天天气非常好''' __lowerCamelCase = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_tokenizer() __lowerCamelCase ,__lowerCamelCase = self.get_chinese_input_output_texts() __lowerCamelCase = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , output_text.split() ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase ,__lowerCamelCase = self.get_chinese_input_output_texts() __lowerCamelCase = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , output_text.split() ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' pass
622
0
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version A = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any]) -> List[str]: '''simple docstring''' if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''') if not ops[op](version.parse(lowerCAmelCase__) , version.parse(lowerCAmelCase__)): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''') def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None) -> None: '''simple docstring''' _lowercase : Tuple = F'''\n{hint}''' if hint is not None else '' # non-versioned check if re.match(r'^[\w_\-\d]+$' , lowerCAmelCase__): _lowercase , _lowercase , _lowercase : List[str] = requirement, None, None else: _lowercase : Union[str, Any] = re.findall(r'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , lowerCAmelCase__) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' F''' got {requirement}''') _lowercase , _lowercase : List[Any] = match[0] _lowercase : Union[str, Any] = want_full.split(',') # there could be multiple requirements _lowercase : Any = {} for w in want_range: _lowercase : Tuple = re.findall(r'^([\s!=<>]{1,2})(.+)' , lowerCAmelCase__) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' F''' but got {requirement}''') _lowercase , _lowercase : Any = match[0] _lowercase : Dict = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys())}, but got {op}''') # special case if pkg == "python": _lowercase : List[Any] = '.'.join([str(lowerCAmelCase__) for x in sys.version_info[:3]]) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) return # check if any version is installed try: _lowercase : Dict = importlib.metadata.version(lowerCAmelCase__) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''') # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Any) -> int: '''simple docstring''' _lowercase : Optional[int] = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(lowerCAmelCase__ , lowerCAmelCase__)
125
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : str ,UpperCamelCase : Any ,UpperCamelCase : int ) -> Dict: super().__init__() self.register_modules(unet=UpperCamelCase ,scheduler=UpperCamelCase ) @torch.no_grad() def __call__( self : Any ,UpperCamelCase : int = 1 ,UpperCamelCase : int = 100 ,UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,UpperCamelCase : Optional[float] = None ,UpperCamelCase : bool = True ,) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: _lowercase : Dict = self.unet.config.sample_size / self.unet.config.sample_rate _lowercase : List[str] = audio_length_in_s * self.unet.config.sample_rate _lowercase : Optional[Any] = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) _lowercase : Optional[int] = int(UpperCamelCase ) if sample_size % down_scale_factor != 0: _lowercase : Dict = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) _lowercase : Optional[Any] = int(UpperCamelCase ) _lowercase : List[Any] = next(iter(self.unet.parameters() ) ).dtype _lowercase : Optional[Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(UpperCamelCase ,UpperCamelCase ) and len(UpperCamelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _lowercase : int = randn_tensor(UpperCamelCase ,generator=UpperCamelCase ,device=self.device ,dtype=UpperCamelCase ) # set step values self.scheduler.set_timesteps(UpperCamelCase ,device=audio.device ) _lowercase : Optional[Any] = self.scheduler.timesteps.to(UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowercase : str = self.unet(UpperCamelCase ,UpperCamelCase ).sample # 2. compute previous image: x_t -> t_t-1 _lowercase : Dict = self.scheduler.step(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ).prev_sample _lowercase : Optional[int] = audio.clamp(-1 ,1 ).float().cpu().numpy() _lowercase : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=UpperCamelCase )
125
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" __snake_case : List[str] = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=A , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=A , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=A ) return parser.parse_args() def _SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" __snake_case : Dict = parse_args() # Import training_script as a module. __snake_case : List[str] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __snake_case : Optional[Any] = script_fpath.stem __snake_case : Optional[int] = importlib.import_module(A ) # Patch sys.argv __snake_case : Union[str, Any] = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
713
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( A : list ) -> list: """simple docstring""" __snake_case : Tuple = False while is_sorted is False: # Until all the indices are traversed keep looping __snake_case : Optional[Any] = True for i in range(0 , len(A ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __snake_case ,__snake_case : int = input_list[i + 1], input_list[i] # swapping if elements not in order __snake_case : List[Any] = False for i in range(1 , len(A ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __snake_case ,__snake_case : Tuple = input_list[i + 1], input_list[i] # swapping if elements not in order __snake_case : Any = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') __A = [int(x) for x in input().split()] # inputing elements of the list in one line __A = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
61
0
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE ={ "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
477
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = IFImgaImgSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) lowercase = PipelineTesterMixin.required_optional_params - {'latents'} def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return self._get_superresolution_dummy_components() def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=0 ) -> List[str]: '''simple docstring''' if str(__UpperCamelCase ).startswith('mps' ): lowercase_ : Any = torch.manual_seed(__UpperCamelCase ) else: lowercase_ : int = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) lowercase_ : Optional[int] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) lowercase_ : List[str] = floats_tensor((1, 3, 16, 16) ,rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) lowercase_ : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' ,reason='float16 requires CUDA' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' self._test_save_load_local() def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 ,)
477
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ : Tuple = 16 a__ : Any = 32 def _lowerCAmelCase ( A__ , A__ = 16 ): lowercase__ = AutoTokenizer.from_pretrained('bert-base-cased' ) lowercase__ = load_dataset('glue' , 'mrpc' ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( A__ , padding='longest' , max_length=A__ , pad_to_multiple_of=A__ , return_tensors='pt' , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) lowercase__ = DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a__ : Optional[Any] = mocked_dataloaders # noqa: F811 def _lowerCAmelCase ( A__ , A__ ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , A__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=A__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config['lr'] lowercase__ = int(config['num_epochs'] ) lowercase__ = int(config['seed'] ) lowercase__ = int(config['batch_size'] ) lowercase__ = evaluate.load('glue' , 'mrpc' ) set_seed(A__ ) lowercase__, lowercase__ = get_dataloaders(A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=A__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=100 , num_training_steps=(len(A__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # Now we train the model for epoch in range(A__ ): model.train() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(A__ ): lowercase__ = model(**A__ ) lowercase__ = output.loss accelerator.backward(A__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__, lowercase__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=A__ , references=A__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , A__ ) def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=A__ , default=A__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=A__ , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowercase__ = parser.parse_args() lowercase__ = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
622
from sklearn.metrics import matthews_corrcoef import datasets a__ : Any = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" a__ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" a__ : str = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32'), 'references': datasets.Value('int32'), }) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any]=None) -> Any: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(lowerCAmelCase , lowerCAmelCase , sample_weight=lowerCAmelCase)), }
622
1
'''simple docstring''' lowercase__ : List[Any] = 2_56 # Modulus to hash a string lowercase__ : Union[str, Any] = 1_00_00_03 def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> bool: __A : List[Any] = len(a_ ) __A : List[Any] = len(a_ ) if p_len > t_len: return False __A : Optional[int] = 0 __A : str = 0 __A : Union[str, Any] = 1 # Calculating the hash of pattern and substring of text for i in range(a_ ): __A : Optional[int] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __A : Dict = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __A : int = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __A : Tuple = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _lowerCAmelCase ( ) -> None: __A : Any = '''abc1abc12''' __A : str = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __A : List[Any] = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ ) # Test 2) __A : List[str] = '''ABABX''' __A : Optional[int] = '''ABABZABABYABABX''' assert rabin_karp(a_ , a_ ) # Test 3) __A : List[Any] = '''AAAB''' __A : int = '''ABAAAAAB''' assert rabin_karp(a_ , a_ ) # Test 4) __A : Tuple = '''abcdabcy''' __A : Optional[Any] = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(a_ , a_ ) # Test 5) __A : List[Any] = '''Lü''' __A : List[str] = '''Lüsai''' assert rabin_karp(a_ , a_ ) __A : Optional[int] = '''Lue''' assert not rabin_karp(a_ , a_ ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
718
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : Union[str, Any] = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> str: __A : int = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 10_24, 'hidden_size': 7_68, 'max_length': 5_12, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 10_24, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } __A : Any = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __A : Any = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=__snake_case , output_all_encodings=__snake_case , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , __snake_case ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __A : Optional[int] = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __A : int = os.path.join(get_home_dir() , 'models' ) __A : Optional[int] = _load_vocab(__snake_case , __snake_case , __snake_case , cls=__snake_case ) __A : List[Any] = nlp.model.BERTModel( __snake_case , len(__snake_case ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=__snake_case , use_token_type_embed=__snake_case , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=__snake_case , use_decoder=__snake_case , ) original_bort.load_parameters(__snake_case , cast_dtype=__snake_case , ignore_extra=__snake_case ) __A : Any = original_bort._collect_params_with_prefix() # Build our config 🤗 __A : Dict = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(__snake_case ), } __A : Optional[int] = BertConfig.from_dict(__snake_case ) __A : Any = BertForMaskedLM(__snake_case ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__snake_case : List[str] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__snake_case : Union[str, Any] , __snake_case : int ): __A : str = hf_param.shape __A : int = to_torch(params[gluon_param] ) __A : Any = gluon_param.shape assert ( shape_hf == shape_gluon ), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param __A : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __A : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __A : Any = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __A : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __A : Optional[int] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __A : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __A : BertSelfAttention = layer.attention.self __A : Optional[Any] = check_and_map_params( self_attn.key.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) __A : Optional[int] = check_and_map_params( self_attn.key.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) __A : List[Any] = check_and_map_params( self_attn.query.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) __A : Optional[Any] = check_and_map_params( self_attn.query.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) __A : Optional[Any] = check_and_map_params( self_attn.value.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) __A : str = check_and_map_params( self_attn.value.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output __A : BertSelfOutput = layer.attention.output __A : Optional[Any] = check_and_map_params( self_output.dense.bias , f'encoder.transformer_cells.{i}.proj.bias' ) __A : Union[str, Any] = check_and_map_params( self_output.dense.weight , f'encoder.transformer_cells.{i}.proj.weight' ) __A : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.layer_norm.beta' ) __A : Optional[Any] = check_and_map_params( self_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate __A : BertIntermediate = layer.intermediate __A : Optional[int] = check_and_map_params( intermediate.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) __A : str = check_and_map_params( intermediate.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output __A : BertOutput = layer.output __A : List[str] = check_and_map_params( bert_output.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) __A : Union[str, Any] = check_and_map_params( bert_output.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) __A : List[Any] = check_and_map_params( bert_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) __A : Any = check_and_map_params( bert_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __A : List[Any] = RobertaTokenizer.from_pretrained('roberta-base' ) __A : int = tokenizer.encode_plus(__snake_case )['input_ids'] # Get gluon output __A : List[Any] = mx.nd.array([input_ids] ) __A : Optional[int] = original_bort(inputs=__snake_case , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__snake_case ) __A : List[Any] = BertModel.from_pretrained(__snake_case ) hf_bort_model.eval() __A : Dict = tokenizer.encode_plus(__snake_case , return_tensors='pt' ) __A : List[Any] = hf_bort_model(**__snake_case )[0] __A : Tuple = output_gluon[0].asnumpy() __A : Any = output_hf[0].detach().numpy() __A : int = np.max(np.abs(hf_layer - gluon_layer ) ).item() __A : str = np.allclose(__snake_case , __snake_case , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , __snake_case ) if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : List[Any] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
338
0
"""simple docstring""" from sklearn.metrics import recall_score import datasets SCREAMING_SNAKE_CASE_ = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" SCREAMING_SNAKE_CASE_ = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" SCREAMING_SNAKE_CASE_ = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def a_ ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'] , ) def a_ ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=1 , lowercase_="binary" , lowercase_=None , lowercase_="warn" , ) -> List[str]: UpperCAmelCase = recall_score( _lowercase , _lowercase , labels=_lowercase , pos_label=_lowercase , average=_lowercase , sample_weight=_lowercase , zero_division=_lowercase , ) return {"recall": float(_lowercase ) if score.size == 1 else score}
373
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off _lowercase : Optional[Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] _lowercase : List[str] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class _UpperCamelCase ( a__ ): """simple docstring""" lowerCAmelCase = "whisper" lowerCAmelCase = ["past_key_values"] lowerCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , a__=5_1865 , a__=80 , a__=6 , a__=4 , a__=6 , a__=4 , a__=1536 , a__=1536 , a__=0.0 , a__=0.0 , a__=5_0257 , a__=True , a__=True , a__="gelu" , a__=256 , a__=0.0 , a__=0.0 , a__=0.0 , a__=0.02 , a__=False , a__=1500 , a__=448 , a__=5_0256 , a__=5_0256 , a__=5_0256 , a__=None , a__=[220, 5_0256] , a__=False , a__=256 , a__=False , a__=0.05 , a__=10 , a__=2 , a__=0.0 , a__=10 , a__=0 , a__=7 , **a__ , ) -> Tuple: A = vocab_size A = num_mel_bins A = d_model A = encoder_layers A = encoder_attention_heads A = decoder_layers A = decoder_attention_heads A = decoder_ffn_dim A = encoder_ffn_dim A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True A = max_source_positions A = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. A = classifier_proj_size A = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A = apply_spec_augment A = mask_time_prob A = mask_time_length A = mask_time_min_masks A = mask_feature_prob A = mask_feature_length A = mask_feature_min_masks A = median_filter_width super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , suppress_tokens=lowerCamelCase_ , begin_suppress_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) class _UpperCamelCase ( a__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: A = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: A = {0: """batch"""} else: A = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction="""inputs""" ) return common_inputs def _UpperCAmelCase ( self , a__ , a__ = -1 , a__ = -1 , a__ = False , a__ = None , a__ = 2_2050 , a__ = 5.0 , a__ = 220 , ) -> Mapping[str, Any]: A = OrderedDict() A = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase_ , framework=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , time_duration=lowerCamelCase_ , frequency=lowerCamelCase_ , ) A = encoder_inputs["""input_features"""].shape[2] A = encoder_sequence_length // 2 if self.use_past else seq_length A = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) A = encoder_inputs.pop("""input_features""" ) A = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: A = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _UpperCAmelCase ( self ) -> float: return 1e-3
710
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = ['image_processor', 'tokenizer'] lowerCAmelCase = 'ViltImageProcessor' lowerCAmelCase = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , a__=None , a__=None , **a__ ) -> Any: A = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , a__ , ) A = kwargs.pop("""feature_extractor""" ) A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(a__ , a__ ) A = self.image_processor def __call__( self , a__ , a__ = None , a__ = True , a__ = False , a__ = None , a__ = None , a__ = 0 , a__ = None , a__ = None , a__ = None , a__ = False , a__ = False , a__ = False , a__ = False , a__ = True , a__ = None , **a__ , ) -> BatchEncoding: A = self.tokenizer( text=a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ , max_length=a__ , stride=a__ , pad_to_multiple_of=a__ , return_token_type_ids=a__ , return_attention_mask=a__ , return_overflowing_tokens=a__ , return_special_tokens_mask=a__ , return_offsets_mapping=a__ , return_length=a__ , verbose=a__ , return_tensors=a__ , **a__ , ) # add pixel_values + pixel_mask A = self.image_processor(a__ , return_tensors=a__ ) encoding.update(a__ ) return encoding def _UpperCAmelCase ( self , *a__ , **a__ ) -> Union[str, Any]: return self.tokenizer.batch_decode(*a__ , **a__ ) def _UpperCAmelCase ( self , *a__ , **a__ ) -> Any: return self.tokenizer.decode(*a__ , **a__ ) @property def _UpperCAmelCase ( self ) -> int: A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCAmelCase ( self ) -> str: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , a__ , ) return self.image_processor_class @property def _UpperCAmelCase ( self ) -> str: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , a__ , ) return self.image_processor
546
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _lowerCamelCase = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _lowerCamelCase = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _lowerCamelCase = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _lowerCamelCase = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _lowerCamelCase = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_MAPPING _lowerCamelCase = auto_class_update(FlaxAutoModel) class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCamelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCamelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCamelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCamelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCamelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCamelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCamelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCamelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCamelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCamelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
6
from torch import nn def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
6
1
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) class UpperCAmelCase_ ( _A ): '''simple docstring''' def _lowercase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : str=None ) -> int: """simple docstring""" __magic_name__ = self.layer[current_layer](UpperCamelCase__ , UpperCamelCase__ , head_mask[current_layer] ) __magic_name__ = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _A , ) class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Dict ) -> Dict: """simple docstring""" super().__init__(UpperCamelCase__ ) __magic_name__ = BertEncoderWithPabee(UpperCamelCase__ ) self.init_weights() __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = 0 def _lowercase ( self : Tuple , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" __magic_name__ = threshold def _lowercase ( self : str , UpperCamelCase__ : Dict ) -> List[Any]: """simple docstring""" __magic_name__ = patience def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" __magic_name__ = 0 __magic_name__ = 0 def _lowercase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.inference_layers_num / self.inference_instances_num __magic_name__ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(UpperCamelCase__ ) @add_start_docstrings_to_model_forward(UpperCamelCase__ ) def _lowercase ( self : List[str] , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Tuple=False , ) -> List[str]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: __magic_name__ = input_ids.size() elif inputs_embeds is not None: __magic_name__ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) __magic_name__ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __magic_name__ = torch.ones(UpperCamelCase__ , device=UpperCamelCase__ ) if token_type_ids is None: __magic_name__ = torch.zeros(UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __magic_name__ = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __magic_name__ , __magic_name__ , __magic_name__ = encoder_hidden_states.size() __magic_name__ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __magic_name__ = torch.ones(UpperCamelCase__ , device=UpperCamelCase__ ) __magic_name__ = self.invert_attention_mask(UpperCamelCase__ ) else: __magic_name__ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __magic_name__ = self.get_head_mask(UpperCamelCase__ , self.config.num_hidden_layers ) __magic_name__ = self.embeddings( input_ids=UpperCamelCase__ , position_ids=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ ) __magic_name__ = embedding_output if self.training: __magic_name__ = [] for i in range(self.config.num_hidden_layers ): __magic_name__ = self.encoder.adaptive_forward( UpperCamelCase__ , current_layer=UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ ) __magic_name__ = self.pooler(UpperCamelCase__ ) __magic_name__ = output_layers[i](output_dropout(UpperCamelCase__ ) ) res.append(UpperCamelCase__ ) elif self.patience == 0: # Use all layers for inference __magic_name__ = self.encoder( UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) __magic_name__ = self.pooler(encoder_outputs[0] ) __magic_name__ = [output_layers[self.config.num_hidden_layers - 1](UpperCamelCase__ )] else: __magic_name__ = 0 __magic_name__ = None __magic_name__ = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __magic_name__ = self.encoder.adaptive_forward( UpperCamelCase__ , current_layer=UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ ) __magic_name__ = self.pooler(UpperCamelCase__ ) __magic_name__ = output_layers[i](UpperCamelCase__ ) if regression: __magic_name__ = logits.detach() if patient_result is not None: __magic_name__ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __magic_name__ = 0 else: __magic_name__ = logits.detach().argmax(dim=1 ) if patient_result is not None: __magic_name__ = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCamelCase__ ) ): patient_counter += 1 else: __magic_name__ = 0 __magic_name__ = logits if patient_counter == self.patience: break __magic_name__ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _A , ) class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] ) -> Dict: """simple docstring""" super().__init__(UpperCamelCase__ ) __magic_name__ = config.num_labels __magic_name__ = BertModelWithPabee(UpperCamelCase__ ) __magic_name__ = nn.Dropout(config.hidden_dropout_prob ) __magic_name__ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase__ ) def _lowercase ( self : List[str] , UpperCamelCase__ : int=None , UpperCamelCase__ : str=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Any=None , ) -> Dict: """simple docstring""" __magic_name__ = self.bert( input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , position_ids=UpperCamelCase__ , head_mask=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __magic_name__ = (logits[-1],) if labels is not None: __magic_name__ = None __magic_name__ = 0 for ix, logits_item in enumerate(UpperCamelCase__ ): if self.num_labels == 1: # We are doing regression __magic_name__ = MSELoss() __magic_name__ = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __magic_name__ = CrossEntropyLoss() __magic_name__ = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __magic_name__ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __magic_name__ = (total_loss / total_weights,) + outputs return outputs
76
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCAmelCase_ : '''simple docstring''' a__ = None def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" __magic_name__ = self.feature_extraction_class(**self.feat_extract_dict ) __magic_name__ = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: """simple docstring""" __magic_name__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = os.path.join(UpperCamelCase__ , """feat_extract.json""" ) feat_extract_first.to_json_file(UpperCamelCase__ ) __magic_name__ = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _lowercase ( self : str ) -> str: """simple docstring""" __magic_name__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) __magic_name__ = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _lowercase ( self : Optional[int] ) -> Tuple: """simple docstring""" __magic_name__ = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
76
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Union[str, Any]=0.999 , snake_case_ : Tuple="cosine" , ) -> Optional[Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case_ : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case_ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase_ = [] for i in range(snake_case_ ): UpperCAmelCase_ = i / num_diffusion_timesteps UpperCAmelCase_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case_ ) / alpha_bar_fn(snake_case_ ) , snake_case_ ) ) return torch.tensor(snake_case_ , dtype=torch.floataa ) class __A ( UpperCamelCase__ , UpperCamelCase__ ): a__ : Tuple = [e.name for e in KarrasDiffusionSchedulers] a__ : Optional[Any] = 2 @register_to_config def __init__(self : Union[str, Any] , __a : int = 1000 , __a : float = 0.0_00_85 , __a : float = 0.0_12 , __a : str = "linear" , __a : Optional[Union[np.ndarray, List[float]]] = None , __a : str = "epsilon" , __a : Optional[bool] = False , __a : Optional[bool] = False , __a : float = 1.0 , __a : str = "linspace" , __a : int = 0 , ): if trained_betas is not None: UpperCAmelCase_ = torch.tensor(__a , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCAmelCase_ = torch.linspace(__a , __a , __a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase_ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase_ = betas_for_alpha_bar(__a , alpha_transform_type="cosine" ) elif beta_schedule == "exp": UpperCAmelCase_ = betas_for_alpha_bar(__a , alpha_transform_type="exp" ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) UpperCAmelCase_ = 1.0 - self.betas UpperCAmelCase_ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__a , __a , __a ) UpperCAmelCase_ = use_karras_sigmas def _lowercase (self : Optional[Any] , __a : Union[str, Any] , __a : Tuple=None ): if schedule_timesteps is None: UpperCAmelCase_ = self.timesteps UpperCAmelCase_ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCAmelCase_ = 1 if len(__a ) > 1 else 0 else: UpperCAmelCase_ = timestep.cpu().item() if torch.is_tensor(__a ) else timestep UpperCAmelCase_ = self._index_counter[timestep_int] return indices[pos].item() @property def _lowercase (self : List[Any] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowercase (self : Optional[Any] , __a : torch.FloatTensor , __a : Union[float, torch.FloatTensor] , ): UpperCAmelCase_ = self.index_for_timestep(__a ) UpperCAmelCase_ = self.sigmas[step_index] UpperCAmelCase_ = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowercase (self : Any , __a : int , __a : Union[str, torch.device] = None , __a : Optional[int] = None , ): UpperCAmelCase_ = num_inference_steps UpperCAmelCase_ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCAmelCase_ = np.linspace(0 , num_train_timesteps - 1 , __a , dtype=__a )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCAmelCase_ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ = (np.arange(0 , __a ) * step_ratio).round()[::-1].copy().astype(__a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCAmelCase_ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ = (np.arange(__a , 0 , -step_ratio )).round().copy().astype(__a ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) UpperCAmelCase_ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCAmelCase_ = np.log(__a ) UpperCAmelCase_ = np.interp(__a , np.arange(0 , len(__a ) ) , __a ) if self.config.use_karras_sigmas: UpperCAmelCase_ = self._convert_to_karras(in_sigmas=__a , num_inference_steps=self.num_inference_steps ) UpperCAmelCase_ = np.array([self._sigma_to_t(__a , __a ) for sigma in sigmas] ) UpperCAmelCase_ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCAmelCase_ = torch.from_numpy(__a ).to(device=__a ) UpperCAmelCase_ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) UpperCAmelCase_ = torch.from_numpy(__a ) UpperCAmelCase_ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(__a ).startswith("mps" ): # mps does not support float64 UpperCAmelCase_ = timesteps.to(__a , dtype=torch.floataa ) else: UpperCAmelCase_ = timesteps.to(device=__a ) # empty dt and derivative UpperCAmelCase_ = None UpperCAmelCase_ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCAmelCase_ = defaultdict(__a ) def _lowercase (self : int , __a : Optional[Any] , __a : List[str] ): # get log sigma UpperCAmelCase_ = np.log(__a ) # get distribution UpperCAmelCase_ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range UpperCAmelCase_ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) UpperCAmelCase_ = low_idx + 1 UpperCAmelCase_ = log_sigmas[low_idx] UpperCAmelCase_ = log_sigmas[high_idx] # interpolate sigmas UpperCAmelCase_ = (low - log_sigma) / (low - high) UpperCAmelCase_ = np.clip(__a , 0 , 1 ) # transform interpolation to time range UpperCAmelCase_ = (1 - w) * low_idx + w * high_idx UpperCAmelCase_ = t.reshape(sigma.shape ) return t def _lowercase (self : Dict , __a : torch.FloatTensor , __a : Optional[int] ): UpperCAmelCase_ = in_sigmas[-1].item() UpperCAmelCase_ = in_sigmas[0].item() UpperCAmelCase_ = 7.0 # 7.0 is the value used in the paper UpperCAmelCase_ = np.linspace(0 , 1 , __a ) UpperCAmelCase_ = sigma_min ** (1 / rho) UpperCAmelCase_ = sigma_max ** (1 / rho) UpperCAmelCase_ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowercase (self : List[str] ): return self.dt is None def _lowercase (self : List[Any] , __a : Union[torch.FloatTensor, np.ndarray] , __a : Union[float, torch.FloatTensor] , __a : Union[torch.FloatTensor, np.ndarray] , __a : bool = True , ): UpperCAmelCase_ = self.index_for_timestep(__a ) # advance index counter by 1 UpperCAmelCase_ = timestep.cpu().item() if torch.is_tensor(__a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCAmelCase_ = self.sigmas[step_index] UpperCAmelCase_ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method UpperCAmelCase_ = self.sigmas[step_index - 1] UpperCAmelCase_ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCAmelCase_ = 0 UpperCAmelCase_ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCAmelCase_ = sigma_hat if self.state_in_first_order else sigma_next UpperCAmelCase_ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase_ = sigma_hat if self.state_in_first_order else sigma_next UpperCAmelCase_ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": UpperCAmelCase_ = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: UpperCAmelCase_ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCAmelCase_ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCAmelCase_ = sigma_next - sigma_hat # store for 2nd order step UpperCAmelCase_ = derivative UpperCAmelCase_ = dt UpperCAmelCase_ = sample else: # 2. 2nd order / Heun's method UpperCAmelCase_ = (sample - pred_original_sample) / sigma_next UpperCAmelCase_ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample UpperCAmelCase_ = self.dt UpperCAmelCase_ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a ) def _lowercase (self : Any , __a : torch.FloatTensor , __a : torch.FloatTensor , __a : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCAmelCase_ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__a ): # mps does not support float64 UpperCAmelCase_ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) UpperCAmelCase_ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: UpperCAmelCase_ = self.timesteps.to(original_samples.device ) UpperCAmelCase_ = timesteps.to(original_samples.device ) UpperCAmelCase_ = [self.index_for_timestep(__a , __a ) for t in timesteps] UpperCAmelCase_ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCAmelCase_ = sigma.unsqueeze(-1 ) UpperCAmelCase_ = original_samples + noise * sigma return noisy_samples def __len__(self : str ): return self.config.num_train_timesteps
78
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): a__ : Tuple = ["""pixel_values"""] def __init__(self : int , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : int = 8 , **__a : int , ): super().__init__(**__a ) UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_pad UpperCAmelCase_ = pad_size def _lowercase (self : Optional[int] , __a : np.ndarray , __a : float , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] ): return rescale(__a , scale=__a , data_format=__a , **__a ) def _lowercase (self : Optional[int] , __a : np.ndarray , __a : int , __a : Optional[Union[str, ChannelDimension]] = None ): UpperCAmelCase_ , UpperCAmelCase_ = get_image_size(__a ) UpperCAmelCase_ = (old_height // size + 1) * size - old_height UpperCAmelCase_ = (old_width // size + 1) * size - old_width return pad(__a , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=__a ) def _lowercase (self : Tuple , __a : ImageInput , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[int] = None , __a : Optional[Union[str, TensorType]] = None , __a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__a : List[str] , ): UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_pad if do_pad is not None else self.do_pad UpperCAmelCase_ = pad_size if pad_size is not None else self.pad_size UpperCAmelCase_ = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(__a ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=__a , scale=__a ) for image in images] if do_pad: UpperCAmelCase_ = [self.pad(__a , size=__a ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(__a , __a ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
78
1
import re def lowerCAmelCase__ ( _a : str ): return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def lowerCAmelCase__ ( _a : str ): snake_case_ : List[str] = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def lowerCAmelCase__ ( _a : str , _a : bool , _a : str ): try: snake_case_ : Dict = split_input(_a ) if upper: snake_case_ : Optional[int] = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: snake_case_ : List[str] = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def lowerCAmelCase__ ( _a : str ): return to_simple_case(_a ) def lowerCAmelCase__ ( _a : str ): try: snake_case_ : str = to_simple_case(_a ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def lowerCAmelCase__ ( _a : str , _a : bool ): return to_complex_case(_a , _a , "_" ) def lowerCAmelCase__ ( _a : str , _a : bool ): return to_complex_case(_a , _a , "-" ) if __name__ == "__main__": __import__('''doctest''').testmod()
114
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Any = logging.get_logger(__name__) lowercase : str = { '''naver-clova-ix/donut-base''': '''https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json''', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Tuple = 'donut-swin' A : Union[str, Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=96 , _SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE=[3, 6, 12, 24] , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , **_SCREAMING_SNAKE_CASE , ) -> List[str]: super().__init__(**_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = image_size snake_case_ : Any = patch_size snake_case_ : str = num_channels snake_case_ : Dict = embed_dim snake_case_ : Tuple = depths snake_case_ : List[Any] = len(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = num_heads snake_case_ : Optional[int] = window_size snake_case_ : Any = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : str = drop_path_rate snake_case_ : List[str] = hidden_act snake_case_ : Optional[int] = use_absolute_embeddings snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Any = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE ) - 1) )
114
1
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase__ : Dict = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def snake_case__ ( cls : List[Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def snake_case__ ( cls : str ) -> List[Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def snake_case__ ( self : Dict ) -> int: '''simple docstring''' _UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) _UpperCamelCase = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) _UpperCamelCase = flatten_dict(unfreeze(model.params ) ) _UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase__ , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase__ , repo_id='''test-model-flax''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) _UpperCamelCase = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) _UpperCamelCase = flatten_dict(unfreeze(model.params ) ) _UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase__ , 1e-3 , msg=f"""{key} not identical""" ) def snake_case__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) _UpperCamelCase = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) _UpperCamelCase = flatten_dict(unfreeze(model.params ) ) _UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase__ , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCAmelCase__ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) _UpperCamelCase = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) _UpperCamelCase = flatten_dict(unfreeze(model.params ) ) _UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase__ , 1e-3 , msg=f"""{key} not identical""" ) def a__ ( lowercase : Dict, lowercase : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCamelCase = True _UpperCamelCase = flatten_dict(modela.params ) _UpperCamelCase = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: _UpperCamelCase = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Any ) -> Tuple: '''simple docstring''' _UpperCamelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) _UpperCamelCase = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) with self.assertRaises(lowerCAmelCase__ ): _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ , subfolder=lowerCAmelCase__ ) self.assertTrue(check_models_equal(lowerCAmelCase__ , lowerCAmelCase__ ) ) def snake_case__ ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) _UpperCamelCase = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , max_shard_size='''10KB''' ) with self.assertRaises(lowerCAmelCase__ ): _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ , subfolder=lowerCAmelCase__ ) self.assertTrue(check_models_equal(lowerCAmelCase__ , lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase = '''bert''' _UpperCamelCase = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(lowerCAmelCase__ ): _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ , subfolder=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = '''bert''' _UpperCamelCase = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(lowerCAmelCase__ ): _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ , subfolder=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ )
98
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = None , **snake_case_ , ) -> Dict: '''simple docstring''' super().__init__( snake_case_ , split=snake_case_ , features=snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ , streaming=snake_case_ , num_proc=snake_case_ , **snake_case_ , ) __lowercase = path_or_paths if isinstance(snake_case_ , snake_case_ ) else {self.split: path_or_paths} __lowercase = Text( cache_dir=snake_case_ , data_files=snake_case_ , features=snake_case_ , **snake_case_ , ) def A ( self ) -> int: '''simple docstring''' if self.streaming: __lowercase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowercase = None __lowercase = None __lowercase = None __lowercase = None self.builder.download_and_prepare( download_config=snake_case_ , download_mode=snake_case_ , verification_mode=snake_case_ , base_path=snake_case_ , num_proc=self.num_proc , ) __lowercase = self.builder.as_dataset( split=self.split , verification_mode=snake_case_ , in_memory=self.keep_in_memory ) return dataset
639
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __magic_name__ ( unittest.TestCase): '''simple docstring''' def _A ( self: int ): super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _A ( self: Any ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCamelCase ) return image @property def _A ( self: Optional[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def _A ( self: Optional[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _A ( self: List[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__UpperCamelCase ) @property def _A ( self: Tuple ): def extract(*_lowerCamelCase: str , **_lowerCamelCase: Optional[Any] ): class __magic_name__ : '''simple docstring''' def __init__( self: List[str] ): SCREAMING_SNAKE_CASE_ = torch.ones([0] ) def _A ( self: Optional[Any] , _lowerCamelCase: Tuple ): self.pixel_values.to(__UpperCamelCase ) return self return Out() return extract def _A ( self: Optional[Any] ): SCREAMING_SNAKE_CASE_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=__UpperCamelCase , scheduler=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(__UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE_ = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=__UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=__UpperCamelCase , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=__UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=__UpperCamelCase , return_dict=__UpperCamelCase , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _A ( self: List[str] ): SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(__UpperCamelCase ) # put models in fp16 SCREAMING_SNAKE_CASE_ = unet.half() SCREAMING_SNAKE_CASE_ = vae.half() SCREAMING_SNAKE_CASE_ = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=__UpperCamelCase , scheduler=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(__UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=__UpperCamelCase , num_inference_steps=2 , output_type='''np''' , image=__UpperCamelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _A ( self: int ): SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = init_image.resize((7_60, 5_04) ) SCREAMING_SNAKE_CASE_ = '''BAAI/AltDiffusion''' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__UpperCamelCase , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) SCREAMING_SNAKE_CASE_ = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase): '''simple docstring''' def _A ( self: List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self: Optional[int] ): SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) SCREAMING_SNAKE_CASE_ = init_image.resize((7_68, 5_12) ) SCREAMING_SNAKE_CASE_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) SCREAMING_SNAKE_CASE_ = '''BAAI/AltDiffusion''' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__UpperCamelCase , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
702
import requests def a (_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = {'''Content-Type''': '''application/json'''} SCREAMING_SNAKE_CASE_ = requests.post(_lowerCAmelCase , json={'''text''': message_body} , headers=_lowerCAmelCase ) if response.status_code != 2_0_0: SCREAMING_SNAKE_CASE_ = ( '''Request to slack returned an error ''' F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(_lowerCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
89
0
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> Tuple: # picklable for multiprocessing """simple docstring""" return x.sum() def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> Dict: # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class __magic_name__ : _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : str class __magic_name__ ( lowercase__ ): def lowerCAmelCase ( self : Tuple ): __snake_case = {} __snake_case = [] __snake_case = 1 __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = {} __snake_case = [] __snake_case = 2 __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) __snake_case = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) __snake_case = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} __snake_case = {"a": 2, "b": 0, "c": 2} __snake_case = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def lowerCAmelCase ( self : str ): __snake_case = {"a": 1, "b": 2} __snake_case = {"a": 3, "b": 4} __snake_case = {"a": 5, "b": 6} __snake_case = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def lowerCAmelCase ( self : int ): class __magic_name__ : _SCREAMING_SNAKE_CASE : Optional[Any] = 'bar' __snake_case = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: __snake_case = {F'''{i}''': i for i in range(SCREAMING_SNAKE_CASE )} __snake_case = map_nested(lambda SCREAMING_SNAKE_CASE : x + 10 , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __magic_name__ ( lowercase__ ): @require_tf def lowerCAmelCase ( self : List[str] ): import tensorflow as tf from tensorflow.keras import layers __snake_case = layers.Dense(2 ) def gen_random_output(): __snake_case = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(42 , set_tensorflow=snake_case_ ): __snake_case = gen_random_output() with temp_seed(42 , set_tensorflow=snake_case_ ): __snake_case = gen_random_output() __snake_case = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def lowerCAmelCase ( self : str ): import torch def gen_random_output(): __snake_case = torch.nn.Linear(3 , 2 ) __snake_case = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(42 , set_pytorch=snake_case_ ): __snake_case = gen_random_output() with temp_seed(42 , set_pytorch=snake_case_ ): __snake_case = gen_random_output() __snake_case = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def lowerCAmelCase ( self : Any ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): __snake_case = gen_random_output() with temp_seed(42 ): __snake_case = gen_random_output() __snake_case = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" __snake_case = NestedDataStructure(SCREAMING_SNAKE_CASE ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" __snake_case = NestedDataStructure(SCREAMING_SNAKE_CASE ).flatten() assert output == expected_output def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" __snake_case = A(x=1 , y="foobar" ) __snake_case = {"x": 1, "y": "foobar"} assert asdict(SCREAMING_SNAKE_CASE ) == expected_output __snake_case = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} __snake_case = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(SCREAMING_SNAKE_CASE ) == expected_output with pytest.raises(SCREAMING_SNAKE_CASE ): asdict([1, A(x=10 , y="foo" )] ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return text.split() def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" with Pool(2 ) as pool: __snake_case = list(iflatmap_unordered(SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(SCREAMING_SNAKE_CASE ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: __snake_case = list(iflatmap_unordered(SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(SCREAMING_SNAKE_CASE ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: __snake_case = [] for yield_time, content in iflatmap_unordered( SCREAMING_SNAKE_CASE , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(SCREAMING_SNAKE_CASE ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(SCREAMING_SNAKE_CASE ) == 4
163
"""simple docstring""" from __future__ import annotations def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> tuple[str, float]: """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
163
1
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[str] = (EulerDiscreteScheduler,) UpperCAmelCase_ : str = 1_0 def a_ ( self , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**__lowerCAmelCase) return config def a_ ( self): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase) def a_ ( self): """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__lowerCAmelCase , beta_end=__lowerCAmelCase) def a_ ( self): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowerCAmelCase) def a_ ( self): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__lowerCAmelCase) scheduler.set_timesteps(self.num_inference_steps) lowerCAmelCase = torch.manual_seed(0) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase = sample.to(__lowerCAmelCase) for i, t in enumerate(scheduler.timesteps): lowerCAmelCase = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase) lowerCAmelCase = output.prev_sample lowerCAmelCase = torch.sum(torch.abs(__lowerCAmelCase)) lowerCAmelCase = torch.mean(torch.abs(__lowerCAmelCase)) assert abs(result_sum.item() - 10.0807) < 1E-2 assert abs(result_mean.item() - 0.0131) < 1E-3 def a_ ( self): """simple docstring""" lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""") lowerCAmelCase = scheduler_class(**__lowerCAmelCase) scheduler.set_timesteps(self.num_inference_steps) lowerCAmelCase = torch.manual_seed(0) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase = sample.to(__lowerCAmelCase) for i, t in enumerate(scheduler.timesteps): lowerCAmelCase = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase) lowerCAmelCase = output.prev_sample lowerCAmelCase = torch.sum(torch.abs(__lowerCAmelCase)) lowerCAmelCase = torch.mean(torch.abs(__lowerCAmelCase)) assert abs(result_sum.item() - 0.0002) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def a_ ( self): """simple docstring""" lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__lowerCAmelCase) scheduler.set_timesteps(self.num_inference_steps , device=__lowerCAmelCase) lowerCAmelCase = torch.manual_seed(0) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase = sample.to(__lowerCAmelCase) for t in scheduler.timesteps: lowerCAmelCase = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase) lowerCAmelCase = output.prev_sample lowerCAmelCase = torch.sum(torch.abs(__lowerCAmelCase)) lowerCAmelCase = torch.mean(torch.abs(__lowerCAmelCase)) assert abs(result_sum.item() - 10.0807) < 1E-2 assert abs(result_mean.item() - 0.0131) < 1E-3 def a_ ( self): """simple docstring""" lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__lowerCAmelCase , use_karras_sigmas=__lowerCAmelCase) scheduler.set_timesteps(self.num_inference_steps , device=__lowerCAmelCase) lowerCAmelCase = torch.manual_seed(0) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase = sample.to(__lowerCAmelCase) for t in scheduler.timesteps: lowerCAmelCase = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase) lowerCAmelCase = output.prev_sample lowerCAmelCase = torch.sum(torch.abs(__lowerCAmelCase)) lowerCAmelCase = torch.mean(torch.abs(__lowerCAmelCase)) assert abs(result_sum.item() - 124.52299499511719) < 1E-2 assert abs(result_mean.item() - 0.16213932633399963) < 1E-3
605
'''simple docstring''' from math import ceil, sqrt def snake_case__ ( _A: int = 1000000 ) -> int: '''simple docstring''' lowerCAmelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCAmelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCAmelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
605
1
from __future__ import annotations from math import pow, sqrt def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(_lowercase , 2 ) - pow(_lowercase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_lowercase , 2 ) - pow(_lowercase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_lowercase , 2 ) + pow(_lowercase , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
30
import unittest import numpy as np def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase = None , ): '''simple docstring''' UpperCAmelCase_ : Dict = np.shape(_lowercase ) UpperCAmelCase_ : Optional[Any] = np.shape(_lowercase ) UpperCAmelCase_ : Tuple = np.shape(_lowercase ) if shape_a[0] != shape_b[0]: UpperCAmelCase_ : Tuple = ( '''Expected the same number of rows for A and B. ''' f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(_lowercase ) if shape_b[1] != shape_c[1]: UpperCAmelCase_ : List[Any] = ( '''Expected the same number of columns for B and C. ''' f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(_lowercase ) UpperCAmelCase_ : Dict = pseudo_inv if a_inv is None: try: UpperCAmelCase_ : Any = np.linalg.inv(_lowercase ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> None: UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Any = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : List[str] = np.array([[2, 1], [6, 3]] ) UpperCAmelCase_ : Tuple = schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.block([[a, b], [b.T, c]] ) UpperCAmelCase_ : List[Any] = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = np.linalg.det(_SCREAMING_SNAKE_CASE ) self.assertAlmostEqual(_SCREAMING_SNAKE_CASE ,det_a * det_s ) def a__ ( self ) -> None: UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : Optional[int] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> None: UpperCAmelCase_ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : int = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
30
1
'''simple docstring''' from collections.abc import Callable import numpy as np def UpperCamelCase_ ( A__ , A__ , A__ , A__ , A__ ): a_ = int(np.ceil((x_end - xa) / step_size ) ) a_ = np.zeros((n + 1,) ) a_ = ya a_ = xa for k in range(A__ ): a_ = y[k] + step_size * ode_func(A__ , y[k] ) a_ = y[k] + ( (step_size / 2) * (ode_func(A__ , y[k] ) + ode_func(x + step_size , A__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
511
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( A__ , A__ , A__ , A__ ): if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): a_ , a_ = array[indexa], array[indexa] def UpperCamelCase_ ( A__ , A__ , A__ , A__ ): if length > 1: a_ = int(length / 2 ) for i in range(A__ , low + middle ): comp_and_swap(A__ , A__ , i + middle , A__ ) bitonic_merge(A__ , A__ , A__ , A__ ) bitonic_merge(A__ , low + middle , A__ , A__ ) def UpperCamelCase_ ( A__ , A__ , A__ , A__ ): if length > 1: a_ = int(length / 2 ) bitonic_sort(A__ , A__ , A__ , 1 ) bitonic_sort(A__ , low + middle , A__ , 0 ) bitonic_merge(A__ , A__ , A__ , A__ ) if __name__ == "__main__": lowercase__ =input('Enter numbers separated by a comma:\n').strip() lowercase__ =[int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
511
1
from __future__ import annotations from cmath import sqrt def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> List[str]: """simple docstring""" if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) a = b * b - 4 * a * c a = (-b + sqrt(lowerCamelCase__ )) / (2 * a) a = (-b - sqrt(lowerCamelCase__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: """simple docstring""" a , a = quadratic_roots(a=5, b=6, c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
387
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCAmelCase : Any = logging.get_logger(__name__) class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : List[Any] = ["audio_values", "audio_mask"] def __init__( self , A=20_48 , A=1 , A=[16, 16] , A=1_28 , A=4_41_00 , A=86 , A=20_48 , A=0.0 , **A , ) -> Dict: '''simple docstring''' super().__init__( feature_size=A , sampling_rate=A , padding_value=A , **A , ) lowerCamelCase = spectrogram_length lowerCamelCase = num_channels lowerCamelCase = patch_size lowerCamelCase = feature_size // self.patch_size[1] lowerCamelCase = n_fft lowerCamelCase = sampling_rate // hop_length_to_sampling_rate lowerCamelCase = sampling_rate lowerCamelCase = padding_value lowerCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=A , norm="""slaney""" , mel_scale="""slaney""" , ).T def __A ( self , A ) -> np.ndarray: '''simple docstring''' lowerCamelCase = spectrogram( A , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) lowerCamelCase = log_spec[:, :-1] lowerCamelCase = log_spec - 20.0 lowerCamelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , A , A = None , A = True , A = None , A = False , A = False , **A , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' F' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): lowerCamelCase = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , A ): lowerCamelCase = [np.asarray(A , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase = np.array(A ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase = padded_audio_features * self.padding_value for i in range(len(A ) ): lowerCamelCase = audio_features[i] lowerCamelCase = feature # return as BatchFeature if return_attention_mask: lowerCamelCase = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: lowerCamelCase = {"""audio_values""": padded_audio_features} lowerCamelCase = BatchFeature(data=A , tensor_type=A ) return encoded_inputs
457
0
"""simple docstring""" from math import factorial __UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(1_0)} def __UpperCAmelCase ( _snake_case : int ): if not isinstance(__UpperCamelCase, __UpperCamelCase ): raise TypeError("Parameter number must be int" ) if number < 0: raise ValueError("Parameter number must be greater than or equal to 0" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__UpperCamelCase ) ) def __UpperCAmelCase ( _snake_case : int = 6_0, _snake_case : int = 1_0_0_0_0_0_0 ): if not isinstance(__UpperCamelCase, __UpperCamelCase ) or not isinstance(__UpperCamelCase, __UpperCamelCase ): raise TypeError("Parameters chain_length and number_limit must be int" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( "Parameters chain_length and number_limit must be greater than 0" ) # the counter for the chains with the exact desired length _lowercase = 0 # the cached sizes of the previous chains _lowercase = {} for start_chain_element in range(1, __UpperCamelCase ): # The temporary set will contain the elements of the chain _lowercase = set() _lowercase = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. _lowercase = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__UpperCamelCase ) chain_set_length += 1 _lowercase = digit_factorial_sum(__UpperCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] _lowercase = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
711
"""simple docstring""" def __UpperCAmelCase ( _snake_case : int ): if num < 0: return False _lowercase = num _lowercase = 0 while num > 0: _lowercase = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
227
0
"""simple docstring""" from collections.abc import Sequence def lowercase_ ( _lowerCamelCase: Sequence[float] , _lowerCamelCase: bool = False ) -> float: '''simple docstring''' if not arr: return 0 __lowerCamelCase : int = 0 if allow_empty_subarrays else float("-inf" ) __lowerCamelCase : int = 0.0 for num in arr: __lowerCamelCase : Tuple = max(0 if allow_empty_subarrays else num , curr_sum + num ) __lowerCamelCase : Optional[int] = max(_lowerCamelCase , _lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() __A = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"""{max_subarray_sum(nums) = }""")
646
"""simple docstring""" import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : int = 32 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , UpperCAmelCase : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , UpperCAmelCase : bool = True , UpperCAmelCase : str=7 , UpperCAmelCase : Union[str, Any]=30 , UpperCAmelCase : int=400 , UpperCAmelCase : Any=3 , ): __lowerCamelCase : str = parent __lowerCamelCase : Tuple = do_resize __lowerCamelCase : Tuple = size if size is not None else {"shortest_edge": 288} __lowerCamelCase : List[Any] = size_divisor __lowerCamelCase : List[str] = do_rescale __lowerCamelCase : List[Any] = rescale_factor __lowerCamelCase : Optional[int] = do_normalize __lowerCamelCase : Tuple = do_center_crop __lowerCamelCase : List[Any] = image_mean __lowerCamelCase : Tuple = image_std __lowerCamelCase : Any = do_pad __lowerCamelCase : int = batch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Optional[int] = min_resolution __lowerCamelCase : Optional[int] = max_resolution def lowerCamelCase__ ( self : Tuple ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any]=False ): if not batched: __lowerCamelCase : List[str] = self.size["shortest_edge"] __lowerCamelCase : Optional[int] = image_inputs[0] if isinstance(UpperCAmelCase , Image.Image ): __lowerCamelCase , __lowerCamelCase : str = image.size else: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = image.shape[1], image.shape[2] __lowerCamelCase : Optional[Any] = size / min(UpperCAmelCase , UpperCAmelCase ) if h < w: __lowerCamelCase , __lowerCamelCase : int = size, scale * w else: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = scale * h, size __lowerCamelCase : Optional[Any] = int((1333 / 800) * size ) if max(UpperCAmelCase , UpperCAmelCase ) > max_size: __lowerCamelCase : Union[str, Any] = max_size / max(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Dict = newh * scale __lowerCamelCase : str = neww * scale __lowerCamelCase , __lowerCamelCase : Optional[int] = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCamelCase , __lowerCamelCase : Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCamelCase : Optional[int] = [] for image in image_inputs: __lowerCamelCase , __lowerCamelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCamelCase : Any = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0] __lowerCamelCase : Any = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _snake_case ( a__ , unittest.TestCase ): snake_case__ = BridgeTowerImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Tuple = BridgeTowerImageProcessingTester(self ) @property def lowerCamelCase__ ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size_divisor" ) ) def lowerCamelCase__ ( self : Union[str, Any] ): pass def lowerCamelCase__ ( self : Optional[Any] ): # Initialize image processor __lowerCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input __lowerCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowerCamelCase , __lowerCamelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase : int = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values __lowerCamelCase , __lowerCamelCase : Optional[int] = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : List[Any] ): # Initialize image processor __lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input __lowerCamelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowerCamelCase , __lowerCamelCase : Dict = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase : str = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values __lowerCamelCase , __lowerCamelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : Optional[int] ): # Initialize image processor __lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input __lowerCamelCase : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase : str = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
646
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] =16 lowerCAmelCase : Dict =32 def A__ ( __A , __A = 16 ): '''simple docstring''' _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _lowerCamelCase : Optional[int] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__A ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__A , max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCamelCase : Tuple = datasets.map( __A , batched=__A , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCamelCase : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__A ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCamelCase : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCamelCase : Optional[Any] = 16 elif accelerator.mixed_precision != "no": _lowerCamelCase : int = 8 else: _lowerCamelCase : Optional[int] = None return tokenizer.pad( __A , padding="""longest""" , max_length=__A , pad_to_multiple_of=__A , return_tensors="""pt""" , ) # Instantiate dataloaders. _lowerCamelCase : int = DataLoader( tokenized_datasets["""train"""] , shuffle=__A , collate_fn=__A , batch_size=__A ) _lowerCamelCase : Any = DataLoader( tokenized_datasets["""validation"""] , shuffle=__A , collate_fn=__A , batch_size=__A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase : List[Any] =mocked_dataloaders # noqa: F811 def A__ ( __A , __A ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __A ) == "1": _lowerCamelCase : Any = 2 # New Code # _lowerCamelCase : Any = int(args.gradient_accumulation_steps ) # Initialize accelerator _lowerCamelCase : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__A ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCamelCase : List[str] = config["""lr"""] _lowerCamelCase : Tuple = int(config["""num_epochs"""] ) _lowerCamelCase : Tuple = int(config["""seed"""] ) _lowerCamelCase : Union[str, Any] = int(config["""batch_size"""] ) _lowerCamelCase : List[str] = evaluate.load("""glue""" , """mrpc""" ) set_seed(__A ) _lowerCamelCase : str = get_dataloaders(__A , __A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCamelCase : str = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCamelCase : str = model.to(accelerator.device ) # Instantiate optimizer _lowerCamelCase : List[str] = AdamW(params=model.parameters() , lr=__A ) # Instantiate scheduler _lowerCamelCase : Any = get_linear_schedule_with_warmup( optimizer=__A , num_warmup_steps=100 , num_training_steps=(len(__A ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCamelCase : str = accelerator.prepare( __A , __A , __A , __A , __A ) # Now we train the model for epoch in range(__A ): model.train() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__A ): _lowerCamelCase : Dict = model(**__A ) _lowerCamelCase : str = output.loss accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**__A ) _lowerCamelCase : Optional[int] = outputs.logits.argmax(dim=-1 ) _lowerCamelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__A , references=__A , ) _lowerCamelCase : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , __A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__A , default=__A , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__A , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _lowerCamelCase : Any = parser.parse_args() _lowerCamelCase : Dict = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__A , __A ) if __name__ == "__main__": main()
718
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
15
0
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = GPTaTokenizer lowerCAmelCase = GPTaTokenizerFast lowerCAmelCase = True lowerCAmelCase = {'''add_prefix_space''': True} lowerCAmelCase = False def a__ ( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] UpperCAmelCase_ : Optional[Any] = dict(zip(_SCREAMING_SNAKE_CASE ,range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase_ : Optional[int] = {'''unk_token''': '''<unk>'''} UpperCAmelCase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_SCREAMING_SNAKE_CASE ) ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> str: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> str: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> List[str]: UpperCAmelCase_ : Optional[int] = '''lower newer''' UpperCAmelCase_ : List[str] = '''lower newer''' return input_text, output_text def a__ ( self ) -> List[str]: UpperCAmelCase_ : List[str] = GPTaTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) UpperCAmelCase_ : int = '''lower newer''' UpperCAmelCase_ : Tuple = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCAmelCase_ : Dict = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ,add_prefix_space=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = tokens + [tokenizer.unk_token] UpperCAmelCase_ : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: if not self.test_rust_tokenizer: return UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = '''lower newer''' # Testing tokenization UpperCAmelCase_ : Dict = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ,add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Testing conversion to ids without special tokens UpperCAmelCase_ : Any = tokenizer.encode(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ,add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Testing conversion to ids with special tokens UpperCAmelCase_ : str = self.get_rust_tokenizer(add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = tokenizer.encode(_SCREAMING_SNAKE_CASE ,add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Testing the unknown token UpperCAmelCase_ : Dict = tokens + [rust_tokenizer.unk_token] UpperCAmelCase_ : List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) def a__ ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[str]: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def a__ ( self ,_SCREAMING_SNAKE_CASE=15 ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) # Simple input UpperCAmelCase_ : str = '''This is a simple input''' UpperCAmelCase_ : str = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : int = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Any = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_SCREAMING_SNAKE_CASE ,tokenizer_r.encode ,_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,padding='''max_length''' ) # Simple input self.assertRaises(_SCREAMING_SNAKE_CASE ,tokenizer_r.encode_plus ,_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,padding='''max_length''' ) # Simple input self.assertRaises( _SCREAMING_SNAKE_CASE ,tokenizer_r.batch_encode_plus ,_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,padding='''max_length''' ,) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE ,tokenizer_r.encode ,_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,padding='''max_length''' ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE ,tokenizer_r.encode_plus ,_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,padding='''max_length''' ) # Pair input self.assertRaises( _SCREAMING_SNAKE_CASE ,tokenizer_r.batch_encode_plus ,_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,padding='''max_length''' ,) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : Tuple = GPTaTokenizer.from_pretrained(self.tmpdirname ,pad_token='''<pad>''' ) # Simple input UpperCAmelCase_ : str = '''This is a simple input''' UpperCAmelCase_ : Tuple = ['''This is a simple input looooooooong''', '''This is a simple input'''] UpperCAmelCase_ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : Optional[Any] = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] UpperCAmelCase_ : Union[str, Any] = tokenizer.pad_token_id UpperCAmelCase_ : Dict = tokenizer(_SCREAMING_SNAKE_CASE ,padding='''max_length''' ,max_length=30 ,return_tensors='''np''' ) UpperCAmelCase_ : int = tokenizer(_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncate=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) UpperCAmelCase_ : Tuple = tokenizer(*_SCREAMING_SNAKE_CASE ,padding='''max_length''' ,max_length=60 ,return_tensors='''np''' ) UpperCAmelCase_ : List[Any] = tokenizer(_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncate=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def a__ ( self ) -> Any: UpperCAmelCase_ : List[Any] = '''$$$''' UpperCAmelCase_ : Any = GPTaTokenizer.from_pretrained(self.tmpdirname ,bos_token=_SCREAMING_SNAKE_CASE ,add_bos_token=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = '''This is a simple input''' UpperCAmelCase_ : Union[str, Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : List[Any] = tokenizer.bos_token_id UpperCAmelCase_ : List[str] = tokenizer(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = tokenizer(_SCREAMING_SNAKE_CASE ) self.assertEqual(out_s.input_ids[0] ,_SCREAMING_SNAKE_CASE ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) UpperCAmelCase_ : Tuple = tokenizer.decode(out_s.input_ids ) UpperCAmelCase_ : Union[str, Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,_SCREAMING_SNAKE_CASE ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def a__ ( self ) -> str: pass def a__ ( self ) -> int: # TODO: change to self.get_tokenizers() when the fast version is implemented UpperCAmelCase_ : Tuple = [self.get_tokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ,add_bos_token=_SCREAMING_SNAKE_CASE )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase_ : List[Any] = '''Encode this.''' UpperCAmelCase_ : List[Any] = '''This one too please.''' UpperCAmelCase_ : Optional[int] = tokenizer.encode(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ) encoded_sequence += tokenizer.encode(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = tokenizer.encode_plus( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ,return_special_tokens_mask=_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : int = encoded_sequence_dict['''input_ids'''] UpperCAmelCase_ : Union[str, Any] = encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,len(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : List[str] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(_SCREAMING_SNAKE_CASE ) ] UpperCAmelCase_ : str = [x for x in filtered_sequence if x is not None] self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @require_tokenizers class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> List[Any]: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''facebook/opt-350m''' ,from_slow=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = '''A photo of a cat''' UpperCAmelCase_ : Any = tokenizer.encode( _SCREAMING_SNAKE_CASE ,) self.assertEqual(_SCREAMING_SNAKE_CASE ,[2, 250, 1_345, 9, 10, 4_758] ) tokenizer.save_pretrained('''test_opt''' ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained('''./test_opt''' ) UpperCAmelCase_ : Optional[Any] = tokenizer.encode( _SCREAMING_SNAKE_CASE ,) self.assertEqual(_SCREAMING_SNAKE_CASE ,[2, 250, 1_345, 9, 10, 4_758] ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''facebook/opt-350m''' ,use_slow=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = '''A photo of a cat''' UpperCAmelCase_ : int = tokenizer.encode( _SCREAMING_SNAKE_CASE ,) # Same as above self.assertEqual(_SCREAMING_SNAKE_CASE ,[2, 250, 1_345, 9, 10, 4_758] ) @unittest.skip('''This test is failing because of a bug in the fast tokenizer''' ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' ,from_slow=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = '''bos''' UpperCAmelCase_ : Dict = tokenizer.get_vocab()['''bos'''] UpperCAmelCase_ : Optional[int] = '''A photo of a cat''' UpperCAmelCase_ : Any = tokenizer.encode( _SCREAMING_SNAKE_CASE ,) # We changed the bos token self.assertEqual(_SCREAMING_SNAKE_CASE ,[31_957, 250, 1_345, 9, 10, 4_758] ) tokenizer.save_pretrained('''./tok''' ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained('''./tok''' ) self.assertTrue(tokenizer.is_fast ) UpperCAmelCase_ : Tuple = tokenizer.encode( _SCREAMING_SNAKE_CASE ,) self.assertEqual(_SCREAMING_SNAKE_CASE ,[31_957, 250, 1_345, 9, 10, 4_758] )
30
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : Dict = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A__ : """simple docstring""" __A : int __A : Node | None = None __A : Node | None = None def A_ ( ) -> Node | None: a__ : Any = Node(1 ) a__ : Union[str, Any] = Node(2 ) a__ : Optional[int] = Node(3 ) a__ : Optional[Any] = Node(4 ) a__ : Dict = Node(5 ) return tree def A_ ( A__ ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def A_ ( A__ ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def A_ ( A__ ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def A_ ( A__ ) -> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def A_ ( A__ ) -> Sequence[Node | None]: a__ : list[Any] = [] if root is None: return output a__ : Any = deque([root] ) while process_queue: a__ : Tuple = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def A_ ( A__ , A__ ) -> Sequence[Node | None]: a__ : list[Any] = [] def populate_output(A__ , A__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(A__ , A__ ) return output def A_ ( A__ , A__ ) -> Sequence[Node | None]: a__ : list[Any] = [] def populate_output(A__ , A__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(A__ , A__ ) return output def A_ ( A__ ) -> Sequence[Node | None] | list[Any]: if root is None: return [] a__ : list[Sequence[Node | None]] = [] a__ : List[str] = 0 a__ : List[Any] = height(A__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(A__ , A__ ) ) a__ : Dict = 1 else: output.append(get_nodes_from_right_to_left(A__ , A__ ) ) a__ : Dict = 0 return output def A_ ( ) -> None: # Main function for testing. a__ : Optional[Any] = make_tree() print(F'In-order Traversal: {inorder(A__ )}' ) print(F'Pre-order Traversal: {preorder(A__ )}' ) print(F'Post-order Traversal: {postorder(A__ )}' , '\n' ) print(F'Height of Tree: {height(A__ )}' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(A__ ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(A__ ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(A__ , level=A__ ) ) print('\nZigZag order Traversal: ' ) print(zigzag(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
392
from collections import namedtuple lowercase : List[str] = namedtuple("""from_to""", """from_ to""") lowercase : Tuple = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1_0_0_0), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00_454, 264.172), """cubicyard""": from_to(0.76_455, 1.30_795), """cubicfoot""": from_to(0.028, 35.3_147), """cup""": from_to(0.000_236_588, 4_226.75), } def A_ ( A__ , A__ , A__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ', '.join(A__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ', '.join(A__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
392
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __magic_name__: Tuple = logging.get_logger(__name__) __magic_name__: Optional[int] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __magic_name__: Any = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" for attribute in key.split(""".""" ): __magic_name__ : str = getattr(_A, _A ) if weight_type is not None: __magic_name__ : str = getattr(_A, _A ).shape else: __magic_name__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __magic_name__ : Union[str, Any] = value elif weight_type == "weight_g": __magic_name__ : Any = value elif weight_type == "weight_v": __magic_name__ : Union[str, Any] = value elif weight_type == "bias": __magic_name__ : List[str] = value elif weight_type == "running_mean": __magic_name__ : Union[str, Any] = value elif weight_type == "running_var": __magic_name__ : str = value elif weight_type == "num_batches_tracked": __magic_name__ : List[str] = value elif weight_type == "inv_freq": __magic_name__ : Dict = value else: __magic_name__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : int = [] __magic_name__ : Dict = fairseq_model.state_dict() __magic_name__ : Optional[int] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __magic_name__ : int = False if "conv_layers" in name: load_conv_layer( _A, _A, _A, _A, hf_model.config.feat_extract_norm == """group""", ) __magic_name__ : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): __magic_name__ : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __magic_name__ : Tuple = True if "*" in mapped_key: __magic_name__ : Optional[Any] = name.split(_A )[0].split(""".""" )[-2] __magic_name__ : Optional[int] = mapped_key.replace("""*""", _A ) if "pos_bias_u" in name: __magic_name__ : str = None elif "pos_bias_v" in name: __magic_name__ : Any = None elif "weight_g" in name: __magic_name__ : Union[str, Any] = """weight_g""" elif "weight_v" in name: __magic_name__ : Union[str, Any] = """weight_v""" elif "bias" in name: __magic_name__ : List[str] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __magic_name__ : str = """weight""" elif "running_mean" in name: __magic_name__ : Tuple = """running_mean""" elif "inv_freq" in name: __magic_name__ : Optional[Any] = """inv_freq""" elif "running_var" in name: __magic_name__ : Optional[int] = """running_var""" elif "num_batches_tracked" in name: __magic_name__ : str = """num_batches_tracked""" else: __magic_name__ : List[Any] = None set_recursively(_A, _A, _A, _A, _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" __magic_name__ : List[Any] = full_name.split("""conv_layers.""" )[-1] __magic_name__ : Any = name.split(""".""" ) __magic_name__ : Dict = int(items[0] ) __magic_name__ : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __magic_name__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __magic_name__ : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __magic_name__ : Tuple = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __magic_name__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_A ) @torch.no_grad() def UpperCamelCase ( _A, _A, _A=None, _A=None, _A=True ): """simple docstring""" if config_path is not None: __magic_name__ : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_A, hidden_act="""swish""" ) else: __magic_name__ : Any = WavaVecaConformerConfig() if "rope" in checkpoint_path: __magic_name__ : str = """rotary""" if is_finetuned: if dict_path: __magic_name__ : Tuple = Dictionary.load(_A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __magic_name__ : str = target_dict.pad_index __magic_name__ : Tuple = target_dict.bos_index __magic_name__ : int = target_dict.eos_index __magic_name__ : Dict = len(target_dict.symbols ) __magic_name__ : Optional[int] = os.path.join(_A, """vocab.json""" ) if not os.path.isdir(_A ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_A ) ) return os.makedirs(_A, exist_ok=_A ) __magic_name__ : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __magic_name__ : List[Any] = 0 __magic_name__ : List[str] = 1 with open(_A, """w""", encoding="""utf-8""" ) as vocab_handle: json.dump(_A, _A ) __magic_name__ : Optional[Any] = WavaVecaCTCTokenizer( _A, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="""|""", do_lower_case=_A, ) __magic_name__ : Dict = True if config.feat_extract_norm == """layer""" else False __magic_name__ : Any = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=_A, return_attention_mask=_A, ) __magic_name__ : List[Any] = WavaVecaProcessor(feature_extractor=_A, tokenizer=_A ) processor.save_pretrained(_A ) __magic_name__ : int = WavaVecaConformerForCTC(_A ) else: __magic_name__ : Optional[Any] = WavaVecaConformerForPreTraining(_A ) if is_finetuned: __magic_name__ ,__magic_name__ ,__magic_name__ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __magic_name__ : Union[str, Any] = argparse.Namespace(task="""audio_pretraining""" ) __magic_name__ : Optional[Any] = fairseq.tasks.setup_task(_A ) __magic_name__ ,__magic_name__ ,__magic_name__ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=_A ) __magic_name__ : Optional[int] = model[0].eval() recursively_load_weights(_A, _A, not is_finetuned ) hf_wavavec.save_pretrained(_A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __magic_name__: Optional[Any] = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
324
from collections import deque def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Union[str, Any] = len(_A ) __magic_name__ : Optional[int] = deque() __magic_name__ : Tuple = [False for _ in range(_A )] __magic_name__ : Optional[Any] = [-1 for _ in range(_A )] __magic_name__ : Optional[int] = index_of[:] def strong_connect(_A, _A, _A ): __magic_name__ : Dict = index # the number when this node is seen __magic_name__ : Optional[Any] = index # lowest rank node reachable from here index += 1 stack.append(_A ) __magic_name__ : str = True for w in g[v]: if index_of[w] == -1: __magic_name__ : Union[str, Any] = strong_connect(_A, _A, _A ) __magic_name__ : Optional[Any] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __magic_name__ : List[Any] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __magic_name__ : Optional[Any] = [] __magic_name__ : List[Any] = stack.pop() __magic_name__ : List[Any] = False component.append(_A ) while w != v: __magic_name__ : List[Any] = stack.pop() __magic_name__ : Optional[int] = False component.append(_A ) components.append(_A ) return index __magic_name__ : Tuple = [] for v in range(_A ): if index_of[v] == -1: strong_connect(_A, 0, _A ) return components def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Tuple = [[] for _ in range(_A )] for u, v in edges: g[u].append(_A ) return g if __name__ == "__main__": # Test __magic_name__: str = 7 __magic_name__: int = [0, 0, 1, 2, 3, 3, 4, 4, 6] __magic_name__: Dict = [1, 3, 2, 0, 1, 4, 5, 6, 5] __magic_name__: str = [(u, v) for u, v in zip(source, target)] __magic_name__: List[str] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
324
1
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : List[Any] = [0 for i in range(len(_UpperCamelCase ) )] # initialize interval's left pointer and right pointer __lowerCAmelCase : List[str] = 0, 0 for i in range(1 , len(_UpperCamelCase ) ): # case when current index is inside the interval if i <= right_pointer: __lowerCAmelCase : Any = min(right_pointer - i + 1 , z_result[i - left_pointer] ) __lowerCAmelCase : str = min_edge while go_next(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: __lowerCAmelCase : int = i, i + z_result[i] - 1 return z_result def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return i + z_result[i] < len(_UpperCamelCase ) and s[z_result[i]] == s[i + z_result[i]] def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Optional[Any] = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string __lowerCAmelCase : str = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_UpperCamelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
710
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (_UpperCamelCase ): # initialize config if "resnet-50" in model_name: __lowerCAmelCase : int = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: __lowerCAmelCase : Union[str, Any] = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) __lowerCAmelCase : Union[str, Any] = DetrConfig(use_timm_backbone=_UpperCamelCase , backbone_config=_UpperCamelCase ) # set label attributes __lowerCAmelCase : Optional[int] = 'panoptic' in model_name if is_panoptic: __lowerCAmelCase : Dict = 250 else: __lowerCAmelCase : List[str] = 91 __lowerCAmelCase : Tuple = 'huggingface/label-files' __lowerCAmelCase : str = 'coco-detection-id2label.json' __lowerCAmelCase : Optional[int] = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) , 'r' ) ) __lowerCAmelCase : List[Any] = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase : List[Any] = idalabel __lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} return config, is_panoptic def __lowerCAmelCase (_UpperCamelCase ): # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCAmelCase : Tuple = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : str = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Dict = val def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=False ): __lowerCAmelCase : Tuple = '' if is_panoptic: __lowerCAmelCase : Union[str, Any] = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCAmelCase : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __lowerCAmelCase : List[Any] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase : int = in_proj_weight[:256, :] __lowerCAmelCase : Tuple = in_proj_bias[:256] __lowerCAmelCase : Dict = in_proj_weight[256:512, :] __lowerCAmelCase : Optional[int] = in_proj_bias[256:512] __lowerCAmelCase : int = in_proj_weight[-256:, :] __lowerCAmelCase : int = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __lowerCAmelCase : int = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) __lowerCAmelCase : List[str] = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase : List[str] = in_proj_weight[:256, :] __lowerCAmelCase : int = in_proj_bias[:256] __lowerCAmelCase : Any = in_proj_weight[256:512, :] __lowerCAmelCase : Any = in_proj_bias[256:512] __lowerCAmelCase : Any = in_proj_weight[-256:, :] __lowerCAmelCase : Optional[int] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __lowerCAmelCase : Union[str, Any] = state_dict.pop( F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) __lowerCAmelCase : Optional[Any] = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __lowerCAmelCase : List[Any] = in_proj_weight_cross_attn[:256, :] __lowerCAmelCase : Union[str, Any] = in_proj_bias_cross_attn[:256] __lowerCAmelCase : Optional[Any] = in_proj_weight_cross_attn[256:512, :] __lowerCAmelCase : Any = in_proj_bias_cross_attn[256:512] __lowerCAmelCase : str = in_proj_weight_cross_attn[-256:, :] __lowerCAmelCase : Optional[int] = in_proj_bias_cross_attn[-256:] def __lowerCAmelCase (): __lowerCAmelCase : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase : Any = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=False ): __lowerCAmelCase , __lowerCAmelCase : int = get_detr_config(_UpperCamelCase ) # load original model from torch hub __lowerCAmelCase : List[str] = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(F"Converting model {model_name}..." ) __lowerCAmelCase : List[Any] = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=_UpperCamelCase ).eval() __lowerCAmelCase : str = detr.state_dict() # rename keys for src, dest in create_rename_keys(_UpperCamelCase ): if is_panoptic: __lowerCAmelCase : List[str] = 'detr.' + src rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_UpperCamelCase , is_panoptic=_UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCAmelCase : Optional[Any] = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): __lowerCAmelCase : Optional[Any] = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Tuple = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowerCAmelCase : List[Any] = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: __lowerCAmelCase : Optional[Any] = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __lowerCAmelCase : Dict = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Optional[int] = val # finally, create HuggingFace model and load state dict __lowerCAmelCase : Tuple = DetrForSegmentation(_UpperCamelCase ) if is_panoptic else DetrForObjectDetection(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # verify our conversion on an image __lowerCAmelCase : Optional[Any] = 'coco_panoptic' if is_panoptic else 'coco_detection' __lowerCAmelCase : List[str] = DetrImageProcessor(format=_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = processor(images=prepare_img() , return_tensors='pt' ) __lowerCAmelCase : Optional[int] = encoding['pixel_values'] __lowerCAmelCase : Optional[Any] = detr(_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = model(_UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(F"nielsr/{model_name}" ) processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") lowerCamelCase__ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
549
0
"""simple docstring""" import sys def _UpperCamelCase ( A ): UpperCamelCase_ =len(A ) UpperCamelCase_ =[[0 for x in range(A )] for x in range(A )] UpperCamelCase_ =[[0 for x in range(A )] for x in range(A )] for chain_length in range(2 , A ): for a in range(1 , n - chain_length + 1 ): UpperCamelCase_ =a + chain_length - 1 UpperCamelCase_ =sys.maxsize for c in range(A , A ): UpperCamelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCamelCase_ =cost UpperCamelCase_ =c return matrix, sol def _UpperCamelCase ( A , A , A ): if i == j: print("A" + str(A ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(A , A , optimal_solution[i][j] ) print_optiomal_solution(A , optimal_solution[i][j] + 1 , A ) print(")" , end=" " ) def _UpperCamelCase ( ): UpperCamelCase_ =[30, 35, 15, 5, 10, 20, 25] UpperCamelCase_ =len(A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCamelCase_ , UpperCamelCase_ =matrix_chain_order(A ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(A , 1 , n - 1 ) if __name__ == "__main__": main()
391
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) set_seed(770) A_ = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } A_ = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } A_ = os.path.dirname(os.path.abspath(__file__)) A_ = os.path.join(os.path.expanduser("~"), ".cache") A_ = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def _UpperCamelCase ( A , A=False ): UpperCamelCase_ =model_type if use_small: key += "_small" return os.path.join(A , REMOTE_MODEL_PATHS[key]["file_name"] ) def _UpperCamelCase ( A , A ): os.makedirs(A , exist_ok=A ) hf_hub_download(repo_id=A , filename=A , local_dir=A ) def _UpperCamelCase ( A , A , A=False , A="text" ): if model_type == "text": UpperCamelCase_ =BarkSemanticModel UpperCamelCase_ =BarkSemanticConfig UpperCamelCase_ =BarkSemanticGenerationConfig elif model_type == "coarse": UpperCamelCase_ =BarkCoarseModel UpperCamelCase_ =BarkCoarseConfig UpperCamelCase_ =BarkCoarseGenerationConfig elif model_type == "fine": UpperCamelCase_ =BarkFineModel UpperCamelCase_ =BarkFineConfig UpperCamelCase_ =BarkFineGenerationConfig else: raise NotImplementedError() UpperCamelCase_ =f"""{model_type}_small""" if use_small else model_type UpperCamelCase_ =REMOTE_MODEL_PATHS[model_key] if not os.path.exists(A ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["repo_id"] , model_info["file_name"] ) UpperCamelCase_ =torch.load(A , map_location=A ) # this is a hack UpperCamelCase_ =checkpoint["model_args"] if "input_vocab_size" not in model_args: UpperCamelCase_ =model_args["vocab_size"] UpperCamelCase_ =model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments UpperCamelCase_ =model_args.pop("n_head" ) UpperCamelCase_ =model_args.pop("n_embd" ) UpperCamelCase_ =model_args.pop("n_layer" ) UpperCamelCase_ =ConfigClass(**checkpoint["model_args"] ) UpperCamelCase_ =ModelClass(config=A ) UpperCamelCase_ =GenerationConfigClass() UpperCamelCase_ =model_generation_config UpperCamelCase_ =checkpoint["model"] # fixup checkpoint UpperCamelCase_ ="_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(A ): # replace part of the key with corresponding layer name in HF implementation UpperCamelCase_ =k[len(A ) :] for old_layer_name in new_layer_name_dict: UpperCamelCase_ =new_k.replace(A , new_layer_name_dict[old_layer_name] ) UpperCamelCase_ =state_dict.pop(A ) UpperCamelCase_ =set(state_dict.keys() ) - set(model.state_dict().keys() ) UpperCamelCase_ ={k for k in extra_keys if not k.endswith(".attn.bias" )} UpperCamelCase_ =set(model.state_dict().keys() ) - set(state_dict.keys() ) UpperCamelCase_ ={k for k in missing_keys if not k.endswith(".attn.bias" )} if len(A ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(A ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(A , strict=A ) UpperCamelCase_ =model.num_parameters(exclude_embeddings=A ) UpperCamelCase_ =checkpoint["best_val_loss"].item() logger.info(f"""model loaded: {round(n_params/1e6 , 1 )}M params, {round(A , 3 )} loss""" ) model.eval() model.to(A ) del checkpoint, state_dict return model def _UpperCamelCase ( A , A=False , A="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() UpperCamelCase_ ="cpu" # do conversion on cpu UpperCamelCase_ =_get_ckpt_path(A , use_small=A ) UpperCamelCase_ =_load_model(A , A , model_type=A , use_small=A ) # load bark initial model UpperCamelCase_ =_bark_load_model(A , "cpu" , model_type=A , use_small=A ) if model_type == "text": UpperCamelCase_ =bark_model["model"] if model.num_parameters(exclude_embeddings=A ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model UpperCamelCase_ =5 UpperCamelCase_ =10 if model_type in ["text", "coarse"]: UpperCamelCase_ =torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) UpperCamelCase_ =bark_model(A )[0] UpperCamelCase_ =model(A ) # take last logits UpperCamelCase_ =output_new_model_total.logits[:, [-1], :] else: UpperCamelCase_ =3 UpperCamelCase_ =8 UpperCamelCase_ =torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) UpperCamelCase_ =model(A , A ) UpperCamelCase_ =bark_model(A , A ) UpperCamelCase_ =output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("initial and new outputs are not equal" ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) def _UpperCamelCase ( A , A , A , A , A , A , ): UpperCamelCase_ =os.path.join(A , A ) UpperCamelCase_ =BarkSemanticConfig.from_pretrained(os.path.join(A , "config.json" ) ) UpperCamelCase_ =BarkCoarseConfig.from_pretrained(os.path.join(A , "config.json" ) ) UpperCamelCase_ =BarkFineConfig.from_pretrained(os.path.join(A , "config.json" ) ) UpperCamelCase_ =EncodecConfig.from_pretrained("facebook/encodec_24khz" ) UpperCamelCase_ =BarkSemanticModel.from_pretrained(A ) UpperCamelCase_ =BarkCoarseModel.from_pretrained(A ) UpperCamelCase_ =BarkFineModel.from_pretrained(A ) UpperCamelCase_ =EncodecModel.from_pretrained("facebook/encodec_24khz" ) UpperCamelCase_ =BarkConfig.from_sub_model_configs( A , A , A , A ) UpperCamelCase_ =BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) UpperCamelCase_ =BarkModel(A ) UpperCamelCase_ =semantic UpperCamelCase_ =coarseAcoustic UpperCamelCase_ =fineAcoustic UpperCamelCase_ =codec UpperCamelCase_ =bark_generation_config Path(A ).mkdir(exist_ok=A ) bark.save_pretrained(A , repo_id=A , push_to_hub=A ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") A_ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
391
1
from __future__ import annotations import os from collections.abc import Mapping snake_case_ = tuple[int, int] class _lowercase : def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): A : set[int] = vertices A : dict[EdgeT, int] = { (min(UpperCAmelCase__ ), max(UpperCAmelCase__ )): weight for edge, weight in edges.items() } def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) A : str = weight def snake_case ( self ): A : Graph = Graph({min(self.vertices )} , {} ) A : EdgeT A : int A : EdgeT A : int while len(subgraph.vertices ) < len(self.vertices ): A : List[Any] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: A : List[Any] = edge A : int = weight subgraph.add_edge(UpperCAmelCase__ , UpperCAmelCase__ ) return subgraph def _lowerCamelCase( UpperCamelCase__ : str = "p107_network.txt" ) -> int: A : str = os.path.abspath(os.path.dirname(UpperCamelCase__ ) ) A : str = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) A : dict[EdgeT, int] = {} A : list[str] A : int A : int with open(UpperCamelCase__ ) as f: A : Tuple = f.read().strip().split('''\n''' ) A : Union[str, Any] = [line.split(''',''' ) for line in data] for edgea in range(1 , len(UpperCamelCase__ ) ): for edgea in range(UpperCamelCase__ ): if adjaceny_matrix[edgea][edgea] != "-": A : Tuple = int(adjaceny_matrix[edgea][edgea] ) A : Graph = Graph(set(range(len(UpperCamelCase__ ) ) ) , UpperCamelCase__ ) A : Graph = graph.prims_algorithm() A : int = sum(graph.edges.values() ) A : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
700
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCamelCase( UpperCamelCase__ : Dict ) -> Union[str, Any]: A : Optional[Any] = fname.split(os.path.sep )[-1] return re.search(R'''^(.*)_\d+\.jpg$''' , UpperCamelCase__ ).groups()[0] class _lowercase ( a ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): A : str = file_names A : Optional[int] = image_transform A : str = label_to_id def __len__( self ): return len(self.file_names ) def __getitem__( self , _UpperCAmelCase ): A : int = self.file_names[idx] A : int = PIL.Image.open(_UpperCAmelCase ) A : str = raw_image.convert('''RGB''' ) if self.image_transform is not None: A : Dict = self.image_transform(_UpperCAmelCase ) A : Tuple = extract_label(_UpperCAmelCase ) if self.label_to_id is not None: A : Optional[Any] = self.label_to_id[label] return {"image": image, "label": label} def _lowerCamelCase( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ) -> Any: # Initialize accelerator if args.with_tracking: A : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: A : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A : List[str] = config['''lr'''] A : int = int(config['''num_epochs'''] ) A : List[str] = int(config['''seed'''] ) A : Any = int(config['''batch_size'''] ) A : List[str] = config['''image_size'''] if not isinstance(UpperCamelCase__ , (list, tuple) ): A : List[str] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit''' ): if args.checkpointing_steps == "epoch": A : List[Any] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): A : Optional[Any] = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: A : Optional[Any] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: A : Any = os.path.split(UpperCamelCase__ )[-1].split('''.''' )[0] accelerator.init_trackers(UpperCamelCase__ , UpperCamelCase__ ) # Grab all the image filenames A : int = [os.path.join(args.data_dir , UpperCamelCase__ ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences A : int = [extract_label(UpperCamelCase__ ) for fname in file_names] A : str = list(set(UpperCamelCase__ ) ) id_to_label.sort() A : Dict = {lbl: i for i, lbl in enumerate(UpperCamelCase__ )} # Set the seed before splitting the data. np.random.seed(UpperCamelCase__ ) torch.manual_seed(UpperCamelCase__ ) torch.cuda.manual_seed_all(UpperCamelCase__ ) # Split our filenames between train and validation A : Dict = np.random.permutation(len(UpperCamelCase__ ) ) A : str = int(0.8 * len(UpperCamelCase__ ) ) A : Tuple = random_perm[:cut] A : List[Any] = random_perm[cut:] # For training we use a simple RandomResizedCrop A : Any = Compose([RandomResizedCrop(UpperCamelCase__ , scale=(0.5, 1.0) ), ToTensor()] ) A : List[Any] = PetsDataset( [file_names[i] for i in train_split] , image_transform=UpperCamelCase__ , label_to_id=UpperCamelCase__ ) # For evaluation, we use a deterministic Resize A : Optional[Any] = Compose([Resize(UpperCamelCase__ ), ToTensor()] ) A : List[Any] = PetsDataset([file_names[i] for i in eval_split] , image_transform=UpperCamelCase__ , label_to_id=UpperCamelCase__ ) # Instantiate dataloaders. A : List[str] = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) A : Tuple = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A : Union[str, Any] = create_model('''resnet50d''' , pretrained=UpperCamelCase__ , num_classes=len(UpperCamelCase__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A : Optional[int] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): A : Union[str, Any] = False for param in model.get_classifier().parameters(): A : Any = True # We normalize the batches of images to be a bit faster. A : Dict = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) A : str = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer A : List[Any] = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler A : int = OneCycleLR(optimizer=UpperCamelCase__ , max_lr=UpperCamelCase__ , epochs=UpperCamelCase__ , steps_per_epoch=len(UpperCamelCase__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A, A, A, A, A : Optional[int] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # We need to keep track of how many total steps we have iterated over A : Dict = 0 # We also need to keep track of the starting epoch so files are named properly A : str = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) A : Optional[int] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint A : Dict = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) A : Optional[int] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` A : Optional[int] = os.path.splitext(UpperCamelCase__ )[0] if "epoch" in training_difference: A : Tuple = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1 A : Union[str, Any] = None else: A : int = int(training_difference.replace('''step_''' , '''''' ) ) A : str = resume_step // len(UpperCamelCase__ ) resume_step -= starting_epoch * len(UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ , UpperCamelCase__ ): model.train() if args.with_tracking: A : int = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step A : str = accelerator.skip_first_batches(UpperCamelCase__ , UpperCamelCase__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader A : int = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. A : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} A : Optional[int] = (batch['''image'''] - mean) / std A : int = model(UpperCamelCase__ ) A : List[Any] = torch.nn.functional.cross_entropy(UpperCamelCase__ , batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A : List[Any] = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: A : Dict = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) model.eval() A : Optional[int] = 0 A : int = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. A : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} A : Any = (batch['''image'''] - mean) / std with torch.no_grad(): A : Union[str, Any] = model(UpperCamelCase__ ) A : Tuple = outputs.argmax(dim=-1 ) A, A : List[Any] = accelerator.gather_for_metrics((predictions, batch['''label''']) ) A : Any = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() A : str = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { '''accuracy''': 100 * eval_metric, '''train_loss''': total_loss.item() / len(UpperCamelCase__ ), '''epoch''': epoch, } , step=UpperCamelCase__ , ) if checkpointing_steps == "epoch": A : Dict = F'''epoch_{epoch}''' if args.output_dir is not None: A : Dict = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) if args.with_tracking: accelerator.end_training() def _lowerCamelCase( ) -> int: A : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' , required=UpperCamelCase__ , help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=UpperCamelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=UpperCamelCase__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) A : Tuple = parser.parse_args() A : List[str] = {'''lr''': 3e-2, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 64, '''image_size''': 224} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
537
0
from __future__ import annotations def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Any = sorted(numsa + numsa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = divmod(len(a__ ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ : Dict =[float(x) for x in input('Enter the elements of first array: ').split()] lowerCAmelCase__ : int =[float(x) for x in input('Enter the elements of second array: ').split()] print(F"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
101
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowercase ( a__ : Optional[int] , a__ : Dict=False ) -> Tuple: try: _UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCamelCase = default else: # KEY is set, convert it to True or False. try: _UpperCamelCase = strtobool(a__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value UpperCAmelCase = parse_flag_from_env("""RUN_SLOW""", default=False) UpperCAmelCase = parse_flag_from_env("""RUN_REMOTE""", default=False) UpperCAmelCase = parse_flag_from_env("""RUN_LOCAL""", default=True) UpperCAmelCase = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression UpperCAmelCase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") UpperCAmelCase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") UpperCAmelCase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio UpperCAmelCase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam UpperCAmelCase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility UpperCAmelCase = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows UpperCAmelCase = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def lowercase ( a__ : Union[str, Any] ) -> str: try: import faiss # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires faiss''' )(a__ ) return test_case def lowercase ( a__ : List[Any] ) -> str: try: import regex # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires regex''' )(a__ ) return test_case def lowercase ( a__ : Any ) -> Union[str, Any]: try: import elasticsearch # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(a__ ) return test_case def lowercase ( a__ : List[Any] ) -> Optional[Any]: try: import sqlalchemy # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(a__ ) return test_case def lowercase ( a__ : Any ) -> Union[str, Any]: if not config.TORCH_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires PyTorch''' )(a__ ) return test_case def lowercase ( a__ : str ) -> Optional[Any]: if not config.TF_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(a__ ) return test_case def lowercase ( a__ : Optional[int] ) -> str: if not config.JAX_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires JAX''' )(a__ ) return test_case def lowercase ( a__ : str ) -> int: if not config.PIL_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires Pillow''' )(a__ ) return test_case def lowercase ( a__ : Union[str, Any] ) -> Dict: try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(a__ ) else: return test_case def lowercase ( a__ : List[Any] ) -> Optional[int]: try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(a__ ) else: return test_case def lowercase ( a__ : str ) -> Tuple: try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(a__ ) else: return test_case def lowercase ( a__ : List[Any] ) -> int: def _require_spacy_model(a__ : Any ): try: import spacy # noqa F401 spacy.load(a__ ) except ImportError: return unittest.skip('''test requires spacy''' )(a__ ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(a__ ) )(a__ ) else: return test_case return _require_spacy_model def lowercase ( a__ : List[str] ) -> Dict: try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(a__ ) else: return test_case def lowercase ( a__ : int ) -> Any: try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(a__ ) else: return test_case def lowercase ( a__ : List[Any] ) -> Optional[int]: if not _run_slow_tests or _run_slow_tests == 0: _UpperCamelCase = unittest.skip('''test is slow''' )(a__ ) return test_case def lowercase ( a__ : List[Any] ) -> int: if not _run_local_tests or _run_local_tests == 0: _UpperCamelCase = unittest.skip('''test is local''' )(a__ ) return test_case def lowercase ( a__ : Optional[int] ) -> List[str]: if not _run_packaged_tests or _run_packaged_tests == 0: _UpperCamelCase = unittest.skip('''test is packaged''' )(a__ ) return test_case def lowercase ( a__ : List[Any] ) -> int: if not _run_remote_tests or _run_remote_tests == 0: _UpperCamelCase = unittest.skip('''test requires remote''' )(a__ ) return test_case def lowercase ( *a__ : Dict ) -> List[Any]: def decorate(cls : str ): for name, fn in cls.__dict__.items(): if callable(a__ ) and name.startswith('''test''' ): for decorator in decorators: _UpperCamelCase = decorator(a__ ) setattr(cls , a__ , a__ ) return cls return decorate class UpperCAmelCase_ ( _lowercase): pass class UpperCAmelCase_ ( _lowercase): snake_case__ = 0 snake_case__ = 1 snake_case__ = 2 @contextmanager def lowercase ( a__ : List[Any]=OfflineSimulationMode.CONNECTION_FAILS , a__ : Dict=1e-16 ) -> Any: _UpperCamelCase = requests.Session().request def timeout_request(a__ : Dict , a__ : str , a__ : Optional[Any] , **a__ : Any ): # Change the url to an invalid url so that the connection hangs _UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) _UpperCamelCase = timeout try: return online_request(a__ , a__ , **a__ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _UpperCamelCase = url _UpperCamelCase = e.args[0] _UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' , F'''OfflineMock[{url}]''' ),) _UpperCamelCase = (max_retry_error,) raise def raise_connection_error(a__ : Optional[int] , a__ : int , **a__ : Any ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=a__ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , a__ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , a__ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , a__ ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def lowercase ( *a__ : Optional[int] , **a__ : List[str] ) -> Optional[Any]: _UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*a__ , **a__ ) as tmp_dir: try: os.chdir(a__ ) yield finally: os.chdir(a__ ) @contextmanager def lowercase ( ) -> List[str]: import gc gc.collect() _UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowercase ( ) -> List[Any]: import gc gc.collect() _UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowercase ( a__ : Optional[Any] , a__ : Tuple ) -> List[Any]: return deepcopy(a__ ).integers(0 , 100 , 10 ).tolist() == deepcopy(a__ ).integers(0 , 100 , 10 ).tolist() def lowercase ( a__ : Optional[Any] ) -> Tuple: import decorator from requests.exceptions import HTTPError def _wrapper(a__ : Union[str, Any] , *a__ : Tuple , **a__ : Any ): try: return func(*a__ , **a__ ) except HTTPError as err: if str(a__ ).startswith('''500''' ) or str(a__ ).startswith('''502''' ): pytest.xfail(str(a__ ) ) raise err return decorator.decorator(_wrapper , a__ ) class UpperCAmelCase_ : def __init__( self : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Tuple ) -> Any: _UpperCamelCase = returncode _UpperCamelCase = stdout _UpperCamelCase = stderr async def lowercase ( a__ : int , a__ : Tuple ) -> int: while True: _UpperCamelCase = await stream.readline() if line: callback(a__ ) else: break async def lowercase ( a__ : Tuple , a__ : int=None , a__ : int=None , a__ : Optional[Any]=None , a__ : Optional[int]=False , a__ : List[str]=False ) -> _RunOutput: if echo: print('''\nRunning: ''' , ''' '''.join(a__ ) ) _UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=a__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=a__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCamelCase = [] _UpperCamelCase = [] def tee(a__ : Optional[int] , a__ : Optional[int] , a__ : Union[str, Any] , a__ : List[str]="" ): _UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(a__ ) if not quiet: print(a__ , a__ , file=a__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda a__ : tee(a__ , a__ , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda a__ : tee(a__ , a__ , sys.stderr , label='''stderr:''' ) ), ] , timeout=a__ , ) return _RunOutput(await p.wait() , a__ , a__ ) def lowercase ( a__ : Any , a__ : List[Any]=None , a__ : List[Any]=None , a__ : Tuple=180 , a__ : Tuple=False , a__ : Optional[int]=True ) -> _RunOutput: _UpperCamelCase = asyncio.get_event_loop() _UpperCamelCase = loop.run_until_complete( _stream_subprocess(a__ , env=a__ , stdin=a__ , timeout=a__ , quiet=a__ , echo=a__ ) ) _UpperCamelCase = ''' '''.join(a__ ) if result.returncode > 0: _UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'''\'{cmd_str}\' produced no output.''' ) return result def lowercase ( ) -> List[Any]: _UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) _UpperCamelCase = re.sub(R'''^gw''' , '''''' , a__ , 0 , re.M ) return int(a__ ) def lowercase ( ) -> str: _UpperCamelCase = 29500 _UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
420
0
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): __lowercase : List[Any] = hf_hub_url(repo_id=lowerCAmelCase_ , path=lowerCAmelCase_ , revision=lowerCAmelCase_ ) assert url == F"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(lowerCAmelCase_ )}"
649
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
1
def _lowercase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ): if height >= 1: move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) move_disk(__UpperCamelCase , __UpperCamelCase ) move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _lowercase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] ): print("""moving disk from""" , __UpperCamelCase , """to""" , __UpperCamelCase ) def _lowercase ( ): snake_case__ = int(input("""Height of hanoi: """ ).strip() ) move_tower(__UpperCamelCase , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
214
def _lowercase ( __UpperCamelCase : list ): snake_case__ = False while is_sorted is False: # Until all the indices are traversed keep looping snake_case__ = True for i in range(0 , len(__UpperCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: snake_case__ , snake_case__ = input_list[i + 1], input_list[i] # swapping if elements not in order snake_case__ = False for i in range(1 , len(__UpperCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: snake_case__ , snake_case__ = input_list[i + 1], input_list[i] # swapping if elements not in order snake_case__ = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') lowerCAmelCase : Union[str, Any] = [int(x) for x in input().split()] # inputing elements of the list in one line lowerCAmelCase : int = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
214
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowercase__ ( ) -> Optional[int]: """simple docstring""" UpperCAmelCase = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=lowerCAmelCase ) UpperCAmelCase = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go UpperCAmelCase = parser.parse_args() if not hasattr(lowerCAmelCase , 'func' ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
183
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=3 , lowercase_=3_2 , lowercase_=3 , lowercase_=1_0 , lowercase_=[1_0, 2_0, 3_0, 4_0] , lowercase_=[1, 1, 2, 1] , lowercase_=True , lowercase_=True , lowercase_="relu" , lowercase_=3 , lowercase_=None , ) -> str: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowercase_ ) def a_ ( self ) -> Optional[int]: UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a_ ( self , lowercase_ , lowercase_ ) -> List[Any]: UpperCAmelCase = FlaxRegNetModel(config=lowercase_ ) UpperCAmelCase = model(lowercase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def a_ ( self , lowercase_ , lowercase_ ) -> Union[str, Any]: UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowercase_ ) UpperCAmelCase = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self ) -> List[Any]: UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Tuple = False def a_ ( self ) -> None: UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def a_ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a_ ( self ) -> Optional[Any]: return def a_ ( self ) -> Any: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def a_ ( self ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def a_ ( self ) -> List[str]: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def a_ ( self ) -> Optional[int]: pass def a_ ( self ) -> Dict: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase_ ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) def a_ ( self ) -> int: def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = model_class(lowercase_ ) UpperCAmelCase = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def a_ ( self ) -> List[Any]: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowercase_ , lowercase_ ) UpperCAmelCase = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ , **lowercase_ ): return model(pixel_values=lowercase_ , **lowercase_ ) with self.subTest('JIT Enabled' ): UpperCAmelCase = model_jitted(**lowercase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( ) -> Tuple: """simple docstring""" UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): @cached_property def a_ ( self ) -> List[str]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def a_ ( self ) -> Union[str, Any]: UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowercase_ , return_tensors='np' ) UpperCAmelCase = model(**lowercase_ ) # verify the logits UpperCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) )
183
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A__ = tempfile.mkdtemp() # fmt: off A__ = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on A__ = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) A__ = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] A__ = {'unk_token': '<unk>'} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_snake_case ) ) A__ = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } A__ = os.path.join(self.tmpdirname , _snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_snake_case , _snake_case ) def _a ( self : Union[str, Any] , **_snake_case : Optional[int] ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : Union[str, Any] , **_snake_case : Union[str, Any] ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : List[str] , **_snake_case : int ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : Dict ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : List[Any] ): """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = self.get_image_processor() A__ = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_slow.save_pretrained(self.tmpdirname ) A__ = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=_snake_case ) A__ = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_fast.save_pretrained(self.tmpdirname ) A__ = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _snake_case ) self.assertIsInstance(processor_fast.tokenizer , _snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _snake_case ) self.assertIsInstance(processor_fast.image_processor , _snake_case ) def _a ( self : Dict ): """simple docstring""" A__ = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) A__ = self.get_image_processor(do_normalize=_snake_case , padding_value=1.0 ) A__ = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def _a ( self : List[str] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = self.prepare_image_inputs() A__ = image_processor(_snake_case , return_tensors='np' ) A__ = processor(images=_snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Tuple ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = 'lower newer' A__ = processor(text=_snake_case ) A__ = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : Optional[int] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def _a ( self : Dict ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = self.prepare_image_inputs() A__ = self.prepare_image_inputs() A__ = processor(images=_snake_case , visual_prompt=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def _a ( self : int ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(_snake_case ) A__ = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case )
9
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case: def __init__(self : Any , a : str , a : Union[str, Any]=12 , a : List[str]=7 , a : Dict=True , a : Tuple=True , a : Any=True , a : Optional[Any]=99 , a : Optional[Any]=32 , a : Tuple=32 , a : List[Any]=2 , a : str=4 , a : Dict=37 , a : Optional[Any]=0.1 , a : List[Any]=0.1 , a : Dict=5_12 , a : List[Any]=0.02 , a : Any=0 , a : Optional[int]=None , ) -> List[Any]: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = scope A__ = bos_token_id def _UpperCamelCase (self : Union[str, Any] ) -> List[Any]: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: A__ = input_mask.numpy() A__ , A__ = input_mask.shape A__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(a ): A__ = 1 A__ = 0 A__ = self.get_config() return config, input_ids, tf.convert_to_tensor(a ) def _UpperCamelCase (self : Tuple ) -> Union[str, Any]: """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCamelCase (self : Optional[int] , a : Any , a : List[Any] , a : Union[str, Any] ) -> Any: """simple docstring""" A__ = TFBlipTextModel(config=a ) A__ = model(a , attention_mask=a , training=a ) A__ = model(a , training=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase (self : str ) -> List[Any]: """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _snake_case( UpperCAmelCase , unittest.TestCase ): __snake_case: Optional[int] = (TFBlipTextModel,) if is_tf_available() else () __snake_case: Union[str, Any] = False __snake_case: Any = False __snake_case: Union[str, Any] = False def _UpperCamelCase (self : Optional[Any] ) -> List[Any]: """simple docstring""" A__ = BlipTextModelTester(self ) A__ = ConfigTester(self , config_class=a , hidden_size=37 ) def _UpperCamelCase (self : Tuple ) -> str: """simple docstring""" self.config_tester.run_common_tests() def _UpperCamelCase (self : Any ) -> Dict: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCamelCase (self : Dict ) -> Dict: """simple docstring""" pass def _UpperCamelCase (self : str ) -> int: """simple docstring""" pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _UpperCamelCase (self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase (self : int ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase (self : int ) -> Optional[Any]: """simple docstring""" pass @slow def _UpperCamelCase (self : int ) -> Optional[Any]: """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFBlipTextModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCamelCase (self : str , a : Optional[int]=True ) -> List[Any]: """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=a )
531
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 def __init__( self : Optional[Any] , UpperCAmelCase : UNetaDModel , UpperCAmelCase : KarrasVeScheduler ) -> List[str]: super().__init__() self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[int] , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 50 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , **UpperCAmelCase : Union[str, Any] , ) -> Union[Tuple, ImagePipelineOutput]: lowerCamelCase__ : Any = self.unet.config.sample_size lowerCamelCase__ : Union[str, Any] = (batch_size, 3, img_size, img_size) lowerCamelCase__ : Tuple = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) lowerCamelCase__ : Optional[int] = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper lowerCamelCase__ : Union[str, Any] = self.scheduler.schedule[t] lowerCamelCase__ : Optional[Any] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.scheduler.add_noise_to_input(UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCamelCase__ : List[str] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev lowerCamelCase__ : Tuple = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCamelCase__ : Union[str, Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample lowerCamelCase__ : Union[str, Any] = self.scheduler.step_correct( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , ) lowerCamelCase__ : str = step_output.prev_sample lowerCamelCase__ : Union[str, Any] = (sample / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase__ : Tuple = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase__ : List[Any] = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
188
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """donut-swin""" UpperCAmelCase__ = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Tuple , UpperCAmelCase : List[str]=224 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=96 , UpperCAmelCase : int=[2, 2, 6, 2] , UpperCAmelCase : Dict=[3, 6, 12, 24] , UpperCAmelCase : Any=7 , UpperCAmelCase : Optional[int]=4.0 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Any=0.0 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : int=0.1 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : List[str]=False , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : str=1e-5 , **UpperCAmelCase : Tuple , ) -> int: super().__init__(**UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : Optional[int] = patch_size lowerCamelCase__ : int = num_channels lowerCamelCase__ : int = embed_dim lowerCamelCase__ : Optional[Any] = depths lowerCamelCase__ : Optional[int] = len(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = num_heads lowerCamelCase__ : Tuple = window_size lowerCamelCase__ : Dict = mlp_ratio lowerCamelCase__ : str = qkv_bias lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : str = drop_path_rate lowerCamelCase__ : int = hidden_act lowerCamelCase__ : str = use_absolute_embeddings lowerCamelCase__ : List[Any] = layer_norm_eps lowerCamelCase__ : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ : Optional[int] = int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) )
188
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[int] = logging.get_logger(__name__) _A : Tuple = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class a__ ( a_ ): __lowerCAmelCase = """speech_to_text_2""" __lowerCAmelCase = ["""past_key_values"""] __lowerCAmelCase = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , _a=10_000 , _a=6 , _a=2_048 , _a=4 , _a=0.0 , _a=True , _a="relu" , _a=256 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.0_2 , _a=2 , _a=True , _a=1 , _a=0 , _a=2 , _a=1_024 , **_a , ): lowercase : int = vocab_size lowercase : Any = d_model lowercase : Optional[int] = decoder_ffn_dim lowercase : Dict = decoder_layers lowercase : int = decoder_attention_heads lowercase : Any = dropout lowercase : List[str] = attention_dropout lowercase : Any = activation_dropout lowercase : Optional[Any] = activation_function lowercase : str = init_std lowercase : Any = decoder_layerdrop lowercase : Any = use_cache lowercase : Optional[int] = decoder_layers lowercase : Any = scale_embedding # scale factor will be sqrt(d_model) if True lowercase : List[str] = max_target_positions super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , **_a , )
361
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def __magic_name__ ( __snake_case : float , __snake_case : float , __snake_case : float ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(__snake_case , 2 ) - pow(__snake_case , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__snake_case , 2 ) - pow(__snake_case , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__snake_case , 2 ) + pow(__snake_case , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
361
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : str = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { "Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json", "Salesforce/blip-vqa-capfit-large": ( "https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json" ), "Salesforce/blip-image-captioning-base": ( "https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json" ), "Salesforce/blip-image-captioning-large": ( "https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json" ), "Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json", "Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json", "Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json", "Salesforce/blip-itm-large-flikr": ( "https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json" ), } class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): UpperCAmelCase = '''blip_text_model''' def __init__( self :Optional[Any] ,__UpperCAmelCase :Tuple=3_05_24 ,__UpperCAmelCase :str=7_68 ,__UpperCAmelCase :Dict=7_68 ,__UpperCAmelCase :Optional[int]=30_72 ,__UpperCAmelCase :List[Any]=7_68 ,__UpperCAmelCase :List[Any]=12 ,__UpperCAmelCase :Optional[Any]=8 ,__UpperCAmelCase :List[Any]=5_12 ,__UpperCAmelCase :Union[str, Any]="gelu" ,__UpperCAmelCase :Union[str, Any]=1E-12 ,__UpperCAmelCase :Optional[int]=0.0 ,__UpperCAmelCase :Optional[Any]=0.0 ,__UpperCAmelCase :Optional[Any]=0.02 ,__UpperCAmelCase :int=3_05_22 ,__UpperCAmelCase :List[str]=2 ,__UpperCAmelCase :List[Any]=0 ,__UpperCAmelCase :Tuple=1_02 ,__UpperCAmelCase :str=True ,__UpperCAmelCase :List[Any]=True ,**__UpperCAmelCase :Optional[int] ,) -> List[Any]: """simple docstring""" super().__init__( pad_token_id=__UpperCAmelCase ,bos_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,sep_token_id=__UpperCAmelCase ,**__UpperCAmelCase ,) lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Union[str, Any] = encoder_hidden_size lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : Tuple = projection_dim lowerCamelCase__ : Any = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : int = max_position_embeddings lowerCamelCase__ : Any = layer_norm_eps lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = initializer_range lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : Any = is_decoder lowerCamelCase__ : List[str] = use_cache @classmethod def lowercase_ ( cls :List[Any] ,__UpperCAmelCase :Union[str, os.PathLike] ,**__UpperCAmelCase :Optional[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : List[str] = cls.get_config_dict(__UpperCAmelCase ,**__UpperCAmelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": lowerCamelCase__ : str = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase ,**__UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): UpperCAmelCase = '''blip_vision_model''' def __init__( self :int ,__UpperCAmelCase :Dict=7_68 ,__UpperCAmelCase :Optional[int]=30_72 ,__UpperCAmelCase :List[str]=5_12 ,__UpperCAmelCase :List[str]=12 ,__UpperCAmelCase :Any=12 ,__UpperCAmelCase :str=3_84 ,__UpperCAmelCase :List[Any]=16 ,__UpperCAmelCase :int="gelu" ,__UpperCAmelCase :Union[str, Any]=1E-5 ,__UpperCAmelCase :Optional[Any]=0.0 ,__UpperCAmelCase :Any=1E-10 ,**__UpperCAmelCase :int ,) -> Optional[Any]: """simple docstring""" super().__init__(**__UpperCAmelCase ) lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : List[str] = projection_dim lowerCamelCase__ : Tuple = num_hidden_layers lowerCamelCase__ : Tuple = num_attention_heads lowerCamelCase__ : Any = patch_size lowerCamelCase__ : str = image_size lowerCamelCase__ : str = initializer_range lowerCamelCase__ : Dict = attention_dropout lowerCamelCase__ : List[Any] = layer_norm_eps lowerCamelCase__ : Any = hidden_act @classmethod def lowercase_ ( cls :int ,__UpperCAmelCase :Union[str, os.PathLike] ,**__UpperCAmelCase :List[str] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = cls.get_config_dict(__UpperCAmelCase ,**__UpperCAmelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": lowerCamelCase__ : Tuple = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase ,**__UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): UpperCAmelCase = '''blip''' UpperCAmelCase = True def __init__( self :Union[str, Any] ,__UpperCAmelCase :Optional[int]=None ,__UpperCAmelCase :Tuple=None ,__UpperCAmelCase :str=5_12 ,__UpperCAmelCase :Union[str, Any]=2.6_592 ,__UpperCAmelCase :Optional[int]=2_56 ,**__UpperCAmelCase :Any ,) -> List[Any]: """simple docstring""" super().__init__(**__UpperCAmelCase ) if text_config is None: lowerCamelCase__ : Optional[Any] = {} logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' ) if vision_config is None: lowerCamelCase__ : str = {} logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' ) lowerCamelCase__ : Optional[Any] = BlipTextConfig(**__UpperCAmelCase ) lowerCamelCase__ : int = BlipVisionConfig(**__UpperCAmelCase ) lowerCamelCase__ : Any = self.vision_config.hidden_size lowerCamelCase__ : Union[str, Any] = projection_dim lowerCamelCase__ : Optional[int] = logit_scale_init_value lowerCamelCase__ : List[Any] = 1.0 lowerCamelCase__ : Dict = 0.02 lowerCamelCase__ : Tuple = image_text_hidden_size @classmethod def lowercase_ ( cls :Tuple ,__UpperCAmelCase :BlipTextConfig ,__UpperCAmelCase :BlipVisionConfig ,**__UpperCAmelCase :List[Any] ) -> Tuple: """simple docstring""" return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**__UpperCAmelCase ) def lowercase_ ( self :List[str] ) -> Tuple: """simple docstring""" lowerCamelCase__ : Tuple = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Optional[int] = self.text_config.to_dict() lowerCamelCase__ : str = self.vision_config.to_dict() lowerCamelCase__ : int = self.__class__.model_type return output
121
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCAmelCase : Dict = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): pass @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowercase_ ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self :Dict ) -> List[str]: """simple docstring""" lowerCamelCase__ : Any = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ,torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCamelCase__ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCamelCase__ : Union[str, Any] = torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = pipe.dual_guided( prompt='''first prompt''' ,image=__UpperCAmelCase ,text_to_image_strength=0.75 ,generator=__UpperCAmelCase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ,).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCAmelCase ) lowerCamelCase__ : Dict = VersatileDiffusionPipeline.from_pretrained(__UpperCAmelCase ,torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCamelCase__ : Dict = generator.manual_seed(0 ) lowerCamelCase__ : List[str] = pipe.dual_guided( prompt='''first prompt''' ,image=__UpperCAmelCase ,text_to_image_strength=0.75 ,generator=__UpperCAmelCase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ,).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowercase_ ( self :Tuple ) -> str: """simple docstring""" lowerCamelCase__ : Optional[Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ,torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCamelCase__ : Tuple = '''cyberpunk 2077''' lowerCamelCase__ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCamelCase__ : str = torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = pipe.dual_guided( prompt=__UpperCAmelCase ,image=__UpperCAmelCase ,text_to_image_strength=0.75 ,generator=__UpperCAmelCase ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='''numpy''' ,).images lowerCamelCase__ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCamelCase__ : Optional[Any] = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowerCamelCase__ : Tuple = '''A painting of a squirrel eating a burger ''' lowerCamelCase__ : Optional[Any] = torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = pipe.text_to_image( prompt=__UpperCAmelCase ,generator=__UpperCAmelCase ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='''numpy''' ).images lowerCamelCase__ : List[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCamelCase__ : Optional[Any] = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowerCamelCase__ : Any = pipe.image_variation(__UpperCAmelCase ,generator=__UpperCAmelCase ,output_type='''numpy''' ).images lowerCamelCase__ : Union[str, Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCamelCase__ : str = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
121
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : str = 2 while i * i <= n: UpperCamelCase__ : List[Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __UpperCAmelCase ( ) -> List[str]: UpperCamelCase__ : str = 1 UpperCamelCase__ : List[Any] = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase_) > 500: break return t_num if __name__ == "__main__": print(solution())
596
'''simple docstring''' from math import sqrt def __UpperCAmelCase ( lowerCamelCase_ = 1_000_000) -> int: UpperCamelCase__ : int = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2).is_integer(): num_cuboids += ( min(lowerCamelCase_ , sum_shortest_sides // 2) - max(1 , sum_shortest_sides - max_cuboid_size) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
596
1
from manim import * class lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ): def __a ( self ): _lowercase : Any = Rectangle(height=0.5 , width=0.5 ) _lowercase : Optional[int] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowercase : List[Any] = [mem.copy() for i in range(6 )] _lowercase : Union[str, Any] = [mem.copy() for i in range(6 )] _lowercase : Dict = VGroup(*A_ ).arrange(A_ , buff=0 ) _lowercase : str = VGroup(*A_ ).arrange(A_ , buff=0 ) _lowercase : int = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) _lowercase : Optional[Any] = Text('CPU' , font_size=2_4 ) _lowercase : Optional[int] = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) _lowercase : Tuple = [mem.copy() for i in range(4 )] _lowercase : Optional[int] = VGroup(*A_ ).arrange(A_ , buff=0 ) _lowercase : Union[str, Any] = Text('GPU' , font_size=2_4 ) _lowercase : List[Any] = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) _lowercase : List[Any] = [mem.copy() for i in range(6 )] _lowercase : Tuple = VGroup(*A_ ).arrange(A_ , buff=0 ) _lowercase : Any = Text('Model' , font_size=2_4 ) _lowercase : int = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) _lowercase : Union[str, Any] = [] for i, rect in enumerate(A_ ): rect.set_stroke(A_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowercase : str = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=A_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=A_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=A_ , buff=0.0 ) self.add(A_ ) cpu_targs.append(A_ ) _lowercase : Union[str, Any] = [mem.copy() for i in range(6 )] _lowercase : Optional[int] = VGroup(*A_ ).arrange(A_ , buff=0 ) _lowercase : List[Any] = Text('Loaded Checkpoint' , font_size=2_4 ) _lowercase : Tuple = Group(A_ , A_ ).arrange(A_ , aligned_edge=A_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowercase : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowercase : int = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) _lowercase : Any = MarkupText( F"""<span fgcolor=\'{BLUE}\'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _lowercase : Optional[int] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) , Write(A_ ) ) self.play(Write(A_ , run_time=1 ) , Create(A_ , run_time=1 ) ) _lowercase : str = [] _lowercase : Tuple = [] for i, rect in enumerate(A_ ): _lowercase : int = fill.copy().set_fill(A_ , opacity=0.7 ) target.move_to(A_ ) first_animations.append(GrowFromCenter(A_ , run_time=1 ) ) _lowercase : Optional[int] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(A_ , run_time=1.5 ) ) self.play(*A_ ) self.play(*A_ ) self.wait()
703
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : Optional[int] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Any = use_labels _lowercase : str = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Optional[Any] = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : List[str] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : List[str] = scope _lowercase : Union[str, Any] = embedding_size def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Dict = None _lowercase : Any = None _lowercase : int = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase ) _lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) _lowercase : Tuple = [input_ids, input_mask] _lowercase : str = model(_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase ) _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.num_labels _lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) _lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.num_choices _lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = self.num_labels _lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[str] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __a ( self ): _lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def __a ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowercase : List[str] = model(_lowerCAmelCase )[0] _lowercase : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , _lowerCAmelCase ) _lowercase : List[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
677
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __UpperCamelCase : __snake_case :Optional[Any] = MBartConfig __snake_case :str = {} __snake_case :str = 'gelu' def __init__( self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=13 , _lowerCAmelCase : Union[str, Any]=7 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Tuple=99 , _lowerCAmelCase : Dict=32 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : str=37 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Optional[Any]=20 , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=1 , _lowerCAmelCase : List[str]=0 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id def _a ( self : int ) -> Dict: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowercase = prepare_mbart_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def _a ( self : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ) -> int: """simple docstring""" __lowercase = TFMBartModel(config=_lowerCAmelCase ).get_decoder() __lowercase = inputs_dict["""input_ids"""] __lowercase = input_ids[:1, :] __lowercase = inputs_dict["""attention_mask"""][:1, :] __lowercase = inputs_dict["""head_mask"""] __lowercase = 1 # first forward pass __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) __lowercase , __lowercase = outputs.to_tuple() __lowercase = past_key_values[1] def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): '''simple docstring''' if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :List[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __snake_case :Optional[int] = (TFMBartForConditionalGeneration,) if is_tf_available() else () __snake_case :Any = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __snake_case :str = True __snake_case :List[str] = False __snake_case :Tuple = False def _a ( self : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : List[str] ) -> Tuple: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = TFMBartModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Any ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class __UpperCamelCase ( unittest.TestCase ): __snake_case :Union[str, Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ] __snake_case :Optional[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] __snake_case :List[Any] = 'facebook/mbart-large-en-ro' @cached_property def _a ( self : List[Any] ) -> Any: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self : str , **_lowerCAmelCase : Tuple ) -> int: """simple docstring""" __lowercase = self.translate_src_text(**_lowerCAmelCase ) self.assertListEqual(self.expected_text , _lowerCAmelCase ) def _a ( self : Dict , **_lowerCAmelCase : str ) -> Any: """simple docstring""" __lowercase = self.tokenizer(self.src_text , **_lowerCAmelCase , return_tensors="""tf""" ) __lowercase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __lowercase = self.tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) return generated_words @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._assert_generated_batch_equal_expected()
80
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0**9 ) -> int: '''simple docstring''' lowercase = 1 lowercase = 2 lowercase = 0 lowercase = 0 lowercase = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowercase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
359
0
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence lowercase__ : Optional[Any] = gray_code_sequence_string(SCREAMING_SNAKE_CASE_ ) # # convert them to integers for i in range(len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ : List[Any] = int(sequence[i] ,2 ) return sequence def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowercase__ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowercase__ : Any = gray_code_sequence_string(bit_count - 1 ) lowercase__ : Any = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowercase__ : str = "0" + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowercase__ : Optional[int] = "1" + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
298
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __a ( self ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[int] = inspect.getfile(accelerate.test_utils ) lowercase__ : Union[str, Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowercase__ : Optional[int] = test_metrics @require_cpu def __a ( self ) -> List[Any]: """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __a ( self ) -> Union[str, Any]: """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def __a ( self ) -> Dict: """simple docstring""" self.test_metrics.main() @require_multi_gpu def __a ( self ) -> str: """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) lowercase__ : Optional[Any] = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase , env=os.environ.copy() )
298
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ ='''naver-clova-ix/donut-base-finetuned-docvqa''' SCREAMING_SNAKE_CASE__ =( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) SCREAMING_SNAKE_CASE__ ='''document_qa''' SCREAMING_SNAKE_CASE__ =AutoProcessor SCREAMING_SNAKE_CASE__ =VisionEncoderDecoderModel SCREAMING_SNAKE_CASE__ =['''image''', '''text'''] SCREAMING_SNAKE_CASE__ =['''text'''] def __init__( self, *_a, **_a ) -> Dict: if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*_lowercase, **_lowercase ) def __lowerCAmelCase ( self, _a, _a ) -> Any: __SCREAMING_SNAKE_CASE = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __SCREAMING_SNAKE_CASE = task_prompt.replace("{user_input}", _lowercase ) __SCREAMING_SNAKE_CASE = self.pre_processor.tokenizer( _lowercase, add_special_tokens=_lowercase, return_tensors="pt" ).input_ids __SCREAMING_SNAKE_CASE = self.pre_processor(_lowercase, return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __lowerCAmelCase ( self, _a ) -> List[Any]: return self.model.generate( inputs["pixel_values"].to(self.device ), decoder_input_ids=inputs["decoder_input_ids"].to(self.device ), max_length=self.model.decoder.config.max_position_embeddings, early_stopping=_lowercase, pad_token_id=self.pre_processor.tokenizer.pad_token_id, eos_token_id=self.pre_processor.tokenizer.eos_token_id, use_cache=_lowercase, num_beams=1, bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]], return_dict_in_generate=_lowercase, ).sequences def __lowerCAmelCase ( self, _a ) -> Dict: __SCREAMING_SNAKE_CASE = self.pre_processor.batch_decode(_lowercase )[0] __SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.eos_token, "" ) __SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.pad_token, "" ) __SCREAMING_SNAKE_CASE = re.sub(r"<.*?>", "", _lowercase, count=1 ).strip() # remove first task start token __SCREAMING_SNAKE_CASE = self.pre_processor.tokenajson(_lowercase ) return sequence["answer"]
693
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } a_ :List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } a_ :Tuple = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } a_ :str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ :Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ :Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ :List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ :Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ :Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCAmelCase ) class lowercase : def __call__( self : List[Any] , _lowercase : Any , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Union[bool, str] = False , _lowercase : Union[bool, str] = False , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , **_lowercase : str , ): if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ : List[str] = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = titles if not isinstance(_lowercase , _lowercase ) else [titles] SCREAMING_SNAKE_CASE__ : Optional[int] = texts if not isinstance(_lowercase , _lowercase ) else [texts] SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : str = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowercase__ ( self : List[Any] , _lowercase : BatchEncoding , _lowercase : DPRReaderOutput , _lowercase : int = 16 , _lowercase : int = 64 , _lowercase : int = 4 , ): SCREAMING_SNAKE_CASE__ : Optional[int] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reader_output[:3] SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) SCREAMING_SNAKE_CASE__ : int = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : List[int] , _lowercase : int , _lowercase : int , ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase : Dict = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask''']
35
0
"""simple docstring""" from typing import Any def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): _validation( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) # Creates data structures and fill initial step lowerCamelCase__ : dict = {} lowerCamelCase__ : dict = {} for state in states_space: lowerCamelCase__ : List[Any] = observations_space[0] lowerCamelCase__ : Optional[int] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__ : str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(_lowerCamelCase ) ): lowerCamelCase__ : Any = observations_space[o] lowerCamelCase__ : Any = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__ : Union[str, Any] = '' lowerCamelCase__ : str = -1 for k_state in states_space: lowerCamelCase__ : Tuple = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__ : int = probability lowerCamelCase__ : List[str] = k_state # Update probabilities and pointers dicts lowerCamelCase__ : List[Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__ : Any = arg_max # The final observation lowerCamelCase__ : List[str] = observations_space[len(_lowerCamelCase ) - 1] # argmax for given final observation lowerCamelCase__ : Tuple = '' lowerCamelCase__ : Optional[int] = -1 for k_state in states_space: lowerCamelCase__ : Optional[int] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__ : Optional[Any] = probability lowerCamelCase__ : str = k_state lowerCamelCase__ : str = arg_max # Process pointers backwards lowerCamelCase__ : Optional[int] = last_state lowerCamelCase__ : str = [] for o in range(len(_lowerCamelCase ) - 1 , -1 , -1 ): result.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): _validate_not_empty( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) _validate_lists(_lowerCamelCase , _lowerCamelCase ) _validate_dicts( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): _validate_list(_lowerCamelCase , 'observations_space' ) _validate_list(_lowerCamelCase , 'states_space' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not isinstance(_object , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = f'''{var_name} must be a list''' raise ValueError(_lowerCamelCase ) else: for x in _object: if not isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = f'''{var_name} must be a list of strings''' raise ValueError(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): _validate_dict(_lowerCamelCase , 'initial_probabilities' , _lowerCamelCase ) _validate_nested_dict(_lowerCamelCase , 'transition_probabilities' ) _validate_nested_dict(_lowerCamelCase , 'emission_probabilities' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): _validate_dict(_object , _lowerCamelCase , _lowerCamelCase ) for x in _object.values(): _validate_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ): if not isinstance(_object , _lowerCamelCase ): lowerCamelCase__ : List[Any] = f'''{var_name} must be a dict''' raise ValueError(_lowerCamelCase ) if not all(isinstance(_lowerCamelCase , _lowerCamelCase ) for x in _object ): lowerCamelCase__ : Optional[Any] = f'''{var_name} all keys must be strings''' raise ValueError(_lowerCamelCase ) if not all(isinstance(_lowerCamelCase , _lowerCamelCase ) for x in _object.values() ): lowerCamelCase__ : Dict = 'nested dictionary ' if nested else '' lowerCamelCase__ : Dict = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(_lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
696
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : Union[str, Any] = str(file.readlines()[0] ) lowerCamelCase__ : int = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
696
1
from collections.abc import Sequence def __magic_name__ ( lowercase , lowercase ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(lowercase ) ) def __magic_name__ ( lowercase , lowercase ) -> float: """simple docstring""" lowercase_ : Any = 0.0 for coeff in reversed(lowercase ): lowercase_ : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
458
from string import ascii_uppercase UpperCAmelCase_ = {char: i for i, char in enumerate(ascii_uppercase)} UpperCAmelCase_ = dict(enumerate(ascii_uppercase)) def __magic_name__ ( lowercase , lowercase ) -> str: """simple docstring""" lowercase_ : Dict = len(lowercase ) lowercase_ : Tuple = 0 while True: if x == i: lowercase_ : Dict = 0 if len(lowercase ) == len(lowercase ): break key += key[i] i += 1 return key def __magic_name__ ( lowercase , lowercase ) -> str: """simple docstring""" lowercase_ : Any = """""" lowercase_ : Optional[Any] = 0 for letter in message: if letter == " ": cipher_text += " " else: lowercase_ : Any = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __magic_name__ ( lowercase , lowercase ) -> str: """simple docstring""" lowercase_ : Optional[Any] = """""" lowercase_ : Optional[Any] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowercase_ : Optional[int] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __magic_name__ ( ) -> None: """simple docstring""" lowercase_ : Union[str, Any] = """THE GERMAN ATTACK""" lowercase_ : str = """SECRET""" lowercase_ : int = generate_key(lowercase , lowercase ) lowercase_ : List[str] = cipher_text(lowercase , lowercase ) print(f"""Encrypted Text = {s}""" ) print(f"""Original Text = {original_text(lowercase , lowercase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
458
1
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase = TypeVar('''T''') UpperCAmelCase = TypeVar('''U''') class A_ ( Generic[T, U] ): '''simple docstring''' def __init__( self , snake_case , snake_case ): lowercase = key lowercase = val lowercase = None lowercase = None def __repr__( self ): return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class A_ ( Generic[T, U] ): '''simple docstring''' def __init__( self ): lowercase = DoubleLinkedListNode(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase = DoubleLinkedListNode(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase = self.rear, self.head def __repr__( self ): lowercase = ['''DoubleLinkedList'''] lowercase = self.head while node.next is not None: rep.append(str(UpperCAmelCase__ ) ) lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowercase = node lowercase = previous lowercase = node lowercase = self.rear def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if node.prev is None or node.next is None: return None lowercase = node.next lowercase = node.prev lowercase = None lowercase = None return node class A_ ( Generic[T, U] ): '''simple docstring''' _UpperCamelCase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , snake_case ): lowercase = DoubleLinkedList() lowercase = capacity lowercase = 0 lowercase = 0 lowercase = 0 lowercase = {} def __repr__( self ): return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , snake_case ): return key in self.cache def SCREAMING_SNAKE_CASE__ ( self , snake_case ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 lowercase = self.cache[key] lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(UpperCAmelCase__ ) return node.val self.miss += 1 return None def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(UpperCAmelCase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowercase = DoubleLinkedListNode(UpperCAmelCase__ , UpperCAmelCase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list lowercase = value self.list.add(UpperCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case = 128 ): def cache_decorator_inner(snake_case ) -> Callable[..., U]: def cache_decorator_wrapper(*snake_case ) -> U: if func not in cls.decorator_function_to_instance_map: lowercase = LRUCache(UpperCAmelCase__ ) lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: lowercase = func(*UpperCAmelCase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , UpperCAmelCase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(UpperCAmelCase__ , 'cache_info' , UpperCAmelCase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
718
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = k_size // 2 lowercase , lowercase = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowercase = 1 / (2 * pi * sigma) * exp(-(square(__SCREAMING_SNAKE_CASE ) + square(__SCREAMING_SNAKE_CASE )) / (2 * square(__SCREAMING_SNAKE_CASE )) ) return g def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase , lowercase = image.shape[0], image.shape[1] # dst image height and width lowercase = height - k_size + 1 lowercase = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowercase = zeros((dst_height * dst_width, k_size * k_size) ) lowercase = 0 for i, j in product(range(__SCREAMING_SNAKE_CASE ) , range(__SCREAMING_SNAKE_CASE ) ): lowercase = ravel(image[i : i + k_size, j : j + k_size] ) lowercase = window row += 1 # turn the kernel into shape(k*k, 1) lowercase = gen_gaussian_kernel(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase = ravel(__SCREAMING_SNAKE_CASE ) # reshape and get the dst image lowercase = dot(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).reshape(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) return dst if __name__ == "__main__": # read original image UpperCAmelCase = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value UpperCAmelCase = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size UpperCAmelCase = gaussian_filter(gray, 3, sigma=1) UpperCAmelCase = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
565
0
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: UpperCamelCase = False UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = """ybelkada/fonts""" def _lowerCamelCase ( ) -> int: """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ "Pix2StructImageProcessor. Please upgrade torch." ) def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : Any, UpperCAmelCase_ : Dict ) -> Optional[int]: """simple docstring""" requires_backends(UpperCAmelCase_, ["torch"] ) _check_torch_version() A__ = image_tensor.unsqueeze(0 ) A__ = torch.nn.functional.unfold(UpperCAmelCase_, (patch_height, patch_width), stride=(patch_height, patch_width) ) A__ = patches.reshape(image_tensor.size(0 ), image_tensor.size(1 ), UpperCAmelCase_, UpperCAmelCase_, -1 ) A__ = patches.permute(0, 4, 2, 3, 1 ).reshape( image_tensor.size(2 ) // patch_height, image_tensor.size(3 ) // patch_width, image_tensor.size(1 ) * patch_height * patch_width, ) return patches.unsqueeze(0 ) def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : int = 36, UpperCAmelCase_ : str = "black", UpperCAmelCase_ : str = "white", UpperCAmelCase_ : int = 5, UpperCAmelCase_ : int = 5, UpperCAmelCase_ : int = 5, UpperCAmelCase_ : int = 5, UpperCAmelCase_ : Optional[bytes] = None, UpperCAmelCase_ : Optional[str] = None, ) -> Image.Image: """simple docstring""" requires_backends(UpperCAmelCase_, "vision" ) # Add new lines so that each line is no more than 80 characters. A__ = textwrap.TextWrapper(width=80 ) A__ = wrapper.wrap(text=UpperCAmelCase_ ) A__ = "\n".join(UpperCAmelCase_ ) if font_bytes is not None and font_path is None: A__ = io.BytesIO(UpperCAmelCase_ ) elif font_path is not None: A__ = font_path else: A__ = hf_hub_download(UpperCAmelCase_, "Arial.TTF" ) A__ = ImageFont.truetype(UpperCAmelCase_, encoding="UTF-8", size=UpperCAmelCase_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. A__ = ImageDraw.Draw(Image.new("RGB", (1, 1), UpperCAmelCase_ ) ) A__ , A__ , A__ , A__ = temp_draw.textbbox((0, 0), UpperCAmelCase_, UpperCAmelCase_ ) # Create the actual image with a bit of padding around the text. A__ = text_width + left_padding + right_padding A__ = text_height + top_padding + bottom_padding A__ = Image.new("RGB", (image_width, image_height), UpperCAmelCase_ ) A__ = ImageDraw.Draw(UpperCAmelCase_ ) draw.text(xy=(left_padding, top_padding), text=UpperCAmelCase_, fill=UpperCAmelCase_, font=UpperCAmelCase_ ) return image def _lowerCamelCase ( UpperCAmelCase_ : np.ndarray, UpperCAmelCase_ : str, **UpperCAmelCase_ : Dict ) -> Optional[Any]: """simple docstring""" requires_backends(UpperCAmelCase_, "vision" ) # Convert to PIL image if necessary A__ = to_pil_image(UpperCAmelCase_ ) A__ = render_text(UpperCAmelCase_, **UpperCAmelCase_ ) A__ = max(header_image.width, image.width ) A__ = int(image.height * (new_width / image.width) ) A__ = int(header_image.height * (new_width / header_image.width) ) A__ = Image.new("RGB", (new_width, new_height + new_header_height), "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ), (0, 0) ) new_image.paste(image.resize((new_width, new_height) ), (0, new_header_height) ) # Convert back to the original framework if necessary A__ = to_numpy_array(UpperCAmelCase_ ) if infer_channel_dimension_format(UpperCAmelCase_ ) == ChannelDimension.LAST: A__ = to_channel_dimension_format(UpperCAmelCase_, ChannelDimension.LAST ) return new_image class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : int = ["flattened_patches"] def __init__( self , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 2048 , SCREAMING_SNAKE_CASE__ = False , **SCREAMING_SNAKE_CASE__ , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE__ ) A__ = patch_size if patch_size is not None else {"height": 16, "width": 16} A__ = do_normalize A__ = do_convert_rgb A__ = max_patches A__ = is_vqa def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> np.ndarray: requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch A__ = to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , ChannelDimension.FIRST ) A__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) A__ , A__ = patch_size["height"], patch_size["width"] A__ , A__ = get_image_size(SCREAMING_SNAKE_CASE__ ) # maximize scale s.t. A__ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) A__ = max(min(math.floor(scale * image_height / patch_height ) , SCREAMING_SNAKE_CASE__ ) , 1 ) A__ = max(min(math.floor(scale * image_width / patch_width ) , SCREAMING_SNAKE_CASE__ ) , 1 ) A__ = max(num_feasible_rows * patch_height , 1 ) A__ = max(num_feasible_cols * patch_width , 1 ) A__ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=SCREAMING_SNAKE_CASE__ , antialias=SCREAMING_SNAKE_CASE__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] A__ = torch_extract_patches(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = patches.shape A__ = patches_shape[1] A__ = patches_shape[2] A__ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] A__ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] A__ = torch.arange(SCREAMING_SNAKE_CASE__ ).reshape([rows, 1] ).repeat(1 , SCREAMING_SNAKE_CASE__ ).reshape([rows * columns, 1] ) A__ = torch.arange(SCREAMING_SNAKE_CASE__ ).reshape([1, columns] ).repeat(SCREAMING_SNAKE_CASE__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] A__ = row_ids.to(torch.floataa ) A__ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] A__ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] A__ = torch.nn.functional.pad(SCREAMING_SNAKE_CASE__ , [0, 0, 0, max_patches - (rows * columns)] ).float() A__ = to_numpy_array(SCREAMING_SNAKE_CASE__ ) return result def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ ) -> np.ndarray: if image.dtype == np.uinta: A__ = image.astype(np.floataa ) # take mean across the whole `image` A__ = np.mean(SCREAMING_SNAKE_CASE__ ) A__ = np.std(SCREAMING_SNAKE_CASE__ ) A__ = max(SCREAMING_SNAKE_CASE__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ , ) -> ImageInput: A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ = patch_size if patch_size is not None else self.patch_size A__ = max_patches if max_patches is not None else self.max_patches A__ = self.is_vqa if kwargs.get("data_format" , SCREAMING_SNAKE_CASE__ ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) A__ = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ = [convert_to_rgb(SCREAMING_SNAKE_CASE__ ) for image in images] # All transformations expect numpy arrays. A__ = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) A__ = kwargs.pop("font_bytes" , SCREAMING_SNAKE_CASE__ ) A__ = kwargs.pop("font_path" , SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = [header_text] * len(SCREAMING_SNAKE_CASE__ ) A__ = [ render_header(SCREAMING_SNAKE_CASE__ , header_text[i] , font_bytes=SCREAMING_SNAKE_CASE__ , font_path=SCREAMING_SNAKE_CASE__ ) for i, image in enumerate(SCREAMING_SNAKE_CASE__ ) ] if do_normalize: A__ = [self.normalize(image=SCREAMING_SNAKE_CASE__ ) for image in images] # convert to torch tensor and permute A__ = [ self.extract_flattened_patches(image=SCREAMING_SNAKE_CASE__ , max_patches=SCREAMING_SNAKE_CASE__ , patch_size=SCREAMING_SNAKE_CASE__ ) for image in images ] # create attention mask in numpy A__ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] A__ = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=SCREAMING_SNAKE_CASE__ ) return encoded_outputs
104
def __lowercase ( _UpperCamelCase ) ->list[int]: """simple docstring""" lowercase : Optional[Any] = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): for j in range(i + 1, _UpperCamelCase ): if numbers[j] < numbers[i]: lowercase , lowercase : Optional[int] = numbers[j], numbers[i] return numbers if __name__ == "__main__": __a = input('''Enter numbers separated by a comma:\n''').strip() __a = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
319
0
'''simple docstring''' import os import sys import unittest a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) a = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') a = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class a_ ( unittest.TestCase ): def UpperCamelCase ( self : Tuple ) -> Any: snake_case: Tuple =get_test_to_tester_mapping(a_ ) snake_case: Union[str, Any] =get_test_to_tester_mapping(a_ ) snake_case: Optional[Any] ={'BertModelTest': 'BertModelTester'} snake_case: str ={ 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(a_ ) , a_ ) self.assertEqual(get_test_info.to_json(a_ ) , a_ ) def UpperCamelCase ( self : Dict ) -> Optional[Any]: snake_case: Any =get_model_to_test_mapping(a_ ) snake_case: Optional[Any] =get_model_to_test_mapping(a_ ) snake_case: Any ={ 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } snake_case: Any ={ 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(a_ ) , a_ ) self.assertEqual(get_test_info.to_json(a_ ) , a_ ) def UpperCamelCase ( self : Any ) -> Union[str, Any]: snake_case: List[str] =get_model_to_tester_mapping(a_ ) snake_case: int =get_model_to_tester_mapping(a_ ) snake_case: List[str] ={ 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } snake_case: List[Any] ={ 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(a_ ) , a_ ) self.assertEqual(get_test_info.to_json(a_ ) , a_ )
347
'''simple docstring''' import sys from collections import defaultdict class a_ : def __init__( self : Union[str, Any] ) -> Optional[int]: snake_case: Any =[] def UpperCamelCase ( self : List[str] , a_ : Optional[int] ) -> str: return self.node_position[vertex] def UpperCamelCase ( self : Union[str, Any] , a_ : List[str] , a_ : List[Any] ) -> Tuple: snake_case: Optional[Any] =pos def UpperCamelCase ( self : Any , a_ : Any , a_ : Tuple , a_ : Optional[Any] , a_ : Optional[Any] ) -> Optional[int]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case: int =2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case: int =2 * start + 1 else: snake_case: Any =2 * start + 2 if heap[smallest_child] < heap[start]: snake_case , snake_case: Any =heap[smallest_child], positions[smallest_child] snake_case , snake_case: int =( heap[start], positions[start], ) snake_case , snake_case: Any =temp, tempa snake_case: List[Any] =self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , a_ ) self.top_to_bottom(a_ , a_ , a_ , a_ ) def UpperCamelCase ( self : Union[str, Any] , a_ : Tuple , a_ : List[str] , a_ : int , a_ : str ) -> List[str]: snake_case: Tuple =position[index] while index != 0: snake_case: List[Any] =int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: snake_case: Tuple =heap[parent] snake_case: Dict =position[parent] self.set_position(position[parent] , a_ ) else: snake_case: Dict =val snake_case: List[str] =temp self.set_position(a_ , a_ ) break snake_case: List[str] =parent else: snake_case: List[str] =val snake_case: int =temp self.set_position(a_ , 0 ) def UpperCamelCase ( self : Optional[Any] , a_ : Tuple , a_ : Optional[int] ) -> List[str]: snake_case: Optional[int] =len(a_ ) // 2 - 1 for i in range(a_ , -1 , -1 ): self.top_to_bottom(a_ , a_ , len(a_ ) , a_ ) def UpperCamelCase ( self : Optional[Any] , a_ : Union[str, Any] , a_ : Optional[int] ) -> List[Any]: snake_case: Dict =positions[0] snake_case: List[Any] =sys.maxsize self.top_to_bottom(a_ , 0 , len(a_ ) , a_ ) return temp def a_ ( __UpperCAmelCase ) -> Tuple: """simple docstring""" snake_case: Union[str, Any] =Heap() snake_case: Optional[int] =[0] * len(__UpperCAmelCase ) snake_case: Optional[Any] =[-1] * len(__UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case: List[str] =[] # Heap of Distance of vertices from their neighboring vertex snake_case: Tuple =[] for vertex in range(len(__UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__UpperCAmelCase ) heap.node_position.append(__UpperCAmelCase ) snake_case: int =[] snake_case: Union[str, Any] =1 snake_case: Union[str, Any] =sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case: List[Any] =0 snake_case: Union[str, Any] =distance heap.heapify(__UpperCAmelCase , __UpperCAmelCase ) for _ in range(1 , len(__UpperCAmelCase ) ): snake_case: Optional[int] =heap.delete_minimum(__UpperCAmelCase , __UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case: Union[str, Any] =1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__UpperCAmelCase )] ): snake_case: List[Any] =distance heap.bottom_to_top( __UpperCAmelCase , heap.get_position(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) snake_case: str =vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > a = int(input('Enter number of edges: ').strip()) a = defaultdict(list) for _ in range(edges_number): a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
347
1
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "T5Config" class __UpperCamelCase ( A__ ): __A : str = """mt5""" __A : Optional[Any] = MTaConfig class __UpperCamelCase ( A__ ): __A : Tuple = """mt5""" __A : List[str] = MTaConfig class __UpperCamelCase ( A__ ): __A : Optional[Any] = """mt5""" __A : int = MTaConfig
32
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
1
def lowerCAmelCase__ ( a__ ) ->Tuple: '''simple docstring''' _UpperCamelCase = 0 _UpperCamelCase = len(a__ ) for i in range(n - 1 ): for j in range(i + 1 , a__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowerCAmelCase__ ( a__ ) ->Union[str, Any]: '''simple docstring''' if len(a__ ) <= 1: return arr, 0 _UpperCamelCase = len(a__ ) // 2 _UpperCamelCase = arr[0:mid] _UpperCamelCase = arr[mid:] _UpperCamelCase , _UpperCamelCase = count_inversions_recursive(a__ ) _UpperCamelCase , _UpperCamelCase = count_inversions_recursive(a__ ) _UpperCamelCase , _UpperCamelCase = _count_cross_inversions(a__ , a__ ) _UpperCamelCase = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowerCAmelCase__ ( a__ , a__ ) ->Optional[int]: '''simple docstring''' _UpperCamelCase = [] _UpperCamelCase = _UpperCamelCase = _UpperCamelCase = 0 while i < len(a__ ) and j < len(a__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(a__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(a__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowerCAmelCase__ ( ) ->Optional[int]: '''simple docstring''' _UpperCamelCase = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _UpperCamelCase = count_inversions_bf(a__ ) _UpperCamelCase , _UpperCamelCase = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , a__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _UpperCamelCase = count_inversions_bf(a__ ) _UpperCamelCase , _UpperCamelCase = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , a__ ) # an empty list should also have zero inversions _UpperCamelCase = [] _UpperCamelCase = count_inversions_bf(a__ ) _UpperCamelCase , _UpperCamelCase = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , a__ ) if __name__ == "__main__": main()
703
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = '''bertabs''' def __init__( self : List[str] , lowercase_ : int=30522 , lowercase_ : str=512 , lowercase_ : int=6 , lowercase_ : Optional[Any]=512 , lowercase_ : Optional[Any]=8 , lowercase_ : Optional[int]=512 , lowercase_ : Tuple=0.2 , lowercase_ : Union[str, Any]=6 , lowercase_ : List[Any]=768 , lowercase_ : List[str]=8 , lowercase_ : int=2048 , lowercase_ : Tuple=0.2 , **lowercase_ : str , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowercase_) _UpperCamelCase = vocab_size _UpperCamelCase = max_pos _UpperCamelCase = enc_layers _UpperCamelCase = enc_hidden_size _UpperCamelCase = enc_heads _UpperCamelCase = enc_ff_size _UpperCamelCase = enc_dropout _UpperCamelCase = dec_layers _UpperCamelCase = dec_hidden_size _UpperCamelCase = dec_heads _UpperCamelCase = dec_ff_size _UpperCamelCase = dec_dropout
82
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : List[str] = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class _snake_case ( A__ ): _lowercase : str = '''luke''' def __init__( self , a=5_0267 , a=50_0000 , a=768 , a=256 , a=12 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=2 , a=0.02 , a=1E-12 , a=True , a=None , a=1 , a=0 , a=2 , **a , ) -> Dict: super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = entity_vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = entity_emb_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = use_entity_aware_attention SCREAMING_SNAKE_CASE = classifier_dropout
73
def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [0 for i in range(r + 1 )] # nc0 = 1 SCREAMING_SNAKE_CASE_ : Dict = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. SCREAMING_SNAKE_CASE_ : Optional[int] = min(lowerCamelCase_ , lowerCamelCase_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
105
0
from __future__ import annotations def snake_case (__lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ) -> tuple[int, float, str]: '''simple docstring''' _snake_case : Dict = cipher_alphabet or [chr(__lowercase ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) _snake_case : List[Any] = { "a": 0.08497, "b": 0.01492, "c": 0.02202, "d": 0.04253, "e": 0.11162, "f": 0.02228, "g": 0.02015, "h": 0.06094, "i": 0.07546, "j": 0.00153, "k": 0.01292, "l": 0.04025, "m": 0.02406, "n": 0.06749, "o": 0.07507, "p": 0.01929, "q": 0.00095, "r": 0.07587, "s": 0.06327, "t": 0.09356, "u": 0.02758, "v": 0.00978, "w": 0.02560, "x": 0.00150, "y": 0.01994, "z": 0.00077, } else: # Custom frequencies dictionary _snake_case : Union[str, Any] = frequencies_dict if not case_sensitive: _snake_case : Any = ciphertext.lower() # Chi squared statistic values _snake_case : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(__lowercase ) ): _snake_case : List[str] = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet _snake_case : List[Any] = (alphabet_letters.index(letter.lower() ) - shift) % len( __lowercase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter _snake_case : Dict = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: _snake_case : str = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message _snake_case : str = decrypted_with_shift.lower().count(__lowercase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _snake_case : Optional[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula _snake_case : List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message _snake_case : List[Any] = decrypted_with_shift.count(__lowercase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _snake_case : Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula _snake_case : List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary _snake_case : List[Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(__lowercase ) -> tuple[float, str]: return chi_squared_statistic_values[key] _snake_case : int = min( __lowercase , key=__lowercase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( _snake_case ) ,( _snake_case ) , ) : Optional[Any] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
580
import math def snake_case (__lowercase , __lowercase ) -> float: '''simple docstring''' if ( not isinstance(__lowercase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def snake_case (__lowercase , __lowercase ) -> float: '''simple docstring''' if ( not isinstance(__lowercase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
580
1
import math import random from typing import Any from .hill_climbing import SearchProblem def __lowercase ( lowerCamelCase : int , lowerCamelCase : bool = True , lowerCamelCase : float = math.inf , lowerCamelCase : float = -math.inf , lowerCamelCase : float = math.inf , lowerCamelCase : float = -math.inf , lowerCamelCase : bool = False , lowerCamelCase : float = 100 , lowerCamelCase : float = 0.0_1 , lowerCamelCase : float = 1 , ): UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : str = search_prob UpperCamelCase_ : List[Any] = start_temperate UpperCamelCase_ : int = [] UpperCamelCase_ : Optional[int] = 0 UpperCamelCase_ : List[str] = None while not search_end: UpperCamelCase_ : Dict = current_state.score() if best_state is None or current_score > best_state.score(): UpperCamelCase_ : Any = current_state scores.append(lowerCamelCase_ ) iterations += 1 UpperCamelCase_ : List[str] = None UpperCamelCase_ : Optional[Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCamelCase_ : Optional[int] = random.randint(0 , len(lowerCamelCase_ ) - 1 ) # picking a random neighbor UpperCamelCase_ : List[Any] = neighbors.pop(lowerCamelCase_ ) UpperCamelCase_ : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCamelCase_ : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCamelCase_ : Dict = picked_neighbor else: UpperCamelCase_ : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCamelCase_ : Union[str, Any] = picked_neighbor UpperCamelCase_ : Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCamelCase_ : List[str] = True else: UpperCamelCase_ : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCamelCase_ ) , lowerCamelCase_ ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def __lowercase ( lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) a_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def __lowercase ( lowerCamelCase : int , lowerCamelCase : List[str] ): return (3 * x**2) - (6 * y) a_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) a_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
417
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask __magic_name__ : List[Any] =logging.getLogger(__name__) class UpperCamelCase_ ( A ): """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : str=-1 ) -> List[str]: # in NER datasets, the last column is usually reserved for NER label __magic_name__ = label_idx def __A ( self : Any , _lowerCamelCase : str , _lowerCamelCase : Union[Split, str] ) -> List[InputExample]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __magic_name__ = mode.value __magic_name__ = os.path.join(_lowerCamelCase , f'{mode}.txt' ) __magic_name__ = 1 __magic_name__ = [] with open(_lowerCamelCase , encoding="utf-8" ) as f: __magic_name__ = [] __magic_name__ = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=_lowerCamelCase , labels=_lowerCamelCase ) ) guid_index += 1 __magic_name__ = [] __magic_name__ = [] else: __magic_name__ = line.split(" " ) words.append(splits[0] ) if len(_lowerCamelCase ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=_lowerCamelCase , labels=_lowerCamelCase ) ) return examples def __A ( self : Optional[Any] , _lowerCamelCase : TextIO , _lowerCamelCase : TextIO , _lowerCamelCase : List ) -> Union[str, Any]: __magic_name__ = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(_lowerCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __magic_name__ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(_lowerCamelCase ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def __A ( self : Tuple , _lowerCamelCase : str ) -> List[str]: if path: with open(_lowerCamelCase , "r" ) as f: __magic_name__ = f.read().splitlines() if "O" not in labels: __magic_name__ = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCamelCase_ ( A ): """simple docstring""" def __init__( self : int ) -> str: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __A ( self : int , _lowerCamelCase : str ) -> List[str]: if path: with open(_lowerCamelCase , "r" ) as f: __magic_name__ = f.read().splitlines() if "O" not in labels: __magic_name__ = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCamelCase_ ( A ): """simple docstring""" def __A ( self : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[Split, str] ) -> List[InputExample]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __magic_name__ = mode.value __magic_name__ = os.path.join(_lowerCamelCase , f'{mode}.txt' ) __magic_name__ = 1 __magic_name__ = [] with open(_lowerCamelCase , encoding="utf-8" ) as f: for sentence in parse_incr(_lowerCamelCase ): __magic_name__ = [] __magic_name__ = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=_lowerCamelCase , labels=_lowerCamelCase ) ) guid_index += 1 return examples def __A ( self : Optional[int] , _lowerCamelCase : TextIO , _lowerCamelCase : TextIO , _lowerCamelCase : List ) -> Any: __magic_name__ = 0 for sentence in parse_incr(_lowerCamelCase ): __magic_name__ = preds_list[example_id] __magic_name__ = "" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(_lowerCamelCase ) example_id += 1 def __A ( self : Dict , _lowerCamelCase : str ) -> List[str]: if path: with open(_lowerCamelCase , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
664
0
from math import factorial, radians def UpperCamelCase ( _A : float , _A : int = 18 , _A : int = 10 )-> float: """simple docstring""" A__ = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians A__ = radians(_A ) A__ = angle_in_radians A__ = 3 A__ = -1 for _ in range(_A ): result += (b * (angle_in_radians**a)) / factorial(_A ) A__ = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_A , _A ) if __name__ == "__main__": __import__("doctest").testmod()
232
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ : Optional[int] = 16 UpperCAmelCase_ : List[Any] = 32 def UpperCamelCase ( _A : Accelerator , _A : int = 16 )-> Dict: """simple docstring""" A__ = AutoTokenizer.from_pretrained("bert-base-cased" ) A__ = load_dataset("glue" , "mrpc" ) def tokenize_function(_A : Tuple ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_A , max_length=_A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( _A , batched=_A , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_A : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( _A , padding="longest" , max_length=_A , pad_to_multiple_of=_A , return_tensors="pt" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["train"] , shuffle=_A , collate_fn=_A , batch_size=_A , drop_last=_A ) A__ = DataLoader( tokenized_datasets["validation"] , shuffle=_A , collate_fn=_A , batch_size=_A , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def UpperCamelCase ( _A : str , _A : List[str] )-> Union[str, Any]: """simple docstring""" A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["lr"] A__ = int(config["num_epochs"] ) A__ = int(config["seed"] ) A__ = int(config["batch_size"] ) A__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(_A ) A__ , A__ = get_dataloaders(_A , _A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=_A ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=_A , num_warmup_steps=100 , num_training_steps=(len(_A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( _A , _A , _A , _A , _A ) # Now we train the model for epoch in range(_A ): model.train() for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**_A ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(_A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**_A ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_A , references=_A , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _A ) def UpperCamelCase ( )-> Any: """simple docstring""" A__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_A , default=_A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) A__ = parser.parse_args() A__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_A , _A ) if __name__ == "__main__": main()
232
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = (DEISMultistepScheduler,) lowerCAmelCase : Optional[int] = (("num_inference_steps", 2_5),) def UpperCAmelCase ( self : Any ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**_snake_case ) return config def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Tuple=0 ,**_snake_case : str ) -> List[str]: """simple docstring""" lowercase__ : Union[str, Any] = dict(self.forward_default_kwargs ) lowercase__ : Any = kwargs.pop('''num_inference_steps''' ,_snake_case ) lowercase__ : Dict = self.dummy_sample lowercase__ : str = 0.1 * sample lowercase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase__ : List[str] = self.get_scheduler_config(**_snake_case ) lowercase__ : int = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowercase__ : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowercase__ : List[Any] = scheduler_class.from_pretrained(_snake_case ) new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowercase__ : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase__ , lowercase__ : List[str] = sample, sample for t in range(_snake_case ,time_step + scheduler.config.solver_order + 1 ): lowercase__ : Any = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : Tuple = new_scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase ( self : List[Any] ,_snake_case : Tuple=0 ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : List[str] = dict(self.forward_default_kwargs ) lowercase__ : Tuple = kwargs.pop('''num_inference_steps''' ,_snake_case ) lowercase__ : Optional[Any] = self.dummy_sample lowercase__ : Optional[Any] = 0.1 * sample lowercase__ : str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase__ : Dict = self.get_scheduler_config() lowercase__ : int = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowercase__ : List[Any] = scheduler_class.from_pretrained(_snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residual (must be after setting timesteps) lowercase__ : Any = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase__ : Dict = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : Any = new_scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : Tuple ,_snake_case : int=None ,**_snake_case : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if scheduler is None: lowercase__ : int = self.scheduler_classes[0] lowercase__ : Optional[int] = self.get_scheduler_config(**_snake_case ) lowercase__ : Any = scheduler_class(**_snake_case ) lowercase__ : Tuple = self.scheduler_classes[0] lowercase__ : Dict = self.get_scheduler_config(**_snake_case ) lowercase__ : str = scheduler_class(**_snake_case ) lowercase__ : List[Any] = 10 lowercase__ : str = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.timesteps ): lowercase__ : Union[str, Any] = model(_snake_case ,_snake_case ) lowercase__ : int = scheduler.step(_snake_case ,_snake_case ,_snake_case ).prev_sample return sample def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = dict(self.forward_default_kwargs ) lowercase__ : Optional[Any] = kwargs.pop('''num_inference_steps''' ,_snake_case ) for scheduler_class in self.scheduler_classes: lowercase__ : Dict = self.get_scheduler_config() lowercase__ : int = scheduler_class(**_snake_case ) lowercase__ : str = self.dummy_sample lowercase__ : Union[str, Any] = 0.1 * sample if num_inference_steps is not None and hasattr(_snake_case ,'''set_timesteps''' ): scheduler.set_timesteps(_snake_case ) elif num_inference_steps is not None and not hasattr(_snake_case ,'''set_timesteps''' ): lowercase__ : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] lowercase__ : int = dummy_past_residuals[: scheduler.config.solver_order] lowercase__ : Union[str, Any] = scheduler.timesteps[5] lowercase__ : Tuple = scheduler.timesteps[6] lowercase__ : Optional[int] = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : Optional[int] = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : Any = DEISMultistepScheduler(**self.get_scheduler_config() ) lowercase__ : List[Any] = self.full_loop(scheduler=_snake_case ) lowercase__ : Optional[int] = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 lowercase__ : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase__ : int = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase__ : Union[str, Any] = UniPCMultistepScheduler.from_config(scheduler.config ) lowercase__ : Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config ) lowercase__ : str = self.full_loop(scheduler=_snake_case ) lowercase__ : str = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 def UpperCAmelCase ( self : List[Any] ) -> int: """simple docstring""" for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> str: """simple docstring""" self.check_over_configs(thresholding=_snake_case ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case ,prediction_type=_snake_case ,sample_max_value=_snake_case ,algorithm_type='''deis''' ,solver_order=_snake_case ,solver_type=_snake_case ,) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case ,solver_type=_snake_case ,prediction_type=_snake_case ,algorithm_type=_snake_case ,) lowercase__ : str = self.full_loop( solver_order=_snake_case ,solver_type=_snake_case ,prediction_type=_snake_case ,algorithm_type=_snake_case ,) assert not torch.isnan(_snake_case ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.check_over_configs(lower_order_final=_snake_case ) self.check_over_configs(lower_order_final=_snake_case ) def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=_snake_case ,time_step=0 ) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" lowercase__ : int = self.full_loop() lowercase__ : Any = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.full_loop(prediction_type='''v_prediction''' ) lowercase__ : int = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config(thresholding=_snake_case ,dynamic_thresholding_ratio=0 ) lowercase__ : Union[str, Any] = scheduler_class(**_snake_case ) lowercase__ : Tuple = 10 lowercase__ : Optional[Any] = self.dummy_model() lowercase__ : Optional[int] = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.timesteps ): lowercase__ : int = model(_snake_case ,_snake_case ) lowercase__ : List[Any] = scheduler.step(_snake_case ,_snake_case ,_snake_case ).prev_sample assert sample.dtype == torch.floataa
560
"""simple docstring""" from ...processing_utils import ProcessorMixin class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Tuple = "SpeechT5FeatureExtractor" lowerCAmelCase : Optional[Any] = "SpeechT5Tokenizer" def __init__( self : Optional[int] ,_snake_case : Union[str, Any] ,_snake_case : str ) -> Tuple: """simple docstring""" super().__init__(_snake_case ,_snake_case ) def __call__( self : str ,*_snake_case : str ,**_snake_case : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : List[str] = kwargs.pop('''audio''' ,_snake_case ) lowercase__ : Union[str, Any] = kwargs.pop('''text''' ,_snake_case ) lowercase__ : Tuple = kwargs.pop('''text_target''' ,_snake_case ) lowercase__ : str = kwargs.pop('''audio_target''' ,_snake_case ) lowercase__ : Union[str, Any] = kwargs.pop('''sampling_rate''' ,_snake_case ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: lowercase__ : Optional[Any] = self.feature_extractor(_snake_case ,*_snake_case ,sampling_rate=_snake_case ,**_snake_case ) elif text is not None: lowercase__ : Dict = self.tokenizer(_snake_case ,**_snake_case ) else: lowercase__ : int = None if audio_target is not None: lowercase__ : Tuple = self.feature_extractor(audio_target=_snake_case ,*_snake_case ,sampling_rate=_snake_case ,**_snake_case ) lowercase__ : List[Any] = targets['''input_values'''] elif text_target is not None: lowercase__ : int = self.tokenizer(_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = targets['''input_ids'''] else: lowercase__ : List[str] = None if inputs is None: return targets if targets is not None: lowercase__ : Tuple = labels lowercase__ : Optional[int] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase__ : str = decoder_attention_mask return inputs def UpperCAmelCase ( self : str ,*_snake_case : List[Any] ,**_snake_case : Union[str, Any] ) -> int: """simple docstring""" lowercase__ : List[str] = kwargs.pop('''input_values''' ,_snake_case ) lowercase__ : Any = kwargs.pop('''input_ids''' ,_snake_case ) lowercase__ : List[Any] = kwargs.pop('''labels''' ,_snake_case ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: lowercase__ : List[Any] = self.feature_extractor.pad(_snake_case ,*_snake_case ,**_snake_case ) elif input_ids is not None: lowercase__ : Union[str, Any] = self.tokenizer.pad(_snake_case ,**_snake_case ) else: lowercase__ : int = None if labels is not None: if "input_ids" in labels or (isinstance(_snake_case ,_snake_case ) and "input_ids" in labels[0]): lowercase__ : List[Any] = self.tokenizer.pad(_snake_case ,**_snake_case ) lowercase__ : Optional[int] = targets['''input_ids'''] else: lowercase__ : int = self.feature_extractor.feature_size lowercase__ : str = self.feature_extractor.num_mel_bins lowercase__ : int = self.feature_extractor.pad(_snake_case ,*_snake_case ,**_snake_case ) lowercase__ : Tuple = feature_size_hack lowercase__ : int = targets['''input_values'''] else: lowercase__ : Union[str, Any] = None if inputs is None: return targets if targets is not None: lowercase__ : str = labels lowercase__ : str = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase__ : Tuple = decoder_attention_mask return inputs def UpperCAmelCase ( self : Optional[int] ,*_snake_case : List[Any] ,**_snake_case : Tuple ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[str] ,*_snake_case : Dict ,**_snake_case : str ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case )
560
1
import colorsys from PIL import Image # type: ignore def UpperCAmelCase__ ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : int ) -> List[str]: __a : List[Any] = x __a : Any = y for step in range(lowerCamelCase_ ): # noqa: B007 __a : Union[str, Any] = a * a - b * b + x __a : Any = 2 * a * b + y __a : str = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def UpperCAmelCase__ ( lowerCamelCase_ : float ) -> Dict: if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def UpperCAmelCase__ ( lowerCamelCase_ : float ) -> List[Any]: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(lowerCamelCase_ , 1 , 1 ) ) def UpperCAmelCase__ ( lowerCamelCase_ : int = 8_0_0 , lowerCamelCase_ : int = 6_0_0 , lowerCamelCase_ : float = -0.6 , lowerCamelCase_ : float = 0 , lowerCamelCase_ : float = 3.2 , lowerCamelCase_ : int = 5_0 , lowerCamelCase_ : bool = True , ) -> Union[str, Any]: __a : List[str] = Image.new('RGB' , (image_width, image_height) ) __a : Union[str, Any] = img.load() # loop through the image-coordinates for image_x in range(lowerCamelCase_ ): for image_y in range(lowerCamelCase_ ): # determine the figure-coordinates based on the image-coordinates __a : Optional[Any] = figure_width / image_width * image_height __a : Any = figure_center_x + (image_x / image_width - 0.5) * figure_width __a : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height __a : Optional[Any] = get_distance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __a : List[Any] = get_color_coded_rgb(lowerCamelCase_ ) else: __a : Union[str, Any] = get_black_and_white_rgb(lowerCamelCase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure SCREAMING_SNAKE_CASE__ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
718
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '''▁''' SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } SCREAMING_SNAKE_CASE__ = { '''google/pegasus-xsum''': 512, } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Tuple = PegasusTokenizer __SCREAMING_SNAKE_CASE : int = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Tuple="<pad>" , SCREAMING_SNAKE_CASE__ : List[Any]="</s>" , SCREAMING_SNAKE_CASE__ : int="<unk>" , SCREAMING_SNAKE_CASE__ : int="<mask_2>" , SCREAMING_SNAKE_CASE__ : int="<mask_1>" , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : List[Any]=1_0_3 , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ): '''simple docstring''' __a : Optional[Any] = offset if additional_special_tokens is not None: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError( f'''additional_special_tokens should be of type {type(SCREAMING_SNAKE_CASE__ )}, but is''' f''' {type(SCREAMING_SNAKE_CASE__ )}''' ) __a : Tuple = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(SCREAMING_SNAKE_CASE__ ) , self.offset - 1 ) ] if len(set(SCREAMING_SNAKE_CASE__ ) ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) __a : Tuple = additional_special_tokens_extended else: __a : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , mask_token_sent=SCREAMING_SNAKE_CASE__ , offset=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __a : Tuple = vocab_file __a : List[str] = False if not self.vocab_file else True def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' __a : Tuple = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List , SCREAMING_SNAKE_CASE__ : Optional[List] = None , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(SCREAMING_SNAKE_CASE__ ) elif token_ids_a is None: return self._special_token_mask(SCREAMING_SNAKE_CASE__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a : int = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
577
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __magic_name__ ( _lowerCAmelCase): _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Any = None _UpperCAmelCase : Optional[Any] = None class __magic_name__ ( _lowerCAmelCase): def __init__( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : int=1 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=0 ,__SCREAMING_SNAKE_CASE : Tuple=2 ,__SCREAMING_SNAKE_CASE : Tuple=5_1_2 ,__SCREAMING_SNAKE_CASE : str="cls" ,__SCREAMING_SNAKE_CASE : Union[str, Any]=False ,__SCREAMING_SNAKE_CASE : Optional[Any]=True ,**__SCREAMING_SNAKE_CASE : Optional[Any] ,): super().__init__(pad_token_id=UpperCamelCase_ ,bos_token_id=UpperCamelCase_ ,eos_token_id=UpperCamelCase_ ,**UpperCamelCase_ ) UpperCAmelCase = project_dim UpperCAmelCase = pooler_fn UpperCAmelCase = learn_encoder UpperCAmelCase = use_attention_mask class __magic_name__ ( _lowerCAmelCase): _UpperCAmelCase : List[Any] = [r'pooler', r'logit_scale'] _UpperCAmelCase : List[str] = [r'position_ids', r'predictions.decoder.bias'] _UpperCAmelCase : Union[str, Any] = 'roberta' _UpperCAmelCase : List[Any] = RobertaSeriesConfig def __init__( self : Any ,__SCREAMING_SNAKE_CASE : Any ): super().__init__(UpperCamelCase_ ) UpperCAmelCase = XLMRobertaModel(UpperCamelCase_ ) UpperCAmelCase = nn.Linear(config.hidden_size ,config.project_dim ) UpperCAmelCase = getattr(UpperCamelCase_ ,"has_pre_transformation" ,UpperCamelCase_ ) if self.has_pre_transformation: UpperCAmelCase = nn.Linear(config.hidden_size ,config.project_dim ) UpperCAmelCase = nn.LayerNorm(config.hidden_size ,eps=config.layer_norm_eps ) self.post_init() def _UpperCAmelCase ( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None ,__SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None ,__SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None ,__SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None ,__SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None ,__SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None ,__SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None ,__SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None ,__SCREAMING_SNAKE_CASE : Optional[bool] = None ,__SCREAMING_SNAKE_CASE : Optional[bool] = None ,__SCREAMING_SNAKE_CASE : Optional[bool] = None ,): UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase = self.base_model( input_ids=UpperCamelCase_ ,attention_mask=UpperCamelCase_ ,token_type_ids=UpperCamelCase_ ,position_ids=UpperCamelCase_ ,head_mask=UpperCamelCase_ ,inputs_embeds=UpperCamelCase_ ,encoder_hidden_states=UpperCamelCase_ ,encoder_attention_mask=UpperCamelCase_ ,output_attentions=UpperCamelCase_ ,output_hidden_states=True if self.has_pre_transformation else output_hidden_states ,return_dict=UpperCamelCase_ ,) if self.has_pre_transformation: UpperCAmelCase = outputs['''hidden_states'''][-2] UpperCAmelCase = self.pre_LN(UpperCamelCase_ ) UpperCAmelCase = self.transformation_pre(UpperCamelCase_ ) return TransformationModelOutput( projection_state=UpperCamelCase_ ,last_hidden_state=outputs.last_hidden_state ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,) else: UpperCAmelCase = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=UpperCamelCase_ ,last_hidden_state=outputs.last_hidden_state ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
333
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __snake_case (__UpperCAmelCase , __UpperCAmelCase=7 ): """simple docstring""" lowerCamelCase_ : List[Any] = None if token is not None: lowerCamelCase_ : Optional[Any] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) lowerCamelCase_ : List[str] = '''636036''' lowerCamelCase_ : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" lowerCamelCase_ : Optional[Any] = requests.get(__UpperCAmelCase , headers=__UpperCAmelCase ).json() return result["workflow_runs"] def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[int] = get_daily_ci_runs(__UpperCAmelCase ) lowerCamelCase_ : Optional[Any] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowerCamelCase_ : Tuple = workflow_run['''id'''] break return workflow_run_id def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Union[str, Any] = get_last_daily_ci_runs(__UpperCAmelCase ) if workflow_run_id is not None: lowerCamelCase_ : List[str] = get_artifacts_links(worflow_run_id=__UpperCAmelCase , token=__UpperCAmelCase ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowerCamelCase_ : Optional[int] = artifacts_links[artifact_name] download_artifact( artifact_name=__UpperCAmelCase , artifact_url=__UpperCAmelCase , output_dir=__UpperCAmelCase , token=__UpperCAmelCase ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" get_last_daily_ci_artifacts(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[int] = {} for artifact_name in artifact_names: lowerCamelCase_ : List[Any] = os.path.join(__UpperCAmelCase , F"""{artifact_name}.zip""" ) if os.path.isfile(__UpperCAmelCase ): lowerCamelCase_ : int = {} with zipfile.ZipFile(__UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__UpperCAmelCase ): # read the file with z.open(__UpperCAmelCase ) as f: lowerCamelCase_ : List[str] = f.read().decode('''UTF-8''' ) return results
501
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["GLPNFeatureExtractor"] lowerCamelCase__ = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
202
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger() @dataclass class lowerCAmelCase__ : UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=__lowercase ) UpperCamelCase_ : list = field(default_factory=__lowercase ) def A_ ( self , a , a , a ) -> str: '''simple docstring''' _UpperCamelCase = len(list(m.modules() ) ) == 1 or isinstance(a , nn.Convad ) or isinstance(a , nn.BatchNormad ) if has_not_submodules: self.traced.append(a ) def __call__( self , a ) -> Optional[int]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a ) [x.remove() for x in self.handles] return self @property def A_ ( self ) -> Optional[int]: '''simple docstring''' return list(filter(lambda a : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase__ : UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 0 UpperCamelCase_ : List = field(default_factory=__lowercase ) UpperCamelCase_ : List = field(default_factory=__lowercase ) def __call__( self , a ) -> List[Any]: '''simple docstring''' _UpperCamelCase = Tracker(self.dest )(a ).parametrized _UpperCamelCase = Tracker(self.src )(a ).parametrized _UpperCamelCase = list(filter(lambda a : type(a ) not in self.src_skip , a ) ) _UpperCamelCase = list(filter(lambda a : type(a ) not in self.dest_skip , a ) ) if len(a ) != len(a ): raise Exception( F'Numbers of operations are different. Source module has {len(a )} operations while' F' destination module has {len(a )}.' ) for dest_m, src_m in zip(a , a ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True ) -> Optional[Any]: """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): _UpperCamelCase = timm.create_model(lowerCAmelCase , pretrained=lowerCAmelCase ).eval() _UpperCamelCase = ResNetForImageClassification(lowerCAmelCase ).eval() _UpperCamelCase = ModuleTransfer(src=lowerCAmelCase , dest=lowerCAmelCase ) _UpperCamelCase = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(lowerCAmelCase ) assert torch.allclose(from_model(lowerCAmelCase ) , our_model(lowerCAmelCase ).logits ), "The model logits don't match the original one." _UpperCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase , ) # we can use the convnext one _UpperCamelCase = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __A(lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True ) -> Tuple: """simple docstring""" _UpperCamelCase = """imagenet-1k-id2label.json""" _UpperCamelCase = 1_0_0_0 _UpperCamelCase = (1, num_labels) _UpperCamelCase = """huggingface/label-files""" _UpperCamelCase = num_labels _UpperCamelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) _UpperCamelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} _UpperCamelCase = partial(lowerCAmelCase , num_labels=lowerCAmelCase , idalabel=lowerCAmelCase , labelaid=lowerCAmelCase ) _UpperCamelCase = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(lowerCAmelCase , names_to_config[model_name] , lowerCAmelCase , lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
202
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : Any = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class a__ ( __snake_case ): A__ : List[Any] = 'gpt_neox_japanese' def __init__( self , UpperCAmelCase=3_2_0_0_0 , UpperCAmelCase=2_5_6_0 , UpperCAmelCase=3_2 , UpperCAmelCase=3_2 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=1.00 , UpperCAmelCase=1_0_0_0_0 , UpperCAmelCase=2_0_4_8 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=3_1_9_9_6 , UpperCAmelCase=3_1_9_9_9 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , **UpperCAmelCase , ) -> int: super().__init__(bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_multiple_size __a = hidden_act __a = rotary_pct __a = rotary_emb_base __a = initializer_range __a = layer_norm_eps __a = use_cache __a = attention_dropout __a = hidden_dropout
559
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCamelCase_ : Any = logging.getLogger(__name__) lowerCamelCase_ : int = 50 # max width of layer names lowerCamelCase_ : Any = 70 # max width of quantizer names def lowerCAmelCase( __lowerCamelCase ): __a = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=__lowerCamelCase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=__lowerCamelCase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=__lowerCamelCase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=__lowerCamelCase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=__lowerCamelCase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=__lowerCamelCase , type=__lowerCamelCase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=__lowerCamelCase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def lowerCAmelCase( __lowerCamelCase ): if args.calibrator == "max": __a = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) __a = 'histogram' elif args.calibrator == "mse": __a = 'histogram' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) __a = QuantDescriptor(num_bits=args.aprec , calib_method=__lowerCamelCase ) __a = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowerCamelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=False ): logger.info('Configuring Model for Quantization' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowerCamelCase , ['embeddings'] , which='weight' , _disabled=__lowerCamelCase ) if args.quant_disable: set_quantizer_by_name(__lowerCamelCase , [''] , _disabled=__lowerCamelCase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowerCamelCase , args.quant_disable_keyword , _disabled=__lowerCamelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowerCamelCase , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=__lowerCamelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowerCamelCase , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=__lowerCamelCase ) if args.recalibrate_weights: recalibrate_weights(__lowerCamelCase ) if args.fuse_qkv: fuse_qkv(__lowerCamelCase , __lowerCamelCase ) if args.clip_gelu: clip_gelu(__lowerCamelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase ): logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): def fusea(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): for mod in [qq, qk, qv]: if not hasattr(__lowerCamelCase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return __a = qq._amax.detach().item() __a = qk._amax.detach().item() __a = qv._amax.detach().item() __a = max(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) qq._amax.fill_(__lowerCamelCase ) qk._amax.fill_(__lowerCamelCase ) qv._amax.fill_(__lowerCamelCase ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): __a = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowerCamelCase ) __a = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def lowerCAmelCase( __lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(__lowerCamelCase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: __a = mod.weight.shape[0] __a = mod._weight_quantizer._amax.detach() __a = torch.ones(__lowerCamelCase , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def lowerCAmelCase( __lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(__lowerCamelCase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __a = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) __a = set(range(len(mod.weight.size() ) ) ) - axis_set __a = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowerCamelCase , keepdims=__lowerCamelCase ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) __a = amax def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase=25 , __lowerCamelCase=180 , __lowerCamelCase=None ): if ignore is None: __a = [] elif not isinstance(__lowerCamelCase , __lowerCamelCase ): __a = [ignore] __a = 0 for name, mod in model.named_modules(): if not hasattr(__lowerCamelCase , 'weight' ): continue __a = max(__lowerCamelCase , len(__lowerCamelCase ) ) for name, mod in model.named_modules(): __a = getattr(__lowerCamelCase , '_input_quantizer' , __lowerCamelCase ) __a = getattr(__lowerCamelCase , '_weight_quantizer' , __lowerCamelCase ) if not hasattr(__lowerCamelCase , 'weight' ): continue if type(__lowerCamelCase ) in ignore: continue if [True for s in ignore if type(__lowerCamelCase ) is str and s in name]: continue __a = f'''Act:{input_q.extra_repr()}''' __a = f'''Wgt:{weight_q.extra_repr()}''' __a = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(__lowerCamelCase ) <= line_width: logger.info(__lowerCamelCase ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def lowerCAmelCase( __lowerCamelCase ): __a = 0 for name, mod in model.named_modules(): if isinstance(__lowerCamelCase , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if quantizer_mod is not None: assert hasattr(__lowerCamelCase , __lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: logger.warning(f'''{name} has no {quantizer}''' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="both" , **__lowerCamelCase ): __a = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(__lowerCamelCase , __lowerCamelCase , '_input_quantizer' , __lowerCamelCase , __lowerCamelCase ) if which in ["weight", "both"]: set_quantizer(__lowerCamelCase , __lowerCamelCase , '_weight_quantizer' , __lowerCamelCase , __lowerCamelCase ) logger.info(__lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(__lowerCamelCase , '_input_quantizer' ) or hasattr(__lowerCamelCase , '_weight_quantizer' ): for n in names: if re.search(__lowerCamelCase , __lowerCamelCase ): set_quantizers(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) elif name.endswith('_quantizer' ): for n in names: if re.search(__lowerCamelCase , __lowerCamelCase ): __a = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) logger.info(__lowerCamelCase )
559
1
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _UpperCAmelCase ( __lowerCamelCase : int ) -> Tuple: # A local function to see if a dot lands in the circle. def is_in_circle(__lowerCamelCase : float , __lowerCamelCase : float ) -> bool: _snake_case = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _snake_case = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. _snake_case = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : Callable[[float], float] , __lowerCamelCase : float = 0.0 , __lowerCamelCase : float = 1.0 , ) -> float: return mean( function_to_integrate(uniform(__lowerCamelCase , __lowerCamelCase ) ) for _ in range(__lowerCamelCase ) ) * (max_value - min_value) def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : float = 0.0 , __lowerCamelCase : float = 1.0 ) -> None: def identity_function(__lowerCamelCase : float ) -> float: return x _snake_case = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def _UpperCAmelCase ( __lowerCamelCase : int ) -> None: def function_to_integrate(__lowerCamelCase : float ) -> float: return sqrt(4.0 - x * x ) _snake_case = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _UpperCAmelCase ( __lowerCamelCase : str ) -> None: _snake_case , _snake_case = analyze_text(__lowerCamelCase ) _snake_case = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. _snake_case = sum(single_char_strings.values() ) # one length string _snake_case = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _snake_case = single_char_strings[ch] _snake_case = my_str / all_sum my_fir_sum += prob * math.loga(__lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _snake_case = sum(two_char_strings.values() ) _snake_case = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _snake_case = cha + cha if sequence in two_char_strings: _snake_case = two_char_strings[sequence] _snake_case = int(__lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(__lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def _UpperCAmelCase ( __lowerCamelCase : str ) -> tuple[dict, dict]: _snake_case = Counter() # type: ignore _snake_case = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _UpperCAmelCase ( ) -> Union[str, Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
430
0
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def lowercase_ ( __A : Tuple , __A : List[str] ) -> List[Any]: """simple docstring""" if os.path.exists(__A ): if os.path.exists(os.path.join(__A , '''config.json''' ) ) and os.path.isfile( os.path.join(__A , '''config.json''' ) ): os.remove(os.path.join(__A , '''config.json''' ) ) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''' ) ): os.remove(os.path.join(__A , '''pytorch_model.bin''' ) ) else: os.makedirs(__A ) model.save_pretrained(__A ) def lowercase_ ( __A : Tuple , __A : Dict=False ) -> int: """simple docstring""" lowercase : List[str] =2 if unlogit: lowercase : str =torch.pow(__A , __A ) lowercase : List[str] =p * torch.log(__A ) lowercase : Optional[int] =0 return -plogp.sum(dim=-1 ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'{x + 1}' for x in range(len(__A ) ) ) ) for row in range(len(__A ) ): if tensor.dtype != torch.long: logger.info(F'layer {row + 1}:\t' + '''\t'''.join(F'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(F'layer {row + 1}:\t' + '''\t'''.join(F'{x:d}' for x in tensor[row].cpu().data ) ) def lowercase_ ( __A : Dict , __A : Optional[int] , __A : Tuple , __A : Optional[Any]=True , __A : List[Any]=True , __A : Tuple=None , __A : Union[str, Any]=False ) -> Tuple: """simple docstring""" lowercase , lowercase : Any =model.config.num_hidden_layers, model.config.num_attention_heads lowercase : int =torch.zeros(__A , __A ).to(args.device ) lowercase : Optional[int] =torch.zeros(__A , __A ).to(args.device ) if head_mask is None: lowercase : Optional[Any] =torch.ones(__A , __A ).to(args.device ) head_mask.requires_grad_(requires_grad=__A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowercase : List[Any] =None lowercase : str =0.0 lowercase : Tuple =0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): lowercase : List[str] =tuple(t.to(args.device ) for t in inputs ) ((lowercase) , ) : str =inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowercase : List[Any] =model(__A , labels=__A , head_mask=__A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowercase , lowercase , lowercase : Any =( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A ): lowercase : int =entropy(attn.detach() , __A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowercase : Optional[int] =2 lowercase : Optional[Any] =torch.pow(torch.pow(__A , __A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: lowercase : Union[str, Any] =(head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(__A ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(__A ) logger.info('''Head ranked by importance scores''' ) lowercase : int =torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowercase : Optional[Any] =torch.arange( head_importance.numel() , device=args.device ) lowercase : int =head_ranks.view_as(__A ) print_ad_tensor(__A ) return attn_entropy, head_importance, total_loss def lowercase_ ( __A : Any , __A : int , __A : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase , lowercase , lowercase : List[Any] =compute_heads_importance(__A , __A , __A , compute_entropy=__A ) lowercase : str =1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold ) lowercase : Optional[int] =torch.ones_like(__A ) lowercase : Optional[int] =max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowercase : List[str] =original_score while current_score >= original_score * args.masking_threshold: lowercase : Optional[Any] =new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowercase : List[str] =float('''Inf''' ) lowercase : int =head_importance.view(-1 ).sort()[1] if len(__A ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads lowercase : Optional[int] =current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) lowercase : str =new_head_mask.view(-1 ) lowercase : int =0.0 lowercase : int =new_head_mask.view_as(__A ) lowercase : Union[str, Any] =new_head_mask.clone().detach() print_ad_tensor(__A ) # Compute metric and head importance again lowercase , lowercase , lowercase : int =compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A ) lowercase : Optional[int] =1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info('''Final head mask''' ) print_ad_tensor(__A ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowercase_ ( __A : Optional[Any] , __A : Dict , __A : Dict , __A : Tuple ) -> Dict: """simple docstring""" lowercase : str =datetime.now() lowercase , lowercase , lowercase : Optional[int] =compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A ) lowercase : str =1 / loss lowercase : int =datetime.now() - before_time lowercase : Optional[Any] =sum(p.numel() for p in model.parameters() ) lowercase : int ={ layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A ) ) } for k, v in heads_to_prune.items(): if isinstance(__A , __A ): lowercase : Optional[Any] =[ v, ] assert sum(len(__A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__A ) lowercase : Union[str, Any] =sum(p.numel() for p in model.parameters() ) lowercase : Union[str, Any] =datetime.now() lowercase , lowercase , lowercase : Union[str, Any] =compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) lowercase : Union[str, Any] =1 / loss lowercase : str =datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 1_0_0 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_0_0 ) save_model(__A , args.output_dir ) def lowercase_ ( ) -> Optional[Any]: """simple docstring""" lowercase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_2_8 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=__A , default=4_2 ) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''' ) lowercase : List[Any] =parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowercase : Union[str, Any] =torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) lowercase : Tuple =0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowercase : Optional[Any] =torch.device('''cuda''' , args.local_rank ) lowercase : int =1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowercase : List[Any] =GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowercase : Tuple =nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A ) elif args.n_gpu > 1: lowercase : List[str] =nn.DataParallel(__A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A ) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , __A ) # Prepare dataset lowercase : int =np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowercase : Any =(torch.from_numpy(__A ),) lowercase : str =TensorDataset(*__A ) lowercase : List[Any] =RandomSampler(__A ) lowercase : List[Any] =DataLoader(__A , sampler=__A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowercase : Tuple =mask_heads(__A , __A , __A ) prune_heads(__A , __A , __A , __A ) if __name__ == "__main__": main()
94
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : List[str] = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } _lowerCAmelCase : List[str] = { "gpt2": 10_24, "gpt2-medium": 10_24, "gpt2-large": 10_24, "gpt2-xl": 10_24, "distilgpt2": 10_24, } class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer def __init__( self : Optional[Any] , A : Optional[int]=None , A : List[Any]=None , A : Optional[int]=None , A : Optional[Any]="<|endoftext|>" , A : Union[str, Any]="<|endoftext|>" , A : Optional[Any]="<|endoftext|>" , A : Optional[Any]=False , **A : str , ): super().__init__( A , A , tokenizer_file=A , unk_token=A , bos_token=A , eos_token=A , add_prefix_space=A , **A , ) _UpperCAmelCase : List[Any] = kwargs.pop("add_bos_token" , A ) _UpperCAmelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , A ) != add_prefix_space: _UpperCAmelCase : Dict = getattr(A , pre_tok_state.pop("type" ) ) _UpperCAmelCase : Optional[Any] = add_prefix_space _UpperCAmelCase : Optional[Any] = pre_tok_class(**A ) _UpperCAmelCase : List[Any] = add_prefix_space def snake_case_ ( self : List[Any] , *A : List[Any] , **A : List[str] ): _UpperCAmelCase : Union[str, Any] = kwargs.get("is_split_into_words" , A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A , **A ) def snake_case_ ( self : Optional[Any] , *A : List[Any] , **A : int ): _UpperCAmelCase : Union[str, Any] = kwargs.get("is_split_into_words" , A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*A , **A ) def snake_case_ ( self : Optional[int] , A : str , A : Optional[str] = None ): _UpperCAmelCase : List[Any] = self._tokenizer.model.save(A , name=A ) return tuple(A ) def snake_case_ ( self : int , A : "Conversation" ): _UpperCAmelCase : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A , add_special_tokens=A ) + [self.eos_token_id] ) if len(A ) > self.model_max_length: _UpperCAmelCase : Optional[int] = input_ids[-self.model_max_length :] return input_ids
289
0
"""simple docstring""" import argparse lowercase = """docs/source/_static/js/custom.js""" def A__ ( _UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' with open(_UpperCAmelCase , encoding="utf-8" , newline="\n" ) as f: snake_case__ : List[Any] = f.readlines() snake_case__ : str = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 snake_case__ : int = F"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F""" \"v{version}\": \"v{version}\",\n""" with open(_UpperCAmelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_UpperCAmelCase ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") lowercase = parser.parse_args() update_custom_js(args.version)
700
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Union[str, Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[int] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) def A__ ( *_UpperCAmelCase : str , **_UpperCAmelCase : List[str] ) -> str: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : int , **_UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Union[str, Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[int] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"])
150
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a (unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : int = 32 , lowerCamelCase : bool = True , lowerCamelCase : Union[int, float] = 1 / 255 , lowerCamelCase : bool = True , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[float, List[float]]] = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , lowerCamelCase : Optional[Union[float, List[float]]] = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , lowerCamelCase : bool = True , lowerCamelCase : Union[str, Any]=7 , lowerCamelCase : int=30 , lowerCamelCase : Union[str, Any]=400 , lowerCamelCase : Union[str, Any]=3 , ) -> Tuple: __snake_case : int = parent __snake_case : Optional[Any] = do_resize __snake_case : List[Any] = size if size is not None else {"shortest_edge": 288} __snake_case : Tuple = size_divisor __snake_case : List[Any] = do_rescale __snake_case : Optional[Any] = rescale_factor __snake_case : Optional[int] = do_normalize __snake_case : Optional[Any] = do_center_crop __snake_case : List[str] = image_mean __snake_case : Optional[int] = image_std __snake_case : Optional[int] = do_pad __snake_case : Tuple = batch_size __snake_case : Optional[Any] = num_channels __snake_case : Optional[int] = min_resolution __snake_case : Any = max_resolution def __snake_case ( self : List[Any] ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int]=False ) -> str: if not batched: __snake_case : Tuple = self.size["shortest_edge"] __snake_case : Optional[Any] = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): __snake_case , __snake_case : List[Any] = image.size else: __snake_case , __snake_case : Dict = image.shape[1], image.shape[2] __snake_case : Dict = size / min(lowerCamelCase , lowerCamelCase ) if h < w: __snake_case , __snake_case : Union[str, Any] = size, scale * w else: __snake_case , __snake_case : List[Any] = scale * h, size __snake_case : int = int((1333 / 800) * size ) if max(lowerCamelCase , lowerCamelCase ) > max_size: __snake_case : Union[str, Any] = max_size / max(lowerCamelCase , lowerCamelCase ) __snake_case : int = newh * scale __snake_case : Optional[int] = neww * scale __snake_case , __snake_case : Any = int(newh + 0.5 ), int(neww + 0.5 ) __snake_case , __snake_case : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __snake_case : Tuple = [] for image in image_inputs: __snake_case , __snake_case : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __snake_case : str = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] __snake_case : Dict = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def __snake_case ( self : Dict ) -> int: __snake_case : List[Any] = BridgeTowerImageProcessingTester(self ) @property def __snake_case ( self : List[str] ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Any ) -> Any: __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) self.assertTrue(hasattr(lowerCamelCase , "size_divisor" ) ) def __snake_case ( self : List[str] ) -> List[Any]: pass def __snake_case ( self : List[str] ) -> Dict: # Initialize image processor __snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input __snake_case : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : int = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Optional[int] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Any = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self : List[Any] ) -> List[Any]: # Initialize image processor __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input __snake_case : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Tuple = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Optional[Any] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Tuple = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self : str ) -> Tuple: # Initialize image processor __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input __snake_case : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Union[str, Any] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
81
"""simple docstring""" from __future__ import annotations from random import random from typing import Generic, TypeVar __lowerCAmelCase : Dict = TypeVar("KT") __lowerCAmelCase : Optional[Any] = TypeVar("VT") class a_ ( Generic[KT, VT] ): def __init__( self : Tuple , snake_case__ : KT | str = "root" , snake_case__ : VT | None = None ): lowerCAmelCase__ = key lowerCAmelCase__ = value lowerCAmelCase__ = [] def __repr__( self : Union[str, Any] ): return F"""Node({self.key}: {self.value})""" @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return len(self.forward ) class a_ ( Generic[KT, VT] ): def __init__( self : int , snake_case__ : float = 0.5 , snake_case__ : int = 16 ): lowerCAmelCase__ = Node[KT, VT]() lowerCAmelCase__ = 0 lowerCAmelCase__ = p lowerCAmelCase__ = max_level def __str__( self : int ): lowerCAmelCase__ = list(self ) if len(snake_case__ ) == 0: return F"""SkipList(level={self.level})""" lowerCAmelCase__ = max((len(str(snake_case__ ) ) for item in items) , default=4 ) lowerCAmelCase__ = max(snake_case__ , 4 ) + 4 lowerCAmelCase__ = self.head lowerCAmelCase__ = [] lowerCAmelCase__ = node.forward.copy() lines.append(F"""[{node.key}]""".ljust(snake_case__ , """-""" ) + """* """ * len(snake_case__ ) ) lines.append(""" """ * label_size + """| """ * len(snake_case__ ) ) while len(node.forward ) != 0: lowerCAmelCase__ = node.forward[0] lines.append( F"""[{node.key}]""".ljust(snake_case__ , """-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(snake_case__ ) ) lowerCAmelCase__ = node.forward lines.append("""None""".ljust(snake_case__ ) + """* """ * len(snake_case__ ) ) return F"""SkipList(level={self.level})\n""" + "\n".join(snake_case__ ) def __iter__( self : Any ): lowerCAmelCase__ = self.head while len(node.forward ) != 0: yield node.forward[0].key lowerCAmelCase__ = node.forward[0] def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = 1 while random() < self.p and level < self.max_level: level += 1 return level def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : List[str] ): lowerCAmelCase__ = [] lowerCAmelCase__ = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: lowerCAmelCase__ = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(snake_case__ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : KT ): lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(snake_case__ ) if node is not None: for i, update_node in enumerate(snake_case__ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: lowerCAmelCase__ = node.forward[i] else: lowerCAmelCase__ = update_node.forward[:i] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : KT , snake_case__ : VT ): lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(snake_case__ ) if node is not None: lowerCAmelCase__ = value else: lowerCAmelCase__ = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , snake_case__ ): update_vector.append(self.head ) lowerCAmelCase__ = level lowerCAmelCase__ = Node(snake_case__ , snake_case__ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(snake_case__ ) else: lowerCAmelCase__ = new_node def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : VT ): lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(snake_case__ ) if node is not None: return node.value return None def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("""Key1""" , 3 ) skip_list.insert("""Key2""" , 12 ) skip_list.insert("""Key3""" , 41 ) skip_list.insert("""Key4""" , -19 ) lowerCAmelCase__ = skip_list.head lowerCAmelCase__ = {} while node.level != 0: lowerCAmelCase__ = node.forward[0] lowerCAmelCase__ = node.value assert len(lowerCamelCase__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("""Key1""" , 10 ) skip_list.insert("""Key1""" , 12 ) skip_list.insert("""Key5""" , 7 ) skip_list.insert("""Key7""" , 10 ) skip_list.insert("""Key10""" , 5 ) skip_list.insert("""Key7""" , 7 ) skip_list.insert("""Key5""" , 5 ) skip_list.insert("""Key10""" , 10 ) lowerCAmelCase__ = skip_list.head lowerCAmelCase__ = {} while node.level != 0: lowerCAmelCase__ = node.forward[0] lowerCAmelCase__ = node.value if len(lowerCamelCase__ ) != 4: print() assert len(lowerCamelCase__ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() assert skip_list.find("""Some key""" ) is None def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("""Key2""" , 20 ) assert skip_list.find("""Key2""" ) == 20 skip_list.insert("""Some Key""" , 10 ) skip_list.insert("""Key2""" , 8 ) skip_list.insert("""V""" , 13 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 10 assert skip_list.find("""V""" ) == 13 def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 14 assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 142 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""X""" ) def traverse_keys(lowerCamelCase__ ): yield node.key for forward_node in node.forward: yield from traverse_keys(lowerCamelCase__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _UpperCAmelCase ( ): """simple docstring""" def is_sorted(lowerCamelCase__ ): return all(next_item >= item for item, next_item in zip(lowerCamelCase__ , lst[1:] ) ) lowerCAmelCase__ = SkipList() for i in range(10 ): skip_list.insert(lowerCamelCase__ , lowerCamelCase__ ) assert is_sorted(list(lowerCamelCase__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(lowerCamelCase__ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(lowerCamelCase__ ) ) def _UpperCAmelCase ( ): """simple docstring""" for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert(2 , """2""" ) skip_list.insert(4 , """4""" ) skip_list.insert(6 , """4""" ) skip_list.insert(4 , """5""" ) skip_list.insert(8 , """4""" ) skip_list.insert(9 , """4""" ) skip_list.delete(4 ) print(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
644
0
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCamelCase : int = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" UpperCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] UpperCamelCase : Tuple = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
643
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = DebertaTokenizerFast def _lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''} UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' ) UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : str = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off UpperCamelCase : int = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
643
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = ['pixel_values'] def __init__( self : Union[str, Any] , __magic_name__ : bool = True , __magic_name__ : Optional[Dict[str, int]] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 255 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , **__magic_name__ : Any , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = size if size is not None else {"shortest_edge": 256} lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCAmelCase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCAmelCase__ = get_size_dict(__magic_name__ , param_name="crop_size" ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : int , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCAmelCase__ = get_resize_output_image_size(__magic_name__ , size=size["shortest_edge"] , default_to_square=__magic_name__ ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Dict , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__magic_name__ , size=(size["height"], size["width"]) , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Union[str, Any] ): """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Tuple , ): """simple docstring""" return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : ImageInput , __magic_name__ : Optional[bool] = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[float] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__magic_name__ : Union[str, Any] , ): """simple docstring""" lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ = get_size_dict(__magic_name__ , param_name="crop_size" ) lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_center_crop: lowerCAmelCase__ = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] lowerCAmelCase__ = {"pixel_values": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : List[Tuple] = None ): """simple docstring""" lowerCAmelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(__magic_name__ ): lowerCAmelCase__ = target_sizes.numpy() lowerCAmelCase__ = [] for idx in range(len(__magic_name__ ) ): lowerCAmelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__magic_name__ ) lowerCAmelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__magic_name__ ) else: lowerCAmelCase__ = logits.argmax(dim=1 ) lowerCAmelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
48
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( UpperCamelCase_ : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase__ = np.nan for i in range(UpperCamelCase_ ): lowerCAmelCase__ = features[:, labels == i] lowerCAmelCase__ = data.mean(1 ) # Centralize the data of class i lowerCAmelCase__ = data - column_reshape(UpperCamelCase_ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCamelCase_ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) return covariance_sum / features.shape[1] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase__ = features.mean(1 ) lowerCAmelCase__ = np.nan for i in range(UpperCamelCase_ ): lowerCAmelCase__ = features[:, labels == i] lowerCAmelCase__ = data.shape[1] lowerCAmelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ = device_data * np.dot( column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , ) return covariance_sum / features.shape[1] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' if features.any(): lowerCAmelCase__ = features.mean(1 ) # Center the dataset lowerCAmelCase__ = features - np.reshape(UpperCamelCase_ , (data_mean.size, 1) ) lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) / features.shape[1] lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.eigh(UpperCamelCase_ ) # Take all the columns in the reverse order (-1), and then takes only the first lowerCAmelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowerCAmelCase__ = np.dot(filtered_eigenvectors.T , UpperCamelCase_ ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ ) logging.error("Dataset empty" ) raise AssertionError def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: lowerCAmelCase__ ,lowerCAmelCase__ = eigh( covariance_between_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , covariance_within_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , ) lowerCAmelCase__ = eigenvectors[:, ::-1][:, :dimensions] lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.svd(UpperCamelCase_ ) lowerCAmelCase__ = svd_matrix[:, 0:dimensions] lowerCAmelCase__ = np.dot(filtered_svd_matrix.T , UpperCamelCase_ ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ ) logging.error("Dataset empty" ) raise AssertionError def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowerCAmelCase__ = np.array([0, 0, 0, 1, 1] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCamelCase_ ) as error_info: lowerCAmelCase__ = linear_discriminant_analysis( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if isinstance(UpperCamelCase_ , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCamelCase_ ) as error_info: lowerCAmelCase__ = principal_component_analysis(UpperCamelCase_ , UpperCamelCase_ ) if not np.allclose(UpperCamelCase_ , UpperCamelCase_ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
48
1
'''simple docstring''' def UpperCamelCase_ ( A__ ): a_ = len(A__ ) a_ = len(matrix[0] ) a_ = min(A__ , A__ ) for row in range(A__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , A__ ): a_ = matrix[col][row] / matrix[row][row] for i in range(A__ , A__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows a_ = True for i in range(row + 1 , A__ ): if matrix[i][row] != 0: a_ , a_ = matrix[i], matrix[row] a_ = False break if reduce: rank -= 1 for i in range(A__ ): a_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' def UpperCamelCase_ ( A__ = 50 ): a_ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
511
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : Union[str, Any] = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _SCREAMING_SNAKE_CASE : Tuple = Vector() def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(__lowerCamelCase ) , "(0,0,0,0,0,1)" ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : Optional[Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(__lowerCamelCase ) , 4 ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : Optional[Any] = Vector([1, 2] ) _SCREAMING_SNAKE_CASE : Tuple = Vector([1, 2, 3, 4, 5] ) _SCREAMING_SNAKE_CASE : List[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _SCREAMING_SNAKE_CASE : Any = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : List[Any] = Vector([1, 2, 3] ) _SCREAMING_SNAKE_CASE : Tuple = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : Dict = Vector([1, 2, 3] ) _SCREAMING_SNAKE_CASE : List[str] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : str = Vector([1, 2, 3] ) _SCREAMING_SNAKE_CASE : Optional[int] = Vector([2, -1, 4] ) # for test of dot product _SCREAMING_SNAKE_CASE : Union[str, Any] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , "(3.0,6.0,9.0)" ) self.assertEqual((a * b) , 0 ) def UpperCamelCase_ ( self ) -> None: self.assertEqual(str(zero_vector(1_0 ) ).count("0" ) , 1_0 ) def UpperCamelCase_ ( self ) -> None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , "(0,1,0)" ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : Dict = Vector([1, 2, 3] ) _SCREAMING_SNAKE_CASE : Optional[int] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , __lowerCamelCase , __lowerCamelCase ) ) , "(3,4,7)" ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) _SCREAMING_SNAKE_CASE : List[Any] = x.copy() self.assertEqual(str(__lowerCamelCase ) , str(__lowerCamelCase ) ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : List[str] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(__lowerCamelCase ) , "(0,1,0)" ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n" , str(__lowerCamelCase ) ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(__lowerCamelCase , __lowerCamelCase ) ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _SCREAMING_SNAKE_CASE : Dict = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(__lowerCamelCase , __lowerCamelCase ) ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : str = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _SCREAMING_SNAKE_CASE : Tuple = Vector([1, 2, 3] ) self.assertEqual("(14,32,50)" , str(a * x ) ) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n" , str(a * 2 ) ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n" , str(__lowerCamelCase ) ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _SCREAMING_SNAKE_CASE : Any = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n" , str(a + b ) ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _SCREAMING_SNAKE_CASE : Any = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n" , str(a - b ) ) def UpperCamelCase_ ( self ) -> None: self.assertEqual( "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
249
import requests from bsa import BeautifulSoup def lowerCamelCase__ (__lowerCamelCase = "AAPL" ): _SCREAMING_SNAKE_CASE : Dict = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" _SCREAMING_SNAKE_CASE : str = BeautifulSoup(requests.get(__lowerCamelCase ).text, "html.parser" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div", class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
249
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCAmelCase :List[str] = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :List[str] = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCAmelCase :List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
179
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class UpperCAmelCase : '''simple docstring''' snake_case__ : Dict = LEDConfig snake_case__ : Dict = {} snake_case__ : int = "gelu" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : List[Any] = seq_length SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = eos_token_id SCREAMING_SNAKE_CASE : Optional[int] = pad_token_id SCREAMING_SNAKE_CASE : Tuple = bos_token_id SCREAMING_SNAKE_CASE : Optional[int] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after SCREAMING_SNAKE_CASE : List[str] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests SCREAMING_SNAKE_CASE : Optional[int] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE : List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : str = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) SCREAMING_SNAKE_CASE : Optional[int] = global_attention_mask return config, inputs_dict def _UpperCamelCase ( self , lowercase__ , lowercase__ ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] = TFLEDModel(config=lowercase__ ).get_decoder() SCREAMING_SNAKE_CASE : int = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE : Tuple = input_ids[:1, :] SCREAMING_SNAKE_CASE : Optional[int] = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE : Optional[Any] = 1 # first forward pass SCREAMING_SNAKE_CASE : Any = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : List[str] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE : int = model(lowercase__ , attention_mask=lowercase__ )[0] SCREAMING_SNAKE_CASE : List[Any] = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE : Tuple = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE : Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def __lowerCAmelCase ( a_ , a_ , a_ , a_=None , a_=None , a_=None , a_=None , ) -> Any: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE : int = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : str = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () snake_case__ : List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () snake_case__ : Union[str, Any] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) snake_case__ : List[Any] = True snake_case__ : Tuple = False snake_case__ : Dict = False snake_case__ : int = False def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = TFLEDModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=lowercase__ ) def _UpperCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = tf.zeros_like(inputs_dict['attention_mask'] ) SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[str] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.seq_length SCREAMING_SNAKE_CASE : str = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): SCREAMING_SNAKE_CASE : List[Any] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): SCREAMING_SNAKE_CASE : Optional[Any] = [t.numpy() for t in outputs.encoder_attentions] SCREAMING_SNAKE_CASE : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = model_class(lowercase__ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) SCREAMING_SNAKE_CASE : List[str] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Tuple = model_class(lowercase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def _UpperCamelCase ( self ) -> Tuple: pass def _UpperCamelCase ( self ) -> Tuple: # TODO: Head-masking not yet implement pass def __lowerCAmelCase ( a_ ) -> Any: '''simple docstring''' return tf.constant(a_ , dtype=tf.intaa ) _lowerCAmelCase :Union[str, Any] = 1E-4 @slow @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Any = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here SCREAMING_SNAKE_CASE : Optional[Any] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE : List[str] = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE : Any = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = model(**lowercase__ )[0] SCREAMING_SNAKE_CASE : str = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE : str = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here SCREAMING_SNAKE_CASE : List[Any] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE : str = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE : Optional[Any] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : str = model(**lowercase__ )[0] SCREAMING_SNAKE_CASE : Optional[int] = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor( [[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
179
1
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''pixel_values'''] def __init__( self , _lowercase = True , _lowercase = 1 / 2_5_5 , _lowercase = True , _lowercase = 8 , **_lowercase , ) -> None: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = do_rescale snake_case_ : List[str] = rescale_factor snake_case_ : Optional[int] = do_pad snake_case_ : List[str] = pad_size def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase ) -> np.ndarray: '''simple docstring''' return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase = None ) -> List[Any]: '''simple docstring''' snake_case_ , snake_case_ : Any = get_image_size(_lowercase ) snake_case_ : List[str] = (old_height // size + 1) * size - old_height snake_case_ : int = (old_width // size + 1) * size - old_width return pad(_lowercase , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> Any: '''simple docstring''' snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad snake_case_ : int = pad_size if pad_size is not None else self.pad_size snake_case_ : Optional[Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. snake_case_ : Optional[int] = [to_numpy_array(_lowercase ) for image in images] if do_rescale: snake_case_ : Any = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_pad: snake_case_ : Union[str, Any] = [self.pad(_lowercase , size=_lowercase ) for image in images] snake_case_ : int = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] snake_case_ : str = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
58
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Optional[Any] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] snake_case_ : Optional[int] = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } snake_case_ : Optional[Any] = F'{src_lang}-{tgt_lang}' snake_case_ : Dict = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) snake_case_ : List[str] = os.path.join(__UpperCamelCase , """README.md""" ) print(F'Generating {path}' ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) # make sure we are under the root of the project __lowerCAmelCase : str = Path(__file__).resolve().parent.parent.parent __lowerCAmelCase : Optional[int] = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = model_name.split('''-''') __lowerCAmelCase : Optional[int] = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
58
1
'''simple docstring''' class __lowerCamelCase : """simple docstring""" def __init__( self : Optional[int] ) -> None: lowerCAmelCase__ = {} # Mapping from char to TrieNode lowerCAmelCase__ = False def a ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] ) -> None: for word in words: self.insert(_a ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> None: lowerCAmelCase__ = self for char in word: if char not in curr.nodes: lowerCAmelCase__ = TrieNode() lowerCAmelCase__ = curr.nodes[char] lowerCAmelCase__ = True def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> bool: lowerCAmelCase__ = self for char in word: if char not in curr.nodes: return False lowerCAmelCase__ = curr.nodes[char] return curr.is_leaf def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> None: def _delete(SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> bool: if index == len(_a ): # If word does not exist if not curr.is_leaf: return False lowerCAmelCase__ = False return len(curr.nodes ) == 0 lowerCAmelCase__ = word[index] lowerCAmelCase__ = curr.nodes.get(_a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowerCAmelCase__ = _delete(_a , _a , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _a , 0 ) def _A ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" if node.is_leaf: print(snake_case_ , end=" " ) for key, value in node.nodes.items(): print_words(snake_case_ , word + key ) def _A ( ): """simple docstring""" lowerCAmelCase__ = """banana bananas bandana band apple all beast""".split() lowerCAmelCase__ = TrieNode() root.insert_many(snake_case_ ) # print_words(root, "") assert all(root.find(snake_case_ ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def _A ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ): """simple docstring""" print(str(snake_case_ ) , "works!" if passes else "doesn't work :(" ) def _A ( ): """simple docstring""" assert test_trie() def _A ( ): """simple docstring""" print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
710
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCamelCase = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def _A ( lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = torch.load(lowerCAmelCase_ , map_location="cpu" ) return sd def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any]=rename_keys_prefix ): """simple docstring""" lowerCAmelCase__ = OrderedDict() lowerCAmelCase__ = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowerCAmelCase__ = key for name_pair in rename_keys_prefix: lowerCAmelCase__ = new_key.replace(name_pair[0] , name_pair[1] ) lowerCAmelCase__ = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowerCAmelCase__ = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def _A ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: lowerCAmelCase__ = "pretraining" if "vcr" in checkpoint_path: lowerCAmelCase__ = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: lowerCAmelCase__ = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: lowerCAmelCase__ = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: lowerCAmelCase__ = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: lowerCAmelCase__ = {"visual_embedding_dim": 512} lowerCAmelCase__ = "multichoice" elif "vqa_advanced" in checkpoint_path: lowerCAmelCase__ = {"visual_embedding_dim": 2048} lowerCAmelCase__ = "vqa_advanced" elif "vqa" in checkpoint_path: lowerCAmelCase__ = {"visual_embedding_dim": 2048, "num_labels": 3129} lowerCAmelCase__ = "vqa" elif "nlvr" in checkpoint_path: lowerCAmelCase__ = { "visual_embedding_dim": 1024, "num_labels": 2, } lowerCAmelCase__ = "nlvr" lowerCAmelCase__ = VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict lowerCAmelCase__ = load_state_dict(lowerCAmelCase_ ) lowerCAmelCase__ = get_new_dict(lowerCAmelCase_ , lowerCAmelCase_ ) if model_type == "pretraining": lowerCAmelCase__ = VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": lowerCAmelCase__ = VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": lowerCAmelCase__ = VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": lowerCAmelCase__ = VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
125
0