code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations def a_ ( _A ) -> list[int]: """simple docstring""" return [ord(_A ) - 96 for elem in plain] def a_ ( _A ) -> str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def a_ ( ) -> None: """simple docstring""" snake_case__ = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , _A ) print('Decoded:' , decode(_A ) ) if __name__ == "__main__": main()
328
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def __init__( self: int , UpperCamelCase: List[Any] , UpperCamelCase: Optional[int]=7 , UpperCamelCase: List[Any]=3 , UpperCamelCase: List[Any]=30 , UpperCamelCase: List[Any]=4_00 , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Any=None , UpperCamelCase: Tuple=True , UpperCamelCase: List[str]=[0.5, 0.5, 0.5] , UpperCamelCase: Dict=[0.5, 0.5, 0.5] , UpperCamelCase: Tuple=True , UpperCamelCase: List[str]=1 / 2_55 , UpperCamelCase: Union[str, Any]=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = size snake_case__ = do_normalize snake_case__ = image_mean snake_case__ = image_std snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_pad def lowerCAmelCase_ ( self: Dict ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self: Any , UpperCamelCase: List[Any] , UpperCamelCase: Optional[int]=False ) -> int: if not batched: snake_case__ = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): snake_case__ , snake_case__ = image.size else: snake_case__ , snake_case__ = image.shape[1], image.shape[2] if w < h: snake_case__ = int(self.size['shortest_edge'] * h / w ) snake_case__ = self.size['shortest_edge'] elif w > h: snake_case__ = self.size['shortest_edge'] snake_case__ = int(self.size['shortest_edge'] * w / h ) else: snake_case__ = self.size['shortest_edge'] snake_case__ = self.size['shortest_edge'] else: snake_case__ = [] for image in image_inputs: snake_case__ , snake_case__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] snake_case__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): _UpperCAmelCase = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]: snake_case__ = ConditionalDetrImageProcessingTester(self ) @property def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]: snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) def lowerCAmelCase_ ( self: int ) -> Optional[int]: snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) snake_case__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] ) -> List[Any]: pass def lowerCAmelCase_ ( self: Optional[int] ) -> Tuple: # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) snake_case__ = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: Tuple ) -> List[str]: # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]: # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self: str ) -> Any: # prepare image and target snake_case__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: snake_case__ = json.loads(f.read() ) snake_case__ = {'image_id': 3_97_69, 'annotations': target} # encode them snake_case__ = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) snake_case__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors='pt' ) # verify pixel values snake_case__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , UpperCamelCase ) snake_case__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area snake_case__ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , UpperCamelCase ) ) # verify boxes snake_case__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , UpperCamelCase ) snake_case__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id snake_case__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , UpperCamelCase ) ) # verify is_crowd snake_case__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , UpperCamelCase ) ) # verify class_labels snake_case__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , UpperCamelCase ) ) # verify orig_size snake_case__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , UpperCamelCase ) ) # verify size snake_case__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , UpperCamelCase ) ) @slow def lowerCAmelCase_ ( self: List[Any] ) -> Dict: # prepare image, target and masks_path snake_case__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: snake_case__ = json.loads(f.read() ) snake_case__ = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} snake_case__ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them snake_case__ = ConditionalDetrImageProcessor(format='coco_panoptic' ) snake_case__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors='pt' ) # verify pixel values snake_case__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , UpperCamelCase ) snake_case__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area snake_case__ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , UpperCamelCase ) ) # verify boxes snake_case__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , UpperCamelCase ) snake_case__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id snake_case__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , UpperCamelCase ) ) # verify is_crowd snake_case__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , UpperCamelCase ) ) # verify class_labels snake_case__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , UpperCamelCase ) ) # verify masks snake_case__ = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , UpperCamelCase ) # verify orig_size snake_case__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , UpperCamelCase ) ) # verify size snake_case__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , UpperCamelCase ) )
328
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _lowercase = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str]=None ) -> Union[str, Any]: # Initialise PyTorch model SCREAMING_SNAKE_CASE_ : Optional[Any] =XLNetConfig.from_json_file(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) SCREAMING_SNAKE_CASE_ : Optional[int] =finetuning_task SCREAMING_SNAKE_CASE_ : Dict =GLUE_TASKS_NUM_LABELS[finetuning_task] SCREAMING_SNAKE_CASE_ : str =XLNetForSequenceClassification(lowerCAmelCase__ ) elif "squad" in finetuning_task: SCREAMING_SNAKE_CASE_ : Any =finetuning_task SCREAMING_SNAKE_CASE_ : Union[str, Any] =XLNetForQuestionAnswering(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE_ : Optional[int] =XLNetLMHeadModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model SCREAMING_SNAKE_CASE_ : List[str] =os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) print(f'Save PyTorch model to {os.path.abspath(lowerCAmelCase__ )}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(f'Save configuration file to {os.path.abspath(lowerCAmelCase__ )}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) _lowercase = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
706
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str ) -> int: def wrapper(*UpperCAmelCase_ : str , **UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE_ : Optional[int] =timeit.default_timer() SCREAMING_SNAKE_CASE_ : Dict =func(*UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : str =timeit.default_timer() - starttime return delta SCREAMING_SNAKE_CASE_ : Any =func.__name__ return wrapper def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : Any=1_0_0 , UpperCAmelCase_ : Dict=None ) -> int: SCREAMING_SNAKE_CASE_ : Optional[Any] =[] SCREAMING_SNAKE_CASE_ : List[str] =seq_shapes or {} for i in range(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] ={} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCAmelCase_ , _ArrayXD ): SCREAMING_SNAKE_CASE_ : Any =np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCAmelCase_ , datasets.Value ): if v.dtype == "string": SCREAMING_SNAKE_CASE_ : Optional[Any] ='''The small grey turtle was surprisingly fast when challenged.''' else: SCREAMING_SNAKE_CASE_ : int =np.random.randint(1_0 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCAmelCase_ , datasets.Sequence ): while isinstance(UpperCAmelCase_ , datasets.Sequence ): SCREAMING_SNAKE_CASE_ : Tuple =v.feature SCREAMING_SNAKE_CASE_ : Optional[Any] =seq_shapes[k] SCREAMING_SNAKE_CASE_ : Optional[Any] =np.random.rand(*UpperCAmelCase_ ).astype(v.dtype ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =data dummy_data.append((i, example) ) return dummy_data def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str=1_0_0 , UpperCAmelCase_ : Dict=None ) -> Dict: SCREAMING_SNAKE_CASE_ : Optional[int] =generate_examples(UpperCAmelCase_ , num_examples=UpperCAmelCase_ , seq_shapes=UpperCAmelCase_ ) with ArrowWriter(features=UpperCAmelCase_ , path=UpperCAmelCase_ ) as writer: for key, record in dummy_data: SCREAMING_SNAKE_CASE_ : List[Any] =features.encode_example(UpperCAmelCase_ ) writer.write(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple =writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) SCREAMING_SNAKE_CASE_ : List[Any] =datasets.Dataset.from_file(filename=UpperCAmelCase_ , info=datasets.DatasetInfo(features=UpperCAmelCase_ ) ) return dataset
431
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __UpperCamelCase : int = logging.get_logger(__name__) @add_end_docstrings(A ) class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : List[str] , **_lowerCamelCase : Optional[int] ): '''simple docstring''' super().__init__(**_lowerCamelCase ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , """vision""" ) self.check_model_type(_lowerCamelCase ) def __call__( self : Optional[Any] , _lowerCamelCase : Union[str, "Image.Image", List[Dict[str, Any]]] , _lowerCamelCase : Union[str, List[str]] = None , **_lowerCamelCase : Optional[int] , ): '''simple docstring''' if "text_queries" in kwargs: __lowerCamelCase : List[str] = kwargs.pop("""text_queries""" ) if isinstance(_lowerCamelCase , (str, Image.Image) ): __lowerCamelCase : Tuple = {"""image""": image, """candidate_labels""": candidate_labels} else: __lowerCamelCase : Union[str, Any] = image __lowerCamelCase : Dict = super().__call__(_lowerCamelCase , **_lowerCamelCase ) return results def _snake_case ( self : Any , **_lowerCamelCase : List[str] ): '''simple docstring''' __lowerCamelCase : Optional[int] = {} if "threshold" in kwargs: __lowerCamelCase : List[Any] = kwargs["""threshold"""] if "top_k" in kwargs: __lowerCamelCase : Dict = kwargs["""top_k"""] return {}, {}, postprocess_params def _snake_case ( self : Optional[int] , _lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : Optional[int] = load_image(inputs["""image"""] ) __lowerCamelCase : Optional[Any] = inputs["""candidate_labels"""] if isinstance(_lowerCamelCase , _lowerCamelCase ): __lowerCamelCase : Tuple = candidate_labels.split(""",""" ) __lowerCamelCase : List[Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_lowerCamelCase ): __lowerCamelCase : Union[str, Any] = self.tokenizer(_lowerCamelCase , return_tensors=self.framework ) __lowerCamelCase : List[str] = self.image_processor(_lowerCamelCase , return_tensors=self.framework ) yield { "is_last": i == len(_lowerCamelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _snake_case ( self : Optional[Any] , _lowerCamelCase : Tuple ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = model_inputs.pop("""target_size""" ) __lowerCamelCase : Any = model_inputs.pop("""candidate_label""" ) __lowerCamelCase : Any = model_inputs.pop("""is_last""" ) __lowerCamelCase : Optional[int] = self.model(**_lowerCamelCase ) __lowerCamelCase : Dict = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def _snake_case ( self : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int=0.1 , _lowerCamelCase : Dict=None ): '''simple docstring''' __lowerCamelCase : Optional[int] = [] for model_output in model_outputs: __lowerCamelCase : Dict = model_output["""candidate_label"""] __lowerCamelCase : Any = BaseModelOutput(_lowerCamelCase ) __lowerCamelCase : Dict = self.image_processor.post_process_object_detection( outputs=_lowerCamelCase , threshold=_lowerCamelCase , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): __lowerCamelCase : Union[str, Any] = outputs["""scores"""][index].item() __lowerCamelCase : Optional[int] = self._get_bounding_box(outputs["""boxes"""][index][0] ) __lowerCamelCase : Dict = {"""score""": score, """label""": label, """box""": box} results.append(_lowerCamelCase ) __lowerCamelCase : int = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x["score"] , reverse=_lowerCamelCase ) if top_k: __lowerCamelCase : Any = results[:top_k] return results def _snake_case ( self : Union[str, Any] , _lowerCamelCase : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = box.int().tolist() __lowerCamelCase : Tuple = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
519
def _UpperCAmelCase ( UpperCAmelCase : int ): """simple docstring""" if n == 1 or not isinstance(UpperCAmelCase , UpperCAmelCase ): return 0 elif n == 2: return 1 else: __lowerCamelCase : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _UpperCAmelCase ( UpperCAmelCase : int ): """simple docstring""" __lowerCamelCase : Tuple = 0 __lowerCamelCase : Dict = 2 while digits < n: index += 1 __lowerCamelCase : str = len(str(fibonacci(UpperCAmelCase ) ) ) return index def _UpperCAmelCase ( UpperCAmelCase : int = 1_000 ): """simple docstring""" return fibonacci_digits_index(UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
519
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_: Tuple = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["pixel_values"] def __init__( self, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = PILImageResampling.BILINEAR, _UpperCAmelCase = True, _UpperCAmelCase = 1 / 255, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = size if size is not None else {"shortest_edge": 384} lowercase__ = get_size_dict(_UpperCAmelCase, default_to_square=_UpperCAmelCase ) lowercase__ = do_resize lowercase__ = size # Default value set here for backwards compatibility where the value in config is None lowercase__ = crop_pct if crop_pct is not None else 224 / 256 lowercase__ = resample lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = PILImageResampling.BICUBIC, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = get_size_dict(_UpperCAmelCase, default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) lowercase__ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowercase__ = int(shortest_edge / crop_pct ) lowercase__ = get_resize_output_image_size(_UpperCAmelCase, size=_UpperCAmelCase, default_to_square=_UpperCAmelCase ) lowercase__ = resize(image=_UpperCAmelCase, size=_UpperCAmelCase, resample=_UpperCAmelCase, data_format=_UpperCAmelCase, **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase, size=(shortest_edge, shortest_edge), data_format=_UpperCAmelCase, **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase, size=(shortest_edge, shortest_edge), resample=_UpperCAmelCase, data_format=_UpperCAmelCase, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' return rescale(_UpperCAmelCase, scale=_UpperCAmelCase, data_format=_UpperCAmelCase, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' return normalize(_UpperCAmelCase, mean=_UpperCAmelCase, std=_UpperCAmelCase, data_format=_UpperCAmelCase, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = ChannelDimension.FIRST, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = crop_pct if crop_pct is not None else self.crop_pct lowercase__ = resample if resample is not None else self.resample lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(_UpperCAmelCase, default_to_square=_UpperCAmelCase ) lowercase__ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: lowercase__ = [self.resize(image=_UpperCAmelCase, size=_UpperCAmelCase, crop_pct=_UpperCAmelCase, resample=_UpperCAmelCase ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=_UpperCAmelCase, scale=_UpperCAmelCase ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=_UpperCAmelCase, mean=_UpperCAmelCase, std=_UpperCAmelCase ) for image in images] lowercase__ = [to_channel_dimension_format(_UpperCAmelCase, _UpperCAmelCase ) for image in images] lowercase__ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase )
708
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__ ( _a , unittest.TestCase ): snake_case_ = PriorTransformer snake_case_ = "hidden_states" @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) def snake_case__ ( self ): '''simple docstring''' lowercase__ = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } lowercase__ = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ), 0 ) model.to(_UpperCAmelCase ) lowercase__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.model_class(**_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2], _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) lowercase__ = model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase, "set_default_attn_processor" ): model.set_default_attn_processor() lowercase__ = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] lowercase__ = output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) ) @slow class a__ ( unittest.TestCase ): def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = batch_size lowercase__ = embedding_dim lowercase__ = num_embeddings lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" ) model.to(_UpperCAmelCase ) lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] lowercase__ = sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) lowercase__ = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
668
0
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : List[str] , A__ : int , A__ : Dict=7 , A__ : Optional[Any]=3 , A__ : List[Any]=18 , A__ : Any=30 , A__ : List[str]=400 , A__ : int=True , A__ : Tuple=None , A__ : Any=True , A__ : Tuple=[0.5, 0.5, 0.5] , A__ : Union[str, Any]=[0.5, 0.5, 0.5] , ): """simple docstring""" __lowerCamelCase : List[str] = size if size is not None else {"""height""": 18, """width""": 18} __lowerCamelCase : Tuple = parent __lowerCamelCase : str = batch_size __lowerCamelCase : Dict = num_channels __lowerCamelCase : str = image_size __lowerCamelCase : List[str] = min_resolution __lowerCamelCase : int = max_resolution __lowerCamelCase : List[Any] = do_resize __lowerCamelCase : Any = size __lowerCamelCase : Dict = do_normalize __lowerCamelCase : Union[str, Any] = image_mean __lowerCamelCase : List[str] = image_std def a_ ( self : List[Any] ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase ): snake_case__ : List[Any] = DPTImageProcessor if is_vision_available() else None def a_ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase : int = DPTImageProcessingTester(self ) @property def a_ ( self : Union[str, Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self : Any ): """simple docstring""" __lowerCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , """image_mean""" ) ) self.assertTrue(hasattr(A__ , """image_std""" ) ) self.assertTrue(hasattr(A__ , """do_normalize""" ) ) self.assertTrue(hasattr(A__ , """do_resize""" ) ) self.assertTrue(hasattr(A__ , """size""" ) ) def a_ ( self : List[str] ): """simple docstring""" __lowerCamelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __lowerCamelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def a_ ( self : List[Any] ): """simple docstring""" __lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input __lowerCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __lowerCamelCase : int = image_processing(A__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a_ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , np.ndarray ) # Test not batched input __lowerCamelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __lowerCamelCase : Optional[int] = image_processing(A__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a_ ( self : Any ): """simple docstring""" __lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , torch.Tensor ) # Test not batched input __lowerCamelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __lowerCamelCase : Tuple = image_processing(A__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
150
'''simple docstring''' from torch import nn def __lowercase (_lowercase ) -> Union[str, Any]: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"Unsupported activation function: {act_fn}" )
150
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str ) -> Any: """simple docstring""" assert x is not None assert y is not None A__ : int = len(__UpperCamelCase ) A__ : Union[str, Any] = len(__UpperCamelCase ) # declaring the array for storing the dp values A__ : Any = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): A__ : Any = 1 if x[i - 1] == y[j - 1] else 0 A__ : Tuple = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) A__ : Optional[int] = '''''' A__ , A__ : List[str] = m, n while i > 0 and j > 0: A__ : List[str] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: A__ : Optional[int] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = 'AGGTAB' _SCREAMING_SNAKE_CASE : Optional[int] = 'GXTXAYB' _SCREAMING_SNAKE_CASE : Optional[Any] = 4 _SCREAMING_SNAKE_CASE : int = 'GTAB' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
55
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
1
import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowercase_: Optional[Any] = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def _lowercase ( ): """simple docstring""" snake_case__ : Union[str, Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: snake_case__ : Tuple = get_sagemaker_input() else: snake_case__ : int = get_cluster_input() return config def _lowercase ( UpperCAmelCase_=None): """simple docstring""" if subparsers is not None: snake_case__ : str = subparsers.add_parser("""config""" , description=SCREAMING_SNAKE_CASE__) else: snake_case__ : Union[str, Any] = argparse.ArgumentParser("""Accelerate config command""" , description=SCREAMING_SNAKE_CASE__) parser.add_argument( """--config_file""" , default=SCREAMING_SNAKE_CASE__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """ """such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """ """with \'huggingface\'.""" ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__) return parser def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : str = get_user_input() if args.config_file is not None: snake_case__ : Optional[int] = args.config_file else: if not os.path.isdir(SCREAMING_SNAKE_CASE__): os.makedirs(SCREAMING_SNAKE_CASE__) snake_case__ : Optional[int] = default_yaml_config_file if config_file.endswith(""".json"""): config.to_json_file(SCREAMING_SNAKE_CASE__) else: config.to_yaml_file(SCREAMING_SNAKE_CASE__) print(F'accelerate configuration saved at {config_file}') def _lowercase ( ): """simple docstring""" snake_case__ : Any = config_command_parser() snake_case__ : str = parser.parse_args() config_command(SCREAMING_SNAKE_CASE__) if __name__ == "__main__": main()
648
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Optional[int] = XCLIPTextConfig() # derive patch size from model name __a : List[str] = model_name.find('patch' ) __a : int = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) __a : Optional[Any] = XCLIPVisionConfig(patch_size=SCREAMING_SNAKE_CASE__ , num_frames=SCREAMING_SNAKE_CASE__ ) if "large" in model_name: __a : List[Any] = 768 __a : List[str] = 3072 __a : str = 12 __a : str = 1024 __a : Optional[int] = 4096 __a : Optional[Any] = 16 __a : str = 24 __a : List[str] = 768 __a : Union[str, Any] = 3072 if model_name == "xclip-large-patch14-16-frames": __a : Optional[int] = 336 __a : Dict = XCLIPConfig.from_text_vision_configs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "large" in model_name: __a : Any = 768 return config def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): # text encoder if name == "token_embedding.weight": __a : str = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": __a : int = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: __a : Optional[Any] = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: __a : Optional[Any] = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: __a : str = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: __a : Union[str, Any] = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): __a : List[str] = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: __a : Dict = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: __a : str = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": __a : int = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": __a : Tuple = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): __a : Optional[Any] = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: __a : Tuple = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: __a : int = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: __a : int = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: __a : List[str] = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: __a : Tuple = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: __a : int = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: __a : Dict = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": __a : Union[str, Any] = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): __a : List[Any] = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): __a : Any = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for key in orig_state_dict.copy().keys(): __a : Tuple = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "attn.in_proj" in key: __a : Dict = key.split('.' ) if key.startswith('visual' ): __a : Optional[Any] = key_split[3] __a : int = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __a : List[Any] = val[ :dim, : ] __a : List[Any] = val[ dim : dim * 2, : ] __a : List[str] = val[ -dim:, : ] else: __a : Dict = val[ :dim ] __a : Dict = val[ dim : dim * 2 ] __a : List[Any] = val[ -dim: ] else: if "weight" in key: __a : Optional[int] = val[ :dim, : ] __a : str = val[ dim : dim * 2, : ] __a : str = val[ -dim:, : ] else: __a : Union[str, Any] = val[:dim] __a : List[Any] = val[ dim : dim * 2 ] __a : Optional[int] = val[-dim:] elif key.startswith('mit' ): __a : Any = key_split[2] __a : Dict = config.vision_config.mit_hidden_size if "weight" in key: __a : List[Any] = val[:dim, :] __a : Union[str, Any] = val[dim : dim * 2, :] __a : Tuple = val[-dim:, :] else: __a : Optional[int] = val[:dim] __a : str = val[dim : dim * 2] __a : Dict = val[-dim:] else: __a : Union[str, Any] = key_split[2] __a : Any = config.text_config.hidden_size if "weight" in key: __a : Tuple = val[:dim, :] __a : int = val[ dim : dim * 2, : ] __a : List[Any] = val[-dim:, :] else: __a : Dict = val[:dim] __a : Dict = val[ dim : dim * 2 ] __a : Union[str, Any] = val[-dim:] else: __a : Dict = rename_key(SCREAMING_SNAKE_CASE__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __a : str = val.T __a : Union[str, Any] = val return orig_state_dict def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): if num_frames == 8: __a : Optional[Any] = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: __a : List[Any] = 'eating_spaghetti.npy' elif num_frames == 32: __a : Union[str, Any] = 'eating_spaghetti_32_frames.npy' __a : List[str] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=SCREAMING_SNAKE_CASE__ , repo_type='dataset' , ) __a : List[str] = np.load(SCREAMING_SNAKE_CASE__ ) return list(SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False ): __a : Tuple = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } __a : str = model_to_url[model_name] __a : Optional[Any] = 8 if "16-frames" in model_name: __a : List[Any] = 16 elif "shot" in model_name: __a : List[Any] = 32 __a : Optional[int] = get_xclip_config(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : List[Any] = XCLIPModel(SCREAMING_SNAKE_CASE__ ) model.eval() if "drive" in checkpoint_url: __a : Union[str, Any] = 'pytorch_model.bin' gdown.cached_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , quiet=SCREAMING_SNAKE_CASE__ ) __a : Tuple = torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' )['model'] else: __a : Any = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ )['model'] __a : Dict = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Dict = XCLIPModel(SCREAMING_SNAKE_CASE__ ) __a , __a : Any = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __a : Dict = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 __a : Tuple = VideoMAEImageProcessor(size=SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) __a : str = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) __a : int = XCLIPProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) __a : Dict = prepare_video(SCREAMING_SNAKE_CASE__ ) __a : Any = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=SCREAMING_SNAKE_CASE__ , return_tensors='pt' , padding=SCREAMING_SNAKE_CASE__ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): __a : List[Any] = model(**SCREAMING_SNAKE_CASE__ ) # Verify outputs __a : int = outputs.logits_per_video __a : Optional[int] = logits_per_video.softmax(dim=1 ) print('Probs:' , SCREAMING_SNAKE_CASE__ ) # kinetics-400 if model_name == "xclip-base-patch32": __a : str = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": __a : Optional[int] = torch.tensor([[7.09_99E-04, 9.98_83E-01, 4.55_80E-04]] ) elif model_name == "xclip-base-patch16": __a : Any = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": __a : Tuple = torch.tensor([[7.69_37E-04, 9.97_28E-01, 1.94_73E-03]] ) elif model_name == "xclip-large-patch14": __a : Tuple = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": __a : Tuple = torch.tensor([[3.38_77E-04, 9.99_37E-01, 2.88_88E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __a : List[Any] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __a : str = torch.tensor([[3.85_54E-04, 9.99_29E-01, 3.27_54E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": __a : List[Any] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __a : Optional[int] = torch.tensor([[7.18_90E-06, 9.99_94E-01, 5.65_59E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __a : Union[str, Any] = torch.tensor([[1.03_20E-05, 9.99_93E-01, 6.24_35E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __a : Dict = torch.tensor([[4.13_77E-06, 9.99_90E-01, 9.83_86E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __a : str = torch.tensor([[4.13_47E-05, 9.99_62E-01, 3.34_11E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __a : str = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __a : str = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __a : Optional[int] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __a : Any = torch.tensor([[9.82_19E-04, 9.95_93E-01, 3.08_63E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __a : str = torch.tensor([[3.50_82E-04, 9.97_85E-01, 1.79_66E-03]] ) else: raise ValueError(f'''Model name {model_name} not supported''' ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , organization='nielsr' ) processor.push_to_hub(SCREAMING_SNAKE_CASE__ , organization='nielsr' ) slow_tokenizer.push_to_hub(SCREAMING_SNAKE_CASE__ , organization='nielsr' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
597
0
def __A ( _A = 10**12 ): """simple docstring""" __a = 1 __a = 0 __a = 1 __a = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
710
from __future__ import annotations def __A ( _A ): """simple docstring""" __a = [True] * limit __a = False __a = False __a = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __a = i * 2 while index < limit: __a = False __a = index + i __a = [2] for i in range(3 , _A , 2 ): if is_prime[i]: primes.append(_A ) return primes def __A ( _A = 100_0000 ): """simple docstring""" __a = prime_sieve(_A ) __a = 0 __a = 0 for i in range(len(_A ) ): for j in range(i + length , len(_A ) ): __a = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __a = j - i __a = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
525
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def __A ( a_ :Any , a_ :int=None) -> List[str]: require_version(deps[pkg] , a_)
52
import os def A__ ( lowercase: str = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(lowercase ), lowercase ) ) as input_file: A : Dict =[ [int(lowercase ) for element in line.split(',' )] for line in input_file.readlines() ] A : Optional[int] =len(lowercase ) A : Optional[int] =len(matrix[0] ) A : Optional[int] =[[-1 for _ in range(lowercase )] for _ in range(lowercase )] for i in range(lowercase ): A : Optional[int] =matrix[i][0] for j in range(1, lowercase ): for i in range(lowercase ): A : Optional[int] =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1, lowercase ): A : Union[str, Any] =min( minimal_path_sums[i][j], minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2, -1, -1 ): A : Tuple =min( minimal_path_sums[i][j], minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
305
0
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging _A : Union[str, Any] = logging.get_logger(__name__) _A : Optional[Any] = {'''vocab_file''': '''spiece.model'''} _A : List[Any] = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 _A : Optional[Any] = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } _A : Optional[int] = '''▁''' class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : str = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int="</s>" , SCREAMING_SNAKE_CASE__ : List[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : List[str]="<pad>" , SCREAMING_SNAKE_CASE__ : Optional[int]=1_00 , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , SCREAMING_SNAKE_CASE__ : Tuple=True , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowerCAmelCase = [f"""<extra_id_{i}>""" for i in range(SCREAMING_SNAKE_CASE__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __lowerCAmelCase = len(set(filter(lambda SCREAMING_SNAKE_CASE__ : bool("""extra_id""" in str(SCREAMING_SNAKE_CASE__ ) ) , SCREAMING_SNAKE_CASE__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( f"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) __lowerCAmelCase = legacy __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , extra_ids=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , legacy=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = extra_ids __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @staticmethod def a ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> Dict: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __lowerCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , SCREAMING_SNAKE_CASE__ , ) return max_model_length @property def a ( self : List[Any] ) -> Optional[Any]: return self.sp_model.get_piece_size() + self._extra_ids def a ( self : Optional[Any] ) -> str: __lowerCAmelCase = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a ( self : str , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def a ( self : Tuple ) -> Union[str, Any]: return list( set(filter(lambda SCREAMING_SNAKE_CASE__ : bool(re.search(R"""<extra_id_\d+>""" , SCREAMING_SNAKE_CASE__ ) ) is not None , self.additional_special_tokens ) ) ) def a ( self : Dict ) -> str: return [self._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) for token in self.get_sentinel_tokens()] def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] ) -> List[int]: if len(SCREAMING_SNAKE_CASE__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def a ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = self._add_eos_if_not_present(SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return token_ids_a else: __lowerCAmelCase = self._add_eos_if_not_present(SCREAMING_SNAKE_CASE__ ) return token_ids_a + token_ids_a def __getstate__( self : str ) -> Tuple: __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> str: __lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : "TextInput" , **SCREAMING_SNAKE_CASE__ : str ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: __lowerCAmelCase = SPIECE_UNDERLINE + text.replace(SCREAMING_SNAKE_CASE__ , """ """ ) return super().tokenize(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: if not self.legacy: __lowerCAmelCase = text.startswith(SCREAMING_SNAKE_CASE__ ) if is_first: __lowerCAmelCase = text[1:] __lowerCAmelCase = self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def a ( self : str , SCREAMING_SNAKE_CASE__ : int ) -> int: if token.startswith("""<extra_id_""" ): __lowerCAmelCase = re.match(R"""<extra_id_(\d+)>""" , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: if index < self.sp_model.get_piece_size(): __lowerCAmelCase = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) else: __lowerCAmelCase = f"""<extra_id_{self.vocab_size - 1 - index}>""" return token def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = """""" __lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token __lowerCAmelCase = True __lowerCAmelCase = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , """wb""" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
330
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : List[str] = logging.get_logger(__name__) _A : Any = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = """nllb-moe""" _SCREAMING_SNAKE_CASE : Union[str, Any] = ["""past_key_values"""] _SCREAMING_SNAKE_CASE : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , SCREAMING_SNAKE_CASE__ : str=12_81_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=10_24 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE__ : List[str]=40_96 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=16 , SCREAMING_SNAKE_CASE__ : List[Any]=12 , SCREAMING_SNAKE_CASE__ : int=40_96 , SCREAMING_SNAKE_CASE__ : Tuple=16 , SCREAMING_SNAKE_CASE__ : List[str]=0.0_5 , SCREAMING_SNAKE_CASE__ : List[str]=0.0_5 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[str]="relu" , SCREAMING_SNAKE_CASE__ : Optional[int]=10_24 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Optional[Any]="float32" , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=1_28 , SCREAMING_SNAKE_CASE__ : Dict=64 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_0_1 , SCREAMING_SNAKE_CASE__ : List[str]=0.0_0_1 , SCREAMING_SNAKE_CASE__ : str="all" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Dict=1.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.2 , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Tuple=False , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> List[str]: __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = router_z_loss_coef __lowerCAmelCase = router_aux_loss_coef __lowerCAmelCase = decoder_sparse_step __lowerCAmelCase = encoder_sparse_step __lowerCAmelCase = num_experts __lowerCAmelCase = expert_capacity __lowerCAmelCase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) __lowerCAmelCase = router_dtype __lowerCAmelCase = router_ignore_padding_tokens __lowerCAmelCase = batch_prioritized_routing __lowerCAmelCase = second_expert_policy __lowerCAmelCase = normalize_router_prob_before_dropping __lowerCAmelCase = moe_eval_capacity_token_fraction __lowerCAmelCase = moe_token_dropout __lowerCAmelCase = output_router_logits super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
330
1
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib A_ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } A_ = logging.WARNING def UpperCAmelCase ( )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = os.getenv('''DATASETS_VERBOSITY''' ,UpperCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def UpperCAmelCase ( )-> str: '''simple docstring''' return __name__.split('''.''' )[0] def UpperCAmelCase ( )-> logging.Logger: '''simple docstring''' return logging.getLogger(_get_library_name() ) def UpperCAmelCase ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE_ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def UpperCAmelCase ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE_ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def UpperCAmelCase ( UpperCAmelCase = None )-> logging.Logger: '''simple docstring''' if name is None: SCREAMING_SNAKE_CASE_ = _get_library_name() return logging.getLogger(UpperCAmelCase ) def UpperCAmelCase ( )-> int: '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase ( UpperCAmelCase )-> None: '''simple docstring''' _get_library_root_logger().setLevel(UpperCAmelCase ) def UpperCAmelCase ( )-> Optional[Any]: '''simple docstring''' return set_verbosity(UpperCAmelCase ) def UpperCAmelCase ( )-> Union[str, Any]: '''simple docstring''' return set_verbosity(UpperCAmelCase ) def UpperCAmelCase ( )-> Dict: '''simple docstring''' return set_verbosity(UpperCAmelCase ) def UpperCAmelCase ( )-> Optional[int]: '''simple docstring''' return set_verbosity(UpperCAmelCase ) def UpperCAmelCase ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE_ = False def UpperCAmelCase ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE_ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class snake_case : '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : str ) -> Optional[int]: # pylint: disable=unused-argument """simple docstring""" SCREAMING_SNAKE_CASE_ = args[0] if args else None def __iter__( self : Tuple ) -> Optional[Any]: """simple docstring""" return iter(self._iterator ) def __getattr__( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ) -> int: """simple docstring""" def empty_fn(*lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : str ) -> List[str]: """simple docstring""" return self def __exit__( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> Dict: """simple docstring""" return A_ = True class snake_case : '''simple docstring''' def __call__( self : Union[str, Any] , *lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False , **lowerCAmelCase_ : Tuple ) -> Tuple: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ ) else: return EmptyTqdm(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowercase ( self : int , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowercase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() A_ = _tqdm_cls() def UpperCAmelCase ( )-> bool: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase ( )-> List[str]: '''simple docstring''' global _tqdm_active SCREAMING_SNAKE_CASE_ = True def UpperCAmelCase ( )-> Optional[int]: '''simple docstring''' global _tqdm_active SCREAMING_SNAKE_CASE_ = False
393
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType A_ = get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=0 )-> List[str]: '''simple docstring''' os.makedirs(UpperCAmelCase ,exist_ok=UpperCAmelCase ) with FSDP.state_dict_type( UpperCAmelCase ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE_ = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,UpperCAmelCase ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE_ = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(UpperCAmelCase ,exist_ok=UpperCAmelCase ) logger.info(f'''Saving model to {ckpt_dir}''' ) SCREAMING_SNAKE_CASE_ = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=UpperCAmelCase ,storage_writer=dist_cp.FileSystemWriter(UpperCAmelCase ) ,planner=DefaultSavePlanner() ,) logger.info(f'''Model saved to {ckpt_dir}''' ) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=0 )-> List[str]: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( UpperCAmelCase ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return SCREAMING_SNAKE_CASE_ = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Loading model from {input_model_file}''' ) SCREAMING_SNAKE_CASE_ = torch.load(UpperCAmelCase ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE_ = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Loading model from {input_model_file}''' ) SCREAMING_SNAKE_CASE_ = torch.load(UpperCAmelCase ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE_ = ( os.path.join(UpperCAmelCase ,f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) SCREAMING_SNAKE_CASE_ = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=UpperCAmelCase ,storage_reader=dist_cp.FileSystemReader(UpperCAmelCase ) ,planner=DefaultLoadPlanner() ,) SCREAMING_SNAKE_CASE_ = state_dict['''model'''] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=0 )-> int: '''simple docstring''' os.makedirs(UpperCAmelCase ,exist_ok=UpperCAmelCase ) with FSDP.state_dict_type( UpperCAmelCase ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE_ = FSDP.optim_state_dict(UpperCAmelCase ,UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: SCREAMING_SNAKE_CASE_ = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(UpperCAmelCase ,exist_ok=UpperCAmelCase ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} ,storage_writer=dist_cp.FileSystemWriter(UpperCAmelCase ) ,planner=DefaultSavePlanner() ,) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=0 )-> Any: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( UpperCAmelCase ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: SCREAMING_SNAKE_CASE_ = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,UpperCAmelCase ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) SCREAMING_SNAKE_CASE_ = torch.load(UpperCAmelCase ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: SCREAMING_SNAKE_CASE_ = ( os.path.join(UpperCAmelCase ,f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) SCREAMING_SNAKE_CASE_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() ,optimizer_key='''optimizer''' ,storage_reader=dist_cp.FileSystemReader(UpperCAmelCase ) ,) SCREAMING_SNAKE_CASE_ = optim_state['''optimizer'''] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) SCREAMING_SNAKE_CASE_ = FSDP.optim_state_dict_to_load(UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) optimizer.load_state_dict(UpperCAmelCase )
393
1
"""simple docstring""" import operator as op __A : Optional[Any] = 'scaler.pt' __A : Dict = 'pytorch_model' __A : Optional[Any] = 'random_states' __A : List[Any] = 'optimizer' __A : Optional[int] = 'scheduler' __A : Union[str, Any] = 'pytorch_model.bin' __A : Union[str, Any] = 'pytorch_model.bin.index.json' __A : Optional[Any] = 'model.safetensors' __A : Dict = 'model.safetensors.index.json' __A : Optional[Any] = '1.10.2' __A : List[str] = 'py38' __A : List[Any] = '4.17.0' __A : str = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] __A : Optional[Any] = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] __A : Optional[int] = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] __A : Optional[Any] = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] __A : List[str] = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] __A : Dict = '2.0.1' __A : Dict = ['pdsh', 'standard', 'openmpi', 'mvapich'] __A : str = ['default', 'reduce-overhead', 'max-autotune'] __A : Tuple = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 __A : Union[str, Any] = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] __A : int = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] __A : Dict = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
281
"""simple docstring""" from collections import deque def snake_case__ ( _lowerCamelCase ) ->Dict: """simple docstring""" __lowercase : Any = len(_lowerCamelCase ) __lowercase : str = deque() __lowercase : Tuple = [False for _ in range(_lowerCamelCase )] __lowercase : Optional[int] = [-1 for _ in range(_lowerCamelCase )] __lowercase : Dict = index_of[:] def strong_connect(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ): __lowercase : List[str] = index # the number when this node is seen __lowercase : List[str] = index # lowest rank node reachable from here index += 1 stack.append(_lowerCamelCase ) __lowercase : List[Any] = True for w in g[v]: if index_of[w] == -1: __lowercase : Optional[int] = strong_connect(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) __lowercase : List[Any] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowercase : List[Any] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowercase : Any = [] __lowercase : List[Any] = stack.pop() __lowercase : Any = False component.append(_lowerCamelCase ) while w != v: __lowercase : List[str] = stack.pop() __lowercase : Dict = False component.append(_lowerCamelCase ) components.append(_lowerCamelCase ) return index __lowercase : Tuple = [] for v in range(_lowerCamelCase ): if index_of[v] == -1: strong_connect(_lowerCamelCase, 0, _lowerCamelCase ) return components def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->Tuple: """simple docstring""" __lowercase : int = [[] for _ in range(_lowerCamelCase )] for u, v in edges: g[u].append(_lowerCamelCase ) return g if __name__ == "__main__": # Test __A : int = 7 __A : int = [0, 0, 1, 2, 3, 3, 4, 4, 6] __A : List[Any] = [1, 3, 2, 0, 1, 4, 5, 6, 5] __A : List[str] = [(u, v) for u, v in zip(source, target)] __A : List[str] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
281
1
"""simple docstring""" from copy import deepcopy class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : list[int] | None = None ,A_ : int | None = None ) -> None: if arr is None and size is not None: A = size A = [0] * size elif arr is not None: self.init(A_ ) else: raise ValueError('Either arr or size must be specified' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : list[int] ) -> None: A = len(A_ ) A = deepcopy(A_ ) for i in range(1 ,self.size ): A = self.next_(A_ ) if j < self.size: self.tree[j] += self.tree[i] def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> list[int]: A = self.tree[:] for i in range(self.size - 1 ,0 ,-1 ): A = self.next_(A_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : int ) -> int: return index + (index & (-index)) @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : int ) -> int: return index - (index & (-index)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ,A_ : int ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value A = self.next_(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : int ,A_ : int ) -> None: self.add(A_ ,value - self.get(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> int: if right == 0: return 0 A = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] A = self.prev(A_ ) return result def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : int ) -> int: return self.prefix(A_ ) - self.prefix(A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : int ) -> int: return self.query(A_ ,index + 1 ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : int ) -> int: value -= self.tree[0] if value < 0: return -1 A = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 A = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
91
'''simple docstring''' from __future__ import annotations import time import numpy as np snake_case : List[str] = [8, 5, 9, 7] snake_case : int = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] snake_case : Optional[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowerCamelCase__: def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): """simple docstring""" __lowercase = claim_vector __lowercase = allocated_resources_table __lowercase = maximum_claim_table def __magic_name__ ( self ): """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ): """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ): """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ): """simple docstring""" return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()} def __magic_name__ ( self , **__UpperCAmelCase ): """simple docstring""" __lowercase = self.__need() __lowercase = self.__allocated_resources_table __lowercase = self.__available_resources() __lowercase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 5_0 + """\n""" ) while need_list: __lowercase = False for each_need in need_list: __lowercase = True for index, need in enumerate(__UpperCAmelCase ): if need > available_resources[index]: __lowercase = False break if execution: __lowercase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowercase = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(__UpperCAmelCase ) # update available/freed resources stack __lowercase = np.array(__UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(__UpperCAmelCase ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def __magic_name__ ( self ): """simple docstring""" print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
566
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Optional[int] = (UnCLIPScheduler,) def A ( self : str , **A_ : Optional[int] )-> Union[str, Any]: __UpperCamelCase = { "num_train_timesteps": 10_00, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**A_ ) return config def A ( self : Any )-> Optional[int]: for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A_ ) def A ( self : str )-> str: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=A_ ) def A ( self : Tuple )-> Optional[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def A ( self : List[Any] )-> Any: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=A_ ) def A ( self : Tuple )-> List[Any]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=A_ ) def A ( self : Dict )-> Optional[int]: for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=A_ , prev_timestep=A_ ) def A ( self : Union[str, Any] )-> List[Any]: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(variance_type="fixed_small_log" ) __UpperCamelCase = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0e-1_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.9_994_987 ) ) < 1e-5 def A ( self : Any )-> Union[str, Any]: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(variance_type="learned_range" ) __UpperCamelCase = scheduler_class(**A_ ) __UpperCamelCase = 0.5 assert scheduler._get_variance(1 , predicted_variance=A_ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(4_87 , predicted_variance=A_ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(9_99 , predicted_variance=A_ ) - -0.0_010_011 < 1e-5 def A ( self : Optional[Any] )-> Union[str, Any]: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**A_ ) __UpperCamelCase = scheduler.timesteps __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter __UpperCamelCase = torch.manual_seed(0 ) for i, t in enumerate(A_ ): # 1. predict noise residual __UpperCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 __UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample __UpperCamelCase = pred_prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def A ( self : str )-> Union[str, Any]: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**A_ ) scheduler.set_timesteps(25 ) __UpperCamelCase = scheduler.timesteps __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter __UpperCamelCase = torch.manual_seed(0 ) for i, t in enumerate(A_ ): # 1. predict noise residual __UpperCamelCase = model(A_ , A_ ) if i + 1 == timesteps.shape[0]: __UpperCamelCase = None else: __UpperCamelCase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __UpperCamelCase = scheduler.step( A_ , A_ , A_ , prev_timestep=A_ , generator=A_ ).prev_sample __UpperCamelCase = pred_prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def A ( self : int )-> Optional[Any]: pass def A ( self : int )-> Optional[Any]: pass
228
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __UpperCAmelCase ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : Any = StableDiffusionControlNetImgaImgPipeline _snake_case : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} _snake_case : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : str = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) _snake_case : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def A ( self : int )-> List[Any]: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) __UpperCamelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) __UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCamelCase = CLIPTextModel(A_ ) __UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCamelCase = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A ( self : str , A_ : Optional[int] , A_ : Optional[Any]=0 )-> List[Any]: if str(A_ ).startswith("mps" ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = 2 __UpperCamelCase = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A_ , device=torch.device(A_ ) , ) __UpperCamelCase = floats_tensor(control_image.shape , rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((64, 64) ) __UpperCamelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def A ( self : List[str] )-> List[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A ( self : List[Any] )-> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def A ( self : Any )-> Dict: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __UpperCAmelCase ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : List[Any] = StableDiffusionControlNetImgaImgPipeline _snake_case : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} _snake_case : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : Optional[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def A ( self : Optional[Any] )-> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(A_ : int ): if isinstance(A_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __UpperCamelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(A_ ) torch.manual_seed(0 ) __UpperCamelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(A_ ) torch.manual_seed(0 ) __UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCamelCase = CLIPTextModel(A_ ) __UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCamelCase = MultiControlNetModel([controlneta, controlneta] ) __UpperCamelCase = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A ( self : int , A_ : Dict , A_ : str=0 )-> Optional[Any]: if str(A_ ).startswith("mps" ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = 2 __UpperCamelCase = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A_ , device=torch.device(A_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A_ , device=torch.device(A_ ) , ), ] __UpperCamelCase = floats_tensor(control_image[0].shape , rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((64, 64) ) __UpperCamelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def A ( self : List[str] )-> List[str]: __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) pipe.to(A_ ) __UpperCamelCase = 10.0 __UpperCamelCase = 4 __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = steps __UpperCamelCase = scale __UpperCamelCase = pipe(**A_ )[0] __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = steps __UpperCamelCase = scale __UpperCamelCase = pipe(**A_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = steps __UpperCamelCase = scale __UpperCamelCase = pipe(**A_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = steps __UpperCamelCase = scale __UpperCamelCase = pipe(**A_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def A ( self : Optional[int] )-> Any: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A ( self : List[Any] )-> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def A ( self : int )-> Optional[Any]: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def A ( self : List[str] )-> Tuple: __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(A_ ) except NotImplementedError: pass @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : Union[str, Any] )-> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : str )-> Optional[Any]: __UpperCamelCase = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) __UpperCamelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=A_ , controlnet=A_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase = "evil space-punk bird" __UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((5_12, 5_12) ) __UpperCamelCase = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((5_12, 5_12) ) __UpperCamelCase = pipe( A_ , A_ , control_image=A_ , generator=A_ , output_type="np" , num_inference_steps=50 , strength=0.6 , ) __UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) __UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9e-2
228
1
'''simple docstring''' def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): __snake_case : List[Any] = F'''Input value of [number={number}] must be an integer''' raise TypeError(lowerCamelCase_ ) if number < 1: __snake_case : List[str] = F'''Input value of [number={number}] must be > 0''' raise ValueError(lowerCamelCase_ ) __snake_case : List[str] = 1 for i in range(1 , lowerCamelCase_ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''fnet''' def __init__( self : Any , lowerCamelCase_ : List[str]=3_20_00 , lowerCamelCase_ : List[Any]=7_68 , lowerCamelCase_ : Union[str, Any]=12 , lowerCamelCase_ : Optional[Any]=30_72 , lowerCamelCase_ : Optional[Any]="gelu_new" , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Union[str, Any]=5_12 , lowerCamelCase_ : Optional[int]=4 , lowerCamelCase_ : Optional[int]=0.02 , lowerCamelCase_ : str=1e-12 , lowerCamelCase_ : Any=False , lowerCamelCase_ : str=5_12 , lowerCamelCase_ : str=3 , lowerCamelCase_ : int=1 , lowerCamelCase_ : Optional[Any]=2 , **lowerCamelCase_ : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : int = use_tpu_fourier_optimizations SCREAMING_SNAKE_CASE : List[Any] = tpu_short_seq_length
379
0
from math import factorial def UpperCamelCase (lowercase_: int = 100 ) -> int: return sum(map(lowercase_ , str(factorial(lowercase_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
716
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor A_ : Union[str, Any] = logging.get_logger(__name__) class _a (__magic_name__ ): '''simple docstring''' def __init__( self , *A__ , **A__ ): warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , A__ , ) super().__init__(*A__ , **A__ )
64
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Dict = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ : int = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase__ ( _snake_case ): '''simple docstring''' A_ : int = ["""pixel_values"""] def __init__( self , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BICUBIC , __snake_case = True , __snake_case = None , __snake_case = True , __snake_case = 1 / 255 , __snake_case = True , __snake_case = None , __snake_case = None , __snake_case = True , **__snake_case , ): super().__init__(**__snake_case ) _SCREAMING_SNAKE_CASE : int = size if size is not None else {"""shortest_edge""": 224} _SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(__snake_case , default_to_square=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _SCREAMING_SNAKE_CASE : Any = get_size_dict(__snake_case , default_to_square=__snake_case , param_name="""crop_size""" ) _SCREAMING_SNAKE_CASE : str = do_resize _SCREAMING_SNAKE_CASE : Union[str, Any] = size _SCREAMING_SNAKE_CASE : List[str] = resample _SCREAMING_SNAKE_CASE : str = do_center_crop _SCREAMING_SNAKE_CASE : Optional[Any] = crop_size _SCREAMING_SNAKE_CASE : Tuple = do_rescale _SCREAMING_SNAKE_CASE : Dict = rescale_factor _SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize _SCREAMING_SNAKE_CASE : List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _SCREAMING_SNAKE_CASE : Optional[Any] = image_std if image_std is not None else OPENAI_CLIP_STD _SCREAMING_SNAKE_CASE : Optional[int] = do_convert_rgb def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BICUBIC , __snake_case = None , **__snake_case , ): _SCREAMING_SNAKE_CASE : int = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _SCREAMING_SNAKE_CASE : Any = get_resize_output_image_size(__snake_case , size=size["""shortest_edge"""] , default_to_square=__snake_case ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ): _SCREAMING_SNAKE_CASE : List[str] = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__snake_case , size=(size["""height"""], size["""width"""]) , data_format=__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ): return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case , __snake_case = None , **__snake_case , ): return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ): _SCREAMING_SNAKE_CASE : Optional[int] = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE : Any = size if size is not None else self.size _SCREAMING_SNAKE_CASE : List[str] = get_size_dict(__snake_case , param_name="""size""" , default_to_square=__snake_case ) _SCREAMING_SNAKE_CASE : Any = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _SCREAMING_SNAKE_CASE : str = crop_size if crop_size is not None else self.crop_size _SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(__snake_case , param_name="""crop_size""" , default_to_square=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE : int = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE : Tuple = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE : List[str] = image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _SCREAMING_SNAKE_CASE : Optional[Any] = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _SCREAMING_SNAKE_CASE : Optional[int] = [convert_to_rgb(__snake_case ) for image in images] # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE : str = [to_numpy_array(__snake_case ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE : Optional[Any] = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: _SCREAMING_SNAKE_CASE : Tuple = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE : List[Any] = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE : Dict = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] _SCREAMING_SNAKE_CASE : str = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] _SCREAMING_SNAKE_CASE : int = {"""pixel_values""": images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
533
0
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def _a ( __lowerCAmelCase : str="ro" , __lowerCAmelCase : Tuple="en" , __lowerCAmelCase : Tuple="wmt16" , __lowerCAmelCase : Any=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) snake_case__ : Union[str, Any] = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) snake_case__ : str = datasets.load_dataset(_UpperCamelCase , _UpperCamelCase ) if save_dir is None: snake_case__ : List[Any] = F"""{dataset}-{pair}""" snake_case__ : Optional[Any] = Path(_UpperCamelCase ) save_dir.mkdir(exist_ok=_UpperCamelCase ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets snake_case__ : List[Any] = '''val''' if split == '''validation''' else split snake_case__ : Optional[Any] = save_dir.joinpath(F"""{fn}.source""" ) snake_case__ : Optional[int] = save_dir.joinpath(F"""{fn}.target""" ) snake_case__ : List[str] = src_path.open('''w+''' ) snake_case__ : Union[str, Any] = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): snake_case__ : Any = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
716
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase__ : Dict = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) lowerCAmelCase__ : List[Any] = parser.parse_args() lowerCAmelCase__ : Optional[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase__ : Optional[int] = CLIPImageProcessor() lowerCAmelCase__ : str = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") lowerCAmelCase__ : Dict = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
502
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[int] =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any ={ 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( __a ): """simple docstring""" A__ : str = '''xlm-roberta''' def __init__( self , A=3_05_22 , A=7_68 , A=12 , A=12 , A=30_72 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=2 , A=0.02 , A=1e-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , **A , ) -> Union[str, Any]: super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) A: str = vocab_size A: Dict = hidden_size A: List[Any] = num_hidden_layers A: Tuple = num_attention_heads A: Union[str, Any] = hidden_act A: Union[str, Any] = intermediate_size A: Tuple = hidden_dropout_prob A: str = attention_probs_dropout_prob A: Dict = max_position_embeddings A: Optional[Any] = type_vocab_size A: Tuple = initializer_range A: List[Any] = layer_norm_eps A: Tuple = position_embedding_type A: Union[str, Any] = use_cache A: List[Any] = classifier_dropout class SCREAMING_SNAKE_CASE__ ( __a ): """simple docstring""" @property def a__ ( self ) -> Dict: if self.task == "multiple-choice": A: Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A: int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
135
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : int = 32 , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[int, float] = 1 / 255 , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowerCAmelCase : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[str, Any]=7 , __lowerCAmelCase : Optional[int]=30 , __lowerCAmelCase : Tuple=400 , __lowerCAmelCase : List[Any]=3 , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = do_resize _lowerCAmelCase = size if size is not None else {'shortest_edge': 288} _lowerCAmelCase = size_divisor _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = do_center_crop _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = do_pad _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution def a ( self : str ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def a ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any]=False ): """simple docstring""" if not batched: _lowerCAmelCase = self.size['shortest_edge'] _lowerCAmelCase = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): _lowerCAmelCase , _lowerCAmelCase = image.size else: _lowerCAmelCase , _lowerCAmelCase = image.shape[1], image.shape[2] _lowerCAmelCase = size / min(__lowerCAmelCase , __lowerCAmelCase ) if h < w: _lowerCAmelCase , _lowerCAmelCase = size, scale * w else: _lowerCAmelCase , _lowerCAmelCase = scale * h, size _lowerCAmelCase = int((1333 / 800) * size ) if max(__lowerCAmelCase , __lowerCAmelCase ) > max_size: _lowerCAmelCase = max_size / max(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = newh * scale _lowerCAmelCase = neww * scale _lowerCAmelCase , _lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) _lowerCAmelCase , _lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: _lowerCAmelCase = [] for image in image_inputs: _lowerCAmelCase , _lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCAmelCase = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] _lowerCAmelCase = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE ( __a , unittest.TestCase ): """simple docstring""" __A = BridgeTowerImageProcessor if is_vision_available() else None def a ( self : List[str] ): """simple docstring""" _lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def a ( self : Optional[Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a ( self : Any ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'size' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'size_divisor' ) ) def a ( self : Dict ): """simple docstring""" pass def a ( self : Union[str, Any] ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(__lowerCAmelCase , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self : Tuple ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(__lowerCAmelCase , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self : str ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(__lowerCAmelCase , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
309
0
from cva import destroyAllWindows, imread, imshow, waitKey def __lowerCAmelCase ( UpperCamelCase ) -> Dict: # getting number of pixels in the image lowerCAmelCase__ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(UpperCamelCase ): for j in range(UpperCamelCase ): lowerCAmelCase__ = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image lowerCAmelCase_ = imread("""image_data/lena.jpg""", 1) # convert to its negative lowerCAmelCase_ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
707
from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowerCAmelCase ( _lowercase ): @staticmethod @abstractmethod def __magic_name__( __UpperCAmelCase ): raise NotImplementedError() @abstractmethod def __magic_name__( self ): raise NotImplementedError()
470
0
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __a = logging.get_logger(__name__) class __a( _a ): """simple docstring""" lowerCAmelCase = '''linear''' lowerCAmelCase = '''cosine''' lowerCAmelCase = '''cosine_with_restarts''' lowerCAmelCase = '''polynomial''' lowerCAmelCase = '''constant''' lowerCAmelCase = '''constant_with_warmup''' lowerCAmelCase = '''piecewise_constant''' def lowerCamelCase__ ( _lowercase , _lowercase = -1 ): '''simple docstring''' return LambdaLR(_lowercase , lambda _lowercase : 1 , last_epoch=_lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase = -1 ): '''simple docstring''' def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1.0 , _lowercase ) ) return 1.0 return LambdaLR(_lowercase , _lowercase , last_epoch=_lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase = -1 ): '''simple docstring''' UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Tuple = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = rule_str.split(''':''' ) UpperCAmelCase_ : List[Any] = int(_lowercase ) UpperCAmelCase_ : Optional[int] = float(_lowercase ) UpperCAmelCase_ : List[str] = value UpperCAmelCase_ : Optional[Any] = float(rule_list[-1] ) def create_rules_function(_lowercase , _lowercase ): def rule_func(_lowercase ) -> float: UpperCAmelCase_ : str = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowercase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCAmelCase_ : Dict = create_rules_function(_lowercase , _lowercase ) return LambdaLR(_lowercase , _lowercase , last_epoch=_lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase=-1 ): '''simple docstring''' def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase = 0.5 , _lowercase = -1 ): '''simple docstring''' def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) UpperCAmelCase_ : Optional[int] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowercase ) * 2.0 * progress )) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase = 1 , _lowercase = -1 ): '''simple docstring''' def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) UpperCAmelCase_ : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowercase ) * progress) % 1.0) )) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase=1E-7 , _lowercase=1.0 , _lowercase=-1 ): '''simple docstring''' UpperCAmelCase_ : List[str] = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCAmelCase_ : Tuple = lr_init - lr_end UpperCAmelCase_ : Tuple = num_training_steps - num_warmup_steps UpperCAmelCase_ : List[str] = 1 - (current_step - num_warmup_steps) / decay_steps UpperCAmelCase_ : str = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowercase , _lowercase , _lowercase ) __a = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = 1 , _lowercase = 1.0 , _lowercase = -1 , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = SchedulerType(_lowercase ) UpperCAmelCase_ : Optional[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowercase , last_epoch=_lowercase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowercase , step_rules=_lowercase , last_epoch=_lowercase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowercase , num_warmup_steps=_lowercase , last_epoch=_lowercase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , num_cycles=_lowercase , last_epoch=_lowercase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , power=_lowercase , last_epoch=_lowercase , ) return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , last_epoch=_lowercase )
30
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __a = logging.get_logger(__name__) __a = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class __a( _a ): """simple docstring""" lowerCAmelCase = '''imagegpt''' lowerCAmelCase = ['''past_key_values'''] lowerCAmelCase = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self ,_SCREAMING_SNAKE_CASE=512 + 1 ,_SCREAMING_SNAKE_CASE=32 * 32 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=24 ,_SCREAMING_SNAKE_CASE=8 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE="quick_gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,**_SCREAMING_SNAKE_CASE ,) -> Optional[int]: UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : Union[str, Any] = n_embd UpperCAmelCase_ : Any = n_layer UpperCAmelCase_ : Optional[Any] = n_head UpperCAmelCase_ : Union[str, Any] = n_inner UpperCAmelCase_ : List[Any] = activation_function UpperCAmelCase_ : List[str] = resid_pdrop UpperCAmelCase_ : str = embd_pdrop UpperCAmelCase_ : Optional[Any] = attn_pdrop UpperCAmelCase_ : Dict = layer_norm_epsilon UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Dict = scale_attn_weights UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : List[str] = scale_attn_by_inverse_layer_idx UpperCAmelCase_ : Tuple = reorder_and_upcast_attn UpperCAmelCase_ : int = tie_word_embeddings super().__init__(tie_word_embeddings=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) class __a( _a ): """simple docstring""" @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = -1 ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 32 ,_SCREAMING_SNAKE_CASE = 32 ,) -> Mapping[str, Any]: UpperCAmelCase_ : Any = self._generate_dummy_images(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = dict(preprocessor(images=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ) ) return inputs
30
1
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: list[list] ): __SCREAMING_SNAKE_CASE : Optional[Any] = current_set.copy() for row_index, row in enumerate(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = row[0] for column_index, column in enumerate(_lowerCamelCase ): if magnitude == 0: __SCREAMING_SNAKE_CASE : Any = column continue __SCREAMING_SNAKE_CASE : Optional[int] = column / magnitude # Subtract to cancel term __SCREAMING_SNAKE_CASE : Tuple = current_set[0] __SCREAMING_SNAKE_CASE : Tuple = [first_row] __SCREAMING_SNAKE_CASE : Union[str, Any] = current_set[1::] for row in current_set: __SCREAMING_SNAKE_CASE : Optional[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_lowerCamelCase ) continue for column_index in range(len(_lowerCamelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_lowerCamelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: __SCREAMING_SNAKE_CASE : str = final_set[0] __SCREAMING_SNAKE_CASE : Dict = [] __SCREAMING_SNAKE_CASE : Optional[int] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) __SCREAMING_SNAKE_CASE : Any = simplify(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = resultant return final_set def lowerCAmelCase_ ( _lowerCamelCase: list[list] ): if len(_lowerCamelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) __SCREAMING_SNAKE_CASE : Optional[int] = len(_lowerCamelCase ) + 1 if any(len(_lowerCamelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(_lowerCamelCase , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(_lowerCamelCase ) == 1: return [equations[0][-1] / equations[0][0]] __SCREAMING_SNAKE_CASE : Tuple = equations.copy() if any(0 in row for row in data_set ): __SCREAMING_SNAKE_CASE : Any = data_set.copy() __SCREAMING_SNAKE_CASE : Optional[Any] = [] for row_index, row in enumerate(_lowerCamelCase ): if 0 not in row: __SCREAMING_SNAKE_CASE : Dict = data_set.pop(_lowerCamelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = data_set.copy() __SCREAMING_SNAKE_CASE : List[Any] = simplify(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = simplified[::-1] __SCREAMING_SNAKE_CASE : list = [] for row in simplified: __SCREAMING_SNAKE_CASE : List[str] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue __SCREAMING_SNAKE_CASE : int = row.copy()[: len(_lowerCamelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_lowerCamelCase ) == 0: solutions.append(0 ) continue __SCREAMING_SNAKE_CASE : Tuple = temp_row[1::] __SCREAMING_SNAKE_CASE : Dict = temp_row[::-1] for column_index, column in enumerate(_lowerCamelCase ): current_solution -= column * solutions[column_index] solutions.append(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = [] for item in solutions: final.append(float(round(_lowerCamelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : List[Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
178
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def lowerCAmelCase_ ( _lowerCamelCase: Dict , _lowerCamelCase: List[Any] ): # ===== initialization ===== __SCREAMING_SNAKE_CASE : Optional[int] = Mock() __SCREAMING_SNAKE_CASE : Optional[int] = conn, Mock() __SCREAMING_SNAKE_CASE : str = iter([1, None] ) __SCREAMING_SNAKE_CASE : Any = lambda _lowerCamelCase : next(_lowerCamelCase ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=_lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
178
1
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer a = logging.get_logger(__name__) a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } a = { 'Salesforce/codegen-350M-mono': 2_048, } class a_ ( snake_case ): UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Optional[Any] = ["""input_ids""", """attention_mask"""] UpperCAmelCase : Optional[int] = CodeGenTokenizer def __init__( self : Optional[Any] , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Any="<|endoftext|>" , a_ : Union[str, Any]="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Union[str, Any]=False , **a_ : Optional[int] , ) -> List[str]: super().__init__( a_ , a_ , tokenizer_file=a_ , unk_token=a_ , bos_token=a_ , eos_token=a_ , add_prefix_space=a_ , **a_ , ) if kwargs.pop('add_bos_token' , a_ ): snake_case: List[str] =kwargs.pop('name_or_path' , '' ) raise ValueError( 'Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.' 'Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n' F'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' F'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' 'This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.' ' so that the fast tokenizer works correctly.' ) snake_case: int =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , a_ ) != add_prefix_space: snake_case: List[str] =getattr(a_ , pre_tok_state.pop('type' ) ) snake_case: Any =add_prefix_space snake_case: Any =pre_tok_class(**a_ ) snake_case: List[Any] =add_prefix_space def UpperCamelCase ( self : Optional[Any] , *a_ : Optional[Any] , **a_ : Optional[int] ) -> BatchEncoding: snake_case: Optional[int] =kwargs.get('is_split_into_words' , a_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_ , **a_ ) def UpperCamelCase ( self : int , *a_ : Any , **a_ : Any ) -> BatchEncoding: snake_case: List[Any] =kwargs.get('is_split_into_words' , a_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*a_ , **a_ ) def UpperCamelCase ( self : List[Any] , a_ : str , a_ : Optional[str] = None ) -> Tuple[str]: snake_case: int =self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ ) def UpperCamelCase ( self : Tuple , a_ : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , a_ : bool = False , a_ : bool = None , a_ : Optional[List[str]] = None , **a_ : List[str] , ) -> str: snake_case: Any =super().decode( token_ids=a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ , **a_ , ) if truncate_before_pattern is not None and len(a_ ) > 0: snake_case: int =self.truncate(a_ , a_ ) return decoded_text def UpperCamelCase ( self : Dict , a_ : List[str] , a_ : str ) -> Optional[int]: def find_re(a_ : Dict , a_ : Optional[Any] , a_ : Tuple ): snake_case: Optional[Any] =pattern.search(a_ , a_ ) return m.start() if m else -1 snake_case: Union[str, Any] =[re.compile(a_ , re.MULTILINE ) for pattern in truncate_before_pattern] snake_case: List[Any] =list(re.finditer('^print' , a_ , re.MULTILINE ) ) if len(a_ ) > 1: snake_case: List[str] =completion[: prints[1].start()] snake_case: Tuple =list(re.finditer('^def' , a_ , re.MULTILINE ) ) if len(a_ ) > 1: snake_case: int =completion[: defs[1].start()] snake_case: Any =0 snake_case: List[str] =[ pos for pos in [find_re(a_ , a_ , a_ ) for terminal in terminals] if pos != -1 ] if len(a_ ) > 0: return completion[: min(a_ )] else: return completion
350
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py a = '.' if __name__ == "__main__": a = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') a = [] a = [] with open(doctest_file_path) as fp: for line in fp: a = line.strip() a = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: a = '\n'.join(non_existent_paths) raise ValueError(F"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
350
1
from graphs.minimum_spanning_tree_kruskal import kruskal def _A ( ): a__ : Optional[Any] = 9 a__ : Dict = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] a__ : List[str] = kruskal(lowerCamelCase , lowerCamelCase ) a__ : str = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowerCamelCase ) == sorted(lowerCamelCase )
708
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration SCREAMING_SNAKE_CASE__ : List[str] = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def _A ( lowerCamelCase ): a__ : Optional[int] = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def _A ( lowerCamelCase ): a__ : Tuple = list(s_dict.keys() ) for key in keys: a__ : Optional[Any] = key for k, v in WHISPER_MAPPING.items(): if k in key: a__ : Optional[int] = new_key.replace(lowerCamelCase , lowerCamelCase ) print(F"""{key} -> {new_key}""" ) a__ : Dict = s_dict.pop(lowerCamelCase ) return s_dict def _A ( lowerCamelCase ): a__ , a__ : Any = emb.weight.shape a__ : Optional[Any] = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) a__ : Optional[Any] = emb.weight.data return lin_layer def _A ( lowerCamelCase , lowerCamelCase ): os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) a__ : Optional[Any] = os.path.basename(lowerCamelCase ) a__ : List[Any] = url.split("/" )[-2] a__ : Tuple = os.path.join(lowerCamelCase , lowerCamelCase ) if os.path.exists(lowerCamelCase ) and not os.path.isfile(lowerCamelCase ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(lowerCamelCase ): a__ : Any = open(lowerCamelCase , "rb" ).read() if hashlib.shaaaa(lowerCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(lowerCamelCase ) as source, open(lowerCamelCase , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=lowerCamelCase , unit_divisor=1024 ) as loop: while True: a__ : Optional[Any] = source.read(8192 ) if not buffer: break output.write(lowerCamelCase ) loop.update(len(lowerCamelCase ) ) a__ : Optional[int] = open(lowerCamelCase , "rb" ).read() if hashlib.shaaaa(lowerCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def _A ( lowerCamelCase , lowerCamelCase ): if ".pt" not in checkpoint_path: a__ : str = _download(_MODELS[checkpoint_path] ) else: a__ : str = torch.load(lowerCamelCase , map_location="cpu" ) a__ : Dict = original_checkpoint["dims"] a__ : Optional[int] = original_checkpoint["model_state_dict"] a__ : Any = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(lowerCamelCase ) rename_keys(lowerCamelCase ) a__ : Optional[Any] = True a__ : Optional[Any] = state_dict["decoder.layers.0.fc1.weight"].shape[0] a__ : Tuple = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=lowerCamelCase , decoder_ffn_dim=lowerCamelCase , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) a__ : Optional[Any] = WhisperForConditionalGeneration(lowerCamelCase ) a__ , a__ : Tuple = model.model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) if len(lowerCamelCase ) > 0 and not set(lowerCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F""" but all the following weights are missing {missing}""" ) if tie_embeds: a__ : Any = make_linear_from_emb(model.model.decoder.embed_tokens ) else: a__ : str = proj_out_weights model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
629
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Tuple = logging.get_logger(__name__) def A_( A : Dict): if "resnet-50" in model_name: UpperCamelCase = ResNetConfig.from_pretrained('microsoft/resnet-50') elif "resnet-101" in model_name: UpperCamelCase = ResNetConfig.from_pretrained('microsoft/resnet-101') else: raise ValueError('Model name should include either resnet50 or resnet101') UpperCamelCase = DetrConfig(use_timm_backbone=a__ , backbone_config=a__) # set label attributes UpperCamelCase = """panoptic""" in model_name if is_panoptic: UpperCamelCase = 250 else: UpperCamelCase = 91 UpperCamelCase = """huggingface/label-files""" UpperCamelCase = """coco-detection-id2label.json""" UpperCamelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset') , 'r')) UpperCamelCase = {int(a__): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} return config, is_panoptic def A_( A : List[Any]): UpperCamelCase = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight')) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight')) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias')) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean')) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var')) # stages for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): # shortcut if layer_idx == 0: rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', )) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', )) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', )) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', )) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', )) # 3 convs for i in range(3): rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', )) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', )) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', )) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', )) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', )) # fmt: on for i in range(config.encoder_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''', )) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''', )) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''')) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', )) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', )) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ]) return rename_keys def A_( A : Optional[Any] , A : Tuple , A : Optional[Any]): UpperCamelCase = state_dict.pop(a__) UpperCamelCase = val def A_( A : str , A : int=False): UpperCamelCase = """""" if is_panoptic: UpperCamelCase = """detr.""" # first: transformer encoder for i in range(6): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''') UpperCamelCase = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6): # read in weights + bias of input projection layer of self-attention UpperCamelCase = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''') UpperCamelCase = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCamelCase = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''') UpperCamelCase = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''') # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCamelCase = in_proj_weight_cross_attn[:256, :] UpperCamelCase = in_proj_bias_cross_attn[:256] UpperCamelCase = in_proj_weight_cross_attn[256:512, :] UpperCamelCase = in_proj_bias_cross_attn[256:512] UpperCamelCase = in_proj_weight_cross_attn[-256:, :] UpperCamelCase = in_proj_bias_cross_attn[-256:] def A_( ): UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase = Image.open(requests.get(a__ , stream=a__).raw) return im @torch.no_grad() def A_( A : int , A : int=None , A : Union[str, Any]=False): UpperCamelCase = get_detr_config(a__) # load original model from torch hub UpperCamelCase = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(f'''Converting model {model_name}...''') UpperCamelCase = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=a__).eval() UpperCamelCase = detr.state_dict() # rename keys for src, dest in create_rename_keys(a__): if is_panoptic: UpperCamelCase = """detr.""" + src rename_key(a__ , a__ , a__) # query, key and value matrices need special treatment read_in_q_k_v(a__ , is_panoptic=a__) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr') and not key.startswith('class_labels_classifier') and not key.startswith('bbox_predictor') ): UpperCamelCase = state_dict.pop(a__) UpperCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCamelCase = state_dict.pop(a__) UpperCamelCase = val elif key.startswith('bbox_attention') or key.startswith('mask_head'): continue else: UpperCamelCase = state_dict.pop(a__) UpperCamelCase = val else: if not key.startswith('class_labels_classifier') and not key.startswith('bbox_predictor'): UpperCamelCase = state_dict.pop(a__) UpperCamelCase = val # finally, create HuggingFace model and load state dict UpperCamelCase = DetrForSegmentation(a__) if is_panoptic else DetrForObjectDetection(a__) model.load_state_dict(a__) model.eval() # verify our conversion on an image UpperCamelCase = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCamelCase = DetrImageProcessor(format=a__) UpperCamelCase = processor(images=prepare_img() , return_tensors='pt') UpperCamelCase = encoding["""pixel_values"""] UpperCamelCase = detr(a__) UpperCamelCase = model(a__) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1E-3) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1E-3) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1E-4) print('Looks ok!') if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''') Path(a__).mkdir(exist_ok=a__) model.save_pretrained(a__) processor.save_pretrained(a__) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...') model.push_to_hub(f'''nielsr/{model_name}''') processor.push_to_hub(f'''nielsr/{model_name}''') if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') lowerCAmelCase : str = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
3
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Optional[Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(a__ , a__) def _UpperCAmelCase ( a__): '''simple docstring''' a_ , a_ : List[Any] = emb.weight.shape a_ : Dict = nn.Linear(a__ , a__ , bias=a__) a_ : str = emb.weight.data return lin_layer def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Optional[int] = torch.load(a__ , map_location="""cpu""") a_ : int = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] a_ : Dict = mam_aaa["""model"""] remove_ignore_keys_(a__) a_ : List[str] = state_dict["""encoder.embed_tokens.weight"""].shape[0] a_ : Union[str, Any] = MaMaaaConfig( vocab_size=a__ , max_position_embeddings=1_0_2_4 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) a_ : Union[str, Any] = state_dict["""decoder.embed_tokens.weight"""] a_ : List[Any] = MaMaaaForConditionalGeneration(a__) model.model.load_state_dict(a__ , strict=a__) a_ : Any = make_linear_from_emb(model.model.shared) return model if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __snake_case : int = parser.parse_args() __snake_case : Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
540
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class UpperCAmelCase : A__ : Union[str, Any] = BlenderbotSmallConfig A__ : Any = {} A__ : str = '''gelu''' def __init__( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=1_3 , __lowerCamelCase : Any=7 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : int=False , __lowerCamelCase : Dict=9_9 , __lowerCamelCase : Any=3_2 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : Dict=3_7 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : str=2_0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=1 , __lowerCamelCase : Any=0 , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _snake_case = prepare_blenderbot_small_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): """simple docstring""" _snake_case = TFBlenderbotSmallModel(config=__lowerCamelCase ).get_decoder() _snake_case = inputs_dict['''input_ids'''] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['''attention_mask'''][:1, :] _snake_case = inputs_dict['''head_mask'''] _snake_case = 1 # first forward pass _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1E-3 ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> List[str]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Optional[int] = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) A__ : Union[str, Any] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () A__ : List[Any] = ( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) A__ : int = True A__ : Union[str, Any] = False A__ : str = False def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = TFBlenderbotSmallModelTester(self ) _snake_case = ConfigTester(self , config_class=__lowerCamelCase ) def __UpperCAmelCase ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): A__ : Optional[Any] = [ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] A__ : Tuple = '''facebook/blenderbot_small-90M''' @cached_property def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) @cached_property def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = self.tokenizer(self.src_text , return_tensors='''tf''' ) _snake_case = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCamelCase , ) _snake_case = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCamelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
404
"""simple docstring""" def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
404
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowercase__ = (3, 9, -1_1, 0, 7, 5, 1, -1) lowercase__ = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class snake_case__ : """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 class snake_case__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase__ : Iterable[int] ) -> Optional[int]: """simple docstring""" snake_case : Node | None = None for i in sorted(UpperCamelCase__ , reverse=UpperCamelCase__ ): snake_case : List[Any] = Node(UpperCamelCase__ , self.head ) def __iter__( self : Any ) -> int: """simple docstring""" snake_case : Optional[int] = self.head while node: yield node.data snake_case : Any = node.next_node def __len__( self : Optional[int] ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Optional[Any] ) -> Any: """simple docstring""" return " -> ".join([str(UpperCamelCase__ ) for node in self] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: '''simple docstring''' return SortedLinkedList(list(SCREAMING_SNAKE_CASE__ ) + list(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
638
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) class _UpperCAmelCase ( lowercase ): def __init__( self : Optional[int] , UpperCAmelCase : Any=-1): # in NER datasets, the last column is usually reserved for NER label SCREAMING_SNAKE_CASE_ :Tuple = label_idx def _snake_case ( self : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Union[Split, str]): if isinstance(UpperCAmelCase , UpperCAmelCase): SCREAMING_SNAKE_CASE_ :List[Any] = mode.value SCREAMING_SNAKE_CASE_ :Optional[Any] = os.path.join(UpperCAmelCase , F"{mode}.txt") SCREAMING_SNAKE_CASE_ :Tuple = 1 SCREAMING_SNAKE_CASE_ :str = [] with open(UpperCAmelCase , encoding="utf-8") as f: SCREAMING_SNAKE_CASE_ :Tuple = [] SCREAMING_SNAKE_CASE_ :int = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=UpperCAmelCase , labels=UpperCAmelCase)) guid_index += 1 SCREAMING_SNAKE_CASE_ :Tuple = [] SCREAMING_SNAKE_CASE_ :Any = [] else: SCREAMING_SNAKE_CASE_ :int = line.split(" ") words.append(splits[0]) if len(UpperCAmelCase) > 1: labels.append(splits[self.label_idx].replace("\n" , "")) else: # Examples could have no label for mode = "test" labels.append("O") if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=UpperCAmelCase , labels=UpperCAmelCase)) return examples def _snake_case ( self : List[Any] , UpperCAmelCase : TextIO , UpperCAmelCase : TextIO , UpperCAmelCase : List): SCREAMING_SNAKE_CASE_ :Union[str, Any] = 0 for line in test_input_reader: if line.startswith("-DOCSTART-") or line == "" or line == "\n": writer.write(UpperCAmelCase) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: SCREAMING_SNAKE_CASE_ :Union[str, Any] = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n" writer.write(UpperCAmelCase) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0]) def _snake_case ( self : List[str] , UpperCAmelCase : str): if path: with open(UpperCAmelCase , "r") as f: SCREAMING_SNAKE_CASE_ :Any = f.read().splitlines() if "O" not in labels: SCREAMING_SNAKE_CASE_ :Union[str, Any] = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class _UpperCAmelCase ( lowercase ): def __init__( self : Dict): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2) def _snake_case ( self : Union[str, Any] , UpperCAmelCase : str): if path: with open(UpperCAmelCase , "r") as f: SCREAMING_SNAKE_CASE_ :Optional[int] = f.read().splitlines() if "O" not in labels: SCREAMING_SNAKE_CASE_ :Dict = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class _UpperCAmelCase ( lowercase ): def _snake_case ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[Split, str]): if isinstance(UpperCAmelCase , UpperCAmelCase): SCREAMING_SNAKE_CASE_ :List[str] = mode.value SCREAMING_SNAKE_CASE_ :List[str] = os.path.join(UpperCAmelCase , F"{mode}.txt") SCREAMING_SNAKE_CASE_ :Dict = 1 SCREAMING_SNAKE_CASE_ :List[str] = [] with open(UpperCAmelCase , encoding="utf-8") as f: for sentence in parse_incr(UpperCAmelCase): SCREAMING_SNAKE_CASE_ :List[str] = [] SCREAMING_SNAKE_CASE_ :int = [] for token in sentence: words.append(token["form"]) labels.append(token["upos"]) assert len(UpperCAmelCase) == len(UpperCAmelCase) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=UpperCAmelCase , labels=UpperCAmelCase)) guid_index += 1 return examples def _snake_case ( self : List[Any] , UpperCAmelCase : TextIO , UpperCAmelCase : TextIO , UpperCAmelCase : List): SCREAMING_SNAKE_CASE_ :List[str] = 0 for sentence in parse_incr(UpperCAmelCase): SCREAMING_SNAKE_CASE_ :str = preds_list[example_id] SCREAMING_SNAKE_CASE_ :List[Any] = "" for token in sentence: out += F"{token['form']} ({token['upos']}|{s_p.pop(0)}) " out += "\n" writer.write(UpperCAmelCase) example_id += 1 def _snake_case ( self : Tuple , UpperCAmelCase : str): if path: with open(UpperCAmelCase , "r") as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
631
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Union[str, Any] = '''unispeech-sat''' def __init__( self , UpperCamelCase__=32 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-5 , UpperCamelCase__="group" , UpperCamelCase__="gelu" , UpperCamelCase__=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase__=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase__=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase__=False , UpperCamelCase__=128 , UpperCamelCase__=16 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=0.05 , UpperCamelCase__=10 , UpperCamelCase__=2 , UpperCamelCase__=0.0 , UpperCamelCase__=10 , UpperCamelCase__=0 , UpperCamelCase__=320 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=100 , UpperCamelCase__=256 , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__="mean" , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=256 , UpperCamelCase__=(512, 512, 512, 512, 1500) , UpperCamelCase__=(5, 3, 3, 1, 1) , UpperCamelCase__=(1, 2, 3, 1, 1) , UpperCamelCase__=512 , UpperCamelCase__=0 , UpperCamelCase__=1 , UpperCamelCase__=2 , UpperCamelCase__=504 , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) snake_case : int = hidden_size snake_case : Union[str, Any] = feat_extract_norm snake_case : Union[str, Any] = feat_extract_activation snake_case : Optional[Any] = list(UpperCamelCase_ ) snake_case : Optional[int] = list(UpperCamelCase_ ) snake_case : Dict = list(UpperCamelCase_ ) snake_case : Tuple = conv_bias snake_case : Dict = num_conv_pos_embeddings snake_case : List[Any] = num_conv_pos_embedding_groups snake_case : List[Any] = len(self.conv_dim ) snake_case : List[str] = num_hidden_layers snake_case : List[Any] = intermediate_size snake_case : List[Any] = hidden_act snake_case : int = num_attention_heads snake_case : Dict = hidden_dropout snake_case : Optional[Any] = attention_dropout snake_case : List[str] = activation_dropout snake_case : List[Any] = feat_proj_dropout snake_case : Optional[int] = final_dropout snake_case : List[str] = layerdrop snake_case : Optional[Any] = layer_norm_eps snake_case : Optional[int] = initializer_range snake_case : Tuple = vocab_size snake_case : List[str] = num_clusters snake_case : Tuple = do_stable_layer_norm snake_case : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case : Tuple = apply_spec_augment snake_case : List[str] = mask_time_prob snake_case : List[str] = mask_time_length snake_case : Dict = mask_time_min_masks snake_case : List[str] = mask_feature_prob snake_case : Optional[int] = mask_feature_length snake_case : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case : List[Any] = num_codevectors_per_group snake_case : Optional[int] = num_codevector_groups snake_case : str = contrastive_logits_temperature snake_case : Union[str, Any] = feat_quantizer_dropout snake_case : Tuple = num_negatives snake_case : Dict = codevector_dim snake_case : Tuple = proj_codevector_dim snake_case : Optional[int] = diversity_loss_weight # ctc loss snake_case : List[Any] = ctc_loss_reduction snake_case : Dict = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case : Any = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case : Union[str, Any] = list(UpperCamelCase_ ) snake_case : str = list(UpperCamelCase_ ) snake_case : Tuple = list(UpperCamelCase_ ) snake_case : Optional[Any] = xvector_output_dim @property def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
704
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata __snake_case = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class _lowerCAmelCase ( tr.AbstractTransform ): def __init__( self , UpperCamelCase__ = " " ) -> Any: '''simple docstring''' snake_case : Optional[Any] = sentence_delimiter def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return list(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : Dict = [] for sent_idx, sentence in enumerate(UpperCamelCase__ ): chars.extend(self.process_string(UpperCamelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCamelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars __snake_case = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __snake_case = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __snake_case = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ __snake_case = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ __snake_case = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , )["wer"] snake_case : Optional[int] = 0 snake_case : int = 0 for prediction, reference in zip(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Dict = jiwer.compute_measures( UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
117
0
def lowercase__ ( A_: int , A_: Tuple ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase =[1] for i in range(2 , A_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __UpperCAmelCase =[] __UpperCAmelCase =list(range(A_ ) ) # Find permutation while factorials: __UpperCAmelCase =factorials.pop() __UpperCAmelCase , __UpperCAmelCase =divmod(A_ , A_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
68
from typing import List from .keymap import KEYMAP, get_character def lowercase__ ( A_: str ) -> str: """simple docstring""" def decorator(A_: int ): __UpperCAmelCase =getattr(A_ , """handle_key""" , [] ) handle += [key] setattr(A_ , """handle_key""" , A_ ) return func return decorator def lowercase__ ( *A_: List[str] ) -> Optional[int]: """simple docstring""" def decorator(A_: Tuple ): __UpperCAmelCase =getattr(A_ , """handle_key""" , [] ) handle += keys setattr(A_ , """handle_key""" , A_ ) return func return decorator class _A ( UpperCamelCase ): """simple docstring""" def __new__( cls : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] ) -> int: __UpperCAmelCase =super().__new__(cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not hasattr(__SCREAMING_SNAKE_CASE , """key_handler""" ): setattr(__SCREAMING_SNAKE_CASE , """key_handler""" , {} ) setattr(__SCREAMING_SNAKE_CASE , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __UpperCAmelCase =getattr(__SCREAMING_SNAKE_CASE , """handle_key""" , [] ) for key in handled_keys: __UpperCAmelCase =value return new_cls @staticmethod def _a ( cls : Dict ) -> List[Any]: __UpperCAmelCase =get_character() if char != KEYMAP["undefined"]: __UpperCAmelCase =ord(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =cls.key_handler.get(__SCREAMING_SNAKE_CASE ) if handler: __UpperCAmelCase =char return handler(cls ) else: return None def lowercase__ ( cls: str ) -> int: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
68
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : str , a__ : List[str] , a__ : Optional[int]=7 , a__ : Optional[Any]=3 , a__ : Union[str, Any]=30 , a__ : Union[str, Any]=400 , a__ : List[Any]=True , a__ : Optional[Any]=None , a__ : str=True , a__ : Any=1 / 255 , a__ : str=True , a__ : List[Any]=[0.5, 0.5, 0.5] , a__ : List[Any]=[0.5, 0.5, 0.5] , a__ : Tuple=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __magic_name__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size __magic_name__ = do_rescale __magic_name__ = rescale_factor __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std __magic_name__ = do_pad def snake_case__ ( self : List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def snake_case__ ( self : Union[str, Any] , a__ : Any , a__ : int=False ): if not batched: __magic_name__ = image_inputs[0] if isinstance(a__ , Image.Image ): __magic_name__ , __magic_name__ = image.size else: __magic_name__ , __magic_name__ = image.shape[1], image.shape[2] if w < h: __magic_name__ = int(self.size['''shortest_edge'''] * h / w ) __magic_name__ = self.size['''shortest_edge'''] elif w > h: __magic_name__ = self.size['''shortest_edge'''] __magic_name__ = int(self.size['''shortest_edge'''] * w / h ) else: __magic_name__ = self.size['''shortest_edge'''] __magic_name__ = self.size['''shortest_edge'''] else: __magic_name__ = [] for image in image_inputs: __magic_name__ , __magic_name__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ = max(a__ , key=lambda a__ : item[0] )[0] __magic_name__ = max(a__ , key=lambda a__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Optional[Any] = DetrImageProcessor if is_vision_available() else None def snake_case__ ( self : Union[str, Any] ): __magic_name__ = DetrImageProcessingTester(self ) @property def snake_case__ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[str] ): __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , '''image_mean''' ) ) self.assertTrue(hasattr(a__ , '''image_std''' ) ) self.assertTrue(hasattr(a__ , '''do_normalize''' ) ) self.assertTrue(hasattr(a__ , '''do_rescale''' ) ) self.assertTrue(hasattr(a__ , '''rescale_factor''' ) ) self.assertTrue(hasattr(a__ , '''do_resize''' ) ) self.assertTrue(hasattr(a__ , '''size''' ) ) self.assertTrue(hasattr(a__ , '''do_pad''' ) ) def snake_case__ ( self : int ): __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , a__ ) __magic_name__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=a__ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , a__ ) def snake_case__ ( self : List[str] ): pass def snake_case__ ( self : List[str] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : Optional[int] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : int ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case__ ( self : Dict ): # prepare image and target __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: __magic_name__ = json.loads(f.read() ) __magic_name__ = {'''image_id''': 3_9769, '''annotations''': target} # encode them __magic_name__ = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) __magic_name__ = image_processing(images=a__ , annotations=a__ , return_tensors='''pt''' ) # verify pixel values __magic_name__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , a__ ) __magic_name__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , a__ , atol=1E-4 ) ) # verify area __magic_name__ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , a__ ) ) # verify boxes __magic_name__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , a__ ) __magic_name__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , a__ , atol=1E-3 ) ) # verify image_id __magic_name__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , a__ ) ) # verify is_crowd __magic_name__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , a__ ) ) # verify class_labels __magic_name__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , a__ ) ) # verify orig_size __magic_name__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , a__ ) ) # verify size __magic_name__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , a__ ) ) @slow def snake_case__ ( self : Optional[int] ): # prepare image, target and masks_path __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: __magic_name__ = json.loads(f.read() ) __magic_name__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} __magic_name__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __magic_name__ = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) __magic_name__ = image_processing(images=a__ , annotations=a__ , masks_path=a__ , return_tensors='''pt''' ) # verify pixel values __magic_name__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , a__ ) __magic_name__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , a__ , atol=1E-4 ) ) # verify area __magic_name__ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , a__ ) ) # verify boxes __magic_name__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , a__ ) __magic_name__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , a__ , atol=1E-3 ) ) # verify image_id __magic_name__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , a__ ) ) # verify is_crowd __magic_name__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , a__ ) ) # verify class_labels __magic_name__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , a__ ) ) # verify masks __magic_name__ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , a__ ) # verify orig_size __magic_name__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , a__ ) ) # verify size __magic_name__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , a__ ) )
245
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( a ) -> bool: '''simple docstring''' return len(set(a ) ) == len(a ) if __name__ == "__main__": import doctest doctest.testmod()
245
1
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowerCamelCase ( lowerCamelCase_: Union[str, Any] , lowerCamelCase_: Any , lowerCamelCase_: Dict , lowerCamelCase_: Tuple ): '''simple docstring''' A : Tuple = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] A : List[str] = { "wmt16-en-de-dist-12-1": [2_8.3, 2_7.5_2], "wmt16-en-de-dist-6-1": [2_7.4, 2_7.1_1], "wmt16-en-de-12-1": [2_6.9, 2_5.7_5], } A : Optional[int] = f"""{src_lang}-{tgt_lang}""" A : List[str] = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=lowerCamelCase_ , exist_ok=lowerCamelCase_ ) A : Optional[Any] = os.path.join(lowerCamelCase_ , '''README.md''' ) print(f"""Generating {path}""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(lowerCamelCase_ ) # make sure we are under the root of the project UpperCamelCase_ = Path(__file__).resolve().parent.parent.parent UpperCamelCase_ = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase_ = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
256
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path SCREAMING_SNAKE_CASE__ : List[str] = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} SCREAMING_SNAKE_CASE__ : Any = """zero2""" SCREAMING_SNAKE_CASE__ : Dict = """zero3""" SCREAMING_SNAKE_CASE__ : str = [ZEROa, ZEROa] def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param a__ : Optional[Any] = parameterized.to_safe_name("_".join(str(lowerCamelCase ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __lowerCAmelCase ( _UpperCamelCase ): @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> Dict: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> str: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> List[str]: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> List[str]: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) def _snake_case ( self , snake_case ) -> str: """simple docstring""" pass def _snake_case ( self , snake_case , snake_case , snake_case = 10 , snake_case = True , snake_case = True , snake_case = True , ) -> str: """simple docstring""" a__ : Tuple = models[model] a__ : int = self.run_trainer( stage=snake_case , model_name=snake_case , eval_steps=snake_case , num_train_epochs=1 , distributed=snake_case , fpaa=snake_case , ) self.do_checks(snake_case ) return output_dir def _snake_case ( self , snake_case , snake_case , snake_case = 10 , snake_case = 1 , snake_case = True , snake_case = True , ) -> Optional[Any]: """simple docstring""" a__ : str = self.get_auto_remove_tmp_dir("./xxx" , after=snake_case ) a__ : List[Any] = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files a__ : str = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() a__ : Dict = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] a__ : Optional[int] = self.get_launcher(snake_case ) a__ : Optional[int] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case , env=self.get_env() ) return output_dir def _snake_case ( self , snake_case=False ) -> List[Any]: """simple docstring""" a__ : Union[str, Any] = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
112
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
164
def a_ (_lowerCAmelCase : int = 100 )-> int: snake_case: int = n * (n + 1) * (2 * n + 1) / 6 snake_case: Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
164
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Tuple = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) __UpperCAmelCase : Any = { """input_ids""": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __UpperCAmelCase : str = model(__lowercase )["""last_hidden_state"""] __UpperCAmelCase : int = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , __lowercase ) # compare the actual values for a slice. __UpperCAmelCase : str = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
63
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class a ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , __lowercase : Union[str, Any] , __lowercase : Any=13 , __lowercase : Optional[int]=7 , __lowercase : str=True , __lowercase : Optional[Any]=True , __lowercase : int=True , __lowercase : int=True , __lowercase : List[str]=99 , __lowercase : int=32 , __lowercase : int=5 , __lowercase : Tuple=4 , __lowercase : str=37 , __lowercase : Optional[int]="gelu" , __lowercase : Tuple=0.1 , __lowercase : str=0.1 , __lowercase : Dict=512 , __lowercase : List[Any]=16 , __lowercase : Dict=2 , __lowercase : Union[str, Any]=0.02 , __lowercase : Dict=4 , ) -> int: __UpperCAmelCase : Dict = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : str = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Any = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Tuple = num_choices def UpperCAmelCase ( self : Dict ) -> Tuple: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[Any] = None if self.use_attention_mask: __UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : List[Any] = None if self.use_token_type_ids: __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[Any] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Tuple ) -> List[Any]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase ( self : Any ) -> List[str]: __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : int = True __UpperCAmelCase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a ( lowercase__ , unittest.TestCase ): """simple docstring""" a : Optional[Any] = True a : List[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: __UpperCAmelCase : List[str] = FlaxRobertaModelTester(self ) @slow def UpperCAmelCase ( self : str ) -> List[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class_name.from_pretrained("""roberta-base""" , from_pt=__lowercase ) __UpperCAmelCase : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowercase )
63
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated a__ : List[Any] = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ a__ : Optional[int] = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def snake_case (UpperCamelCase : List[str] ): '''simple docstring''' lowerCamelCase__ = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=UpperCamelCase )[0] @deprecated(UpperCamelCase , """Please use tf.data to implement this functionality.""" ) def snake_case (UpperCamelCase : Optional[int] ): '''simple docstring''' print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=UpperCamelCase ) as bytestream: lowerCamelCase__ = _readaa(UpperCamelCase ) if magic != 2051: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) lowerCamelCase__ = _readaa(UpperCamelCase ) lowerCamelCase__ = _readaa(UpperCamelCase ) lowerCamelCase__ = _readaa(UpperCamelCase ) lowerCamelCase__ = bytestream.read(rows * cols * num_images ) lowerCamelCase__ = numpy.frombuffer(UpperCamelCase , dtype=numpy.uinta ) lowerCamelCase__ = data.reshape(UpperCamelCase , UpperCamelCase , UpperCamelCase , 1 ) return data @deprecated(UpperCamelCase , """Please use tf.one_hot on tensors.""" ) def snake_case (UpperCamelCase : Any , UpperCamelCase : int ): '''simple docstring''' lowerCamelCase__ = labels_dense.shape[0] lowerCamelCase__ = numpy.arange(UpperCamelCase ) * num_classes lowerCamelCase__ = numpy.zeros((num_labels, num_classes) ) lowerCamelCase__ = 1 return labels_one_hot @deprecated(UpperCamelCase , """Please use tf.data to implement this functionality.""" ) def snake_case (UpperCamelCase : Optional[Any] , UpperCamelCase : Any=False , UpperCamelCase : Any=10 ): '''simple docstring''' print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=UpperCamelCase ) as bytestream: lowerCamelCase__ = _readaa(UpperCamelCase ) if magic != 2049: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) lowerCamelCase__ = _readaa(UpperCamelCase ) lowerCamelCase__ = bytestream.read(UpperCamelCase ) lowerCamelCase__ = numpy.frombuffer(UpperCamelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(UpperCamelCase , UpperCamelCase ) return labels class lowercase : """simple docstring""" @deprecated( a_ , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self : List[str] , a_ : Dict , a_ : str , a_ : Optional[Any]=False , a_ : int=False , a_ : Optional[Any]=dtypes.floataa , a_ : Union[str, Any]=True , a_ : Dict=None , ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ = random_seed.get_seed(a_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCamelCase__ = dtypes.as_dtype(a_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: lowerCamelCase__ = 1_00_00 lowerCamelCase__ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' lowerCamelCase__ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCamelCase__ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCamelCase__ = images.astype(numpy.floataa ) lowerCamelCase__ = numpy.multiply(a_ , 1.0 / 2_55.0 ) lowerCamelCase__ = images lowerCamelCase__ = labels lowerCamelCase__ = 0 lowerCamelCase__ = 0 @property def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return self._images @property def _UpperCamelCase ( self : Dict ): """simple docstring""" return self._labels @property def _UpperCamelCase ( self : Any ): """simple docstring""" return self._num_examples @property def _UpperCamelCase ( self : Tuple ): """simple docstring""" return self._epochs_completed def _UpperCamelCase ( self : Union[str, Any] , a_ : Dict , a_ : Dict=False , a_ : List[Any]=True ): """simple docstring""" if fake_data: lowerCamelCase__ = [1] * 7_84 lowerCamelCase__ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(a_ )], [fake_label for _ in range(a_ )], ) lowerCamelCase__ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCamelCase__ = numpy.arange(self._num_examples ) numpy.random.shuffle(a_ ) lowerCamelCase__ = self.images[perma] lowerCamelCase__ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCamelCase__ = self._num_examples - start lowerCamelCase__ = self._images[start : self._num_examples] lowerCamelCase__ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCamelCase__ = numpy.arange(self._num_examples ) numpy.random.shuffle(a_ ) lowerCamelCase__ = self.images[perm] lowerCamelCase__ = self.labels[perm] # Start next epoch lowerCamelCase__ = 0 lowerCamelCase__ = batch_size - rest_num_examples lowerCamelCase__ = self._index_in_epoch lowerCamelCase__ = self._images[start:end] lowerCamelCase__ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCamelCase__ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(UpperCamelCase , """Please write your own downloading logic.""" ) def snake_case (UpperCamelCase : List[Any] , UpperCamelCase : Dict , UpperCamelCase : Optional[int] ): '''simple docstring''' if not gfile.Exists(UpperCamelCase ): gfile.MakeDirs(UpperCamelCase ) lowerCamelCase__ = os.path.join(UpperCamelCase , UpperCamelCase ) if not gfile.Exists(UpperCamelCase ): urllib.request.urlretrieve(UpperCamelCase , UpperCamelCase ) # noqa: S310 with gfile.GFile(UpperCamelCase ) as f: lowerCamelCase__ = f.size() print("""Successfully downloaded""" , UpperCamelCase , UpperCamelCase , """bytes.""" ) return filepath @deprecated( UpperCamelCase , """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" ) def snake_case (UpperCamelCase : Tuple , UpperCamelCase : List[str]=False , UpperCamelCase : int=False , UpperCamelCase : List[str]=dtypes.floataa , UpperCamelCase : List[Any]=True , UpperCamelCase : Dict=5000 , UpperCamelCase : Dict=None , UpperCamelCase : Dict=DEFAULT_SOURCE_URL , ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=UpperCamelCase , one_hot=UpperCamelCase , dtype=UpperCamelCase , seed=UpperCamelCase ) lowerCamelCase__ = fake() lowerCamelCase__ = fake() lowerCamelCase__ = fake() return _Datasets(train=UpperCamelCase , validation=UpperCamelCase , test=UpperCamelCase ) if not source_url: # empty string check lowerCamelCase__ = DEFAULT_SOURCE_URL lowerCamelCase__ = """train-images-idx3-ubyte.gz""" lowerCamelCase__ = """train-labels-idx1-ubyte.gz""" lowerCamelCase__ = """t10k-images-idx3-ubyte.gz""" lowerCamelCase__ = """t10k-labels-idx1-ubyte.gz""" lowerCamelCase__ = _maybe_download( UpperCamelCase , UpperCamelCase , source_url + train_images_file ) with gfile.Open(UpperCamelCase , """rb""" ) as f: lowerCamelCase__ = _extract_images(UpperCamelCase ) lowerCamelCase__ = _maybe_download( UpperCamelCase , UpperCamelCase , source_url + train_labels_file ) with gfile.Open(UpperCamelCase , """rb""" ) as f: lowerCamelCase__ = _extract_labels(UpperCamelCase , one_hot=UpperCamelCase ) lowerCamelCase__ = _maybe_download( UpperCamelCase , UpperCamelCase , source_url + test_images_file ) with gfile.Open(UpperCamelCase , """rb""" ) as f: lowerCamelCase__ = _extract_images(UpperCamelCase ) lowerCamelCase__ = _maybe_download( UpperCamelCase , UpperCamelCase , source_url + test_labels_file ) with gfile.Open(UpperCamelCase , """rb""" ) as f: lowerCamelCase__ = _extract_labels(UpperCamelCase , one_hot=UpperCamelCase ) if not 0 <= validation_size <= len(UpperCamelCase ): lowerCamelCase__ = ( """Validation size should be between 0 and """ f'''{len(UpperCamelCase )}. Received: {validation_size}.''' ) raise ValueError(UpperCamelCase ) lowerCamelCase__ = train_images[:validation_size] lowerCamelCase__ = train_labels[:validation_size] lowerCamelCase__ = train_images[validation_size:] lowerCamelCase__ = train_labels[validation_size:] lowerCamelCase__ = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} lowerCamelCase__ = _DataSet(UpperCamelCase , UpperCamelCase , **UpperCamelCase ) lowerCamelCase__ = _DataSet(UpperCamelCase , UpperCamelCase , **UpperCamelCase ) lowerCamelCase__ = _DataSet(UpperCamelCase , UpperCamelCase , **UpperCamelCase ) return _Datasets(train=UpperCamelCase , validation=UpperCamelCase , test=UpperCamelCase )
703
def snake_case (UpperCamelCase : int ): '''simple docstring''' return str(UpperCamelCase ) == str(UpperCamelCase )[::-1] def snake_case (UpperCamelCase : int ): '''simple docstring''' return int(UpperCamelCase ) + int(str(UpperCamelCase )[::-1] ) def snake_case (UpperCamelCase : int = 10000 ): '''simple docstring''' lowerCamelCase__ = [] for num in range(1 , UpperCamelCase ): lowerCamelCase__ = 0 lowerCamelCase__ = num while iterations < 50: lowerCamelCase__ = sum_reverse(UpperCamelCase ) iterations += 1 if is_palindrome(UpperCamelCase ): break else: lychrel_nums.append(UpperCamelCase ) return len(UpperCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
235
0
'''simple docstring''' def lowerCAmelCase (__A = 1 , __A = 1_000): """simple docstring""" _a = 1 _a = 0 for divide_by_number in range(__A , digit + 1): _a = [] _a = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(__A): _a = len(__A) _a = divide_by_number else: has_been_divided.append(__A) _a = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : '''simple docstring''' def __init__(self , A , A=16 , A=13 , A=7 , A=14 , A=10 , A=19 , A=5 , A=4 , A=True , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=25 , A=5 , ) -> List[str]: """simple docstring""" _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def a__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ (self , A ) -> List[Any]: """simple docstring""" _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def a__ (self ) -> Any: """simple docstring""" _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModel(config=A ).to(A ).eval() _a = model(**A ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(A ) _a = AutoformerEncoder.from_pretrained(A ).to(A ) _a , _a , _a , _a , _a = model.create_network_inputs(**A ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(A ) _a = AutoformerDecoder.from_pretrained(A ).to(A ) _a = decoder( trend=A , inputs_embeds=A , encoder_hidden_states=A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowerCamelCase : Tuple = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a , _a = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info['''missing_keys'''] , [] ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = inspect.signature(getattr(A , '''forward''' ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A )] , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , A ) _a = getattr(self.model_tester , '''decoder_seq_length''' , A ) _a = getattr(self.model_tester , '''encoder_seq_length''' , A ) _a = getattr(self.model_tester , '''d_model''' , A ) _a = getattr(self.model_tester , '''num_attention_heads''' , A ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(A ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A , A ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 2 , len(A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ (self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase (__A="train-batch.pt"): """simple docstring""" _a = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''') _a = torch.load(__A , map_location=__A) return batch @require_torch @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Any: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A , rtol=1E-1 ) )
11
1
"""simple docstring""" import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): _lowerCamelCase = True from torch.cuda.amp import autocast _lowerCamelCase = logging.getLogger(__name__) def lowerCAmelCase_ ( lowercase_ : Union[str, Any]=None , lowercase_ : Optional[Any]=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=lowercase_ ) @dataclass class snake_case : lowerCamelCase__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCamelCase__ = field( default=__UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCamelCase__ = field( default=__UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) lowerCamelCase__ = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} ) lowerCamelCase__ = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} ) lowerCamelCase__ = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) lowerCamelCase__ = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) lowerCamelCase__ = field( default=0.0_5 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) lowerCamelCase__ = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} ) @dataclass class snake_case : lowerCamelCase__ = field( default=__UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCamelCase__ = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) lowerCamelCase__ = field( default=__UpperCAmelCase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCamelCase__ = field( default=__UpperCAmelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowerCamelCase__ = field( default=__UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCamelCase__ = field( default=__UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) lowerCamelCase__ = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class snake_case : lowerCamelCase__ = 42 lowerCamelCase__ = True lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self :Union[str, Any] , _lowerCamelCase :List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods __SCREAMING_SNAKE_CASE : Any = [{'''input_values''': feature['''input_values''']} for feature in features] __SCREAMING_SNAKE_CASE : str = [{'''input_ids''': feature['''labels''']} for feature in features] __SCREAMING_SNAKE_CASE : Optional[Any] = self.processor.pad( _lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) __SCREAMING_SNAKE_CASE : str = self.processor.pad( labels=_lowerCamelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly __SCREAMING_SNAKE_CASE : Optional[Any] = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = labels return batch class snake_case ( __UpperCAmelCase ): def SCREAMING_SNAKE_CASE_ ( self :Tuple , _lowerCamelCase :nn.Module , _lowerCamelCase :Dict[str, Union[torch.Tensor, Any]] ): model.train() __SCREAMING_SNAKE_CASE : str = self._prepare_inputs(_lowerCamelCase ) if self.use_amp: with autocast(): __SCREAMING_SNAKE_CASE : str = self.compute_loss(_lowerCamelCase , _lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_loss(_lowerCamelCase , _lowerCamelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __SCREAMING_SNAKE_CASE : Union[str, Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __SCREAMING_SNAKE_CASE : int = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: __SCREAMING_SNAKE_CASE : Any = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_lowerCamelCase ).backward() elif self.use_apex: with amp.scale_loss(_lowerCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_lowerCamelCase ) else: loss.backward() return loss.detach() def lowerCAmelCase_ ( ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __SCREAMING_SNAKE_CASE : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __SCREAMING_SNAKE_CASE : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , lowercase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __SCREAMING_SNAKE_CASE : Optional[Any] = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) __SCREAMING_SNAKE_CASE : Dict = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer __SCREAMING_SNAKE_CASE : Optional[Any] = F'''[{''.join(data_args.chars_to_ignore )}]''' def remove_special_characters(lowercase_ : Union[str, Any] ): __SCREAMING_SNAKE_CASE : Dict = re.sub(lowercase_ , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch __SCREAMING_SNAKE_CASE : Tuple = train_dataset.map(lowercase_ , remove_columns=['''sentence'''] ) __SCREAMING_SNAKE_CASE : Any = eval_dataset.map(lowercase_ , remove_columns=['''sentence'''] ) def extract_all_chars(lowercase_ : Tuple ): __SCREAMING_SNAKE_CASE : Any = ''' '''.join(batch['''text'''] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = list(set(lowercase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __SCREAMING_SNAKE_CASE : int = train_dataset.map( lowercase_ , batched=lowercase_ , batch_size=-1 , keep_in_memory=lowercase_ , remove_columns=train_dataset.column_names , ) __SCREAMING_SNAKE_CASE : Any = train_dataset.map( lowercase_ , batched=lowercase_ , batch_size=-1 , keep_in_memory=lowercase_ , remove_columns=eval_dataset.column_names , ) __SCREAMING_SNAKE_CASE : Optional[int] = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) __SCREAMING_SNAKE_CASE : int = {v: k for k, v in enumerate(lowercase_ )} __SCREAMING_SNAKE_CASE : List[str] = vocab_dict[''' '''] del vocab_dict[" "] __SCREAMING_SNAKE_CASE : Any = len(lowercase_ ) __SCREAMING_SNAKE_CASE : Any = len(lowercase_ ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(lowercase_ , lowercase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE : Any = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) __SCREAMING_SNAKE_CASE : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) __SCREAMING_SNAKE_CASE : str = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __SCREAMING_SNAKE_CASE : int = min(len(lowercase_ ) , data_args.max_train_samples ) __SCREAMING_SNAKE_CASE : Tuple = train_dataset.select(range(lowercase_ ) ) if data_args.max_val_samples is not None: __SCREAMING_SNAKE_CASE : Dict = eval_dataset.select(range(data_args.max_val_samples ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torchaudio.transforms.Resample(4_8000 , 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowercase_ : Optional[int] ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = torchaudio.load(batch['''path'''] ) __SCREAMING_SNAKE_CASE : Any = resampler(lowercase_ ).squeeze().numpy() __SCREAMING_SNAKE_CASE : Any = 1_6000 __SCREAMING_SNAKE_CASE : str = batch['''text'''] return batch __SCREAMING_SNAKE_CASE : Tuple = train_dataset.map( lowercase_ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __SCREAMING_SNAKE_CASE : int = eval_dataset.map( lowercase_ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(lowercase_ : List[str] ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' __SCREAMING_SNAKE_CASE : int = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(lowercase_ ) return batch __SCREAMING_SNAKE_CASE : Dict = train_dataset.map( lowercase_ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowercase_ , num_proc=data_args.preprocessing_num_workers , ) __SCREAMING_SNAKE_CASE : Optional[Any] = eval_dataset.map( lowercase_ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowercase_ , num_proc=data_args.preprocessing_num_workers , ) # Metric __SCREAMING_SNAKE_CASE : Optional[Any] = datasets.load_metric('''wer''' ) def compute_metrics(lowercase_ : List[str] ): __SCREAMING_SNAKE_CASE : Tuple = pred.predictions __SCREAMING_SNAKE_CASE : Any = np.argmax(lowercase_ , axis=-1 ) __SCREAMING_SNAKE_CASE : Any = processor.tokenizer.pad_token_id __SCREAMING_SNAKE_CASE : Union[str, Any] = processor.batch_decode(lowercase_ ) # we do not want to group tokens when computing the metrics __SCREAMING_SNAKE_CASE : Dict = processor.batch_decode(pred.label_ids , group_tokens=lowercase_ ) __SCREAMING_SNAKE_CASE : Dict = wer_metric.compute(predictions=lowercase_ , references=lowercase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __SCREAMING_SNAKE_CASE : int = DataCollatorCTCWithPadding(processor=lowercase_ , padding=lowercase_ ) # Initialize our Trainer __SCREAMING_SNAKE_CASE : Optional[int] = CTCTrainer( model=lowercase_ , data_collator=lowercase_ , args=lowercase_ , compute_metrics=lowercase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __SCREAMING_SNAKE_CASE : Tuple = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __SCREAMING_SNAKE_CASE : str = model_args.model_name_or_path else: __SCREAMING_SNAKE_CASE : List[Any] = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __SCREAMING_SNAKE_CASE : Optional[int] = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() __SCREAMING_SNAKE_CASE : Tuple = train_result.metrics __SCREAMING_SNAKE_CASE : Any = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase_ ) ) __SCREAMING_SNAKE_CASE : Tuple = min(lowercase_ , len(lowercase_ ) ) trainer.log_metrics('''train''' , lowercase_ ) trainer.save_metrics('''train''' , lowercase_ ) trainer.save_state() # Evaluation __SCREAMING_SNAKE_CASE : str = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __SCREAMING_SNAKE_CASE : Dict = trainer.evaluate() __SCREAMING_SNAKE_CASE : str = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowercase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = min(lowercase_ , len(lowercase_ ) ) trainer.log_metrics('''eval''' , lowercase_ ) trainer.save_metrics('''eval''' , lowercase_ ) return results if __name__ == "__main__": main()
401
"""simple docstring""" _lowerCamelCase = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' _lowerCamelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _lowerCamelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
401
1
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder SCREAMING_SNAKE_CASE_ = 'base_with_context' def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) ,requires_grad=_lowercase ) for lyr_num, lyr in enumerate(model.encoders ): UpperCamelCase = weights[f'layers_{lyr_num}'] UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) UpperCamelCase = ly_weight['''attention'''] UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) ,requires_grad=_lowercase ) for lyr_num, lyr in enumerate(model.encoders ): UpperCamelCase = weights[f'layers_{lyr_num}'] UpperCamelCase = ly_weight['''attention'''] UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) ,requires_grad=_lowercase ) UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): UpperCamelCase = weights[f'layers_{lyr_num}'] UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) UpperCamelCase = ly_weight['''self_attention'''] UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) UpperCamelCase = ly_weight['''MultiHeadDotProductAttention_0'''] UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path ) UpperCamelCase = jnp.tree_util.tree_map(onp.array ,_lowercase ) UpperCamelCase = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] UpperCamelCase = os.path.join(args.checkpoint_path ,'''..''' ,'''config.gin''' ) UpperCamelCase = inference.parse_training_gin_file(_lowercase ,_lowercase ) UpperCamelCase = inference.InferenceModel(args.checkpoint_path ,_lowercase ) UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ,variance_type='''fixed_large''' ) UpperCamelCase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] ,vocab_size=synth_model.model.module.config.vocab_size ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj='''gated-gelu''' ,) UpperCamelCase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims ,targets_context_length=synth_model.sequence_length['''targets_context'''] ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj='''gated-gelu''' ,) UpperCamelCase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims ,targets_length=synth_model.sequence_length['''targets_context'''] ,max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time ,d_model=synth_model.model.module.config.emb_dim ,num_layers=synth_model.model.module.config.num_decoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,) UpperCamelCase = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] ,_lowercase ) UpperCamelCase = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] ,_lowercase ) UpperCamelCase = load_decoder(ta_checkpoint['''target''']['''decoder'''] ,_lowercase ) UpperCamelCase = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) UpperCamelCase = SpectrogramDiffusionPipeline( notes_encoder=_lowercase ,continuous_encoder=_lowercase ,decoder=_lowercase ,scheduler=_lowercase ,melgan=_lowercase ,) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=f'{MODEL}/checkpoint_500000', type=str, required=False, help='Path to the original jax model checkpoint.', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() main(args)
34
from math import isclose, sqrt def _a ( __UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : float ): lowerCAmelCase__ : Union[str, Any] = point_y / 4 / point_x lowerCAmelCase__ : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase__ : str = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase__ : List[Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase__ : str = outgoing_gradient**2 + 4 lowerCAmelCase__ : List[Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase__ : Tuple = (point_y - outgoing_gradient * point_x) ** 2 - 100 lowerCAmelCase__ : Optional[Any] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase__ : Any = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase__ : Tuple = x_minus if isclose(__UpperCamelCase ,__UpperCamelCase ) else x_plus lowerCAmelCase__ : Dict = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _a ( __UpperCamelCase : float = 1.4 ,__UpperCamelCase : float = -9.6 ): lowerCAmelCase__ : int = 0 lowerCAmelCase__ : float = first_x_coord lowerCAmelCase__ : float = first_y_coord lowerCAmelCase__ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = next_point(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
233
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__snake_case ) class A__ ( __snake_case ): '''simple docstring''' snake_case__ = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case__ = Features({"""audio""": Audio()} ) snake_case__ = Features({"""labels""": ClassLabel} ) snake_case__ = "audio" snake_case__ = "labels" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , _SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) UpperCamelCase = copy.deepcopy(self ) UpperCamelCase = self.label_schema.copy() UpperCamelCase = features[self.label_column] UpperCamelCase = label_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
410
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ : str = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Dict = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : str = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __magic_name__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
410
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = '''huggingface/label-files''' UpperCamelCase = '''imagenet-1k-id2label.json''' UpperCamelCase = json.load(open(hf_hub_download(_lowercase ,_lowercase ,repo_type='''dataset''' ) ,'''r''' ) ) UpperCamelCase = {int(_lowercase ): v for k, v in idalabel.items()} UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" UpperCamelCase = BitConfig( conv_layer=_lowercase ,num_labels=1000 ,idalabel=_lowercase ,labelaid=_lowercase ,) return config def __snake_case ( _lowercase ): """simple docstring""" if "stem.conv" in name: UpperCamelCase = name.replace('''stem.conv''' ,'''bit.embedder.convolution''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''layers''' ) if "head.fc" in name: UpperCamelCase = name.replace('''head.fc''' ,'''classifier.1''' ) if name.startswith('''norm''' ): UpperCamelCase = '''bit.''' + name if "bit" not in name and "classifier" not in name: UpperCamelCase = '''bit.encoder.''' + name return name def __snake_case ( ): """simple docstring""" UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) return im @torch.no_grad() def __snake_case ( _lowercase ,_lowercase ,_lowercase=False ): """simple docstring""" UpperCamelCase = get_config(_lowercase ) # load original model from timm UpperCamelCase = create_model(_lowercase ,pretrained=_lowercase ) timm_model.eval() # load state_dict of original model UpperCamelCase = timm_model.state_dict() for key in state_dict.copy().keys(): UpperCamelCase = state_dict.pop(_lowercase ) UpperCamelCase = val.squeeze() if '''head''' in key else val # load HuggingFace model UpperCamelCase = BitForImageClassification(_lowercase ) model.eval() model.load_state_dict(_lowercase ) # create image processor UpperCamelCase = create_transform(**resolve_data_config({} ,model=_lowercase ) ) UpperCamelCase = transform.transforms UpperCamelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } UpperCamelCase = BitImageProcessor( do_resize=_lowercase ,size={'''shortest_edge''': timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=_lowercase ,crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} ,do_normalize=_lowercase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) UpperCamelCase = prepare_img() UpperCamelCase = transform(_lowercase ).unsqueeze(0 ) UpperCamelCase = processor(_lowercase ,return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(_lowercase ,_lowercase ) # verify logits with torch.no_grad(): UpperCamelCase = model(_lowercase ) UpperCamelCase = outputs.logits print('''Logits:''' ,logits[0, :3] ) print('''Predicted class:''' ,model.config.idalabel[logits.argmax(-1 ).item()] ) UpperCamelCase = timm_model(_lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowercase ,outputs.logits ,atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
34
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( _a ): _a = 'efficientformer' def __init__( self : Any , lowerCAmelCase : List[int] = [3, 2, 6, 4] , lowerCAmelCase : List[int] = [48, 96, 224, 448] , lowerCAmelCase : List[bool] = [True, True, True, True] , lowerCAmelCase : int = 448 , lowerCAmelCase : int = 32 , lowerCAmelCase : int = 4 , lowerCAmelCase : int = 7 , lowerCAmelCase : int = 5 , lowerCAmelCase : int = 8 , lowerCAmelCase : int = 4 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 16 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 1 , lowerCAmelCase : bool = True , lowerCAmelCase : bool = True , lowerCAmelCase : float = 1e-5 , lowerCAmelCase : str = "gelu" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 1e-12 , lowerCAmelCase : int = 224 , lowerCAmelCase : float = 1e-05 , **lowerCAmelCase : int , ): super().__init__(**lowerCAmelCase ) lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = hidden_sizes lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = depths lowerCAmelCase = mlp_expansion_ratio lowerCAmelCase = downsamples lowerCAmelCase = dim lowerCAmelCase = key_dim lowerCAmelCase = attention_ratio lowerCAmelCase = resolution lowerCAmelCase = pool_size lowerCAmelCase = downsample_patch_size lowerCAmelCase = downsample_stride lowerCAmelCase = downsample_pad lowerCAmelCase = drop_path_rate lowerCAmelCase = num_metaad_blocks lowerCAmelCase = distillation lowerCAmelCase = use_layer_scale lowerCAmelCase = layer_scale_init_value lowerCAmelCase = image_size lowerCAmelCase = batch_norm_eps
169
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
73
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __magic_name__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : Optional[datasets.Features] = None def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , ): '''simple docstring''' import pyspark def generate_fn(): lowerCamelCase_ : Dict = df.select("*" , pyspark.sql.functions.spark_partition_id().alias("part_id")) for partition_id in partition_order: lowerCamelCase_ : Dict = df_with_partition_id.select("*").where(F"""part_id = {partition_id}""").drop("part_id") lowerCamelCase_ : Dict = partition_df.collect() lowerCamelCase_ : Dict = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class lowerCAmelCase__ ( _BaseExamplesIterable ): """simple docstring""" def __init__( self , a_ , a_=None , ): lowerCamelCase_ : Dict = df lowerCamelCase_ : Optional[Any] = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase_ : int = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def _UpperCamelCase ( self , a_ ): lowerCamelCase_ : Optional[Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(a_ ) return SparkExamplesIterable(self.df , partition_order=a_ ) def _UpperCamelCase ( self , a_ , a_ ): lowerCamelCase_ : Dict = self.split_shard_indices_by_worker(a_ , a_ ) return SparkExamplesIterable(self.df , partition_order=a_ ) @property def _UpperCamelCase ( self ): return len(self.partition_order ) class lowerCAmelCase__ ( datasets.DatasetBuilder ): """simple docstring""" __UpperCAmelCase : Any = SparkConfig def __init__( self , a_ , a_ = None , a_ = None , **a_ , ): import pyspark lowerCamelCase_ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase_ : Optional[Any] = df lowerCamelCase_ : List[Any] = working_dir super().__init__( cache_dir=a_ , config_name=str(self.df.semanticHash() ) , **a_ , ) def _UpperCamelCase ( self ): # Returns the path of the created file. def create_cache_and_write_probe(a_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=a_ ) lowerCamelCase_ : Optional[Any] = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(a_ , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase_ : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(a_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def _UpperCamelCase ( self ): return datasets.DatasetInfo(features=self.config.features ) def _UpperCamelCase ( self , a_ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _UpperCamelCase ( self , a_ ): import pyspark def get_arrow_batch_size(a_ ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) lowerCamelCase_ : str = self.df.count() lowerCamelCase_ : List[Any] = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase_ : Any = ( self.df.limit(a_ ) .repartition(1 ) .mapInArrow(a_ , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase_ : int = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase_ : Union[str, Any] = min(a_ , int(approx_total_size / max_shard_size ) ) lowerCamelCase_ : int = self.df.repartition(a_ ) def _UpperCamelCase ( self , a_ , a_ , a_ , ): import pyspark lowerCamelCase_ : str = ParquetWriter if file_format == "parquet" else ArrowWriter lowerCamelCase_ : int = os.path.join(self._working_dir , os.path.basename(a_ ) ) if self._working_dir else fpath lowerCamelCase_ : Optional[Any] = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase_ : int = self.config.features lowerCamelCase_ : Any = self._writer_batch_size lowerCamelCase_ : Tuple = self._fs.storage_options def write_arrow(a_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase_ : List[Any] = pyspark.TaskContext().taskAttemptId() lowerCamelCase_ : Optional[int] = next(a_ , a_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) lowerCamelCase_ : List[Any] = 0 lowerCamelCase_ : Optional[int] = writer_class( features=a_ , path=working_fpath.replace("SSSSS" , F"""{shard_id:05d}""" ).replace("TTTTT" , F"""{task_id:05d}""" ) , writer_batch_size=a_ , storage_options=a_ , embed_local_files=a_ , ) lowerCamelCase_ : Optional[Any] = pa.Table.from_batches([first_batch] ) writer.write_table(a_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase_ ,lowerCamelCase_ : List[str] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 lowerCamelCase_ : List[str] = writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , F"""{shard_id:05d}""" ).replace("TTTTT" , F"""{task_id:05d}""" ) , writer_batch_size=a_ , storage_options=a_ , embed_local_files=a_ , ) lowerCamelCase_ : Optional[int] = pa.Table.from_batches([batch] ) writer.write_table(a_ ) if writer._num_bytes > 0: lowerCamelCase_ ,lowerCamelCase_ : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(a_ ) ): lowerCamelCase_ : str = os.path.join(os.path.dirname(a_ ) , os.path.basename(a_ ) ) shutil.move(a_ , a_ ) lowerCamelCase_ : int = ( self.df.mapInArrow(a_ , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _UpperCamelCase ( self , a_ , a_ = "arrow" , a_ = None , a_ = None , **a_ , ): self._validate_cache_dir() lowerCamelCase_ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(a_ ) lowerCamelCase_ : Dict = not is_remote_filesystem(self._fs ) lowerCamelCase_ : List[str] = os.path.join if is_local else posixpath.join lowerCamelCase_ : Any = "-TTTTT-SSSSS-of-NNNNN" lowerCamelCase_ : List[Any] = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" lowerCamelCase_ : int = path_join(self._output_dir , a_ ) lowerCamelCase_ : int = 0 lowerCamelCase_ : Optional[Any] = 0 lowerCamelCase_ : int = 0 lowerCamelCase_ : Dict = [] lowerCamelCase_ : Any = [] for task_id, content in self._prepare_split_single(a_ , a_ , a_ ): ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) : Tuple = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(a_ ) lowerCamelCase_ : Dict = total_num_examples lowerCamelCase_ : Any = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: lowerCamelCase_ : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase_ : Any = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( a_ , a_ , a_ , ): rename( a_ , fpath.replace("SSSSS" , F"""{shard_id:05d}""" ).replace("TTTTT" , F"""{task_id:05d}""" ) , fpath.replace("TTTTT-SSSSS" , F"""{global_shard_id:05d}""" ).replace("NNNNN" , F"""{total_shards:05d}""" ) , ) lowerCamelCase_ : Optional[int] = [] lowerCamelCase_ : Dict = 0 for i in range(len(a_ ) ): lowerCamelCase_ ,lowerCamelCase_ : Tuple = task_id_and_num_shards[i] for shard_id in range(a_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(a_ , len(a_ ) ).map(lambda a_ : _rename_shard(*a_ ) ).collect() else: # don't use any pattern lowerCamelCase_ : int = 0 lowerCamelCase_ : Optional[int] = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , F"""{shard_id:05d}""" ).replace("TTTTT" , F"""{task_id:05d}""" ) , fpath.replace(a_ , "" ) , ) def _UpperCamelCase ( self , a_ , ): return SparkExamplesIterable(self.df )
73
1
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _lowerCAmelCase ( __magic_name__ : Any , __magic_name__ : Tuple=7 ) -> List[Any]: lowercase : str =None if token is not None: lowercase : List[str] ={'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase : Optional[int] ='''636036''' lowercase : Union[str, Any] =f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase : Optional[int] =requests.get(__magic_name__ , headers=__magic_name__ ).json() return result["workflow_runs"] def _lowerCAmelCase ( __magic_name__ : Optional[int] ) -> Optional[Any]: lowercase : Dict =get_daily_ci_runs(__magic_name__ ) lowercase : Optional[Any] =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase : Tuple =workflow_run['''id'''] break return workflow_run_id def _lowerCAmelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : int ) -> Tuple: lowercase : Tuple =get_last_daily_ci_runs(__magic_name__ ) if workflow_run_id is not None: lowercase : str =get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase : int =artifacts_links[artifact_name] download_artifact( artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ ) def _lowerCAmelCase ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] ) -> int: get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase : List[str] ={} for artifact_name in artifact_names: lowercase : Any =os.path.join(__magic_name__ , f'''{artifact_name}.zip''' ) if os.path.isfile(__magic_name__ ): lowercase : List[Any] ={} with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file with z.open(__magic_name__ ) as f: lowercase : List[str] =f.read().decode('''UTF-8''' ) return results
92
def _lowerCamelCase ( a_ : int , a_ : list[int] , a_ : int): def count_of_possible_combinations(a_ : int) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item) for item in array) return count_of_possible_combinations(a_) def _lowerCamelCase ( a_ : int , a_ : list[int] , a_ : int): def count_of_possible_combinations_with_dp_array( a_ : int , a_ : list[int]) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCamelCase :Any = sum( count_of_possible_combinations_with_dp_array(target - item , a_) for item in array) lowerCamelCase :Optional[Any] = answer return answer lowerCamelCase :Optional[int] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : list[int] , a_ : int): lowerCamelCase :Optional[Any] = [0] * (target + 1) lowerCamelCase :List[str] = 1 for i in range(1 , target + 1): for j in range(a_): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() A__ = 3 A__ = 5 A__ = [1, 2, 5] print(combination_sum_iv(n, array, target))
166
0
'''simple docstring''' from collections import defaultdict def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Optional[int] = first_str.lower().strip() UpperCAmelCase__ : List[str] = second_str.lower().strip() # Remove whitespace UpperCAmelCase__ : List[Any] = first_str.replace(""" """ , """""" ) UpperCAmelCase__ : List[str] = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): return False # Default values for count should be 0 UpperCAmelCase__ : defaultdict[str, int] = defaultdict(UpperCamelCase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(UpperCamelCase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __A =input('Enter the first string ').strip() __A =input('Enter the second string ').strip() __A =check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {'' if status else 'not '}anagrams.""")
714
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __A =logging.get_logger(__name__) class _snake_case ( a__ ): lowerCAmelCase :int = ['''input_features''', '''is_longer'''] def __init__( self , _lowerCamelCase=64 , _lowerCamelCase=4_8000 , _lowerCamelCase=480 , _lowerCamelCase=10 , _lowerCamelCase=1024 , _lowerCamelCase=0.0 , _lowerCamelCase=False , _lowerCamelCase = 0 , _lowerCamelCase = 1_4000 , _lowerCamelCase = None , _lowerCamelCase = "fusion" , _lowerCamelCase = "repeatpad" , **_lowerCamelCase , ): super().__init__( feature_size=_lowerCamelCase , sampling_rate=_lowerCamelCase , padding_value=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) UpperCAmelCase__ : Dict = top_db UpperCAmelCase__ : int = truncation UpperCAmelCase__ : Optional[Any] = padding UpperCAmelCase__ : Union[str, Any] = fft_window_size UpperCAmelCase__ : List[Any] = (fft_window_size >> 1) + 1 UpperCAmelCase__ : Optional[int] = hop_length UpperCAmelCase__ : int = max_length_s UpperCAmelCase__ : Tuple = max_length_s * sampling_rate UpperCAmelCase__ : List[Any] = sampling_rate UpperCAmelCase__ : Tuple = frequency_min UpperCAmelCase__ : Dict = frequency_max UpperCAmelCase__ : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowerCamelCase , min_frequency=_lowerCamelCase , max_frequency=_lowerCamelCase , sampling_rate=_lowerCamelCase , norm=_lowerCamelCase , mel_scale="""htk""" , ) UpperCAmelCase__ : Optional[int] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowerCamelCase , min_frequency=_lowerCamelCase , max_frequency=_lowerCamelCase , sampling_rate=_lowerCamelCase , norm="""slaney""" , mel_scale="""slaney""" , ) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = copy.deepcopy(self.__dict__) UpperCAmelCase__ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): UpperCAmelCase__ : str = spectrogram( _lowerCamelCase , window_function(self.fft_window_size , """hann""") , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_lowerCamelCase , log_mel="""dB""" , ) return log_mel_spectrogram.T def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[str] = np.array_split(list(range(0 , total_frames - chunk_frames + 1)) , 3) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk UpperCAmelCase__ : List[Any] = [0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk UpperCAmelCase__ : Union[str, Any] = [0] # randomly choose index for each part UpperCAmelCase__ : List[str] = np.random.choice(ranges[0]) UpperCAmelCase__ : Optional[int] = np.random.choice(ranges[1]) UpperCAmelCase__ : List[str] = np.random.choice(ranges[2]) UpperCAmelCase__ : str = mel[idx_front : idx_front + chunk_frames, :] UpperCAmelCase__ : Optional[int] = mel[idx_middle : idx_middle + chunk_frames, :] UpperCAmelCase__ : Tuple = mel[idx_back : idx_back + chunk_frames, :] UpperCAmelCase__ : int = torch.tensor(mel[None, None, :]) UpperCAmelCase__ : Optional[int] = torch.nn.functional.interpolate( _lowerCamelCase , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = mel_shrink[0][0].numpy() UpperCAmelCase__ : Optional[Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0) return mel_fusion def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCAmelCase__ : List[str] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCAmelCase__ : List[Any] = len(_lowerCamelCase) - max_length UpperCAmelCase__ : Optional[Any] = np.random.randint(0 , overflow + 1) UpperCAmelCase__ : int = waveform[idx : idx + max_length] UpperCAmelCase__ : Tuple = self._np_extract_fbank_features(_lowerCamelCase , self.mel_filters_slaney)[None, :] elif truncation == "fusion": UpperCAmelCase__ : Any = self._np_extract_fbank_features(_lowerCamelCase , self.mel_filters) UpperCAmelCase__ : int = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCAmelCase__ : int = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCAmelCase__ : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0) UpperCAmelCase__ : List[Any] = False else: UpperCAmelCase__ : Tuple = self._random_mel_fusion(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : str = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''') else: UpperCAmelCase__ : str = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCAmelCase__ : int = int(max_length / len(_lowerCamelCase)) UpperCAmelCase__ : int = np.stack(np.tile(_lowerCamelCase , n_repeat + 1))[:max_length] if padding == "repeatpad": UpperCAmelCase__ : str = int(max_length / len(_lowerCamelCase)) UpperCAmelCase__ : str = np.stack(np.tile(_lowerCamelCase , _lowerCamelCase)) UpperCAmelCase__ : Optional[Any] = np.pad(_lowerCamelCase , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0) if truncation == "fusion": UpperCAmelCase__ : List[Any] = self._np_extract_fbank_features(_lowerCamelCase , self.mel_filters) UpperCAmelCase__ : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0) else: UpperCAmelCase__ : int = self._np_extract_fbank_features(_lowerCamelCase , self.mel_filters_slaney)[None, :] return input_mel, longer def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCAmelCase__ : Dict = truncation if truncation is not None else self.truncation UpperCAmelCase__ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''') else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""") UpperCAmelCase__ : int = isinstance(_lowerCamelCase , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''') UpperCAmelCase__ : List[str] = is_batched_numpy or ( isinstance(_lowerCamelCase , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: UpperCAmelCase__ : str = [np.asarray(_lowerCamelCase , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(_lowerCamelCase , np.ndarray): UpperCAmelCase__ : Optional[int] = np.asarray(_lowerCamelCase , dtype=np.floataa) elif isinstance(_lowerCamelCase , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): UpperCAmelCase__ : str = raw_speech.astype(np.floataa) # always return batch if not is_batched: UpperCAmelCase__ : int = [np.asarray(_lowerCamelCase)] # convert to mel spectrogram, truncate and pad if needed. UpperCAmelCase__ : int = [ self._get_input_mel(_lowerCamelCase , max_length if max_length else self.nb_max_samples , _lowerCamelCase , _lowerCamelCase) for waveform in raw_speech ] UpperCAmelCase__ : int = [] UpperCAmelCase__ : List[str] = [] for mel, longer in padded_inputs: input_mel.append(_lowerCamelCase) is_longer.append(_lowerCamelCase) if truncation == "fusion" and sum(_lowerCamelCase) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCAmelCase__ : Optional[int] = np.random.randint(0 , len(_lowerCamelCase)) UpperCAmelCase__ : Tuple = True if isinstance(input_mel[0] , _lowerCamelCase): UpperCAmelCase__ : str = [np.asarray(_lowerCamelCase , dtype=np.floataa) for feature in input_mel] # is_longer is a list of bool UpperCAmelCase__ : str = [[longer] for longer in is_longer] UpperCAmelCase__ : Optional[int] = {"""input_features""": input_mel, """is_longer""": is_longer} UpperCAmelCase__ : Optional[int] = BatchFeature(_lowerCamelCase) if return_tensors is not None: UpperCAmelCase__ : str = input_features.convert_to_tensors(_lowerCamelCase) return input_features
113
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCamelCase : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=1_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=7 , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : Tuple=9_9 , SCREAMING_SNAKE_CASE_ : str=3_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : List[Any]=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_7 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=5_1_2 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE_ : Any=0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_labels _a = vocab_size _a = hidden_size _a = projection_dim _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = dropout _a = attention_dropout _a = max_position_embeddings _a = initializer_range _a = scope _a = bos_token_id def _UpperCAmelCase ( self : List[Any] ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _a = input_mask.numpy() _a , _a = input_mask.shape _a = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(a__ ): _a = 1 _a = 0 _a = self.get_config() return config, input_ids, tf.convert_to_tensor(a__ ) def _UpperCAmelCase ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): _a = TFBlipTextModel(config=a__ ) _a = model(a__ , attention_mask=a__ , training=a__ ) _a = model(a__ , training=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self : Optional[int] ): _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _UpperCamelCase ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _A = (TFBlipTextModel,) if is_tf_available() else () _A = False _A = False _A = False def _UpperCAmelCase ( self : List[str] ): _a = BlipTextModelTester(self ) _a = ConfigTester(self , config_class=a__ , hidden_size=3_7 ) def _UpperCAmelCase ( self : str ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def _UpperCAmelCase ( self : List[Any] ): pass def _UpperCAmelCase ( self : Tuple ): pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _UpperCAmelCase ( self : Tuple ): pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCAmelCase ( self : List[Any] ): pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCAmelCase ( self : str ): pass @slow def _UpperCAmelCase ( self : Union[str, Any] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFBlipTextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def _UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=a__ )
562
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCamelCase__ : """simple docstring""" def __init__( self : int ,a__ : List[Any] ,): a__ = parent a__ = 13 a__ = 7 a__ = True a__ = True a__ = True a__ = True a__ = True a__ = False a__ = False a__ = False a__ = 2 a__ = 99 a__ = 0 a__ = 32 a__ = 2 a__ = 4 a__ = 0.1 a__ = 0.1 a__ = 5_12 a__ = 16 a__ = 2 a__ = 0.02 a__ = 3 a__ = 4 a__ = "last" a__ = True a__ = None a__ = 0 def lowerCAmelCase_ ( self : Optional[Any] ): a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) a__ = None if self.use_input_lengths: a__ = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase_ ( self : int ,a__ : List[Any] ,a__ : Optional[int] ,a__ : Union[str, Any] ,a__ : Union[str, Any] ,a__ : int ,a__ : Optional[int] ,a__ : int ,a__ : Dict ,a__ : Any ,): a__ = TFFlaubertModel(config=a__ ) a__ = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} a__ = model(a__ ) a__ = [input_ids, input_mask] a__ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Optional[int] ,a__ : List[str] ,a__ : Optional[Any] ,a__ : int ,a__ : Any ,a__ : Optional[int] ,a__ : Optional[int] ,a__ : Dict ,a__ : Dict ,a__ : Union[str, Any] ,): a__ = TFFlaubertWithLMHeadModel(a__ ) a__ = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} a__ = model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int ,a__ : str ,a__ : Dict ,a__ : List[str] ,a__ : str ,a__ : Tuple ,a__ : int ,a__ : int ,a__ : str ,a__ : str ,): a__ = TFFlaubertForQuestionAnsweringSimple(a__ ) a__ = {"input_ids": input_ids, "lengths": input_lengths} a__ = model(a__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Union[str, Any] ,a__ : int ,a__ : Optional[int] ,a__ : Any ,a__ : List[Any] ,a__ : Optional[Any] ,a__ : Dict ,a__ : int ,a__ : List[str] ,a__ : Tuple ,): a__ = TFFlaubertForSequenceClassification(a__ ) a__ = {"input_ids": input_ids, "lengths": input_lengths} a__ = model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : Dict ,a__ : Union[str, Any] ,a__ : Tuple ,a__ : List[str] ,a__ : List[str] ,a__ : Dict ,a__ : List[Any] ,a__ : Tuple ,a__ : List[str] ,a__ : Tuple ,): a__ = self.num_labels a__ = TFFlaubertForTokenClassification(config=a__ ) a__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a__ = model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Tuple ,a__ : Optional[Any] ,a__ : Optional[Any] ,a__ : int ,a__ : Union[str, Any] ,a__ : List[str] ,a__ : Optional[Any] ,a__ : List[Any] ,a__ : str ,a__ : str ,): a__ = self.num_choices a__ = TFFlaubertForMultipleChoice(config=a__ ) a__ = tf.tile(tf.expand_dims(a__ ,1 ) ,(1, self.num_choices, 1) ) a__ = tf.tile(tf.expand_dims(a__ ,1 ) ,(1, self.num_choices, 1) ) a__ = tf.tile(tf.expand_dims(a__ ,1 ) ,(1, self.num_choices, 1) ) a__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } a__ = model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : Tuple ): a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class lowerCamelCase__ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase__ = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase__ = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowerCAmelCase_ ( self : str ,a__ : Any ,a__ : List[str] ,a__ : Optional[int] ,a__ : Dict ,a__ : str ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase_ ( self : Dict ): a__ = TFFlaubertModelTester(self ) a__ = ConfigTester(self ,config_class=a__ ,emb_dim=37 ) def lowerCAmelCase_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Dict ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a__ ) def lowerCAmelCase_ ( self : Any ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a__ ) def lowerCAmelCase_ ( self : List[str] ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a__ ) def lowerCAmelCase_ ( self : List[str] ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a__ ) def lowerCAmelCase_ ( self : Union[str, Any] ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*a__ ) def lowerCAmelCase_ ( self : int ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*a__ ) @slow def lowerCAmelCase_ ( self : Tuple ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = TFFlaubertModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase_ ( self : Any ): a__ = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" ) a__ = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" a__ = model(a__ )[0] a__ = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape ,a__ ) # compare the actual values for a slice. a__ = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
331
0
"""simple docstring""" def _lowerCAmelCase(a : int ) -> list: _SCREAMING_SNAKE_CASE =int(a ) if n_element < 1: _SCREAMING_SNAKE_CASE =ValueError('''a should be a positive number''' ) raise my_error _SCREAMING_SNAKE_CASE =[1] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =(0, 0, 0) _SCREAMING_SNAKE_CASE =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": UpperCAmelCase_ : Tuple = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') UpperCAmelCase_ : Dict = hamming(int(n)) print('''-----------------------------------------------------''') print(f"The list with nth numbers is: {hamming_numbers}") print('''-----------------------------------------------------''')
700
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated UpperCAmelCase_ : Tuple = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ UpperCAmelCase_ : List[Any] = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def _lowerCAmelCase(a : Union[str, Any] ) -> Optional[Any]: _SCREAMING_SNAKE_CASE =numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=a )[0] @deprecated(a , '''Please use tf.data to implement this functionality.''' ) def _lowerCAmelCase(a : str ) -> Optional[int]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=a ) as bytestream: _SCREAMING_SNAKE_CASE =_readaa(a ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) _SCREAMING_SNAKE_CASE =_readaa(a ) _SCREAMING_SNAKE_CASE =_readaa(a ) _SCREAMING_SNAKE_CASE =_readaa(a ) _SCREAMING_SNAKE_CASE =bytestream.read(rows * cols * num_images ) _SCREAMING_SNAKE_CASE =numpy.frombuffer(a , dtype=numpy.uinta ) _SCREAMING_SNAKE_CASE =data.reshape(a , a , a , 1 ) return data @deprecated(a , '''Please use tf.one_hot on tensors.''' ) def _lowerCAmelCase(a : Tuple , a : Dict ) -> Dict: _SCREAMING_SNAKE_CASE =labels_dense.shape[0] _SCREAMING_SNAKE_CASE =numpy.arange(a ) * num_classes _SCREAMING_SNAKE_CASE =numpy.zeros((num_labels, num_classes) ) _SCREAMING_SNAKE_CASE =1 return labels_one_hot @deprecated(a , '''Please use tf.data to implement this functionality.''' ) def _lowerCAmelCase(a : Any , a : Any=False , a : Tuple=10 ) -> Optional[int]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=a ) as bytestream: _SCREAMING_SNAKE_CASE =_readaa(a ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) _SCREAMING_SNAKE_CASE =_readaa(a ) _SCREAMING_SNAKE_CASE =bytestream.read(a ) _SCREAMING_SNAKE_CASE =numpy.frombuffer(a , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(a , a ) return labels class __UpperCAmelCase : '''simple docstring''' @deprecated( _A , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self , _A , _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =random_seed.get_seed(_A ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _SCREAMING_SNAKE_CASE =dtypes.as_dtype(_A ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: _SCREAMING_SNAKE_CASE =1_0_0_0_0 _SCREAMING_SNAKE_CASE =one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" _SCREAMING_SNAKE_CASE =images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _SCREAMING_SNAKE_CASE =images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _SCREAMING_SNAKE_CASE =images.astype(numpy.floataa ) _SCREAMING_SNAKE_CASE =numpy.multiply(_A , 1.0 / 255.0 ) _SCREAMING_SNAKE_CASE =images _SCREAMING_SNAKE_CASE =labels _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._images @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._labels @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._num_examples @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._epochs_completed def UpperCamelCase_ ( self , _A , _A=False , _A=True ): '''simple docstring''' if fake_data: _SCREAMING_SNAKE_CASE =[1] * 7_8_4 _SCREAMING_SNAKE_CASE =[1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_A )], [fake_label for _ in range(_A )], ) _SCREAMING_SNAKE_CASE =self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _SCREAMING_SNAKE_CASE =numpy.arange(self._num_examples ) numpy.random.shuffle(_A ) _SCREAMING_SNAKE_CASE =self.images[perma] _SCREAMING_SNAKE_CASE =self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _SCREAMING_SNAKE_CASE =self._num_examples - start _SCREAMING_SNAKE_CASE =self._images[start : self._num_examples] _SCREAMING_SNAKE_CASE =self._labels[start : self._num_examples] # Shuffle the data if shuffle: _SCREAMING_SNAKE_CASE =numpy.arange(self._num_examples ) numpy.random.shuffle(_A ) _SCREAMING_SNAKE_CASE =self.images[perm] _SCREAMING_SNAKE_CASE =self.labels[perm] # Start next epoch _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =batch_size - rest_num_examples _SCREAMING_SNAKE_CASE =self._index_in_epoch _SCREAMING_SNAKE_CASE =self._images[start:end] _SCREAMING_SNAKE_CASE =self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _SCREAMING_SNAKE_CASE =self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(a , '''Please write your own downloading logic.''' ) def _lowerCAmelCase(a : Any , a : str , a : Optional[int] ) -> Optional[Any]: if not gfile.Exists(a ): gfile.MakeDirs(a ) _SCREAMING_SNAKE_CASE =os.path.join(a , a ) if not gfile.Exists(a ): urllib.request.urlretrieve(a , a ) # noqa: S310 with gfile.GFile(a ) as f: _SCREAMING_SNAKE_CASE =f.size() print('''Successfully downloaded''' , a , a , '''bytes.''' ) return filepath @deprecated( a , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def _lowerCAmelCase(a : Optional[int] , a : Tuple=False , a : str=False , a : Union[str, Any]=dtypes.floataa , a : Tuple=True , a : Tuple=5000 , a : Union[str, Any]=None , a : List[str]=DEFAULT_SOURCE_URL , ) -> List[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=a , one_hot=a , dtype=a , seed=a ) _SCREAMING_SNAKE_CASE =fake() _SCREAMING_SNAKE_CASE =fake() _SCREAMING_SNAKE_CASE =fake() return _Datasets(train=a , validation=a , test=a ) if not source_url: # empty string check _SCREAMING_SNAKE_CASE =DEFAULT_SOURCE_URL _SCREAMING_SNAKE_CASE ='''train-images-idx3-ubyte.gz''' _SCREAMING_SNAKE_CASE ='''train-labels-idx1-ubyte.gz''' _SCREAMING_SNAKE_CASE ='''t10k-images-idx3-ubyte.gz''' _SCREAMING_SNAKE_CASE ='''t10k-labels-idx1-ubyte.gz''' _SCREAMING_SNAKE_CASE =_maybe_download( a , a , source_url + train_images_file ) with gfile.Open(a , '''rb''' ) as f: _SCREAMING_SNAKE_CASE =_extract_images(a ) _SCREAMING_SNAKE_CASE =_maybe_download( a , a , source_url + train_labels_file ) with gfile.Open(a , '''rb''' ) as f: _SCREAMING_SNAKE_CASE =_extract_labels(a , one_hot=a ) _SCREAMING_SNAKE_CASE =_maybe_download( a , a , source_url + test_images_file ) with gfile.Open(a , '''rb''' ) as f: _SCREAMING_SNAKE_CASE =_extract_images(a ) _SCREAMING_SNAKE_CASE =_maybe_download( a , a , source_url + test_labels_file ) with gfile.Open(a , '''rb''' ) as f: _SCREAMING_SNAKE_CASE =_extract_labels(a , one_hot=a ) if not 0 <= validation_size <= len(a ): _SCREAMING_SNAKE_CASE =( '''Validation size should be between 0 and ''' f"""{len(a )}. Received: {validation_size}.""" ) raise ValueError(a ) _SCREAMING_SNAKE_CASE =train_images[:validation_size] _SCREAMING_SNAKE_CASE =train_labels[:validation_size] _SCREAMING_SNAKE_CASE =train_images[validation_size:] _SCREAMING_SNAKE_CASE =train_labels[validation_size:] _SCREAMING_SNAKE_CASE ={'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} _SCREAMING_SNAKE_CASE =_DataSet(a , a , **a ) _SCREAMING_SNAKE_CASE =_DataSet(a , a , **a ) _SCREAMING_SNAKE_CASE =_DataSet(a , a , **a ) return _Datasets(train=a , validation=a , test=a )
165
0
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME SCREAMING_SNAKE_CASE = ['small', 'medium', 'large'] SCREAMING_SNAKE_CASE = 'lm_head.decoder.weight' SCREAMING_SNAKE_CASE = 'lm_head.weight' def lowercase_ ( __A : str , __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =torch.load(__A ) lowercase : List[str] =d.pop(__A ) os.makedirs(__A , exist_ok=__A ) torch.save(__A , os.path.join(__A , __A ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) SCREAMING_SNAKE_CASE = parser.parse_args() for MODEL in DIALOGPT_MODELS: SCREAMING_SNAKE_CASE = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") SCREAMING_SNAKE_CASE = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
94
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: UpperCamelCase__ = None UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase__ = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } UpperCamelCase__ = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } UpperCamelCase__ = "▁" class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[Any] = VOCAB_FILES_NAMES snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case : int = BigBirdTokenizer snake_case : List[Any] = ["""input_ids""", """attention_mask"""] snake_case : List[int] = [] def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="[MASK]" , __lowerCAmelCase="[CLS]" , **__lowerCAmelCase , ): UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else bos_token UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else eos_token UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else unk_token UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else pad_token UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else cls_token UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , **__lowerCAmelCase , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = False if not self.vocab_file else True def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1] def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) return (out_vocab_file,)
619
0
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __lowerCamelCase : Dict = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def __UpperCAmelCase ( __magic_name__ = "dhaka" ,__magic_name__ = 5 )-> Union[str, Any]: """simple docstring""" snake_case_ : Union[str, Any] = min(lowerCamelCase_ ,50 ) # Prevent abuse! snake_case_ : Union[str, Any] = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } snake_case_ : Union[str, Any] = requests.get("https://www.google.com/search" ,params=lowerCamelCase_ ,headers=lowerCamelCase_ ) snake_case_ : List[Any] = BeautifulSoup(html.text ,"html.parser" ) snake_case_ : Tuple = """""".join( re.findall(r"AF_initDataCallback\(([^<]+)\);" ,str(soup.select("script" ) ) ) ) snake_case_ : Optional[Any] = json.dumps(lowerCamelCase_ ) snake_case_ : Tuple = json.loads(lowerCamelCase_ ) snake_case_ : Optional[Any] = re.findall( r"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," ,lowerCamelCase_ ,) if not matched_google_image_data: return 0 snake_case_ : int = re.sub( r"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" ,"" ,str(lowerCamelCase_ ) ,) snake_case_ : Any = re.findall( r"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]" ,lowerCamelCase_ ,) for index, fixed_full_res_image in enumerate(lowerCamelCase_ ): if index >= max_images: return index snake_case_ : int = bytes(lowerCamelCase_ ,"ascii" ).decode( "unicode-escape" ) snake_case_ : Dict = bytes(lowerCamelCase_ ,"ascii" ).decode( "unicode-escape" ) snake_case_ : Union[str, Any] = urllib.request.build_opener() snake_case_ : List[str] = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(lowerCamelCase_ ) snake_case_ : Optional[int] = F'''query_{query.replace(' ' ,'_' )}''' if not os.path.exists(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) urllib.request.urlretrieve( # noqa: S310 lowerCamelCase_ ,F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: __lowerCamelCase : List[Any] = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print('''Please provide a search term.''') raise
713
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCamelCase : str = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __lowerCamelCase : Tuple = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Tuple = SavedModel() snake_case_ : Dict = [] with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f: snake_case_ : Dict = json.load(__magic_name__ )["opsets"] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(__magic_name__ )] ) with open(__magic_name__ ,"rb" ) as f: saved_model.ParseFromString(f.read() ) snake_case_ : Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case_ : str = sorted(__magic_name__ ) snake_case_ : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__magic_name__ ) if strict and len(__magic_name__ ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__magic_name__ ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*__magic_name__ ,sep="\n" ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) __lowerCamelCase : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
656
0
from __future__ import annotations def __a ( A__ : str ): return [ord(A__ ) - 96 for elem in plain] def __a ( A__ : list[int] ): return "".join(chr(elem + 96 ) for elem in encoded ) def __a ( ): SCREAMING_SNAKE_CASE = encode(input("-> " ).strip().lower() ) print("Encoded: " , A__ ) print("Decoded:" , decode(A__ ) ) if __name__ == "__main__": main()
16
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int=13 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : str=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[int]=224 , __lowerCamelCase : Any=1000 , __lowerCamelCase : Optional[Any]=[3, 3, 6, 4] , __lowerCamelCase : List[Any]=[48, 56, 112, 220] , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = layer_depths SCREAMING_SNAKE_CASE = embed_dims def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Dict ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__lowerCamelCase , layer_scale_init_value=1e-5 , ) def _snake_case ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : int ): ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _snake_case ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def _snake_case ( self : Optional[int] ): pass def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _snake_case ( self : Tuple ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SwiftFormerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def _snake_case ( self : Union[str, Any] ): pass def _snake_case ( self : Optional[Any] ): def check_hidden_states_output(__lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 8 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__lowerCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def _config_zero_init(__lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = copy.deepcopy(__lowerCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__lowerCamelCase , __lowerCamelCase , 1e-10 ) if isinstance(getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ): SCREAMING_SNAKE_CASE = _config_zero_init(getattr(__lowerCamelCase , __lowerCamelCase ) ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return configs_no_init SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : str ): pass def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[str] ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
16
1
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(a ) class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__UpperCAmelCase ) def snake_case ( self , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = {} lowerCAmelCase__ :int = {} lowerCAmelCase__ :Tuple = {} # preprocess args if "points_per_batch" in kwargs: lowerCAmelCase__ :List[str] = kwargs['points_per_batch'] if "points_per_crop" in kwargs: lowerCAmelCase__ :Dict = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: lowerCAmelCase__ :str = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: lowerCAmelCase__ :Dict = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: lowerCAmelCase__ :Optional[int] = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: lowerCAmelCase__ :Optional[int] = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: lowerCAmelCase__ :Optional[Any] = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: lowerCAmelCase__ :Any = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: lowerCAmelCase__ :List[Any] = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: lowerCAmelCase__ :List[Any] = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: lowerCAmelCase__ :Optional[Any] = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: lowerCAmelCase__ :Any = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , __UpperCAmelCase , *__UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' return super().__call__(__UpperCAmelCase , *__UpperCAmelCase , num_workers=__UpperCAmelCase , batch_size=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=6_4 , __UpperCAmelCase = 0 , __UpperCAmelCase = 5_1_2 / 1_5_0_0 , __UpperCAmelCase = 3_2 , __UpperCAmelCase = 1 , ): '''simple docstring''' lowerCAmelCase__ :int = load_image(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = self.image_processor.size['longest_edge'] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.image_processor.generate_crop_boxes( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = self.image_processor(images=__UpperCAmelCase , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": lowerCAmelCase__ :Optional[int] = self.get_inference_context() with inference_context(): lowerCAmelCase__ :str = self._ensure_tensor_on_device(__UpperCAmelCase , device=self.device ) lowerCAmelCase__ :Any = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) lowerCAmelCase__ :List[Any] = image_embeddings lowerCAmelCase__ :Any = grid_points.shape[1] lowerCAmelCase__ :str = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :Dict = grid_points[:, i : i + points_per_batch, :, :] lowerCAmelCase__ :List[str] = input_labels[:, i : i + points_per_batch] lowerCAmelCase__ :int = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0.88 , __UpperCAmelCase=0.95 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = model_inputs.pop('input_boxes' ) lowerCAmelCase__ :Dict = model_inputs.pop('is_last' ) lowerCAmelCase__ :Any = model_inputs.pop('original_sizes' ).tolist() lowerCAmelCase__ :List[str] = model_inputs.pop('reshaped_input_sizes' ).tolist() lowerCAmelCase__ :Any = self.model(**__UpperCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowerCAmelCase__ :str = model_outputs['pred_masks'] lowerCAmelCase__ :List[Any] = self.image_processor.post_process_masks( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , binarize=__UpperCAmelCase ) lowerCAmelCase__ :Dict = model_outputs['iou_scores'] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Dict = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=0.7 , ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = [] lowerCAmelCase__ :Dict = [] lowerCAmelCase__ :Any = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) lowerCAmelCase__ :List[str] = torch.cat(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = torch.cat(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self.image_processor.post_process_for_mask_generation( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = defaultdict(__UpperCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = {} if output_rle_mask: lowerCAmelCase__ :Optional[int] = rle_mask if output_bboxes_mask: lowerCAmelCase__ :Dict = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
560
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __A = logging.get_logger(__name__) def __A (_SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: """simple docstring""" return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :List[str] = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) __magic_name__ :List[int] = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) __magic_name__ :List[int] = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) __magic_name__ :bool = field(default=a , metadata={"""help""": """Use FP16 to accelerate inference."""} ) __magic_name__ :bool = field(default=a , metadata={"""help""": """Benchmark training of model"""} ) __magic_name__ :bool = field(default=a , metadata={"""help""": """Verbose memory tracing"""} ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) __magic_name__ :bool = field( default=a , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) __magic_name__ :bool = field(default=a , metadata={"""help""": """Trace memory line by line"""} ) __magic_name__ :bool = field(default=a , metadata={"""help""": """Save result to a CSV file"""} ) __magic_name__ :bool = field(default=a , metadata={"""help""": """Save all print statements in a log file"""} ) __magic_name__ :bool = field(default=a , metadata={"""help""": """Whether to print environment information"""} ) __magic_name__ :bool = field( default=a , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) __magic_name__ :str = field( default=f"""inference_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) __magic_name__ :str = field( default=f"""inference_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) __magic_name__ :str = field( default=f"""train_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) __magic_name__ :str = field( default=f"""train_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) __magic_name__ :str = field( default=f"""env_info_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving environment information."""} , ) __magic_name__ :str = field( default=f"""log_{round(time() )}.csv""" , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) __magic_name__ :int = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) __magic_name__ :bool = field( default=a , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def snake_case ( self ): '''simple docstring''' warnings.warn( F"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , __UpperCAmelCase , ) def snake_case ( self ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def snake_case ( self ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def snake_case ( self ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
560
1
from __future__ import annotations from collections.abc import Callable A_ : Any = list[list[float | int]] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Matrix: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0 for _ in range(size + 1 )] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 for row in range(SCREAMING_SNAKE_CASE ): for col in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = matrix[row][col] __UpperCAmelCase = vector[row][0] __UpperCAmelCase = 0 __UpperCAmelCase = 0 while row < size and col < size: # pivoting __UpperCAmelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __UpperCAmelCase , __UpperCAmelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = augmented[rowa][col] / augmented[row][col] __UpperCAmelCase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , SCREAMING_SNAKE_CASE ): for row in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = augmented[row][col] / augmented[col][col] for cola in range(SCREAMING_SNAKE_CASE , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 1_0 )] for row in range(SCREAMING_SNAKE_CASE ) ] def __a ( SCREAMING_SNAKE_CASE ) -> Callable[[int], int]: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0 for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = [[0] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 for x_val, y_val in enumerate(SCREAMING_SNAKE_CASE ): for col in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = (x_val + 1) ** (size - col - 1) __UpperCAmelCase = y_val __UpperCAmelCase = solve(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def interpolated_func(SCREAMING_SNAKE_CASE ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(SCREAMING_SNAKE_CASE ) ) return interpolated_func def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**1_0 ) def __a ( SCREAMING_SNAKE_CASE = question_function , SCREAMING_SNAKE_CASE = 1_0 ) -> int: '''simple docstring''' __UpperCAmelCase = [func(SCREAMING_SNAKE_CASE ) for x_val in range(1 , order + 1 )] __UpperCAmelCase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __UpperCAmelCase = 0 __UpperCAmelCase = 42 __UpperCAmelCase = 42 for poly in polynomials: __UpperCAmelCase = 1 while func(SCREAMING_SNAKE_CASE ) == poly(SCREAMING_SNAKE_CASE ): x_val += 1 ret += poly(SCREAMING_SNAKE_CASE ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
303
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = DanceDiffusionPipeline a__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS a__ = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } a__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS a__ = False a__ = False def lowerCAmelCase_ (self ) -> Dict: torch.manual_seed(0 ) __UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowercase__ , use_timestep_embedding=lowercase__ , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) __UpperCAmelCase = IPNDMScheduler() __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> Dict: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = DanceDiffusionPipeline(**lowercase__ ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = self.get_dummy_inputs(lowercase__ ) __UpperCAmelCase = pipe(**lowercase__ ) __UpperCAmelCase = output.audios __UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCAmelCase_ (self ) -> Union[str, Any]: return super().test_save_load_local() @skip_mps def lowerCAmelCase_ (self ) -> List[str]: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def lowerCAmelCase_ (self ) -> Optional[int]: return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase_ (self ) -> Any: return super().test_attention_slicing_forward_pass() def lowerCAmelCase_ (self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = torch_device __UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe(generator=lowercase__ , num_inference_steps=100 , audio_length_in_s=4.096 ) __UpperCAmelCase = output.audios __UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device __UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe(generator=lowercase__ , num_inference_steps=100 , audio_length_in_s=4.096 ) __UpperCAmelCase = output.audios __UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
303
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ : Any = 16 UpperCamelCase__ : Dict = 32 def A_( A , A = 16 ): UpperCAmelCase_ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCAmelCase_ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase_ = 8 else: UpperCAmelCase_ = None return tokenizer.pad( lowercase_ , padding="""longest""" , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) UpperCAmelCase_ = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ : List[Any] = mocked_dataloaders # noqa: F811 def A_( A , A ): if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase_ ) == "1": UpperCAmelCase_ = 2 # Initialize accelerator UpperCAmelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ = config["lr"] UpperCAmelCase_ = int(config["""num_epochs"""] ) UpperCAmelCase_ = int(config["""seed"""] ) UpperCAmelCase_ = int(config["""batch_size"""] ) UpperCAmelCase_ = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase_ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase_ = MAX_GPU_BATCH_SIZE set_seed(lowercase_ ) UpperCAmelCase_ = get_dataloaders(lowercase_ , lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ = AdamW(params=model.parameters() , lr=lowercase_ ) # Instantiate scheduler UpperCAmelCase_ = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase_ = model(**lowercase_ ) UpperCAmelCase_ = outputs.loss UpperCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() UpperCAmelCase_ = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ = model(**lowercase_ ) UpperCAmelCase_ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowercase_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples UpperCAmelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) UpperCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase_ ) def A_( ): UpperCAmelCase_ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase_ , default=lowercase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
707
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : int = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _UpperCamelCase ( A_ ): '''simple docstring''' lowerCamelCase : Tuple = 'trajectory_transformer' lowerCamelCase : Optional[Any] = ['past_key_values'] lowerCamelCase : Tuple = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] , __lowercase : Optional[Any]=1_00 , __lowercase : int=5 , __lowercase : str=1 , __lowercase : Union[str, Any]=1 , __lowercase : Optional[Any]=2_49 , __lowercase : Tuple=6 , __lowercase : Tuple=17 , __lowercase : List[str]=25 , __lowercase : Tuple=4 , __lowercase : Dict=4 , __lowercase : int=1_28 , __lowercase : List[str]=0.1 , __lowercase : Optional[Any]=0.1 , __lowercase : Union[str, Any]=0.1 , __lowercase : Tuple=0.0006 , __lowercase : Optional[int]=5_12 , __lowercase : Any=0.02 , __lowercase : Tuple=1e-12 , __lowercase : Optional[Any]=1 , __lowercase : Dict=True , __lowercase : Optional[Any]=1 , __lowercase : str=5_02_56 , __lowercase : Any=5_02_56 , **__lowercase : str , ): '''simple docstring''' UpperCAmelCase_ = vocab_size UpperCAmelCase_ = action_weight UpperCAmelCase_ = reward_weight UpperCAmelCase_ = value_weight UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = block_size UpperCAmelCase_ = action_dim UpperCAmelCase_ = observation_dim UpperCAmelCase_ = transition_dim UpperCAmelCase_ = learning_rate UpperCAmelCase_ = n_layer UpperCAmelCase_ = n_head UpperCAmelCase_ = n_embd UpperCAmelCase_ = embd_pdrop UpperCAmelCase_ = attn_pdrop UpperCAmelCase_ = resid_pdrop UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = kaiming_initializer_range UpperCAmelCase_ = use_cache super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
486
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP _lowercase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name _lowercase : List[Any] = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def _lowerCAmelCase ( UpperCamelCase__: Tuple , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=8 ) -> Optional[Any]: """simple docstring""" A = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 A = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self , a__ , a__ , a__ , a__ , a__ , ) -> int: super().__init__() self.register_modules( text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , movq=__a , ) A = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ ) -> List[Any]: if latents is None: A = randn_tensor(__a , generator=__a , device=__a , dtype=__a ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) A = latents.to(__a ) A = latents * scheduler.init_noise_sigma return latents def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__=None , ) -> List[Any]: A = len(__a ) if isinstance(__a , __a ) else 1 # get prompt text embeddings A = self.tokenizer( __a , padding="""max_length""" , truncation=__a , max_length=77 , return_attention_mask=__a , add_special_tokens=__a , return_tensors="""pt""" , ) A = text_inputs.input_ids A = self.tokenizer(__a , padding="""longest""" , return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(__a , __a ): A = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) A = text_input_ids.to(__a ) A = text_inputs.attention_mask.to(__a ) A , A = self.text_encoder( input_ids=__a , attention_mask=__a ) A = prompt_embeds.repeat_interleave(__a , dim=0 ) A = text_encoder_hidden_states.repeat_interleave(__a , dim=0 ) A = text_mask.repeat_interleave(__a , dim=0 ) if do_classifier_free_guidance: A = 42 if negative_prompt is None: A = [""""""] * batch_size elif type(__a ) is not type(__a ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(__a )} !=' f' {type(__a )}.' ) elif isinstance(__a , __a ): A = [negative_prompt] elif batch_size != len(__a ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(__a )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: A = negative_prompt A = self.tokenizer( __a , padding="""max_length""" , max_length=77 , truncation=__a , return_attention_mask=__a , add_special_tokens=__a , return_tensors="""pt""" , ) A = uncond_input.input_ids.to(__a ) A = uncond_input.attention_mask.to(__a ) A , A = self.text_encoder( input_ids=__a , attention_mask=__a ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A = negative_prompt_embeds.shape[1] A = negative_prompt_embeds.repeat(1 , __a ) A = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __a ) A = uncond_text_encoder_hidden_states.shape[1] A = uncond_text_encoder_hidden_states.repeat(1 , __a , 1 ) A = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , __a , -1 ) A = uncond_text_mask.repeat_interleave(__a , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A = torch.cat([negative_prompt_embeds, prompt_embeds] ) A = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) A = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def _UpperCAmelCase ( self , a__=0 ) -> Any: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) A = torch.device(f'cuda:{gpu_id}' ) A = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__a , __a ) def _UpperCAmelCase ( self , a__=0 ) -> List[str]: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) A = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: A , A = cpu_offload_with_hook(__a , __a , prev_module_hook=__a ) if self.safety_checker is not None: A , A = cpu_offload_with_hook(self.safety_checker , __a , prev_module_hook=__a ) # We'll offload the last model manually. A = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self ) -> str: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__a , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__a ) def __call__( self , a__ , a__ , a__ , a__ = None , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 1 , a__ = None , a__ = None , a__ = "pil" , a__ = True , ) -> Dict: if isinstance(__a , __a ): A = 1 elif isinstance(__a , __a ): A = len(__a ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(__a )}' ) A = self._execution_device A = batch_size * num_images_per_prompt A = guidance_scale > 1.0 A , A , A = self._encode_prompt( __a , __a , __a , __a , __a ) if isinstance(__a , __a ): A = torch.cat(__a , dim=0 ) if isinstance(__a , __a ): A = torch.cat(__a , dim=0 ) if do_classifier_free_guidance: A = image_embeds.repeat_interleave(__a , dim=0 ) A = negative_image_embeds.repeat_interleave(__a , dim=0 ) A = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=__a ) self.scheduler.set_timesteps(__a , device=__a ) A = self.scheduler.timesteps A = self.unet.config.in_channels A , A = get_new_h_w(__a , __a , self.movq_scale_factor ) # create initial latent A = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , __a , __a , __a , self.scheduler , ) for i, t in enumerate(self.progress_bar(__a ) ): # expand the latents if we are doing classifier free guidance A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} A = self.unet( sample=__a , timestep=__a , encoder_hidden_states=__a , added_cond_kwargs=__a , return_dict=__a , )[0] if do_classifier_free_guidance: A , A = noise_pred.split(latents.shape[1] , dim=1 ) A , A = noise_pred.chunk(2 ) A , A = variance_pred.chunk(2 ) A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A , A = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step( __a , __a , __a , generator=__a , ).prev_sample # post-processing A = self.movq.decode(__a , force_not_quantize=__a )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: A = image * 0.5 + 0.5 A = image.clamp(0 , 1 ) A = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
641
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int ) -> bool: '''simple docstring''' if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
78
0
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger() def UpperCamelCase ( _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : LevitConfig , _lowerCAmelCase : Path , _lowerCAmelCase : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __a = timm.create_model("""levit_128s""" , pretrained=_lowerCAmelCase ) else: __a = timm.create_model("""levit_128""" , pretrained=_lowerCAmelCase ) if hidden_sizes == 192: __a = timm.create_model("""levit_192""" , pretrained=_lowerCAmelCase ) if hidden_sizes == 256: __a = timm.create_model("""levit_256""" , pretrained=_lowerCAmelCase ) if hidden_sizes == 384: __a = timm.create_model("""levit_384""" , pretrained=_lowerCAmelCase ) from_model.eval() __a = LevitForImageClassificationWithTeacher(_lowerCAmelCase ).eval() __a = OrderedDict() __a = from_model.state_dict() __a = list(from_model.state_dict().keys() ) __a = list(our_model.state_dict().keys() ) print(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for i in range(len(_lowerCAmelCase ) ): __a = weights[og_keys[i]] our_model.load_state_dict(_lowerCAmelCase ) __a = torch.randn((2, 3, 224, 224) ) __a = from_model(_lowerCAmelCase ) __a = our_model(_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ), "The model logits don't match the original one." __a = name print(_lowerCAmelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __a = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def UpperCamelCase ( _lowerCAmelCase : Path , _lowerCAmelCase : str = None , _lowerCAmelCase : bool = True ): __a = """imagenet-1k-id2label.json""" __a = 1000 __a = (1, num_labels) __a = """huggingface/label-files""" __a = num_labels __a = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __a = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = partial(_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase ) __a = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } __a = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , _lowerCAmelCase , names_to_config[model_name] , _lowerCAmelCase , _lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""levit-dump-folder/""", type=Path, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) __A = parser.parse_args() __A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
702
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def UpperCamelCase ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path __a = quote(_lowerCAmelCase ) return hfh.hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" , revision=_lowerCAmelCase )
173
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github lowerCAmelCase = [ """good first issue""", """feature request""", """wip""", ] def lowerCAmelCase_ ( ) ->Dict: lowerCamelCase__ : List[str] =Github(os.environ['GITHUB_TOKEN'] ) lowerCamelCase__ : List[str] =g.get_repo('huggingface/accelerate' ) lowerCamelCase__ : Tuple =repo.get_issues(state='open' ) for issue in open_issues: lowerCamelCase__ : Optional[Any] =sorted([comment for comment in issue.get_comments()] , key=lambda snake_case_ : i.created_at , reverse=snake_case_ ) lowerCamelCase__ : str =comments[0] if len(snake_case_ ) > 0 else None lowerCamelCase__ : Union[str, Any] =dt.utcnow() lowerCamelCase__ : Tuple =(current_time - issue.updated_at).days lowerCamelCase__ : str =(current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 2_3 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
174
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowerCAmelCase = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
174
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : List[str] = TypeVar("""T""") class __lowerCAmelCase ( Generic[T] ): def __init__( self , snake_case = True ) -> None: """simple docstring""" a__ : dict[T, list[T]] = {} # dictionary of lists a__ : Union[str, Any] = directed def _snake_case ( self , snake_case , snake_case ) -> GraphAdjacencyList[T]: """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case ) self.adj_list[destination_vertex].append(snake_case ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case ) a__ : Any = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(snake_case ) a__ : Union[str, Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: a__ : Optional[int] = [destination_vertex] a__ : Any = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case ) a__ : Optional[int] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: a__ : Any = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: a__ : Tuple = [destination_vertex] a__ : str = [] return self def __repr__( self ) -> str: """simple docstring""" return pformat(self.adj_list )
629
from PIL import Image def _A ( lowerCamelCase , lowerCamelCase ): def brightness(lowerCamelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("level must be between -255.0 (black) and 255.0 (white)" ) return img.point(lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 SCREAMING_SNAKE_CASE__ : List[str] = change_brightness(img, 1_0_0) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
629
1
"""simple docstring""" from random import randint, random def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : int = 5 , ) -> list: lowerCamelCase_ = [[-1] * number_of_cells] # Create a highway without any car lowerCamelCase_ = 0 lowerCamelCase_ = max(_lowerCamelCase , 0 ) while i < number_of_cells: lowerCamelCase_ = ( randint(0 , _lowerCamelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase__ ( _lowerCamelCase : list , _lowerCamelCase : int ) -> int: lowerCamelCase_ = 0 lowerCamelCase_ = highway_now[car_index + 1 :] for cell in range(len(_lowerCamelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_lowerCamelCase , -1 ) def lowerCamelCase__ ( _lowerCamelCase : list , _lowerCamelCase : float , _lowerCamelCase : int ) -> list: lowerCamelCase_ = len(_lowerCamelCase ) # Beforce calculations, the highway is empty lowerCamelCase_ = [-1] * number_of_cells for car_index in range(_lowerCamelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed lowerCamelCase_ = min(highway_now[car_index] + 1 , _lowerCamelCase ) # Number of empty cell before the next car lowerCamelCase_ = get_distance(_lowerCamelCase , _lowerCamelCase ) - 1 # We can't have the car causing an accident lowerCamelCase_ = min(next_highway[car_index] , _lowerCamelCase ) if random() < probability: # Randomly, a driver will slow down lowerCamelCase_ = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase__ ( _lowerCamelCase : list , _lowerCamelCase : int , _lowerCamelCase : float , _lowerCamelCase : int ) -> list: lowerCamelCase_ = len(highway[0] ) for i in range(_lowerCamelCase ): lowerCamelCase_ = update(highway[i] , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase_ = [-1] * number_of_cells for car_index in range(_lowerCamelCase ): lowerCamelCase_ = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) lowerCamelCase_ = (car_index + speed) % number_of_cells # Commit the change of position lowerCamelCase_ = speed highway.append(_lowerCamelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
549
"""simple docstring""" import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class a ( unittest.TestCase ): @require_torch def UpperCamelCase ( self : str ) -> str: lowerCamelCase_ = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) lowerCamelCase_ = load_dataset('ashraq/esc50' ) lowerCamelCase_ = dataset['train']['audio'][-1]['array'] lowerCamelCase_ = audio_classifier(__SCREAMING_SNAKE_CASE , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'score': 0.501, 'label': 'Sound of a dog'}, {'score': 0.499, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def UpperCamelCase ( self : Tuple ) -> Optional[Any]: pass @slow @require_torch def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: lowerCamelCase_ = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog lowerCamelCase_ = load_dataset('ashraq/esc50' ) lowerCamelCase_ = dataset['train']['audio'][-1]['array'] lowerCamelCase_ = audio_classifier(__SCREAMING_SNAKE_CASE , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ] , ) lowerCamelCase_ = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) lowerCamelCase_ = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def UpperCamelCase ( self : Optional[int] ) -> int: pass
549
1
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } _UpperCamelCase = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' for attribute in key.split('''.''' ): __lowerCamelCase : Union[str, Any] =getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: __lowerCamelCase : Tuple =getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: __lowerCamelCase : str =hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCamelCase : Any =value elif weight_type == "weight_g": __lowerCamelCase : Optional[int] =value elif weight_type == "weight_v": __lowerCamelCase : Any =value elif weight_type == "bias": __lowerCamelCase : str =value else: __lowerCamelCase : Optional[int] =value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' __lowerCamelCase : Tuple =[] __lowerCamelCase : List[str] =fairseq_model.state_dict() __lowerCamelCase : Dict =hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase : List[str] =False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) __lowerCamelCase : str =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __lowerCamelCase : str =True if "*" in mapped_key: __lowerCamelCase : Tuple =name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] __lowerCamelCase : Optional[Any] =mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: __lowerCamelCase : List[Any] ='''weight_g''' elif "weight_v" in name: __lowerCamelCase : int ='''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: __lowerCamelCase : Optional[Any] ='''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase : Dict ='''weight''' else: __lowerCamelCase : Union[str, Any] =None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F'Unused weights: {unused_weights}' ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' __lowerCamelCase : Optional[Any] =full_name.split('''conv_layers.''' )[-1] __lowerCamelCase : Optional[Any] =name.split('''.''' ) __lowerCamelCase : Optional[Any] =int(items[0] ) __lowerCamelCase : Optional[Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCamelCase : Tuple =value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCamelCase : Optional[Any] =value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __lowerCamelCase : Any =value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCamelCase : Optional[Any] =value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int]=None ): '''simple docstring''' __lowerCamelCase : Optional[Any] =torch.load(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Dict =WavLMConfigOrig(checkpoint['''cfg'''] ) __lowerCamelCase : Optional[int] =WavLMOrig(SCREAMING_SNAKE_CASE ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: __lowerCamelCase : Optional[int] =WavLMConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: __lowerCamelCase : Optional[int] =WavLMConfig() __lowerCamelCase : Dict =WavLMModel(SCREAMING_SNAKE_CASE ) recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavlm.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') _UpperCamelCase = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
712
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __lowerCamelCase : Optional[Any] =len(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Union[str, Any] =[[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __lowerCamelCase : Union[str, Any] =y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCamelCase : List[Any] =( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
363
0
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __UpperCAmelCase = '\\n\n' __UpperCAmelCase = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' __UpperCAmelCase = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def __lowercase ( self : int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) ,reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] ,) def __lowercase ( self : str ,A : List[str] ,A : str ,A : int = 16 ,A : bool = True ,A : Union[str, Any]=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase__ : str = """cuda""" else: UpperCAmelCase__ : Optional[Any] = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCAmelCase__ : List[Any] = AutoModelForCausalLM.from_pretrained(A ) UpperCAmelCase__ : Dict = model.to(A ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(A ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase__ : Dict = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(A ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase__ : int = model.config.max_length - 1 else: UpperCAmelCase__ : List[Any] = model.config.max_length UpperCAmelCase__ : Tuple = tokenizer( A ,add_special_tokens=A ,padding=A ,truncation=A ,max_length=A ,return_tensors="""pt""" ,return_attention_mask=A ,).to(A ) UpperCAmelCase__ : Optional[Any] = encodings["""input_ids"""] UpperCAmelCase__ : Dict = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) ,1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) ,2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : str = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 ,len(A ) ,A ) ): UpperCAmelCase__ : List[Any] = min(start_index + batch_size ,len(A ) ) UpperCAmelCase__ : Optional[int] = encoded_texts[start_index:end_index] UpperCAmelCase__ : int = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase__ : str = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(A ) UpperCAmelCase__ : Tuple = torch.cat([bos_tokens_tensor, encoded_batch] ,dim=1 ) UpperCAmelCase__ : Any = torch.cat( [torch.ones(bos_tokens_tensor.size() ,dtype=torch.intaa ).to(A ), attn_mask] ,dim=1 ) UpperCAmelCase__ : Tuple = encoded_batch with torch.no_grad(): UpperCAmelCase__ : str = model(A ,attention_mask=A ).logits UpperCAmelCase__ : Optional[int] = out_logits[..., :-1, :].contiguous() UpperCAmelCase__ : List[Any] = labels[..., 1:].contiguous() UpperCAmelCase__ : Optional[Any] = attn_mask[..., 1:].contiguous() UpperCAmelCase__ : int = torch.expa( (loss_fct(shift_logits.transpose(1 ,2 ) ,A ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(A )}
65
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) else: return _interleave_iterable_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,): """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase ) else: return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
28
0
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class __snake_case ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = XLMProphetNetTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def __UpperCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : List[str] = XLMProphetNetTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = """[PAD]""" snake_case__ : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 1_0_1_2 ) def __UpperCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __UpperCamelCase ( self ): snake_case__ : Tuple = XLMProphetNetTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case__ : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case__ : Dict = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) snake_case__ : List[Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def __UpperCamelCase ( self ): return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def __UpperCamelCase ( self ): snake_case__ : Tuple = """Hello World!""" snake_case__ : str = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def __UpperCamelCase ( self ): # fmt: off snake_case__ : List[Any] = {"""input_ids""": [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
717
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1_0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=2 , ): snake_case__ : List[Any] = parent snake_case__ : List[Any] = batch_size snake_case__ : str = image_size snake_case__ : List[str] = patch_size snake_case__ : str = num_channels snake_case__ : Any = is_training snake_case__ : Optional[int] = use_labels snake_case__ : List[Any] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : int = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Dict = hidden_act snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : Tuple = type_sequence_label_size snake_case__ : int = initializer_range snake_case__ : Tuple = scope snake_case__ : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : Dict = (image_size // patch_size) ** 2 snake_case__ : Union[str, Any] = num_patches + 1 def __UpperCamelCase ( self ): snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Tuple = None if self.use_labels: snake_case__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = ViTModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Tuple = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = ViTForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case__ : str = 1 snake_case__ : Any = ViTForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = self.type_sequence_label_size snake_case__ : Optional[int] = ViTForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : str = 1 snake_case__ : Tuple = ViTForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Dict = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ): snake_case__ : str = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : str = config_and_inputs snake_case__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCamelCase__ = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = ViTModelTester(self ) snake_case__ : Optional[Any] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[int] = [*signature.parameters.keys()] snake_case__ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Union[str, Any] = ViTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = self.default_image_processor snake_case__ : Optional[int] = prepare_img() snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits snake_case__ : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. snake_case__ : str = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=4_8_0 ) snake_case__ : Optional[Any] = prepare_img() snake_case__ : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) snake_case__ : Any = inputs.pixel_values.to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(__SCREAMING_SNAKE_CASE , interpolate_pos_encoding=__SCREAMING_SNAKE_CASE ) # verify the logits snake_case__ : Any = torch.Size((1, 3_6_0_1, 3_8_4) ) self.assertEqual(outputs.last_hidden_state.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) snake_case__ : Tuple = self.default_image_processor snake_case__ : Tuple = prepare_img() snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) snake_case__ : Tuple = inputs.pixel_values.to(__SCREAMING_SNAKE_CASE ) # forward pass to make sure inference works in fp16 with torch.no_grad(): snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE )
419
0
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json a__ : List[Any] = 'sshleifer/mar_enro_6_3_student' class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __snake_case ( self : Dict ): super().setUp() UpperCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , ) UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def __snake_case ( self : Optional[int] ): MarianMTModel.from_pretrained(a__ ) @slow @require_torch_gpu def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __snake_case ( self : Any ): UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro" UpperCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script UpperCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' ) UpperCAmelCase = 6 UpperCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ f"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', f"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCAmelCase = distill_main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
51
'''simple docstring''' import json import sys def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Union[str, Any]: """simple docstring""" with open(_UpperCamelCase , encoding='utf-8' ) as f: _SCREAMING_SNAKE_CASE =json.load(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =results[benchmark_name] _SCREAMING_SNAKE_CASE =benchmark_name.split('/' )[-1] output_md.append(f"### Benchmark: {benchmark_file_name}" ) _SCREAMING_SNAKE_CASE ='| metric |' _SCREAMING_SNAKE_CASE ='|--------|' _SCREAMING_SNAKE_CASE ='| new / old (diff) |' for metric_name in sorted(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =benchmark_res[metric_name] _SCREAMING_SNAKE_CASE =metric_vals['new'] _SCREAMING_SNAKE_CASE =metric_vals.get('old' , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =metric_vals.get('diff' , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =f" {new_val:f}" if isinstance(_UpperCamelCase , (int, float) ) else 'None' if old_val is not None: val_str += f" / {old_val:f}" if isinstance(_UpperCamelCase , (int, float) ) else "None" if dif_val is not None: val_str += f" ({dif_val:f})" if isinstance(_UpperCamelCase , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(_UpperCamelCase ) ) if __name__ == "__main__": lowerCamelCase : Dict = sys.argv[1] lowerCamelCase : List[Any] = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
405
0
def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: return round(float(moles / volume ) * nfactor ) def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: return round(float((moles * 0.0821 * temperature) / (volume) ) ) def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
515
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
515
1
from __future__ import annotations def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> list[int]: __snake_case : Optional[int] = 0 __snake_case : Union[str, Any] = len(lowercase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __snake_case : int = i + 1 else: __snake_case : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
243
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( a , a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Any =StableDiffusionDiffEditPipeline UpperCAmelCase_ : Optional[int] =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} UpperCAmelCase_ : Any =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} UpperCAmelCase_ : Dict =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase_ : Union[str, Any] =frozenset([] ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __snake_case : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase , ) __snake_case : int = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) __snake_case : Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase , set_alpha_to_zero=UpperCAmelCase , ) torch.manual_seed(0 ) __snake_case : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __snake_case : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) __snake_case : int = CLIPTextModel(UpperCAmelCase ) __snake_case : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __snake_case : List[Any] = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = floats_tensor((1, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) __snake_case : Optional[Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if str(UpperCAmelCase ).startswith("mps" ): __snake_case : int = torch.manual_seed(UpperCAmelCase ) else: __snake_case : str = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __snake_case : Tuple = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=0 ) -> Optional[Any]: '''simple docstring''' __snake_case : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Dict = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("RGB" ) if str(UpperCAmelCase ).startswith("mps" ): __snake_case : str = torch.manual_seed(UpperCAmelCase ) else: __snake_case : Dict = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __snake_case : Union[str, Any] = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=0 ) -> Tuple: '''simple docstring''' __snake_case : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) __snake_case : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Union[str, Any] = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("RGB" ) if str(UpperCAmelCase ).startswith("mps" ): __snake_case : Tuple = torch.manual_seed(UpperCAmelCase ) else: __snake_case : Any = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __snake_case : Dict = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' if not hasattr(self.pipeline_class , "_optional_components" ): return __snake_case : str = self.get_dummy_components() __snake_case : Union[str, Any] = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __snake_case : Tuple = self.get_dummy_inputs(UpperCAmelCase ) __snake_case : List[str] = pipe(**UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase ) __snake_case : Any = self.pipeline_class.from_pretrained(UpperCAmelCase ) pipe_loaded.to(UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase , UpperCAmelCase ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) __snake_case : int = self.get_dummy_inputs(UpperCAmelCase ) __snake_case : List[Any] = pipe_loaded(**UpperCAmelCase )[0] __snake_case : Any = np.abs(output - output_loaded ).max() self.assertLess(UpperCAmelCase , 1E-4 ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : int = "cpu" __snake_case : str = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __snake_case : Dict = self.get_dummy_mask_inputs(UpperCAmelCase ) __snake_case : List[str] = pipe.generate_mask(**UpperCAmelCase ) __snake_case : str = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __snake_case : Union[str, Any] = np.array([0] * 9 ) __snake_case : Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = "cpu" __snake_case : str = self.get_dummy_components() __snake_case : str = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __snake_case : Optional[int] = self.get_dummy_inversion_inputs(UpperCAmelCase ) __snake_case : Dict = pipe.invert(**UpperCAmelCase ).images __snake_case : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __snake_case : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) __snake_case : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1E-3 ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Any = "cpu" __snake_case : Tuple = self.get_dummy_components() __snake_case : str = {"beta_start": 0.00_085, "beta_end": 0.012, "beta_schedule": "scaled_linear"} __snake_case : List[Any] = DPMSolverMultistepScheduler(**UpperCAmelCase ) __snake_case : Optional[int] = DPMSolverMultistepInverseScheduler(**UpperCAmelCase ) __snake_case : Tuple = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __snake_case : Optional[int] = self.get_dummy_inversion_inputs(UpperCAmelCase ) __snake_case : Any = pipe.invert(**UpperCAmelCase ).images __snake_case : Optional[int] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __snake_case : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) __snake_case : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase ( cls ) -> Optional[Any]: '''simple docstring''' __snake_case : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) __snake_case : Dict = raw_image.convert("RGB" ).resize((768, 768) ) __snake_case : int = raw_image def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Optional[int] = torch.manual_seed(0 ) __snake_case : Dict = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa ) __snake_case : Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config ) __snake_case : List[Any] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase ) __snake_case : Dict = "a bowl of fruit" __snake_case : Any = "a bowl of pears" __snake_case : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , ) __snake_case : Optional[int] = pipe.invert( prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase ).latents __snake_case : Union[str, Any] = pipe( prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , output_type="numpy" , ).images[0] __snake_case : List[Any] = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Union[str, Any] = torch.manual_seed(0 ) __snake_case : Optional[int] = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa ) __snake_case : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __snake_case : Tuple = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase ) __snake_case : List[str] = "a bowl of fruit" __snake_case : Optional[int] = "a bowl of pears" __snake_case : Optional[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , ) __snake_case : Any = pipe.invert( prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase , num_inference_steps=25 , ).latents __snake_case : Optional[int] = pipe( prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] __snake_case : List[Any] = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
243
1
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(__SCREAMING_SNAKE_CASE ) <= 1: return lst __snake_case : Tuple = 1 while i < len(__SCREAMING_SNAKE_CASE ): if lst[i - 1] <= lst[i]: i += 1 else: __snake_case : int = lst[i], lst[i - 1] i -= 1 if i == 0: __snake_case : List[Any] = 1 return lst if __name__ == "__main__": snake_case = input("Enter numbers separated by a comma:\n").strip() snake_case = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
716
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[Any] = ["image_processor", "tokenizer"] A : Union[str, Any] = "BridgeTowerImageProcessor" A : Union[str, Any] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : Tuple , ): __snake_case : Dict = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) # add pixel_values + pixel_mask __snake_case : str = self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , do_normalize=_lowerCAmelCase , do_center_crop=_lowerCAmelCase , **_lowerCAmelCase ) encoding.update(_lowerCAmelCase ) return encoding def snake_case__ ( self : List[Any] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : str ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Tuple , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Union[str, Any] ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def snake_case__ ( self : List[Any] ): __snake_case : int = self.tokenizer.model_input_names __snake_case : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
390
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Optional[Any] = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
400
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : str = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) _snake_case : ClassVar[Features] = Features({'text': Value('string' )} ) _snake_case : ClassVar[Features] = Features({'summary': Value('string' )} ) _snake_case : str = "text" _snake_case : str = "summary" @property def A ( self : Any )-> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
505
0
"""simple docstring""" def A__ ( _UpperCAmelCase : float , _UpperCAmelCase : list[float] ) -> float: '''simple docstring''' if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) snake_case__ : int = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_UpperCAmelCase ) ) return round(_UpperCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
150
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def A__ ( _UpperCAmelCase : Tuple=None ) -> Any: '''simple docstring''' if subparsers is not None: snake_case__ : List[Any] = subparsers.add_parser("test" ) else: snake_case__ : Dict = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=_UpperCAmelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def A__ ( _UpperCAmelCase : Any ) -> Dict: '''simple docstring''' snake_case__ : List[str] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: snake_case__ : Optional[int] = script_name else: snake_case__ : List[str] = F"""--config_file={args.config_file} {script_name}""" snake_case__ : List[Any] = ["accelerate-launch"] + test_args.split() snake_case__ : Any = execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def A__ ( ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = test_command_parser() snake_case__ : str = parser.parse_args() test_command(_UpperCAmelCase ) if __name__ == "__main__": main()
150
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) @dataclass class _snake_case : lowerCAmelCase_ : Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCAmelCase_ : bool = field( default=lowercase_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCAmelCase_ : bool = field( default=lowercase_ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) lowerCAmelCase_ : Optional[int] = field( default=lowercase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase_ : Optional[int] = field( default=lowercase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) lowerCAmelCase_ : Optional[int] = field( default=lowercase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class _snake_case : lowerCAmelCase_ : str = field( default=lowercase_ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase_ : str = field( default=lowercase_ , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase_ , metadata={"help": "Train language if it is different from the evaluation language."} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCAmelCase_ : Optional[bool] = field( default=lowercase_ , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) lowerCAmelCase_ : bool = field( default=lowercase_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCAmelCase_ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase_ : bool = field( default=lowercase_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase_ : bool = field( default=lowercase_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , snake_case ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ = training_args.get_process_log_level() logger.setLevel(snake_case ) datasets.utils.logging.set_verbosity(snake_case ) transformers.utils.logging.set_verbosity(snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: snake_case_ = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: snake_case_ = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = train_dataset.features["label"].names if training_args.do_eval: snake_case_ = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = eval_dataset.features["label"].names if training_args.do_predict: snake_case_ = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = predict_dataset.features["label"].names # Labels snake_case_ = len(snake_case ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case , idalabel={str(snake_case ): label for i, label in enumerate(snake_case )} , labelaid={label: i for i, label in enumerate(snake_case )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: snake_case_ = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case_ = False def preprocess_function(snake_case : Dict ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=snake_case , max_length=data_args.max_seq_length , truncation=snake_case , ) if training_args.do_train: if data_args.max_train_samples is not None: snake_case_ = min(len(snake_case ) , data_args.max_train_samples ) snake_case_ = train_dataset.select(range(snake_case ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): snake_case_ = train_dataset.map( snake_case , batched=snake_case , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(snake_case ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: snake_case_ = min(len(snake_case ) , data_args.max_eval_samples ) snake_case_ = eval_dataset.select(range(snake_case ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): snake_case_ = eval_dataset.map( snake_case , batched=snake_case , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: snake_case_ = min(len(snake_case ) , data_args.max_predict_samples ) snake_case_ = predict_dataset.select(range(snake_case ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): snake_case_ = predict_dataset.map( snake_case , batched=snake_case , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function snake_case_ = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(snake_case : EvalPrediction ): snake_case_ = p.predictions[0] if isinstance(p.predictions , snake_case ) else p.predictions snake_case_ = np.argmax(snake_case , axis=1 ) return metric.compute(predictions=snake_case , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case_ = default_data_collator elif training_args.fpaa: snake_case_ = DataCollatorWithPadding(snake_case , pad_to_multiple_of=8 ) else: snake_case_ = None # Initialize our Trainer snake_case_ = Trainer( model=snake_case , args=snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=snake_case , tokenizer=snake_case , data_collator=snake_case , ) # Training if training_args.do_train: snake_case_ = None if training_args.resume_from_checkpoint is not None: snake_case_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ = last_checkpoint snake_case_ = trainer.train(resume_from_checkpoint=snake_case ) snake_case_ = train_result.metrics snake_case_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case ) ) snake_case_ = min(snake_case , len(snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , snake_case ) trainer.save_metrics("train" , snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case_ = trainer.evaluate(eval_dataset=snake_case ) snake_case_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(snake_case ) snake_case_ = min(snake_case , len(snake_case ) ) trainer.log_metrics("eval" , snake_case ) trainer.save_metrics("eval" , snake_case ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) snake_case_ , snake_case_ , snake_case_ = trainer.predict(snake_case , metric_key_prefix="predict" ) snake_case_ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(snake_case ) ) snake_case_ = min(snake_case , len(snake_case ) ) trainer.log_metrics("predict" , snake_case ) trainer.save_metrics("predict" , snake_case ) snake_case_ = np.argmax(snake_case , axis=1 ) snake_case_ = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(snake_case , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(snake_case ): snake_case_ = label_list[item] writer.write(f'{index}\t{item}\n' ) if __name__ == "__main__": main()
400
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _SCREAMING_SNAKE_CASE : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _snake_case ( datasets.BuilderConfig ): lowerCAmelCase_ : int = 1_0000 lowerCAmelCase_ : Optional[List[str]] = None lowerCAmelCase_ : Optional[datasets.Features] = None class _snake_case ( datasets.ArrowBasedBuilder ): lowerCAmelCase_ : Tuple = ParquetConfig def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) snake_case_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a__ , (str, list, tuple) ): snake_case_ = data_files if isinstance(a__ , a__ ): snake_case_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case_ = [dl_manager.iter_files(a__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] snake_case_ = [] for split_name, files in data_files.items(): if isinstance(a__ , a__ ): snake_case_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case_ = [dl_manager.iter_files(a__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a__ ): with open(a__ , "rb" ) as f: snake_case_ = datasets.Features.from_arrow_schema(pq.read_schema(a__ ) ) break splits.append(datasets.SplitGenerator(name=a__ , gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase__ ( self , a__ ) -> pa.Table: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example snake_case_ = table_cast(a__ , self.info.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self , a__ ) -> List[Any]: '''simple docstring''' snake_case_ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(a__ ) ): with open(a__ , "rb" ) as f: snake_case_ = pq.ParquetFile(a__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): snake_case_ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'{file_idx}_{batch_idx}', self._cast_table(a__ ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(a__ )}: {e}' ) raise
400
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge lowercase__ =[ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] lowercase__ =[ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def __UpperCamelCase ( ): __a : Tuple = calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ , bootstrap_aggregation=lowerCAmelCase__ , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) __a : Dict = calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ , bootstrap_aggregation=lowerCAmelCase__ , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def __UpperCamelCase ( ): __a : List[str] = '''rougeLsum''' __a : Optional[int] = calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ , newline_sep=lowerCAmelCase__ , rouge_keys=[k] )[k] __a : Optional[Any] = calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ , newline_sep=lowerCAmelCase__ , rouge_keys=[k] )[k] assert score > score_no_sep def __UpperCamelCase ( ): __a : int = ['''rouge1''', '''rouge2''', '''rougeL'''] __a : Optional[int] = calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ , newline_sep=lowerCAmelCase__ , rouge_keys=lowerCAmelCase__ ) __a : Union[str, Any] = calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ , newline_sep=lowerCAmelCase__ , rouge_keys=lowerCAmelCase__ ) assert score_sep == score_no_sep def __UpperCamelCase ( ): __a : Union[str, Any] = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] __a : Optional[Any] = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ , newline_sep=lowerCAmelCase__ ) == calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ , newline_sep=lowerCAmelCase__ ) def __UpperCamelCase ( ): __a : int = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] __a : List[str] = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] __a : str = calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ , rouge_keys=['''rougeLsum'''] , newline_sep=lowerCAmelCase__ )['''rougeLsum'''] __a : Union[str, Any] = calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def __UpperCamelCase ( ): __a : Dict = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) __a : Dict = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) __a : Optional[int] = calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
326
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase__ ( unittest.TestCase ): def __init__(self : Union[str, Any] , snake_case_ : Dict , snake_case_ : Optional[int]=7 , snake_case_ : List[str]=3 , snake_case_ : List[str]=3_0 , snake_case_ : Union[str, Any]=4_0_0 , snake_case_ : Optional[Any]=True , snake_case_ : Tuple=None , snake_case_ : List[Any]=True , snake_case_ : Tuple=[0.5, 0.5, 0.5] , snake_case_ : Optional[int]=[0.5, 0.5, 0.5] , snake_case_ : Dict=True , snake_case_ : Any=1 / 2_5_5 , snake_case_ : Any=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __a : Optional[Any] = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} __a : List[Any] = parent __a : Optional[Any] = batch_size __a : int = num_channels __a : Any = min_resolution __a : Optional[Any] = max_resolution __a : List[str] = do_resize __a : Optional[int] = size __a : Dict = do_normalize __a : Any = image_mean __a : Tuple = image_std __a : Union[str, Any] = do_rescale __a : Union[str, Any] = rescale_factor __a : List[Any] = do_pad def lowerCAmelCase (self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase (self : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any]=False ): if not batched: __a : str = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __a , __a : Tuple = image.size else: __a , __a : Tuple = image.shape[1], image.shape[2] if w < h: __a : int = int(self.size['''shortest_edge'''] * h / w ) __a : Any = self.size['''shortest_edge'''] elif w > h: __a : Tuple = self.size['''shortest_edge'''] __a : int = int(self.size['''shortest_edge'''] * w / h ) else: __a : List[Any] = self.size['''shortest_edge'''] __a : Dict = self.size['''shortest_edge'''] else: __a : Union[str, Any] = [] for image in image_inputs: __a , __a : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a : Union[str, Any] = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __a : Any = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase__ ( __lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = YolosImageProcessor if is_vision_available() else None def lowerCAmelCase (self : Any ): __a : Any = YolosImageProcessingTester(self ) @property def lowerCAmelCase (self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase (self : Optional[int] ): __a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , '''image_mean''' ) ) self.assertTrue(hasattr(snake_case_ , '''image_std''' ) ) self.assertTrue(hasattr(snake_case_ , '''do_normalize''' ) ) self.assertTrue(hasattr(snake_case_ , '''do_resize''' ) ) self.assertTrue(hasattr(snake_case_ , '''size''' ) ) def lowerCAmelCase (self : Union[str, Any] ): __a : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , snake_case_ ) __a : int = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=snake_case_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , snake_case_ ) def lowerCAmelCase (self : str ): pass def lowerCAmelCase (self : Optional[Any] ): # Initialize image_processing __a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __a : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __a , __a : int = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a : List[str] = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __a : str = image_processing(snake_case_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase (self : str ): # Initialize image_processing __a : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __a : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __a , __a : Dict = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a : int = image_processing(snake_case_ , return_tensors='''pt''' ).pixel_values __a , __a : List[str] = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase (self : Optional[Any] ): # Initialize image_processing __a : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __a : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __a , __a : Optional[Any] = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a : Tuple = image_processing(snake_case_ , return_tensors='''pt''' ).pixel_values __a , __a : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase (self : Any ): # Initialize image_processings __a : Any = self.image_processing_class(**self.image_processor_dict ) __a : str = self.image_processing_class(do_resize=snake_case_ , do_normalize=snake_case_ , do_rescale=snake_case_ ) # create random PyTorch tensors __a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __a : List[Any] = image_processing_a.pad(snake_case_ , return_tensors='''pt''' ) __a : Union[str, Any] = image_processing_a(snake_case_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def lowerCAmelCase (self : List[str] ): # prepare image and target __a : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: __a : str = json.loads(f.read() ) __a : Dict = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them __a : Optional[Any] = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) __a : Tuple = image_processing(images=snake_case_ , annotations=snake_case_ , return_tensors='''pt''' ) # verify pixel values __a : int = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , snake_case_ ) __a : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , snake_case_ , atol=1E-4 ) ) # verify area __a : int = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , snake_case_ ) ) # verify boxes __a : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , snake_case_ ) __a : List[str] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , snake_case_ , atol=1E-3 ) ) # verify image_id __a : Optional[Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , snake_case_ ) ) # verify is_crowd __a : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , snake_case_ ) ) # verify class_labels __a : Optional[Any] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , snake_case_ ) ) # verify orig_size __a : Optional[int] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , snake_case_ ) ) # verify size __a : Optional[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , snake_case_ ) ) @slow def lowerCAmelCase (self : Optional[int] ): # prepare image, target and masks_path __a : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: __a : int = json.loads(f.read() ) __a : Optional[int] = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} __a : List[str] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __a : Any = YolosImageProcessor(format='''coco_panoptic''' ) __a : Any = image_processing(images=snake_case_ , annotations=snake_case_ , masks_path=snake_case_ , return_tensors='''pt''' ) # verify pixel values __a : Tuple = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , snake_case_ ) __a : str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , snake_case_ , atol=1E-4 ) ) # verify area __a : Optional[Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , snake_case_ ) ) # verify boxes __a : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , snake_case_ ) __a : Tuple = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , snake_case_ , atol=1E-3 ) ) # verify image_id __a : Dict = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , snake_case_ ) ) # verify is_crowd __a : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , snake_case_ ) ) # verify class_labels __a : Any = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , snake_case_ ) ) # verify masks __a : Tuple = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , snake_case_ ) # verify orig_size __a : Any = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , snake_case_ ) ) # verify size __a : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , snake_case_ ) )
326
1
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") _lowerCamelCase = int(input("""Enter number: """).strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
71
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
374
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __lowerCamelCase = logging.getLogger(__name__) class _UpperCamelCase( SCREAMING_SNAKE_CASE ): __A: List[Any] = """sequence-classification""" def __init__( self : List[Any] , _lowerCamelCase : Any ): '''simple docstring''' if type(_lowerCamelCase ) == dict: _UpperCAmelCase : int = Namespace(**_lowerCamelCase ) _UpperCAmelCase : Tuple = glue_output_modes[hparams.task] _UpperCAmelCase : List[str] = glue_tasks_num_labels[hparams.task] super().__init__(_lowerCamelCase , _lowerCamelCase , self.mode ) def a__ ( self : Optional[int] , **_lowerCamelCase : str ): '''simple docstring''' return self.model(**_lowerCamelCase ) def a__ ( self : str , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase : Dict = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Tuple = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None _UpperCAmelCase : int = self(**_lowerCamelCase ) _UpperCAmelCase : str = outputs[0] _UpperCAmelCase : List[str] = self.trainer.lr_schedulers[0]["scheduler"] _UpperCAmelCase : List[str] = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def a__ ( self : List[Any] ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.hparams _UpperCAmelCase : List[Any] = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Optional[int] = self._feature_file(_lowerCamelCase ) if os.path.exists(_lowerCamelCase ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , _lowerCamelCase ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Any = convert_examples_to_features( _lowerCamelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) def a__ ( self : Tuple , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : bool = False ): '''simple docstring''' _UpperCAmelCase : Optional[int] = "dev" if mode == "test" else mode _UpperCAmelCase : Optional[Any] = self._feature_file(_lowerCamelCase ) logger.info("Loading features from cached file %s" , _lowerCamelCase ) _UpperCAmelCase : List[str] = torch.load(_lowerCamelCase ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _UpperCAmelCase : Dict = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[Any] = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Tuple = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , batch_size=_lowerCamelCase , shuffle=_lowerCamelCase , ) def a__ ( self : Dict , _lowerCamelCase : str , _lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : Optional[int] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Optional[Any] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None _UpperCAmelCase : Tuple = self(**_lowerCamelCase ) _UpperCAmelCase : List[Any] = outputs[:2] _UpperCAmelCase : str = logits.detach().cpu().numpy() _UpperCAmelCase : List[str] = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def a__ ( self : Dict , _lowerCamelCase : Any ): '''simple docstring''' _UpperCAmelCase : Optional[int] = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Dict = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Dict = np.argmax(_lowerCamelCase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Dict = np.squeeze(_lowerCamelCase ) _UpperCAmelCase : Tuple = np.concatenate([x["target"] for x in outputs] , axis=0 ) _UpperCAmelCase : Dict = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[Any] = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , _lowerCamelCase , _lowerCamelCase )} _UpperCAmelCase : List[Any] = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def a__ ( self : int , _lowerCamelCase : list ): '''simple docstring''' _UpperCAmelCase : Optional[int] = self._eval_end(_lowerCamelCase ) _UpperCAmelCase : int = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def a__ ( self : int , _lowerCamelCase : Tuple ): '''simple docstring''' _UpperCAmelCase : List[str] = self._eval_end(_lowerCamelCase ) _UpperCAmelCase : str = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def a__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : int ): '''simple docstring''' BaseTransformer.add_model_specific_args(_lowerCamelCase , _lowerCamelCase ) parser.add_argument( "--max_seq_length" , default=1_28 , type=_lowerCamelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=_lowerCamelCase , required=_lowerCamelCase , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=_lowerCamelCase , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def lowerCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[Any] = argparse.ArgumentParser() add_generic_args(_SCREAMING_SNAKE_CASE , os.getcwd() ) _UpperCAmelCase : int = GLUETransformer.add_model_specific_args(_SCREAMING_SNAKE_CASE , os.getcwd() ) _UpperCAmelCase : Dict = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : str = os.path.join( "./results" , F"""{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}""" , ) os.makedirs(args.output_dir ) _UpperCAmelCase : Dict = GLUETransformer(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Tuple = generic_train(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : Optional[Any] = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase : Union[str, Any] = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
706
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _UpperCamelCase( unittest.TestCase ): __A: int = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def a__ ( self : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): _UpperCAmelCase : str = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) _UpperCAmelCase : Any = VideoClassificationPipeline(model=_lowerCamelCase , image_processor=_lowerCamelCase , top_k=2 ) _UpperCAmelCase : Union[str, Any] = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def a__ ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Any ): for example in examples: _UpperCAmelCase : str = video_classifier(_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {"score": ANY(_lowerCamelCase ), "label": ANY(_lowerCamelCase )}, {"score": ANY(_lowerCamelCase ), "label": ANY(_lowerCamelCase )}, ] , ) @require_torch def a__ ( self : int ): _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" _UpperCAmelCase : int = VideoMAEFeatureExtractor( size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} ) _UpperCAmelCase : Tuple = pipeline( "video-classification" , model=_lowerCamelCase , feature_extractor=_lowerCamelCase , frame_sampling_rate=4 ) _UpperCAmelCase : Tuple = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) _UpperCAmelCase : List[Any] = video_classifier(_lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}] , ) _UpperCAmelCase : Optional[Any] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ [{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}], [{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}], ] , ) @require_tf def a__ ( self : str ): pass
328
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case : List[str] =logging.get_logger(__name__) class lowerCamelCase__ ( a_): '''simple docstring''' def __init__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Optional[Any]: """simple docstring""" warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,a_ ,) super().__init__(*a_ ,**a_ )
647
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> str: a_ : Tuple = WavaVecaForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) a_ : Any = downstream_dict["projector.weight"] a_ : Dict = downstream_dict["projector.bias"] a_ : Tuple = downstream_dict["model.post_net.linear.weight"] a_ : int = downstream_dict["model.post_net.linear.bias"] return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> List[Any]: a_ : List[str] = WavaVecaForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = downstream_dict["model.linear.weight"] a_ : List[Any] = downstream_dict["model.linear.bias"] return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: a_ : int = WavaVecaForXVector.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) a_ : Any = downstream_dict["connector.weight"] a_ : Tuple = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a_ : List[str] = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a_ : int = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a_ : Any = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] a_ : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] a_ : str = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] a_ : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] a_ : List[str] = downstream_dict["objective.W"] return model @torch.no_grad() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Tuple: a_ : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__, map_location="cpu" ) a_ : List[str] = checkpoint["Downstream"] a_ : Union[str, Any] = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( SCREAMING_SNAKE_CASE__, return_attention_mask=SCREAMING_SNAKE_CASE__, do_normalize=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): a_ : int = convert_classification(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) elif arch.endswith("ForAudioFrameClassification" ): a_ : Any = convert_diarization(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) elif arch.endswith("ForXVector" ): a_ : Any = convert_xvector(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a_ : Tuple = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
237
0
"""simple docstring""" from collections import deque from .hash_table import HashTable class UpperCamelCase_ (__A ): def __init__( self : Dict , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Union[str, Any] ) -> Any: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = self.values[key] def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: return ( sum(self.charge_factor - len(lowerCAmelCase_ ) for slot in self.values ) / self.size_table * self.charge_factor ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple=None ) -> Tuple: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(lowerCAmelCase_ ) == 0 ): return key return super()._collision_resolution(lowerCAmelCase_ , lowerCAmelCase_ )
712
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = '''▁''' lowerCamelCase_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCamelCase_ = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } lowerCamelCase_ = { '''facebook/xglm-564M''': 2048, } class UpperCamelCase_ (__A ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]="<s>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : Tuple="</s>" , lowerCAmelCase_ : List[str]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : List[str] , ) -> None: UpperCAmelCase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCAmelCase_ : Any = 7 UpperCAmelCase_ : Dict = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCAmelCase_ : Optional[int] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) UpperCAmelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase_ ) ) UpperCAmelCase_ : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ : Tuple = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} UpperCAmelCase_ : List[str] = len(self.sp_model ) UpperCAmelCase_ : List[Any] = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.__dict__.copy() UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , lowerCAmelCase_ : Any ) -> Any: UpperCAmelCase_ : Tuple = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : Optional[int] = self.sp_model.PieceToId(lowerCAmelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Tuple ) -> Optional[int]: UpperCAmelCase_ : Any = "".join(lowerCAmelCase_ ).replace(lowerCAmelCase_ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , "wb" ) as fi: UpperCAmelCase_ : str = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
463
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[str] ={ 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __A ( UpperCamelCase__ ): a__ : Optional[Any] = """sew-d""" def __init__(self : Union[str, Any] , __a : int=32 , __a : int=768 , __a : int=12 , __a : str=12 , __a : List[Any]=3072 , __a : Optional[Any]=2 , __a : Optional[Any]=512 , __a : Tuple=256 , __a : Optional[int]=True , __a : int=True , __a : Dict=("p2c", "c2p") , __a : Dict="layer_norm" , __a : Tuple="gelu_python" , __a : List[str]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.0 , __a : Any=0.1 , __a : Any=0.02 , __a : int=1E-7 , __a : Tuple=1E-5 , __a : Union[str, Any]="group" , __a : str="gelu" , __a : Tuple=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a : Optional[int]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a : Optional[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a : int=False , __a : List[Any]=128 , __a : List[Any]=16 , __a : Optional[Any]=True , __a : Dict=0.05 , __a : List[Any]=10 , __a : Any=2 , __a : Tuple=0.0 , __a : Dict=10 , __a : Tuple=0 , __a : Optional[Any]="mean" , __a : Optional[int]=False , __a : Dict=False , __a : Any=256 , __a : str=0 , __a : Optional[Any]=1 , __a : Any=2 , **__a : Any , ): super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = feat_extract_norm UpperCAmelCase_ = feat_extract_activation UpperCAmelCase_ = list(__a ) UpperCAmelCase_ = list(__a ) UpperCAmelCase_ = list(__a ) UpperCAmelCase_ = conv_bias UpperCAmelCase_ = num_conv_pos_embeddings UpperCAmelCase_ = num_conv_pos_embedding_groups UpperCAmelCase_ = len(self.conv_dim ) UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = squeeze_factor UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = position_buckets UpperCAmelCase_ = share_att_key UpperCAmelCase_ = relative_attention UpperCAmelCase_ = norm_rel_ebd UpperCAmelCase_ = list(__a ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = feat_proj_dropout UpperCAmelCase_ = final_dropout UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = feature_layer_norm_eps UpperCAmelCase_ = initializer_range UpperCAmelCase_ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ = apply_spec_augment UpperCAmelCase_ = mask_time_prob UpperCAmelCase_ = mask_time_length UpperCAmelCase_ = mask_time_min_masks UpperCAmelCase_ = mask_feature_prob UpperCAmelCase_ = mask_feature_length UpperCAmelCase_ = mask_feature_min_masks # ctc loss UpperCAmelCase_ = ctc_loss_reduction UpperCAmelCase_ = ctc_zero_infinity # sequence classification UpperCAmelCase_ = use_weighted_layer_sum UpperCAmelCase_ = classifier_proj_size @property def _lowercase (self : str ): return functools.reduce(operator.mul , self.conv_stride , 1 )
78
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_lengths SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = gelu_activation SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings SCREAMING_SNAKE_CASE__ = causal SCREAMING_SNAKE_CASE__ = asm SCREAMING_SNAKE_CASE__ = n_langs SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_special SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = summary_type SCREAMING_SNAKE_CASE__ = use_proj SCREAMING_SNAKE_CASE__ = scope def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase_ = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 ) def _snake_case ( self :int ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__A ) def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__A ) def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__A ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__A ) def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__A ) def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__A ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__A ) @slow def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(config=__A ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE__ = torch.jit.trace( __A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) ) SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A ) loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) )
6
0
class _snake_case : def __init__( self : Union[str, Any] ): lowercase__ = "" lowercase__ = "" lowercase__ = [] def A__ ( self : Optional[Any], __lowercase : int, __lowercase : int ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowercase__ = self.__min_dist_top_down_dp(m - 1, n - 1 ) else: lowercase__ = self.__min_dist_top_down_dp(__lowercase, n - 1 ) lowercase__ = self.__min_dist_top_down_dp(m - 1, __lowercase ) lowercase__ = self.__min_dist_top_down_dp(m - 1, n - 1 ) lowercase__ = 1 + min(__lowercase, __lowercase, __lowercase ) return self.dp[m][n] def A__ ( self : Optional[Any], __lowercase : str, __lowercase : str ): lowercase__ = worda lowercase__ = worda lowercase__ = [[-1 for _ in range(len(__lowercase ) )] for _ in range(len(__lowercase ) )] return self.__min_dist_top_down_dp(len(__lowercase ) - 1, len(__lowercase ) - 1 ) def A__ ( self : List[str], __lowercase : str, __lowercase : str ): lowercase__ = worda lowercase__ = worda lowercase__ = len(__lowercase ) lowercase__ = len(__lowercase ) lowercase__ = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowercase__ = j elif j == 0: # second string is empty lowercase__ = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowercase__ = self.dp[i - 1][j - 1] else: lowercase__ = self.dp[i][j - 1] lowercase__ = self.dp[i - 1][j] lowercase__ = self.dp[i - 1][j - 1] lowercase__ = 1 + min(__lowercase, __lowercase, __lowercase ) return self.dp[m][n] if __name__ == "__main__": lowercase_ = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() lowercase_ = input("""Enter the first string: """).strip() lowercase_ = input("""Enter the second string: """).strip() print() print(F'The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}') print(F'The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}') print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
37
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _snake_case ( lowercase__): def __init__( self : Optional[Any], __lowercase : str = "▁", __lowercase : bool = True, __lowercase : Union[str, AddedToken] = "<unk>", __lowercase : Union[str, AddedToken] = "</s>", __lowercase : Union[str, AddedToken] = "<pad>", ): lowercase__ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } lowercase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowercase__ = token_dict["token"] lowercase__ = Tokenizer(Unigram() ) lowercase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ), " " ), normalizers.Lowercase(), ] ) lowercase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__lowercase, add_prefix_space=__lowercase ), pre_tokenizers.Digits(individual_digits=__lowercase ), pre_tokenizers.Punctuation(), ] ) lowercase__ = decoders.Metaspace(replacement=__lowercase, add_prefix_space=__lowercase ) lowercase__ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''', special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])], ) lowercase__ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__lowercase, __lowercase ) def A__ ( self : Union[str, Any], __lowercase : Union[str, List[str]], __lowercase : int = 8000, __lowercase : bool = True, ): lowercase__ = trainers.UnigramTrainer( vocab_size=__lowercase, special_tokens=self.special_tokens_list, show_progress=__lowercase, ) if isinstance(__lowercase, __lowercase ): lowercase__ = [files] self._tokenizer.train(__lowercase, trainer=__lowercase ) self.add_unk_id() def A__ ( self : List[Any], __lowercase : Union[Iterator[str], Iterator[Iterator[str]]], __lowercase : int = 8000, __lowercase : bool = True, ): lowercase__ = trainers.UnigramTrainer( vocab_size=__lowercase, special_tokens=self.special_tokens_list, show_progress=__lowercase, ) self._tokenizer.train_from_iterator(__lowercase, trainer=__lowercase ) self.add_unk_id() def A__ ( self : str ): lowercase__ = json.loads(self._tokenizer.to_str() ) lowercase__ = self.special_tokens["unk"]["id"] lowercase__ = Tokenizer.from_str(json.dumps(__lowercase ) )
37
1
from __future__ import annotations from collections import Counter from random import random class lowerCamelCase : def __init__( self): __UpperCAmelCase : Dict = {} def A( self , lowercase__): __UpperCAmelCase : Optional[int] = {} def A( self , lowercase__ , lowercase__ , lowercase__): if nodea not in self.connections: self.add_node(_A) if nodea not in self.connections: self.add_node(_A) __UpperCAmelCase : Optional[int] = probability def A( self): return list(self.connections) def A( self , lowercase__): __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Optional[int] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : List[str] = Counter(graph.get_nodes() ) __UpperCAmelCase : Optional[int] = start for _ in range(SCREAMING_SNAKE_CASE__ ): __UpperCAmelCase : Optional[int] = graph.transition(SCREAMING_SNAKE_CASE__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
462
'''simple docstring''' def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Tuple = len(SCREAMING_SNAKE_CASE__ ) __a : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __a : int = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __a : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __a : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __a : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
597
0
import string import numpy def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Tuple: """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , _lowerCamelCase ) class __lowerCAmelCase : """simple docstring""" snake_case_ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) snake_case_ = numpy.vectorize(lambda __magic_name__ : x % 36 ) snake_case_ = numpy.vectorize(__magic_name__ ) def __init__( self , lowerCamelCase__ ) -> None: '''simple docstring''' __lowerCamelCase = self.modulus(UpperCamelCase__ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __lowerCamelCase = encrypt_key.shape[0] def lowercase_ ( self , lowerCamelCase__ ) -> int: '''simple docstring''' return self.key_string.index(UpperCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' return self.key_string[round(UpperCamelCase__ )] def lowercase_ ( self ) -> None: '''simple docstring''' __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = len(self.key_string ) if greatest_common_divisor(UpperCamelCase__ , len(self.key_string ) ) != 1: __lowerCamelCase = ( f"""determinant modular {req_l} of encryption key({det}) """ f"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(UpperCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = [char for char in text.upper() if char in self.key_string] __lowerCamelCase = chars[-1] while len(UpperCamelCase__ ) % self.break_key != 0: chars.append(UpperCamelCase__ ) return "".join(UpperCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = '' for i in range(0 , len(UpperCamelCase__ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase__ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(self.encrypt_key.dot(UpperCamelCase__ ) ).T.tolist()[ 0 ] __lowerCamelCase = ''.join( self.replace_digits(UpperCamelCase__ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowercase_ ( self ) -> numpy.ndarray: '''simple docstring''' __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __lowerCamelCase = i break __lowerCamelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCamelCase__ ) ) def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = self.make_decrypt_key() __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = '' for i in range(0 , len(UpperCamelCase__ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase__ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(decrypt_key.dot(UpperCamelCase__ ) ).T.tolist()[0] __lowerCamelCase = ''.join( self.replace_digits(UpperCamelCase__ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCamelCase_ ( ) -> Optional[int]: """simple docstring""" __lowerCamelCase = int(input('Enter the order of the encryption key: ' ) ) __lowerCamelCase = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(_lowerCamelCase ): __lowerCamelCase = [int(_lowerCamelCase ) for x in input().split()] hill_matrix.append(_lowerCamelCase ) __lowerCamelCase = HillCipher(numpy.array(_lowerCamelCase ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) __lowerCamelCase = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": __lowerCamelCase = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(_lowerCamelCase ) ) elif option == "2": __lowerCamelCase = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
700
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: __lowerCamelCase = F"""The input value of [n={number}] has to be > 0""" raise ValueError(UpperCamelCase__ ) else: __lowerCamelCase = sylvester(number - 1 ) __lowerCamelCase = num - 1 __lowerCamelCase = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
167
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging A__ : List[Any] = logging.get_logger(__name__) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Optional[int] = ['input_values', 'padding_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 2_40_00 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> str: super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = chunk_length_s __lowerCamelCase : Union[str, Any] = overlap @property def lowercase_ ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowercase_ ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs __lowerCamelCase : Tuple = True __lowerCamelCase : Tuple = bool( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCamelCase : Tuple = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): __lowerCamelCase : List[Any] = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): __lowerCamelCase : List[Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: __lowerCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ).T] # verify inputs are valid for idx, example in enumerate(SCREAMING_SNAKE_CASE_ ): if example.ndim > 2: raise ValueError(f'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'Expected stereo audio but example has {example.shape[-1]} channels' ) __lowerCamelCase : Any = None __lowerCamelCase : Dict = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __lowerCamelCase : Optional[Any] = min(array.shape[0] for array in raw_audio ) __lowerCamelCase : List[str] = int(np.floor(max_length / self.chunk_stride ) ) __lowerCamelCase : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __lowerCamelCase : List[Any] = max(array.shape[0] for array in raw_audio ) __lowerCamelCase : int = int(np.ceil(max_length / self.chunk_stride ) ) __lowerCamelCase : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length __lowerCamelCase : Union[str, Any] = 'max_length' else: __lowerCamelCase : Union[str, Any] = input_values # normal padding on batch if padded_inputs is None: __lowerCamelCase : Any = self.pad( SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ) if padding: __lowerCamelCase : List[str] = padded_inputs.pop('attention_mask' ) __lowerCamelCase : str = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: __lowerCamelCase : Any = example[..., None] input_values.append(example.T ) __lowerCamelCase : List[str] = input_values if return_tensors is not None: __lowerCamelCase : Union[str, Any] = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs
13
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _A = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _A = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def __UpperCamelCase ( _A ): lowerCAmelCase_ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_A )[0] @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def __UpperCamelCase ( _A ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: lowerCAmelCase_ = _readaa(_A ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) lowerCAmelCase_ = _readaa(_A ) lowerCAmelCase_ = _readaa(_A ) lowerCAmelCase_ = _readaa(_A ) lowerCAmelCase_ = bytestream.read(rows * cols * num_images ) lowerCAmelCase_ = numpy.frombuffer(_A , dtype=numpy.uinta ) lowerCAmelCase_ = data.reshape(_A , _A , _A , 1 ) return data @deprecated(_A , '''Please use tf.one_hot on tensors.''' ) def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = labels_dense.shape[0] lowerCAmelCase_ = numpy.arange(_A ) * num_classes lowerCAmelCase_ = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase_ = 1 return labels_one_hot @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def __UpperCamelCase ( _A , _A=False , _A=10 ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: lowerCAmelCase_ = _readaa(_A ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) lowerCAmelCase_ = _readaa(_A ) lowerCAmelCase_ = bytestream.read(_A ) lowerCAmelCase_ = numpy.frombuffer(_A , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_A , _A ) return labels class A : @deprecated( UpperCamelCase__, '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''', ) def __init__( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__=False, UpperCamelCase__=False, UpperCamelCase__=dtypes.floataa, UpperCamelCase__=True, UpperCamelCase__=None, ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = random_seed.get_seed(UpperCamelCase__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase_ = dtypes.as_dtype(UpperCamelCase__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: lowerCAmelCase_ = 1_0000 lowerCAmelCase_ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"images.shape: {images.shape} labels.shape: {labels.shape}" lowerCAmelCase_ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase_ = images.reshape( images.shape[0], images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase_ = images.astype(numpy.floataa ) lowerCAmelCase_ = numpy.multiply(UpperCamelCase__, 1.0 / 255.0 ) lowerCAmelCase_ = images lowerCAmelCase_ = labels lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._images @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._labels @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._num_examples @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._epochs_completed def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=False, UpperCamelCase__=True ): """simple docstring""" if fake_data: lowerCAmelCase_ = [1] * 784 lowerCAmelCase_ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(UpperCamelCase__ )], [fake_label for _ in range(UpperCamelCase__ )], ) lowerCAmelCase_ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase_ = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCamelCase__ ) lowerCAmelCase_ = self.images[perma] lowerCAmelCase_ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase_ = self._num_examples - start lowerCAmelCase_ = self._images[start : self._num_examples] lowerCAmelCase_ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase_ = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCamelCase__ ) lowerCAmelCase_ = self.images[perm] lowerCAmelCase_ = self.labels[perm] # Start next epoch lowerCAmelCase_ = 0 lowerCAmelCase_ = batch_size - rest_num_examples lowerCAmelCase_ = self._index_in_epoch lowerCAmelCase_ = self._images[start:end] lowerCAmelCase_ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part), axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part), axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase_ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_A , '''Please write your own downloading logic.''' ) def __UpperCamelCase ( _A , _A , _A ): if not gfile.Exists(_A ): gfile.MakeDirs(_A ) lowerCAmelCase_ = os.path.join(_A , _A ) if not gfile.Exists(_A ): urllib.request.urlretrieve(_A , _A ) # noqa: S310 with gfile.GFile(_A ) as f: lowerCAmelCase_ = f.size() print('''Successfully downloaded''' , _A , _A , '''bytes.''' ) return filepath @deprecated( _A , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __UpperCamelCase ( _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=5000 , _A=None , _A=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_A , one_hot=_A , dtype=_A , seed=_A ) lowerCAmelCase_ = fake() lowerCAmelCase_ = fake() lowerCAmelCase_ = fake() return _Datasets(train=_A , validation=_A , test=_A ) if not source_url: # empty string check lowerCAmelCase_ = DEFAULT_SOURCE_URL lowerCAmelCase_ = '''train-images-idx3-ubyte.gz''' lowerCAmelCase_ = '''train-labels-idx1-ubyte.gz''' lowerCAmelCase_ = '''t10k-images-idx3-ubyte.gz''' lowerCAmelCase_ = '''t10k-labels-idx1-ubyte.gz''' lowerCAmelCase_ = _maybe_download( _A , _A , source_url + train_images_file ) with gfile.Open(_A , '''rb''' ) as f: lowerCAmelCase_ = _extract_images(_A ) lowerCAmelCase_ = _maybe_download( _A , _A , source_url + train_labels_file ) with gfile.Open(_A , '''rb''' ) as f: lowerCAmelCase_ = _extract_labels(_A , one_hot=_A ) lowerCAmelCase_ = _maybe_download( _A , _A , source_url + test_images_file ) with gfile.Open(_A , '''rb''' ) as f: lowerCAmelCase_ = _extract_images(_A ) lowerCAmelCase_ = _maybe_download( _A , _A , source_url + test_labels_file ) with gfile.Open(_A , '''rb''' ) as f: lowerCAmelCase_ = _extract_labels(_A , one_hot=_A ) if not 0 <= validation_size <= len(_A ): lowerCAmelCase_ = ( '''Validation size should be between 0 and ''' f"{len(_A )}. Received: {validation_size}." ) raise ValueError(_A ) lowerCAmelCase_ = train_images[:validation_size] lowerCAmelCase_ = train_labels[:validation_size] lowerCAmelCase_ = train_images[validation_size:] lowerCAmelCase_ = train_labels[validation_size:] lowerCAmelCase_ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} lowerCAmelCase_ = _DataSet(_A , _A , **_A ) lowerCAmelCase_ = _DataSet(_A , _A , **_A ) lowerCAmelCase_ = _DataSet(_A , _A , **_A ) return _Datasets(train=_A , validation=_A , test=_A )
431
0
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCAmelCase_ : Optional[int] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : List[str] , lowercase__ : Optional[int]=None ) ->Union[str, Any]: '''simple docstring''' super().__init__( lowercase__ , question_encoder_tokenizer=lowercase__ , generator_tokenizer=lowercase__ , index=lowercase__ , init_retrieval=lowercase__ , ) _UpperCamelCase : int = None def snake_case__ ( self : Dict , lowercase__ : Dict ) ->Dict: '''simple docstring''' logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually _UpperCamelCase : Optional[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port _UpperCamelCase : Optional[Any] = str(distributed_port + 1 ) _UpperCamelCase : str = dist.new_group(ranks=lowercase__ , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def snake_case__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' return dist.get_rank(group=self.process_group ) == 0 def snake_case__ ( self : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Any=torch.floataa ) ->List[str]: '''simple docstring''' _UpperCamelCase : int = torch.empty(lowercase__ , dtype=lowercase__ ) dist.scatter(lowercase__ , src=0 , scatter_list=lowercase__ , group=self.process_group ) return target_tensor def snake_case__ ( self : Optional[Any] ) ->Any: '''simple docstring''' _UpperCamelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _UpperCamelCase : Tuple = next((addr for addr in addrs if addr.startswith("e" )) , lowercase__ ) return ifname def snake_case__ ( self : Any , lowercase__ : Union[str, Any] , lowercase__ : Any ) ->Tuple: '''simple docstring''' if not dist.is_initialized(): _UpperCamelCase , _UpperCamelCase : Optional[int] = self._main_retrieve(lowercase__ , lowercase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase__ ) # distributed training _UpperCamelCase : str = dist.get_world_size(group=self.process_group ) # gather logic _UpperCamelCase : Optional[int] = None if self._is_main(): _UpperCamelCase : Tuple = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowercase__ )] dist.gather(torch.tensor(lowercase__ ) , dst=0 , gather_list=lowercase__ , group=self.process_group ) # scatter logic _UpperCamelCase : Optional[Any] = question_hidden_states.shape[0] _UpperCamelCase : List[str] = [] _UpperCamelCase : str = [] if self._is_main(): assert len(lowercase__ ) == world_size _UpperCamelCase , _UpperCamelCase : Tuple = self._main_retrieve(torch.cat(lowercase__ ).numpy() , lowercase__ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = torch.tensor(lowercase__ ), torch.tensor(lowercase__ ) _UpperCamelCase : Any = self._chunk_tensor(lowercase__ , lowercase__ ) _UpperCamelCase : Dict = self._chunk_tensor(lowercase__ , lowercase__ ) _UpperCamelCase : List[str] = self._scattered(lowercase__ , [n_queries, n_docs] , target_type=torch.intaa ) _UpperCamelCase : List[str] = self._scattered(lowercase__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowercase__ )
716
'''simple docstring''' import requests from bsa import BeautifulSoup def __A ( UpperCAmelCase ,UpperCAmelCase ) -> str: '''simple docstring''' _UpperCamelCase : Dict = BeautifulSoup(requests.get(UpperCAmelCase ,params=UpperCAmelCase ).content ,"html.parser" ) _UpperCamelCase : Union[str, Any] = soup.find("div" ,attrs={"class": "gs_ri"} ) _UpperCamelCase : Optional[Any] = div.find("div" ,attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": lowerCAmelCase_ : Optional[int] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
204
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : Optional[int] = 'pegasus' UpperCAmelCase : str = ['past_key_values'] UpperCAmelCase : str = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Dict , snake_case : Tuple=50265 , snake_case : List[str]=1024 , snake_case : Optional[Any]=12 , snake_case : List[str]=4096 , snake_case : Optional[Any]=16 , snake_case : Optional[int]=12 , snake_case : Any=4096 , snake_case : Any=16 , snake_case : List[Any]=0.0 , snake_case : List[Any]=0.0 , snake_case : Tuple=True , snake_case : Any=True , snake_case : Optional[int]="gelu" , snake_case : str=1024 , snake_case : List[Any]=0.1 , snake_case : List[Any]=0.0 , snake_case : List[str]=0.0 , snake_case : str=0.02 , snake_case : str=0 , snake_case : Dict=False , snake_case : Optional[int]=0 , snake_case : str=1 , snake_case : Optional[Any]=1 , **snake_case : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Dict = encoder_ffn_dim SCREAMING_SNAKE_CASE : Dict = encoder_layers SCREAMING_SNAKE_CASE : Optional[Any] = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : Tuple = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : Dict = activation_dropout SCREAMING_SNAKE_CASE : str = activation_function SCREAMING_SNAKE_CASE : Optional[Any] = init_std SCREAMING_SNAKE_CASE : Any = encoder_layerdrop SCREAMING_SNAKE_CASE : List[str] = decoder_layerdrop SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=snake_case , eos_token_id=snake_case , is_encoder_decoder=snake_case , decoder_start_token_id=snake_case , forced_eos_token_id=snake_case , **snake_case , ) @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return self.encoder_attention_heads @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return self.d_model
352
from __future__ import annotations def __a ( __lowerCAmelCase , __lowerCAmelCase = None ) -> list[list[str]]: SCREAMING_SNAKE_CASE : Dict = word_bank or [] # create a table SCREAMING_SNAKE_CASE : int = len(__lowerCAmelCase ) + 1 SCREAMING_SNAKE_CASE : list[list[list[str]]] = [] for _ in range(__lowerCAmelCase ): table.append([] ) # seed value SCREAMING_SNAKE_CASE : Tuple = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowerCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowerCAmelCase )] == word: SCREAMING_SNAKE_CASE : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowerCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowerCAmelCase )]: combination.reverse() return table[len(__lowerCAmelCase )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
352
1
def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") lowercase__ :int = int(input("Enter number: ").strip()) print(F'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
633
import os def UpperCamelCase ( lowerCAmelCase__ = "input.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) as input_file: lowercase = [ [int(lowerCAmelCase__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase = len(lowerCAmelCase__ ) lowercase = len(matrix[0] ) lowercase = [[-1 for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): lowercase = matrix[i][0] for j in range(1 , lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): lowercase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowerCAmelCase__ ): lowercase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'{solution() = }')
633
1
"""simple docstring""" def lowercase__ ( snake_case_ :float ): return 10 - x * x def lowercase__ ( snake_case_ :float , snake_case_ :float ): # Bolzano theory in order to find if there is a root between a and b if equation(snake_case_ ) * equation(snake_case_ ) >= 0: raise ValueError('''Wrong space!''' ) __UpperCAmelCase = a while (b - a) >= 0.01: # Find middle point __UpperCAmelCase = (a + b) / 2 # Check if middle point is root if equation(snake_case_ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case_ ) * equation(snake_case_ ) < 0: __UpperCAmelCase = c else: __UpperCAmelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
49
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
596
import os lowerCAmelCase_ = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 1_00, 'D': 5_00, 'M': 10_00} def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Any = 0 lowercase : Any = 0 while index < len(__magic_name__ ) - 1: lowercase : List[Any] = SYMBOLS[numerals[index]] lowercase : Optional[Any] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def snake_case( __magic_name__ ) -> str: '''simple docstring''' lowercase : List[Any] = '''''' lowercase : Tuple = num // 10_00 numerals += m_count * "M" num %= 10_00 lowercase : int = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 lowercase : Optional[Any] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def snake_case( __magic_name__ = "/p089_roman.txt" ) -> int: '''simple docstring''' lowercase : Union[str, Any] = 0 with open(os.path.dirname(__magic_name__ ) + roman_numerals_filename ) as filea: lowercase : List[str] = filea.readlines() for line in lines: lowercase : Dict = line.strip() lowercase : Optional[int] = parse_roman_numerals(__magic_name__ ) lowercase : List[Any] = generate_roman_numerals(__magic_name__ ) savings += len(__magic_name__ ) - len(__magic_name__ ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
596
1
from __future__ import annotations import typing from collections import Counter def _SCREAMING_SNAKE_CASE ( snake_case ) -> typing.Counter[int]: _UpperCAmelCase = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): _UpperCAmelCase = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): _UpperCAmelCase = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _SCREAMING_SNAKE_CASE ( snake_case = 1_0_0_0 ) -> int: _UpperCAmelCase = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F'Perimeter {solution()} has maximum solutions')
518
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex A__ = logging.getLogger(__name__) class _lowerCAmelCase : def __init__( self : int ): lowerCamelCase :Dict = False def snake_case ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : int , __snake_case : str ): if not self.initialized: lowerCamelCase :Optional[int] = RagRetriever( __snake_case , question_encoder_tokenizer=__snake_case , generator_tokenizer=__snake_case , index=__snake_case , init_retrieval=__snake_case , ) lowerCamelCase :Any = True def snake_case ( self : str ): self.retriever.index.init_index() def snake_case ( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : Union[str, Any] ): lowerCamelCase , lowerCamelCase :int = self.retriever._main_retrieve(__snake_case , __snake_case ) return doc_ids, retrieved_doc_embeds class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Any , __snake_case : str , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]=None ): if index is not None and index.is_initialized() and len(__snake_case ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( __snake_case , question_encoder_tokenizer=__snake_case , generator_tokenizer=__snake_case , index=__snake_case , init_retrieval=__snake_case , ) lowerCamelCase :Tuple = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__snake_case , __snake_case , __snake_case , __snake_case ) for worker in self.retrieval_workers ] ) def snake_case ( self : Optional[Any] ): logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def snake_case ( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[int] ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. lowerCamelCase :str = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] lowerCamelCase , lowerCamelCase :Dict = ray.get(random_worker.retrieve.remote(__snake_case , __snake_case ) ) else: lowerCamelCase , lowerCamelCase :Union[str, Any] = self._main_retrieve(__snake_case , __snake_case ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__snake_case ) @classmethod def snake_case ( cls : int , __snake_case : Dict , __snake_case : List[Any]=None , **__snake_case : str ): return super(__snake_case , cls ).get_tokenizers(__snake_case , __snake_case , **__snake_case ) @classmethod def snake_case ( cls : Optional[Any] , __snake_case : int , __snake_case : List[str] , __snake_case : Union[str, Any]=None , **__snake_case : Tuple ): lowerCamelCase :Tuple = kwargs.pop('''config''' , __snake_case ) or RagConfig.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = RagTokenizer.from_pretrained(__snake_case , config=__snake_case ) lowerCamelCase :Dict = rag_tokenizer.question_encoder lowerCamelCase :Dict = rag_tokenizer.generator if indexed_dataset is not None: lowerCamelCase :str = '''custom''' lowerCamelCase :Any = CustomHFIndex(config.retrieval_vector_size , __snake_case ) else: lowerCamelCase :List[str] = cls._build_index(__snake_case ) return cls( __snake_case , question_encoder_tokenizer=__snake_case , generator_tokenizer=__snake_case , retrieval_workers=__snake_case , index=__snake_case , )
49
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Union[str, Any] = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class a ( lowercase__ ): """simple docstring""" a : Optional[int] = 'git_vision_model' def __init__( self : str , __lowercase : List[str]=768 , __lowercase : List[str]=3072 , __lowercase : List[Any]=12 , __lowercase : Dict=12 , __lowercase : int=3 , __lowercase : Any=224 , __lowercase : Optional[int]=16 , __lowercase : Dict="quick_gelu" , __lowercase : Any=1e-5 , __lowercase : str=0.0 , __lowercase : int=0.02 , **__lowercase : int , ) -> List[str]: super().__init__(**__lowercase ) __UpperCAmelCase : int = hidden_size __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : int = num_channels __UpperCAmelCase : str = patch_size __UpperCAmelCase : Tuple = image_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : Tuple = attention_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : List[Any] = hidden_act @classmethod def UpperCAmelCase ( cls : Dict , __lowercase : Union[str, os.PathLike] , **__lowercase : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowercase ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = cls.get_config_dict(__lowercase , **__lowercase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": __UpperCAmelCase : str = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowercase , **__lowercase ) class a ( lowercase__ ): """simple docstring""" a : List[str] = 'git' def __init__( self : Optional[int] , __lowercase : List[Any]=None , __lowercase : Tuple=30522 , __lowercase : str=768 , __lowercase : Optional[int]=6 , __lowercase : Union[str, Any]=12 , __lowercase : Optional[int]=3072 , __lowercase : List[str]="gelu" , __lowercase : Tuple=0.1 , __lowercase : Optional[int]=0.1 , __lowercase : Optional[int]=1024 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[Any]=1e-1_2 , __lowercase : List[Any]=0 , __lowercase : Dict="absolute" , __lowercase : Dict=True , __lowercase : Any=False , __lowercase : Optional[int]=101 , __lowercase : str=102 , __lowercase : Union[str, Any]=None , **__lowercase : Dict , ) -> Tuple: super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , pad_token_id=__lowercase , **__lowercase ) if vision_config is None: __UpperCAmelCase : Optional[int] = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) __UpperCAmelCase : Tuple = GitVisionConfig(**__lowercase ) __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : str = initializer_range __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : Union[str, Any] = position_embedding_type __UpperCAmelCase : Dict = use_cache __UpperCAmelCase : int = tie_word_embeddings __UpperCAmelCase : Optional[int] = num_image_with_embedding __UpperCAmelCase : Optional[int] = bos_token_id __UpperCAmelCase : List[Any] = eos_token_id def UpperCAmelCase ( self : str ) -> int: __UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : List[str] = self.vision_config.to_dict() __UpperCAmelCase : Union[str, Any] = self.__class__.model_type return output
63
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class a ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , __lowercase : Union[str, Any] , __lowercase : Any=13 , __lowercase : Optional[int]=7 , __lowercase : str=True , __lowercase : Optional[Any]=True , __lowercase : int=True , __lowercase : int=True , __lowercase : List[str]=99 , __lowercase : int=32 , __lowercase : int=5 , __lowercase : Tuple=4 , __lowercase : str=37 , __lowercase : Optional[int]="gelu" , __lowercase : Tuple=0.1 , __lowercase : str=0.1 , __lowercase : Dict=512 , __lowercase : List[Any]=16 , __lowercase : Dict=2 , __lowercase : Union[str, Any]=0.02 , __lowercase : Dict=4 , ) -> int: __UpperCAmelCase : Dict = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : str = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Any = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Tuple = num_choices def UpperCAmelCase ( self : Dict ) -> Tuple: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[Any] = None if self.use_attention_mask: __UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : List[Any] = None if self.use_token_type_ids: __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[Any] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Tuple ) -> List[Any]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase ( self : Any ) -> List[str]: __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : int = True __UpperCAmelCase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a ( lowercase__ , unittest.TestCase ): """simple docstring""" a : Optional[Any] = True a : List[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: __UpperCAmelCase : List[str] = FlaxRobertaModelTester(self ) @slow def UpperCAmelCase ( self : str ) -> List[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class_name.from_pretrained("""roberta-base""" , from_pt=__lowercase ) __UpperCAmelCase : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowercase )
63
1
'''simple docstring''' from __future__ import annotations def _snake_case ( A_ : int , A_ : Tuple , A_ : List[str] , A_ : str ): # noqa: E741 """simple docstring""" while r - l > 1: a_ : Any = (l + r) // 2 if v[m] >= key: a_ : Optional[int] = m else: a_ : int = m # noqa: E741 return r def _snake_case ( A_ : list[int] ): """simple docstring""" if len(A_ ) == 0: return 0 a_ : str = [0] * len(A_ ) a_ : List[str] = 1 a_ : Optional[Any] = v[0] for i in range(1 , len(A_ ) ): if v[i] < tail[0]: a_ : Tuple = v[i] elif v[i] > tail[length - 1]: a_ : Optional[int] = v[i] length += 1 else: a_ : str = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
460
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=7 , lowerCAmelCase_=3 , lowerCAmelCase_=18 , lowerCAmelCase_=30 , lowerCAmelCase_=4_00 , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=[0.5, 0.5, 0.5] , lowerCAmelCase_=[0.5, 0.5, 0.5] , ): '''simple docstring''' a_ : Optional[int] = parent a_ : Union[str, Any] = batch_size a_ : Any = num_channels a_ : Tuple = image_size a_ : Any = min_resolution a_ : Dict = max_resolution a_ : Optional[Any] = do_resize a_ : Tuple = size if size is not None else {"""height""": 18, """width""": 20} a_ : int = do_thumbnail a_ : Optional[int] = do_align_axis a_ : Tuple = do_pad a_ : int = do_normalize a_ : Tuple = image_mean a_ : Optional[Any] = image_std def _lowerCAmelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _UpperCAmelCase ( lowerCAmelCase__ ,unittest.TestCase ): """simple docstring""" a_ = DonutImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = DonutImageProcessingTester(self ) @property def _lowerCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_thumbnail""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_align_long_axis""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_pad""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """image_std""" ) ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) a_ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order a_ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def _lowerCAmelCase ( self ): '''simple docstring''' pass @is_flaky() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input a_ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched a_ : int = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input a_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched a_ : Dict = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input a_ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched a_ : Any = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
460
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : Dict = logging.get_logger(__name__) # TODO Update this __magic_name__ : Optional[int] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( lowerCamelCase__ ): """simple docstring""" UpperCAmelCase__ = 'esm' def __init__( self : Optional[int] , __A : List[Any]=None , __A : Dict=None , __A : Tuple=None , __A : int=7_6_8 , __A : int=1_2 , __A : Tuple=1_2 , __A : Tuple=3_0_7_2 , __A : Optional[Any]=0.1 , __A : int=0.1 , __A : str=1_0_2_6 , __A : int=0.0_2 , __A : Dict=1e-12 , __A : Optional[Any]="absolute" , __A : Optional[Any]=True , __A : List[str]=None , __A : Optional[int]=False , __A : Union[str, Any]=False , __A : List[str]=None , __A : Optional[int]=None , **__A : Tuple , ): """simple docstring""" super().__init__(pad_token_id=__A , mask_token_id=__A , **__A ) _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = initializer_range _lowercase = layer_norm_eps _lowercase = position_embedding_type _lowercase = use_cache _lowercase = emb_layer_norm_before _lowercase = token_dropout _lowercase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowercase = EsmFoldConfig() elif isinstance(__A , __A ): _lowercase = EsmFoldConfig(**__A ) _lowercase = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowercase = get_default_vocab_list() else: _lowercase = vocab_list else: _lowercase = None _lowercase = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , __A ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def snake_case ( self : Any ): """simple docstring""" _lowercase = super().to_dict() if isinstance(self.esmfold_config , __A ): _lowercase = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = None UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = 0 UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = 1_28 UpperCAmelCase__ = None def snake_case ( self : Optional[int] ): """simple docstring""" if self.trunk is None: _lowercase = TrunkConfig() elif isinstance(self.trunk , __A ): _lowercase = TrunkConfig(**self.trunk ) def snake_case ( self : str ): """simple docstring""" _lowercase = asdict(self ) _lowercase = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = 48 UpperCAmelCase__ = 10_24 UpperCAmelCase__ = 1_28 UpperCAmelCase__ = 32 UpperCAmelCase__ = 32 UpperCAmelCase__ = 32 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = False UpperCAmelCase__ = 4 UpperCAmelCase__ = 1_28 UpperCAmelCase__ = None def snake_case ( self : List[Any] ): """simple docstring""" if self.structure_module is None: _lowercase = StructureModuleConfig() elif isinstance(self.structure_module , __A ): _lowercase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _lowercase = self.sequence_state_dim // self.sequence_head_width _lowercase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def snake_case ( self : List[str] ): """simple docstring""" _lowercase = asdict(self ) _lowercase = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = 3_84 UpperCAmelCase__ = 1_28 UpperCAmelCase__ = 16 UpperCAmelCase__ = 1_28 UpperCAmelCase__ = 12 UpperCAmelCase__ = 4 UpperCAmelCase__ = 8 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 8 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 7 UpperCAmelCase__ = 10 UpperCAmelCase__ = 1E-8 UpperCAmelCase__ = 1E5 def snake_case ( self : List[str] ): """simple docstring""" return asdict(self ) def A__ ( ) -> Dict: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
497
'''simple docstring''' import math def A__ ( A_ , A_ ) -> int: _lowercase = len(A_ ) _lowercase = int(math.floor(math.sqrt(A_ ) ) ) _lowercase = 0 while arr[min(A_ , A_ ) - 1] < x: _lowercase = step step += int(math.floor(math.sqrt(A_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _lowercase = prev + 1 if prev == min(A_ , A_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __magic_name__ : str = input('''Enter numbers separated by a comma:\n''').strip() __magic_name__ : Optional[Any] = [int(item) for item in user_input.split(''',''')] __magic_name__ : Optional[int] = int(input('''Enter the number to be searched:\n''')) __magic_name__ : Tuple = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f'''Number {x} is at index {res}''')
497
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _A , unittest.TestCase): __SCREAMING_SNAKE_CASE : Union[str, Any] = CodeGenTokenizer __SCREAMING_SNAKE_CASE : Tuple = CodeGenTokenizerFast __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : Dict = {"""add_prefix_space""": True} __SCREAMING_SNAKE_CASE : Any = False def UpperCAmelCase__ ( self : Optional[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCAmelCase = {"unk_token": "<unk>"} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCamelCase ) ) def UpperCAmelCase__ ( self : Union[str, Any] , **__UpperCamelCase : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def UpperCAmelCase__ ( self : List[str] , **__UpperCamelCase : Dict ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : str ): _UpperCAmelCase = "lower newer" _UpperCAmelCase = "lower newer" return input_text, output_text def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = "lower newer" _UpperCAmelCase = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase , add_prefix_space=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : Tuple ): if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer(add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = "lower newer" # Testing tokenization _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) # Testing conversion to ids without special tokens _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) # Testing conversion to ids with special tokens _UpperCAmelCase = self.get_rust_tokenizer(add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) # Testing the unknown token _UpperCAmelCase = tokens + [rust_tokenizer.unk_token] _UpperCAmelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : List[str] , *__UpperCamelCase : Dict , **__UpperCamelCase : List[Any] ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : Optional[Any]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) # Simple input _UpperCAmelCase = "This is a simple input" _UpperCAmelCase = ["This is a simple input 1", "This is a simple input 2"] _UpperCAmelCase = ("This is a simple input", "This is a pair") _UpperCAmelCase = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__UpperCamelCase , tokenizer_r.encode , __UpperCamelCase , max_length=__UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises(__UpperCamelCase , tokenizer_r.encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises( __UpperCamelCase , tokenizer_r.batch_encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding="max_length" , ) # Pair input self.assertRaises(__UpperCamelCase , tokenizer_r.encode , __UpperCamelCase , max_length=__UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises(__UpperCamelCase , tokenizer_r.encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises( __UpperCamelCase , tokenizer_r.batch_encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding="max_length" , ) def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input _UpperCAmelCase = "This is a simple input" _UpperCAmelCase = ["This is a simple input looooooooong", "This is a simple input"] _UpperCAmelCase = ("This is a simple input", "This is a pair") _UpperCAmelCase = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _UpperCAmelCase = tokenizer.pad_token_id _UpperCAmelCase = tokenizer(__UpperCamelCase , padding="max_length" , max_length=30 , return_tensors="np" ) _UpperCAmelCase = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , truncate=__UpperCamelCase , return_tensors="np" ) _UpperCAmelCase = tokenizer(*__UpperCamelCase , padding="max_length" , max_length=60 , return_tensors="np" ) _UpperCAmelCase = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , truncate=__UpperCamelCase , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = "$$$" _UpperCAmelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__UpperCamelCase , add_bos_token=__UpperCamelCase ) _UpperCAmelCase = "This is a simple input" _UpperCAmelCase = ["This is a simple input 1", "This is a simple input 2"] _UpperCAmelCase = tokenizer.bos_token_id _UpperCAmelCase = tokenizer(__UpperCamelCase ) _UpperCAmelCase = tokenizer(__UpperCamelCase ) self.assertEqual(out_s.input_ids[0] , __UpperCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _UpperCAmelCase = tokenizer.decode(out_s.input_ids ) _UpperCAmelCase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __UpperCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _UpperCAmelCase = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _UpperCAmelCase = "\nif len_a > len_b: result = a\nelse: result = b" _UpperCAmelCase = tokenizer.encode(__UpperCamelCase ) _UpperCAmelCase = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _UpperCAmelCase = tokenizer.decode(__UpperCamelCase , truncate_before_pattern=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): pass
713
import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
129
0
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): lowerCamelCase_ = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING lowerCamelCase_ = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any ): '''simple docstring''' lowercase : str =AudioClassificationPipeline(model=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) # test with a raw waveform lowercase : Dict =np.zeros((34000,) ) lowercase : List[Any] =np.zeros((14000,) ) return audio_classifier, [audioa, audio] def lowerCamelCase_ ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ): '''simple docstring''' lowercase , lowercase : Union[str, Any] =examples lowercase : Union[str, Any] =audio_classifier(UpperCAmelCase__ ) # by default a model is initialized with num_labels=2 self.assertEqual( UpperCAmelCase__ , [ {'''score''': ANY(UpperCAmelCase__ ), '''label''': ANY(UpperCAmelCase__ )}, {'''score''': ANY(UpperCAmelCase__ ), '''label''': ANY(UpperCAmelCase__ )}, ] , ) lowercase : List[str] =audio_classifier(UpperCAmelCase__ , top_k=1 ) self.assertEqual( UpperCAmelCase__ , [ {'''score''': ANY(UpperCAmelCase__ ), '''label''': ANY(UpperCAmelCase__ )}, ] , ) self.run_torchaudio(UpperCAmelCase__ ) @require_torchaudio def lowerCamelCase_ ( self : str , UpperCAmelCase__ : Optional[int] ): '''simple docstring''' import datasets # test with a local file lowercase : Optional[int] =datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) lowercase : str =dataset[0]['''audio''']['''array'''] lowercase : Tuple =audio_classifier(UpperCAmelCase__ ) self.assertEqual( UpperCAmelCase__ , [ {'''score''': ANY(UpperCAmelCase__ ), '''label''': ANY(UpperCAmelCase__ )}, {'''score''': ANY(UpperCAmelCase__ ), '''label''': ANY(UpperCAmelCase__ )}, ] , ) @require_torch def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : List[Any] ='''anton-l/wav2vec2-random-tiny-classifier''' lowercase : Any =pipeline('''audio-classification''' , model=UpperCAmelCase__ ) lowercase : Any =np.ones((8000,) ) lowercase : Tuple =audio_classifier(UpperCAmelCase__ , top_k=4 ) lowercase : Any =[ {'''score''': 0.08_42, '''label''': '''no'''}, {'''score''': 0.08_38, '''label''': '''up'''}, {'''score''': 0.08_37, '''label''': '''go'''}, {'''score''': 0.08_34, '''label''': '''right'''}, ] lowercase : str =[ {'''score''': 0.08_45, '''label''': '''stop'''}, {'''score''': 0.08_44, '''label''': '''on'''}, {'''score''': 0.08_41, '''label''': '''right'''}, {'''score''': 0.08_34, '''label''': '''left'''}, ] self.assertIn(nested_simplify(UpperCAmelCase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) lowercase : Optional[int] ={'''array''': np.ones((8000,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} lowercase : Union[str, Any] =audio_classifier(UpperCAmelCase__ , top_k=4 ) self.assertIn(nested_simplify(UpperCAmelCase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def lowerCamelCase_ ( self : Any ): '''simple docstring''' import datasets lowercase : List[Any] ='''superb/wav2vec2-base-superb-ks''' lowercase : str =pipeline('''audio-classification''' , model=UpperCAmelCase__ ) lowercase : Optional[int] =datasets.load_dataset('''anton-l/superb_dummy''' , '''ks''' , split='''test''' ) lowercase : Optional[int] =np.array(dataset[3]['''speech'''] , dtype=np.floataa ) lowercase : Optional[Any] =audio_classifier(UpperCAmelCase__ , top_k=4 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=3 ) , [ {'''score''': 0.9_81, '''label''': '''go'''}, {'''score''': 0.0_07, '''label''': '''up'''}, {'''score''': 0.0_06, '''label''': '''_unknown_'''}, {'''score''': 0.0_01, '''label''': '''down'''}, ] , ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' pass
92
"""simple docstring""" from math import ceil def __magic_name__ ( UpperCamelCase : int = 1001 ) -> int: a__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): a__ = 2 * i + 1 a__ = 2 * i a__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a : Any = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
273
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : List[Any] = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __snake_case ( ): UpperCamelCase = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' )) # Optional arguments for the launch helper parser.add_argument('''--num_cores''', type=_UpperCAmelCase, default=1, help='''Number of TPU cores to use (1 or 8).''') # positional parser.add_argument( '''training_script''', type=_UpperCAmelCase, help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ), ) # rest from the training program parser.add_argument('''training_script_args''', nargs=_UpperCAmelCase) return parser.parse_args() def __snake_case ( ): UpperCamelCase = parse_args() # Import training_script as a module. UpperCamelCase = Path(args.training_script) sys.path.append(str(script_fpath.parent.resolve())) UpperCamelCase = script_fpath.stem UpperCamelCase = importlib.import_module(_UpperCAmelCase) # Patch sys.argv UpperCamelCase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores)] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores) if __name__ == "__main__": main()
350
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowercase : List[Any] =1_0 def A__ ( lowercase: int, lowercase: int, lowercase: list[int], lowercase: int ) -> int: for i in range(__A, __A ): if array[i] == target: return i return -1 def A__ ( lowercase: list[int], lowercase: int ) -> int: A : Optional[int] =0 A : str =len(__A ) while left <= right: if right - left < precision: return lin_search(__A, __A, __A, __A ) A : Union[str, Any] =(left + right) // 3 + 1 A : List[Any] =2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: A : str =one_third - 1 elif array[two_third] < target: A : str =two_third + 1 else: A : Optional[int] =one_third + 1 A : List[str] =two_third - 1 else: return -1 def A__ ( lowercase: int, lowercase: int, lowercase: list[int], lowercase: int ) -> int: if left < right: if right - left < precision: return lin_search(__A, __A, __A, __A ) A : Optional[int] =(left + right) // 3 + 1 A : List[str] =2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__A, one_third - 1, __A, __A ) elif array[two_third] < target: return rec_ternary_search(two_third + 1, __A, __A, __A ) else: return rec_ternary_search(one_third + 1, two_third - 1, __A, __A ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] =input('''Enter numbers separated by comma:\n''').strip() _lowercase : Any =[int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowercase : List[Any] =int(input('''Enter the number to be found in the list:\n''').strip()) _lowercase : Dict =ite_ternary_search(collection, target) _lowercase : Dict =rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
305
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowercase_ = KandinskyVaaPipeline lowercase_ = [ """image_embeds""", """negative_image_embeds""", ] lowercase_ = ["""image_embeds""", """negative_image_embeds"""] lowercase_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase_ = False @property def __UpperCamelCase ( self ): '''simple docstring''' return 3_2 @property def __UpperCamelCase ( self ): '''simple docstring''' return 3_2 @property def __UpperCamelCase ( self ): '''simple docstring''' return self.time_input_dim @property def __UpperCamelCase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCamelCase ( self ): '''simple docstring''' return 1_0_0 @property def __UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __A ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __A =UNetaDConditionModel(**lowercase__ ) return model @property def __UpperCamelCase ( self ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __A =VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self ): '''simple docstring''' __A =self.dummy_unet __A =self.dummy_movq __A =DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowercase__ , ) __A ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __UpperCamelCase ( self , lowercase__ , lowercase__=0 ): '''simple docstring''' __A =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) __A =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase__ ) if str(lowercase__ ).startswith('''mps''' ): __A =torch.manual_seed(lowercase__ ) else: __A =torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __A ={ '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __UpperCamelCase ( self ): '''simple docstring''' __A ='''cpu''' __A =self.get_dummy_components() __A =self.pipeline_class(**lowercase__ ) __A =pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __A =pipe(**self.get_dummy_inputs(lowercase__ ) ) __A =output.images __A =pipe( **self.get_dummy_inputs(lowercase__ ) , return_dict=lowercase__ , )[0] __A =image[0, -3:, -3:, -1] __A =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __A =np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): '''simple docstring''' __A =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) __A =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase__ ) __A =KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) __A =pipeline.to(lowercase__ ) pipeline.set_progress_bar_config(disable=lowercase__ ) __A ='''red cat, 4k photo''' __A =torch.Generator(device='''cuda''' ).manual_seed(0 ) __A , __A =pipe_prior( lowercase__ , generator=lowercase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __A =torch.Generator(device='''cuda''' ).manual_seed(0 ) __A =pipeline( image_embeds=lowercase__ , negative_image_embeds=lowercase__ , generator=lowercase__ , num_inference_steps=1_0_0 , output_type='''np''' , ) __A =output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ )
184
0
from math import factorial _UpperCamelCase : List[str] ={str(digit): factorial(digit) for digit in range(10)} def lowerCamelCase_ ( A_ ): if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__UpperCamelCase ) ) def lowerCamelCase_ ( A_ = 60 , A_ = 1_00_00_00 ): if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length __lowerCamelCase = 0 # the cached sizes of the previous chains __lowerCamelCase = {} for start_chain_element in range(1 , __UpperCamelCase ): # The temporary set will contain the elements of the chain __lowerCamelCase = set() __lowerCamelCase = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __lowerCamelCase = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__UpperCamelCase ) chain_set_length += 1 __lowerCamelCase = digit_factorial_sum(__UpperCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __lowerCamelCase = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
708
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _UpperCamelCase : Optional[int] =version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize _UpperCamelCase : Any ="\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" _UpperCamelCase : Optional[Any] ="\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" _UpperCamelCase : List[str] ="\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def _lowerCamelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def _lowerCamelCase ( self , _snake_case ): """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def _lowerCamelCase ( self , _snake_case , _snake_case , _snake_case=0.9 , _snake_case=3 , _snake_case=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): __lowerCamelCase = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) , word_tokenize(_snake_case ) , alpha=_snake_case , beta=_snake_case , gamma=_snake_case ) for ref, pred in zip(_snake_case , _snake_case ) ] else: __lowerCamelCase = [ meteor_score.single_meteor_score(_snake_case , _snake_case , alpha=_snake_case , beta=_snake_case , gamma=_snake_case ) for ref, pred in zip(_snake_case , _snake_case ) ] return {"meteor": np.mean(_snake_case )}
575
0
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class lowerCamelCase : '''simple docstring''' def __init__(self ): """simple docstring""" UpperCAmelCase__ : Any = False def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if not self.initialized: UpperCAmelCase__ : List[str] = RagRetriever( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , index=_lowerCamelCase , init_retrieval=_lowerCamelCase , ) UpperCAmelCase__ : Optional[int] = True def _a (self ): """simple docstring""" self.retriever.index.init_index() def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : str = self.retriever._main_retrieve(_lowerCamelCase , _lowerCamelCase ) return doc_ids, retrieved_doc_embeds class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): """simple docstring""" if index is not None and index.is_initialized() and len(_lowerCamelCase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , index=_lowerCamelCase , init_retrieval=_lowerCamelCase , ) UpperCAmelCase__ : Optional[Any] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for worker in self.retrieval_workers ] ) def _a (self ): """simple docstring""" logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. UpperCAmelCase__ : List[str] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] UpperCAmelCase__ , UpperCAmelCase__ : str = ray.get(random_worker.retrieve.remote(_lowerCamelCase , _lowerCamelCase ) ) else: UpperCAmelCase__ , UpperCAmelCase__ : Dict = self._main_retrieve(_lowerCamelCase , _lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowerCamelCase ) @classmethod def _a (cls , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): """simple docstring""" return super(_lowerCamelCase , cls ).get_tokenizers(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) @classmethod def _a (cls , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : int = kwargs.pop("""config""" , _lowerCamelCase ) or RagConfig.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = RagTokenizer.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) UpperCAmelCase__ : Tuple = rag_tokenizer.question_encoder UpperCAmelCase__ : Any = rag_tokenizer.generator if indexed_dataset is not None: UpperCAmelCase__ : str = """custom""" UpperCAmelCase__ : Tuple = CustomHFIndex(config.retrieval_vector_size , _lowerCamelCase ) else: UpperCAmelCase__ : List[str] = cls._build_index(_lowerCamelCase ) return cls( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , retrieval_workers=_lowerCamelCase , index=_lowerCamelCase , )
182
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
182
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : List[Any] = logging.get_logger(__name__) snake_case_ : List[Any] = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = '''rwkv''' SCREAMING_SNAKE_CASE__ = {'''max_position_embeddings''': '''context_length'''} def __init__( self : int , lowercase : Optional[Any]=5_02_77 , lowercase : Union[str, Any]=10_24 , lowercase : Union[str, Any]=40_96 , lowercase : List[str]=32 , lowercase : str=None , lowercase : Tuple=None , lowercase : Dict=1E-5 , lowercase : Any=0 , lowercase : List[Any]=0 , lowercase : int=6 , lowercase : Dict=False , lowercase : Dict=True , **lowercase : Optional[Any] , ): '''simple docstring''' UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : List[str] = context_length UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase : List[Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Optional[int] = rescale_every UpperCAmelCase : Tuple = use_cache UpperCAmelCase : Union[str, Any] = bos_token_id UpperCAmelCase : Optional[int] = eos_token_id super().__init__( tie_word_embeddings=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
710
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class snake_case__ : SCREAMING_SNAKE_CASE__ = BlenderbotSmallConfig SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = '''gelu''' def __init__( self : Tuple , lowercase : Any , lowercase : Optional[Any]=13 , lowercase : Any=7 , lowercase : List[Any]=True , lowercase : List[str]=False , lowercase : Optional[Any]=99 , lowercase : Union[str, Any]=32 , lowercase : List[Any]=2 , lowercase : Tuple=4 , lowercase : Union[str, Any]=37 , lowercase : str=0.1 , lowercase : Optional[Any]=0.1 , lowercase : Optional[Any]=20 , lowercase : str=2 , lowercase : int=1 , lowercase : Optional[int]=0 , ): '''simple docstring''' UpperCAmelCase : Dict = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : Dict = is_training UpperCAmelCase : str = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : List[Any] = pad_token_id UpperCAmelCase : Union[str, Any] = bos_token_id def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : Optional[Any] = prepare_blenderbot_small_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCAmelCase ( self : int , lowercase : List[Any] , lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase : List[Any] = TFBlenderbotSmallModel(config=lowercase ).get_decoder() UpperCAmelCase : List[Any] = inputs_dict["input_ids"] UpperCAmelCase : int = input_ids[:1, :] UpperCAmelCase : Union[str, Any] = inputs_dict["attention_mask"][:1, :] UpperCAmelCase : Union[str, Any] = inputs_dict["head_mask"] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : Optional[Any] = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) UpperCAmelCase , UpperCAmelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : str = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] UpperCAmelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def lowercase_ ( _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : Tuple=None , _lowercase : Any=None , _lowercase : str=None , _lowercase : Optional[Any]=None , _lowercase : Dict=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase : List[str] = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ = ( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Dict = TFBlenderbotSmallModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self , config_class=lowercase ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_tokenizers @require_tf class snake_case__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ = [ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] SCREAMING_SNAKE_CASE__ = '''facebook/blenderbot_small-90M''' @cached_property def __lowerCAmelCase ( self : Any ): '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def __lowerCAmelCase ( self : Any ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase : List[Any] = self.tokenizer(self.src_text , return_tensors="tf" ) UpperCAmelCase : List[Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) UpperCAmelCase : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
292
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: a_ : Union[str, Any] = 10 def SCREAMING_SNAKE_CASE ( self : int ) -> Any: a_ : int = [1, 2, 3, 4] a_ : Optional[Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowercase_ , self.block_size , 0 ) , lowercase_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: a_ : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a_ : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase_ , self.block_size , 0 ) , lowercase_ ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: a_ : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a_ : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase_ , self.block_size , 0 ) , lowercase_ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: a_ : Any = '''It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.''' a_ , a_ : Union[str, Any] = process_story(lowercase_ ) self.assertEqual(lowercase_ , [] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: a_ : Dict = '''''' a_ , a_ : Tuple = process_story(lowercase_ ) self.assertEqual(lowercase_ , [] ) self.assertEqual(lowercase_ , [] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: a_ : Optional[Any] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) a_ , a_ : int = process_story(lowercase_ ) a_ : Optional[Any] = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(lowercase_ , lowercase_ ) a_ : int = ['''It was the best of times.'''] self.assertEqual(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: a_ : Union[str, Any] = torch.tensor([1, 2, 3, 4] ) a_ : Any = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowercase_ , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: a_ : Optional[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a_ : Dict = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase_ , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: a_ : Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a_ : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase_ , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: a_ : int = 101 a_ : Union[str, Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a_ : List[str] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a_ : str = compute_token_type_ids(lowercase_ , lowercase_ ) np.testing.assert_array_equal(lowercase_ , lowercase_ )
466
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class a_ ( a_ , a_ ): '''simple docstring''' __a: Union[str, Any] = '''resnet''' __a: List[Any] = ['''basic''', '''bottleneck'''] def __init__( self , lowercase_=3 , lowercase_=6_4 , lowercase_=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , lowercase_=[3, 4, 6, 3] , lowercase_="bottleneck" , lowercase_="relu" , lowercase_=False , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase_ ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = embedding_size lowerCAmelCase_ = hidden_sizes lowerCAmelCase_ = depths lowerCAmelCase_ = layer_type lowerCAmelCase_ = hidden_act lowerCAmelCase_ = downsample_in_first_stage lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class a_ ( a_ ): '''simple docstring''' __a: Optional[int] = version.parse('''1.11''' ) @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _lowercase ( self ) -> float: '''simple docstring''' return 1e-3
318
0
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowerCamelCase__ : Any = logging.get_logger(__name__) def __A ( a_ : str , a_ : Optional[Any] )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = set() SCREAMING_SNAKE_CASE : Optional[Any] = [] def parse_line(a_ : int ): for line in fp: if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE : List[str] = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(_lowercase ) > 0: SCREAMING_SNAKE_CASE : List[str] = '\n'.join(_lowercase ) # Only keep the warnings specified in `targets` if any(F": {x}: " in warning for x in targets ): selected_warnings.add(_lowercase ) buffer.clear() continue else: SCREAMING_SNAKE_CASE : Any = line.strip() buffer.append(_lowercase ) if from_gh: for filename in os.listdir(_lowercase ): SCREAMING_SNAKE_CASE : Dict = os.path.join(_lowercase , _lowercase ) if not os.path.isdir(_lowercase ): # read the file if filename != "warnings.txt": continue with open(_lowercase ) as fp: parse_line(_lowercase ) else: try: with zipfile.ZipFile(_lowercase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowercase ): # read the file if filename != "warnings.txt": continue with z.open(_lowercase ) as fp: parse_line(_lowercase ) except Exception: logger.warning( F"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def __A ( a_ : Optional[int] , a_ : Union[str, Any] )-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = set() SCREAMING_SNAKE_CASE : Any = [os.path.join(_lowercase , _lowercase ) for p in os.listdir(_lowercase ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_lowercase , _lowercase ) ) return selected_warnings if __name__ == "__main__": def __A ( a_ : Dict )-> Optional[Any]: '''simple docstring''' return values.split(''',''' ) lowerCamelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) lowerCamelCase__ : Any = parser.parse_args() lowerCamelCase__ : Tuple = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowerCamelCase__ : Dict = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowerCamelCase__ : Union[str, Any] = extract_warnings(args.output_dir, args.targets) lowerCamelCase__ : str = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
704
"""simple docstring""" def __A ( a_ : list , a_ : int , a_ : int = 0 , a_ : int = 0 )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = right or len(a_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(a_ , a_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
import functools from typing import Any def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): # Validation if not isinstance(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) or len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) or not all( isinstance(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie UpperCAmelCase__: dict[str, Any] = {} UpperCAmelCase__: Dict = "WORD_KEEPER" for word in words: UpperCAmelCase__: Tuple = trie for c in word: if c not in trie_node: UpperCAmelCase__: List[Any] = {} UpperCAmelCase__: Optional[Any] = trie_node[c] UpperCAmelCase__: Dict = True UpperCAmelCase__: List[Any] = len(SCREAMING_SNAKE_CASE ) # Dynamic programming method @functools.cache def is_breakable(SCREAMING_SNAKE_CASE ) -> bool: if index == len_string: return True UpperCAmelCase__: Any = trie for i in range(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: int = trie_node.get(string[i] ,SCREAMING_SNAKE_CASE ) if trie_node is None: return False if trie_node.get(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
113
_lowerCAmelCase : int =""" # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowerCAmelCase : List[str] =[{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowerCAmelCase : int ={ """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
113
1
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __a ( _snake_case, _snake_case, _snake_case ): __UpperCamelCase : List[Any] = [R'h\.\d+\.attn\.bias', R'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self : List[str] ,lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : int = 5_0257 ,lowerCamelCase : int = 1024 ,lowerCamelCase : int = 768 ,lowerCamelCase : int = 12 ,lowerCamelCase : int = 12 ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : str = "gelu_new" ,lowerCamelCase : float = 0.1 ,lowerCamelCase : float = 0.1 ,lowerCamelCase : float = 0.1 ,lowerCamelCase : float = 1E-5 ,lowerCamelCase : float = 0.02 ,lowerCamelCase : bool = True ,lowerCamelCase : bool = True ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""" ) __SCREAMING_SNAKE_CASE = prefix_inner_dim __SCREAMING_SNAKE_CASE = prefix_hidden_dim __SCREAMING_SNAKE_CASE = ( nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) __SCREAMING_SNAKE_CASE = ( nn.Linear(self.prefix_hidden_dim ,lowerCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) __SCREAMING_SNAKE_CASE = GPTaConfig( vocab_size=lowerCamelCase ,n_positions=lowerCamelCase ,n_embd=lowerCamelCase ,n_layer=lowerCamelCase ,n_head=lowerCamelCase ,n_inner=lowerCamelCase ,activation_function=lowerCamelCase ,resid_pdrop=lowerCamelCase ,embd_pdrop=lowerCamelCase ,attn_pdrop=lowerCamelCase ,layer_norm_epsilon=lowerCamelCase ,initializer_range=lowerCamelCase ,scale_attn_weights=lowerCamelCase ,use_cache=lowerCamelCase ,scale_attn_by_inverse_layer_idx=lowerCamelCase ,reorder_and_upcast_attn=lowerCamelCase ,) __SCREAMING_SNAKE_CASE = GPTaLMHeadModel(lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : torch.Tensor ,lowerCamelCase : torch.Tensor ,lowerCamelCase : Optional[torch.Tensor] = None ,lowerCamelCase : Optional[torch.Tensor] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.transformer.transformer.wte(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.encode_prefix(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.decode_prefix(lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.cat((prefix_embeds, embedding_text) ,dim=1 ) if labels is not None: __SCREAMING_SNAKE_CASE = self.get_dummy_token(input_ids.shape[0] ,input_ids.device ) __SCREAMING_SNAKE_CASE = torch.cat((dummy_token, input_ids) ,dim=1 ) __SCREAMING_SNAKE_CASE = self.transformer(inputs_embeds=lowerCamelCase ,labels=lowerCamelCase ,attention_mask=lowerCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCAmelCase__ ( self : int ,lowerCamelCase : int ,lowerCamelCase : torch.device ): '''simple docstring''' return torch.zeros(lowerCamelCase ,self.prefix_length ,dtype=torch.intaa ,device=lowerCamelCase ) def UpperCAmelCase__ ( self : str ,lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.encode_prefix(lowerCamelCase ) @torch.no_grad() def UpperCAmelCase__ ( self : Any ,lowerCamelCase : int ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.split(lowerCamelCase ,1 ,dim=0 ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for feature in features: __SCREAMING_SNAKE_CASE = self.decode_prefix(feature.to(lowerCamelCase ) ) # back to the clip feature # Only support beam search for now __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.generate_beam( input_embeds=lowerCamelCase ,device=lowerCamelCase ,eos_token_id=lowerCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) __SCREAMING_SNAKE_CASE = torch.stack(lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.stack(lowerCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCAmelCase__ ( self : str ,lowerCamelCase : int=None ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : List[str]=None ,lowerCamelCase : int = 5 ,lowerCamelCase : int = 67 ,lowerCamelCase : float = 1.0 ,lowerCamelCase : Optional[int] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = torch.ones(lowerCamelCase ,device=lowerCamelCase ,dtype=torch.int ) __SCREAMING_SNAKE_CASE = torch.zeros(lowerCamelCase ,device=lowerCamelCase ,dtype=torch.bool ) if input_embeds is not None: __SCREAMING_SNAKE_CASE = input_embeds else: __SCREAMING_SNAKE_CASE = self.transformer.transformer.wte(lowerCamelCase ) for i in range(lowerCamelCase ): __SCREAMING_SNAKE_CASE = self.transformer(inputs_embeds=lowerCamelCase ) __SCREAMING_SNAKE_CASE = outputs.logits __SCREAMING_SNAKE_CASE = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) __SCREAMING_SNAKE_CASE = logits.softmax(-1 ).log() if scores is None: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = logits.topk(lowerCamelCase ,-1 ) __SCREAMING_SNAKE_CASE = generated.expand(lowerCamelCase ,*generated.shape[1:] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = next_tokens.permute(1 ,0 ), scores.squeeze(0 ) if tokens is None: __SCREAMING_SNAKE_CASE = next_tokens else: __SCREAMING_SNAKE_CASE = tokens.expand(lowerCamelCase ,*tokens.shape[1:] ) __SCREAMING_SNAKE_CASE = torch.cat((tokens, next_tokens) ,dim=1 ) else: __SCREAMING_SNAKE_CASE = -float(np.inf ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = scores[:, None] + logits seq_lengths[~is_stopped] += 1 __SCREAMING_SNAKE_CASE = scores_sum / seq_lengths[:, None] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = scores_sum_average.view(-1 ).topk(lowerCamelCase ,-1 ) __SCREAMING_SNAKE_CASE = next_tokens // scores_sum.shape[1] __SCREAMING_SNAKE_CASE = seq_lengths[next_tokens_source] __SCREAMING_SNAKE_CASE = next_tokens % scores_sum.shape[1] __SCREAMING_SNAKE_CASE = next_tokens.unsqueeze(1 ) __SCREAMING_SNAKE_CASE = tokens[next_tokens_source] __SCREAMING_SNAKE_CASE = torch.cat((tokens, next_tokens) ,dim=1 ) __SCREAMING_SNAKE_CASE = generated[next_tokens_source] __SCREAMING_SNAKE_CASE = scores_sum_average * seq_lengths __SCREAMING_SNAKE_CASE = is_stopped[next_tokens_source] __SCREAMING_SNAKE_CASE = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] ,1 ,-1 ) __SCREAMING_SNAKE_CASE = torch.cat((generated, next_token_embed) ,dim=1 ) __SCREAMING_SNAKE_CASE = is_stopped + next_tokens.eq(lowerCamelCase ).squeeze() if is_stopped.all(): break __SCREAMING_SNAKE_CASE = scores / seq_lengths __SCREAMING_SNAKE_CASE = scores.argsort(descending=lowerCamelCase ) # tokens tensors are already padded to max_seq_length __SCREAMING_SNAKE_CASE = [tokens[i] for i in order] __SCREAMING_SNAKE_CASE = torch.stack(lowerCamelCase ,dim=0 ) __SCREAMING_SNAKE_CASE = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype ) return output_texts, seq_lengths
13
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' require_version(deps[pkg] , __UpperCAmelCase )
13
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a__ : Optional[Any] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowercase ( unittest.TestCase ): """simple docstring""" snake_case_ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case_ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: snake_case_ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: snake_case_ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _UpperCamelCase ( self : Dict ): """simple docstring""" lowerCamelCase__ = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) lowerCamelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) lowerCamelCase__ = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}] ) lowerCamelCase__ = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], ] , ) lowerCamelCase__ = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) # Legacy behavior lowerCamelCase__ = text_classifier("""This is great !""" , return_all_scores=_lowerCAmelCase ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) lowerCamelCase__ = text_classifier("""This is great !""" , return_all_scores=_lowerCAmelCase ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}]] ) lowerCamelCase__ = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=_lowerCAmelCase ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], ] , ) lowerCamelCase__ = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=_lowerCAmelCase ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_0""", """score""": 0.5_0_4}, ] , ) @require_torch def _UpperCamelCase ( self : Any ): """simple docstring""" import torch lowerCamelCase__ = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) lowerCamelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) @require_tf def _UpperCamelCase ( self : int ): """simple docstring""" lowerCamelCase__ = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) lowerCamelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) @slow @require_torch def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" lowerCamelCase__ = pipeline("""text-classification""" ) lowerCamelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) lowerCamelCase__ = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) lowerCamelCase__ = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] ) @slow @require_tf def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" lowerCamelCase__ = pipeline("""text-classification""" , framework="""tf""" ) lowerCamelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) lowerCamelCase__ = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) lowerCamelCase__ = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] ) def _UpperCamelCase ( self : Optional[Any] , a_ : Any , a_ : Any , a_ : Optional[Any] ): """simple docstring""" lowerCamelCase__ = TextClassificationPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def _UpperCamelCase ( self : int , a_ : int , a_ : Any ): """simple docstring""" lowerCamelCase__ = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowerCamelCase__ = """HuggingFace is in""" lowerCamelCase__ = text_classifier(_lowerCAmelCase ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"""label""": ANY(_lowerCAmelCase ), """score""": ANY(_lowerCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) lowerCamelCase__ = ["""HuggingFace is in """, """Paris is in France"""] lowerCamelCase__ = text_classifier(_lowerCAmelCase ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"""label""": ANY(_lowerCAmelCase ), """score""": ANY(_lowerCAmelCase )}, {"""label""": ANY(_lowerCAmelCase ), """score""": ANY(_lowerCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowerCamelCase__ = text_classifier(_lowerCAmelCase , top_k=_lowerCAmelCase ) lowerCamelCase__ = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [[{"""label""": ANY(_lowerCAmelCase ), """score""": ANY(_lowerCAmelCase )}] * N, [{"""label""": ANY(_lowerCAmelCase ), """score""": ANY(_lowerCAmelCase )}] * N] , ) lowerCamelCase__ = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} lowerCamelCase__ = text_classifier(_lowerCAmelCase ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , {"""label""": ANY(_lowerCAmelCase ), """score""": ANY(_lowerCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowerCamelCase__ = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(_lowerCAmelCase ): text_classifier(_lowerCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowerCamelCase__ = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"""label""": ANY(_lowerCAmelCase ), """score""": ANY(_lowerCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
165
'''simple docstring''' import argparse import os import re lowercase_ : Optional[Any] = '''src/transformers''' # Pattern that looks at the indentation in a line. lowercase_ : int = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase_ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase_ : Optional[int] = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase_ : List[Any] = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase_ : List[str] = re.compile(r'''\[([^\]]+)\]''') def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): lowercase = _re_indent.search(lowercase_ ) return "" if search is None else search.groups()[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : int="" , lowercase_ : int=None , lowercase_ : List[Any]=None ): lowercase = 0 lowercase = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(lowercase_ ): index += 1 lowercase = ["""\n""".join(lines[:index] )] else: lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase = [lines[index]] index += 1 while index < len(lowercase_ ) and (end_prompt is None or not lines[index].startswith(lowercase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowercase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(lowercase_ ) ) if index < len(lowercase_ ) - 1: lowercase = [lines[index + 1]] index += 1 else: lowercase = [] else: blocks.append("""\n""".join(lowercase_ ) ) lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowercase_ ) > 0: blocks.append("""\n""".join(lowercase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowercase_ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] ): def _inner(lowercase_ : str ): return key(lowercase_ ).lower().replace("""_""" , """""" ) return _inner def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : List[str]=None ): # If no key is provided, we use a noop. def noop(lowercase_ : int ): return x if key is None: lowercase = noop # Constants are all uppercase, they go first. lowercase = [obj for obj in objects if key(lowercase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase = [obj for obj in objects if key(lowercase_ )[0].isupper() and not key(lowercase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase = [obj for obj in objects if not key(lowercase_ )[0].isupper()] lowercase = ignore_underscore(lowercase_ ) return sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): # This inner function sort imports between [ ]. def _replace(lowercase_ : Union[str, Any] ): lowercase = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowercase_ )] ) + "]" lowercase = import_statement.split("""\n""" ) if len(lowercase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase = 2 if lines[1].strip() == """[""" else 1 lowercase = [(i, _re_strip_line.search(lowercase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase = sort_objects(lowercase_ , key=lambda lowercase_ : x[1] ) lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowercase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase = keys[:-1] lowercase = get_indent(lines[1] ) + """, """.join([F"""\"{k}\"""" for k in sort_objects(lowercase_ )] ) return "\n".join(lowercase_ ) else: # Finally we have to deal with imports fitting on one line lowercase = _re_bracket_content.sub(_replace , lowercase_ ) return import_statement def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : List[str]=True ): with open(lowercase_ , encoding="""utf-8""" ) as f: lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase = split_code_in_indented_blocks( lowercase_ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowercase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase = main_blocks[block_idx] lowercase = block.split("""\n""" ) # Get to the start of the imports. lowercase = 0 while line_idx < len(lowercase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase = len(lowercase_ ) else: line_idx += 1 if line_idx >= len(lowercase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase = """\n""".join(block_lines[line_idx:-1] ) lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase = split_code_in_indented_blocks(lowercase_ , indent_level=lowercase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase = [(pattern.search(lowercase_ ).groups()[0] if pattern.search(lowercase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase = [(i, key) for i, key in enumerate(lowercase_ ) if key is not None] lowercase = [x[0] for x in sorted(lowercase_ , key=lambda lowercase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase = 0 lowercase = [] for i in range(len(lowercase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowercase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowercase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(lowercase_ ) ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any]=True ): lowercase = [] for root, _, files in os.walk(lowercase_ ): if "__init__.py" in files: lowercase = sort_imports(os.path.join(lowercase_ , """__init__.py""" ) , check_only=lowercase_ ) if result: lowercase = [os.path.join(lowercase_ , """__init__.py""" )] if len(lowercase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowercase_ )} files, run `make style`.""" ) if __name__ == "__main__": lowercase_ : str = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase_ : Dict = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
588
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule SCREAMING_SNAKE_CASE_ : Dict = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys SCREAMING_SNAKE_CASE_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
719
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Any = ['model.decoder.embed_positions.weights'] def _snake_case ( UpperCAmelCase_ : Optional[int] ): if "emb" in name: A__ = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: A__ = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: A__ = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: A__ = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: A__ = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: A__ = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: A__ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: A__ = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: A__ = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: A__ = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: A__ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _snake_case ( UpperCAmelCase_ : OrderedDict , UpperCAmelCase_ : int ): A__ = list(state_dict.keys() ) A__ = {} for key in keys: A__ = state_dict.pop(UpperCAmelCase_ ) A__ = rename_keys(UpperCAmelCase_ ) if "in_proj_weight" in key: # split fused qkv proj A__ = val[:hidden_size, :] A__ = val[hidden_size : 2 * hidden_size, :] A__ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: A__ = val else: A__ = val return state_dict, enc_dec_proj_state_dict def _snake_case ( UpperCAmelCase_ : str ): if checkpoint == "small": # default config values A__ = 1024 A__ = 24 A__ = 16 elif checkpoint == "medium": A__ = 1536 A__ = 48 A__ = 24 elif checkpoint == "large": A__ = 2048 A__ = 48 A__ = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) A__ = MusicgenDecoderConfig( hidden_size=UpperCAmelCase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCAmelCase_ , num_attention_heads=UpperCAmelCase_ , ) return config @torch.no_grad() def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any="cpu" ): A__ = MusicGen.get_pretrained(UpperCAmelCase_ , device=UpperCAmelCase_ ) A__ = decoder_config_from_checkpoint(UpperCAmelCase_ ) A__ = fairseq_model.lm.state_dict() A__ , A__ = rename_state_dict( UpperCAmelCase_ , hidden_size=decoder_config.hidden_size ) A__ = TaEncoderModel.from_pretrained("""t5-base""" ) A__ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) A__ = MusicgenForCausalLM(UpperCAmelCase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection A__ , A__ = decoder.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCAmelCase_ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model A__ = MusicgenForConditionalGeneration(text_encoder=UpperCAmelCase_ , audio_encoder=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCAmelCase_ ) # check we can do a forward pass A__ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) A__ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): A__ = model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_ ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor A__ = AutoTokenizer.from_pretrained("""t5-base""" ) A__ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) A__ = MusicgenProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) # set the appropriate bos/pad token ids A__ = 2048 A__ = 2048 # set other default generation config params A__ = int(30 * audio_encoder.config.frame_rate ) A__ = True A__ = 3.0 if pytorch_dump_folder is not None: Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCAmelCase_ ) processor.push_to_hub(UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) SCREAMING_SNAKE_CASE_ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
500
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = 'bert-generation' def __init__(self , A=50_358 , A=1_024 , A=24 , A=16 , A=4_096 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=0.02 , A=1E-12 , A=0 , A=2 , A=1 , A="absolute" , A=True , **A , ) -> int: """simple docstring""" super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache
11
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def a (lowerCAmelCase__ , lowerCAmelCase__ ): __a = set() __a = [] def parse_line(lowerCAmelCase__ ): for line in fp: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCAmelCase__ ) > 0: __a = """\n""".join(lowerCAmelCase__ ) # Only keep the warnings specified in `targets` if any(f''': {x}: ''' in warning for x in targets ): selected_warnings.add(lowerCAmelCase__ ) buffer.clear() continue else: __a = line.strip() buffer.append(lowerCAmelCase__ ) if from_gh: for filename in os.listdir(lowerCAmelCase__ ): __a = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) if not os.path.isdir(lowerCAmelCase__ ): # read the file if filename != "warnings.txt": continue with open(lowerCAmelCase__ ) as fp: parse_line(lowerCAmelCase__ ) else: try: with zipfile.ZipFile(lowerCAmelCase__ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase__ ): # read the file if filename != "warnings.txt": continue with z.open(lowerCAmelCase__ ) as fp: parse_line(lowerCAmelCase__ ) except Exception: logger.warning( f'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def a (lowerCAmelCase__ , lowerCAmelCase__ ): __a = set() __a = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for p in os.listdir(lowerCAmelCase__ ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCAmelCase__ , lowerCAmelCase__ ) ) return selected_warnings if __name__ == "__main__": def a (lowerCAmelCase__ ): return values.split(""",""" ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts SCREAMING_SNAKE_CASE = extract_warnings(args.output_dir, args.targets) SCREAMING_SNAKE_CASE = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
709
from __future__ import annotations SCREAMING_SNAKE_CASE = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class __UpperCAmelCase : """simple docstring""" def __init__( self , __A , __A ): __a = graph # mapping node to its parent in resulting breadth first tree __a = {} __a = source_vertex def snake_case_ ( self ): __a = {self.source_vertex} __a = None __a = [self.source_vertex] # first in first out queue while queue: __a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__A ) __a = vertex queue.append(__A ) def snake_case_ ( self , __A ): if target_vertex == self.source_vertex: return self.source_vertex __a = self.parent.get(__A ) if target_vertex_parent is None: __a = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(__A ) return self.shortest_path(__A ) + f'''->{target_vertex}''' if __name__ == "__main__": SCREAMING_SNAKE_CASE = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
209
0