code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase ( __snake_case : Dict ): lowercase_ : Optional[int] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def lowercase ( __snake_case : List[str] ): lowercase_ , lowercase_ : Dict = emb.weight.shape lowercase_ : Dict = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowercase_ : List[str] = emb.weight.data return lin_layer def lowercase ( __snake_case : Optional[Any] , __snake_case : Dict="facebook/mbart-large-en-ro" , __snake_case : str=False , __snake_case : Union[str, Any]=False ): lowercase_ : str = torch.load(__snake_case , map_location='''cpu''' )['''model'''] remove_ignore_keys_(__snake_case ) lowercase_ : Optional[int] = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase_ : str = MBartConfig.from_pretrained(__snake_case , vocab_size=__snake_case ) if mbart_aa and finetuned: lowercase_ : Optional[Any] = '''relu''' lowercase_ : List[Any] = state_dict['''decoder.embed_tokens.weight'''] lowercase_ : int = MBartForConditionalGeneration(__snake_case ) model.model.load_state_dict(__snake_case ) if finetuned: lowercase_ : Dict = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') __A : List[str] = parser.parse_args() __A : Tuple = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
231
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _UpperCAmelCase : def __init__( self : Tuple , A : Any , A : Dict=13 , A : Union[str, Any]=7 , A : List[Any]=True , A : List[Any]=True , A : Tuple=False , A : Optional[Any]=True , A : Tuple=99 , A : Tuple=32 , A : Dict=5 , A : int=4 , A : List[Any]=37 , A : Optional[int]="gelu" , A : List[str]=0.1 , A : List[Any]=0.1 , A : Optional[Any]=5_12 , A : Dict=16 , A : str=2 , A : int=0.02 , A : Optional[int]=3 , A : Tuple=4 , A : List[str]=None , ) -> Union[str, Any]: lowercase_ : Dict = parent lowercase_ : List[str] = batch_size lowercase_ : int = seq_length lowercase_ : List[str] = is_training lowercase_ : Tuple = use_input_mask lowercase_ : List[Any] = use_token_type_ids lowercase_ : Union[str, Any] = use_labels lowercase_ : Optional[Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : Optional[Any] = intermediate_size lowercase_ : List[str] = hidden_act lowercase_ : List[str] = hidden_dropout_prob lowercase_ : Dict = attention_probs_dropout_prob lowercase_ : List[Any] = max_position_embeddings lowercase_ : Dict = type_vocab_size lowercase_ : Union[str, Any] = type_sequence_label_size lowercase_ : Optional[Any] = initializer_range lowercase_ : Tuple = num_labels lowercase_ : Union[str, Any] = num_choices lowercase_ : Optional[int] = scope def A ( self : str ) -> Optional[int]: lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : List[str] = None if self.use_input_mask: lowercase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : List[Any] = None if self.use_token_type_ids: lowercase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : List[str] = None lowercase_ : str = None lowercase_ : Optional[int] = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[Any] ) -> int: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def A ( self : List[Any] , A : Optional[Any] , A : str , A : Union[str, Any] , A : Dict , A : Optional[int] , A : str , A : Union[str, Any] ) -> Any: lowercase_ : Optional[int] = LlamaModel(config=A ) model.to(A ) model.eval() lowercase_ : Tuple = model(A , attention_mask=A ) lowercase_ : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : str , A : Dict , A : Optional[int] , A : List[Any] , A : List[Any] , A : int , A : List[str] , A : int , A : List[Any] , A : int , ) -> Tuple: lowercase_ : str = True lowercase_ : str = LlamaModel(A ) model.to(A ) model.eval() lowercase_ : str = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) lowercase_ : Tuple = model( A , attention_mask=A , encoder_hidden_states=A , ) lowercase_ : Dict = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , A : Optional[Any] , A : Optional[int] , A : Union[str, Any] , A : Union[str, Any] , A : Dict , A : Optional[int] , A : Union[str, Any] , A : List[Any] , A : List[Any] , ) -> Tuple: lowercase_ : Optional[Any] = LlamaForCausalLM(config=A ) model.to(A ) model.eval() lowercase_ : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Any , A : List[str] , A : Dict , A : Dict , A : int , A : Any , A : Optional[int] , A : str , A : Dict , A : Optional[Any] , ) -> int: lowercase_ : Any = True lowercase_ : str = True lowercase_ : List[str] = LlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass lowercase_ : Tuple = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) lowercase_ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ : Dict = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] lowercase_ : Dict = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice lowercase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def A ( self : Union[str, Any] ) -> List[Any]: lowercase_ : Tuple = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = config_and_inputs lowercase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _A , _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[str] = (LlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Tuple = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : Dict = False def A ( self : Dict ) -> List[Any]: lowercase_ : Any = LlamaModelTester(self ) lowercase_ : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def A ( self : Any ) -> Any: self.config_tester.run_common_tests() def A ( self : List[Any] ) -> Union[str, Any]: lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def A ( self : List[Any] ) -> int: lowercase_ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : int = type self.model_tester.create_and_check_model(*A ) def A ( self : int ) -> Optional[int]: lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Optional[Any] = 3 lowercase_ : Dict = input_dict['''input_ids'''] lowercase_ : List[str] = input_ids.ne(1 ).to(A ) lowercase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ : int = LlamaForSequenceClassification(A ) model.to(A ) model.eval() lowercase_ : int = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : int ) -> Optional[int]: lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : List[Any] = 3 lowercase_ : Tuple = '''single_label_classification''' lowercase_ : str = input_dict['''input_ids'''] lowercase_ : Any = input_ids.ne(1 ).to(A ) lowercase_ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ : Any = LlamaForSequenceClassification(A ) model.to(A ) model.eval() lowercase_ : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : Any ) -> Union[str, Any]: lowercase_ , lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Tuple = 3 lowercase_ : int = '''multi_label_classification''' lowercase_ : Optional[Any] = input_dict['''input_ids'''] lowercase_ : Dict = input_ids.ne(1 ).to(A ) lowercase_ : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ : Optional[Any] = LlamaForSequenceClassification(A ) model.to(A ) model.eval() lowercase_ : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def A ( self : Union[str, Any] ) -> Dict: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def A ( self : int , A : int ) -> Optional[int]: lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : str = ids_tensor([1, 10] , config.vocab_size ) lowercase_ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ : Optional[Any] = LlamaModel(A ) original_model.to(A ) original_model.eval() lowercase_ : List[str] = original_model(A ).last_hidden_state lowercase_ : int = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ : List[Any] = {'''type''': scaling_type, '''factor''': 10.0} lowercase_ : int = LlamaModel(A ) scaled_model.to(A ) scaled_model.eval() lowercase_ : Union[str, Any] = scaled_model(A ).last_hidden_state lowercase_ : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def A ( self : List[str] ) -> List[str]: lowercase_ : Union[str, Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] lowercase_ : List[str] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) lowercase_ : List[Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowercase_ : Optional[int] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase_ : Optional[int] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def A ( self : Tuple ) -> str: lowercase_ : Optional[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] lowercase_ : Union[str, Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) lowercase_ : Tuple = model(torch.tensor(A ) ) # Expected mean on dim = -1 lowercase_ : Optional[Any] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase_ : Union[str, Any] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def A ( self : List[Any] ) -> Dict: lowercase_ : Union[str, Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] lowercase_ : Optional[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) lowercase_ : List[Any] = model(torch.tensor(A ) ) # Expected mean on dim = -1 lowercase_ : List[str] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase_ : Dict = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def A ( self : Union[str, Any] ) -> Optional[Any]: lowercase_ : List[str] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] lowercase_ : Optional[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) lowercase_ : Union[str, Any] = model(torch.tensor(A ) ) lowercase_ : Any = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) # fmt: off lowercase_ : Optional[Any] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Model is curently gated''' ) @slow def A ( self : str ) -> Tuple: lowercase_ : List[str] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' lowercase_ : Any = '''Simply put, the theory of relativity states that ''' lowercase_ : Optional[Any] = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowercase_ : Union[str, Any] = tokenizer.encode(A , return_tensors='''pt''' ) lowercase_ : List[Any] = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=A ) # greedy generation outputs lowercase_ : List[str] = model.generate(A , max_new_tokens=64 , top_p=A , temperature=1 , do_sample=A ) lowercase_ : Union[str, Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=A ) self.assertEqual(A , A )
231
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class UpperCamelCase__ ( UpperCamelCase_ , UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ ="convnextv2" def __init__( self , _A=3 , _A=4 , _A=4 , _A=None , _A=None , _A="gelu" , _A=0.02 , _A=1E-12 , _A=0.0 , _A=224 , _A=None , _A=None , **_A , ) -> Tuple: super().__init__(**__A ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_stages SCREAMING_SNAKE_CASE_ = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes SCREAMING_SNAKE_CASE_ = [3, 3, 9, 3] if depths is None else depths SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE_ = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names )
703
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A__ ( __lowerCamelCase = "laptop" ): SCREAMING_SNAKE_CASE_ = F'''https://www.amazon.in/laptop/s?k={product}''' SCREAMING_SNAKE_CASE_ = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } SCREAMING_SNAKE_CASE_ = BeautifulSoup(requests.get(__lowerCamelCase, headers=__lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles SCREAMING_SNAKE_CASE_ = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''', attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''}, ), soup.find_all('''div''', attrs={'''class''': '''a-row a-size-base a-color-base'''} ), ): try: SCREAMING_SNAKE_CASE_ = item.ha.text SCREAMING_SNAKE_CASE_ = '''https://www.amazon.in/''' + item.ha.a['''href'''] SCREAMING_SNAKE_CASE_ = item.find('''span''', attrs={'''class''': '''a-offscreen'''} ).text try: SCREAMING_SNAKE_CASE_ = item.find('''span''', attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: SCREAMING_SNAKE_CASE_ = '''Not available''' try: SCREAMING_SNAKE_CASE_ = ( '''₹''' + item.find( '''span''', attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: SCREAMING_SNAKE_CASE_ = '''''' try: SCREAMING_SNAKE_CASE_ = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''', '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) ) ) * 1_00 ) except ValueError: SCREAMING_SNAKE_CASE_ = float('''nan''' ) except AttributeError: pass SCREAMING_SNAKE_CASE_ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] SCREAMING_SNAKE_CASE_ = ''' ''' SCREAMING_SNAKE_CASE_ = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": __UpperCAmelCase = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
597
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowerCamelCase__ : """simple docstring""" def __init__( self : Any , __lowerCAmelCase : List[Any] , ) -> Tuple: _A = parent _A = 13 _A = 7 _A = True _A = True _A = False _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = '''gelu''' _A = 0.1 _A = 0.1 _A = 5_12 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def snake_case_ ( self : str ) -> Optional[int]: _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Any: _A = TFDistilBertModel(config=__lowerCAmelCase ) _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _A = model(__lowerCAmelCase ) _A = [input_ids, input_mask] _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = TFDistilBertForMaskedLM(config=__lowerCAmelCase ) _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Any ) -> Optional[Any]: _A = TFDistilBertForQuestionAnswering(config=__lowerCAmelCase ) _A = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self : str , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ) -> Tuple: _A = self.num_labels _A = TFDistilBertForSequenceClassification(__lowerCAmelCase ) _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int ) -> str: _A = self.num_choices _A = TFDistilBertForMultipleChoice(__lowerCAmelCase ) _A = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _A = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _A = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ) -> Dict: _A = self.num_labels _A = TFDistilBertForTokenClassification(__lowerCAmelCase ) _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self : Optional[int] ) -> Any: _A = self.prepare_config_and_inputs() ((_A) , (_A) , (_A) , (_A) , (_A) , (_A)) = config_and_inputs _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( _A , _A , unittest.TestCase): """simple docstring""" a__ : Optional[int] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a__ : Dict = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a__ : str = False a__ : Optional[Any] = False def snake_case_ ( self : int ) -> Optional[int]: _A = TFDistilBertModelTester(self ) _A = ConfigTester(self , config_class=__lowerCAmelCase , dim=37 ) def snake_case_ ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def snake_case_ ( self : Optional[Any] ) -> Tuple: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] ) -> List[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Tuple: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__lowerCAmelCase ) @slow def snake_case_ ( self : List[str] ) -> List[str]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _A = TFDistilBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @slow def snake_case_ ( self : Dict ) -> Union[str, Any]: _A = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(__lowerCAmelCase )[0] _A = [1, 6, 7_68] self.assertEqual(output.shape , __lowerCAmelCase ) _A = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1E-4 )
2
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __A : Tuple = TypeVar('T') class __UpperCamelCase ( Generic[T] ): def __init__( self :Optional[Any] ,_UpperCamelCase :T ): snake_case_ : str = data snake_case_ : Node[T] | None = None def __str__( self :int ): return F'''{self.data}''' class __UpperCamelCase ( Generic[T] ): def __init__( self :Union[str, Any] ): snake_case_ : Node[T] | None = None def __iter__( self :Dict ): snake_case_ : List[Any] = self.top while node: yield node.data snake_case_ : Union[str, Any] = node.next def __str__( self :Union[str, Any] ): return "->".join([str(_UpperCamelCase ) for item in self] ) def __len__( self :Union[str, Any] ): return len(tuple(iter(self ) ) ) def a__ ( self :Optional[Any] ): return self.top is None def a__ ( self :Dict ,_UpperCamelCase :T ): snake_case_ : Union[str, Any] = Node(_UpperCamelCase ) if not self.is_empty(): snake_case_ : Optional[int] = self.top snake_case_ : Any = node def a__ ( self :Dict ): if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top ,_UpperCamelCase ) snake_case_ : Any = self.top snake_case_ : Optional[int] = self.top.next return pop_node.data def a__ ( self :List[Any] ): if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def a__ ( self :Union[str, Any] ): snake_case_ : Dict = None if __name__ == "__main__": from doctest import testmod testmod()
334
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: A = None A = logging.get_logger(__name__) A = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} A = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } A = { """facebook/mbart-large-en-ro""": 1_024, """facebook/mbart-large-cc25""": 1_024, } # fmt: off A = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class a__ ( __magic_name__ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = ["input_ids", "attention_mask"] lowercase_ = MBartTokenizer lowercase_ = [] lowercase_ = [] def __init__( self : int , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Union[str, Any]="<s>" , UpperCamelCase_ : Union[str, Any]="</s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : Any="<s>" , UpperCamelCase_ : Any="<unk>" , UpperCamelCase_ : Any="<pad>" , UpperCamelCase_ : Any="<mask>" , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : List[str]=None , **UpperCamelCase_ : List[Any] , ): """simple docstring""" __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_) if isinstance(UpperCamelCase_ , UpperCamelCase_) else mask_token super().__init__( vocab_file=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[Any] = vocab_file __UpperCAmelCase : Dict = False if not self.vocab_file else True __UpperCAmelCase : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) __UpperCAmelCase : List[str] = { lang_code: self.convert_tokens_to_ids(UpperCamelCase_) for lang_code in FAIRSEQ_LANGUAGE_CODES } __UpperCAmelCase : Tuple = src_lang if src_lang is not None else "en_XX" __UpperCAmelCase : List[str] = self.convert_tokens_to_ids(self._src_lang) __UpperCAmelCase : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def a_ ( self : str): """simple docstring""" return self._src_lang @src_lang.setter def a_ ( self : Dict , UpperCamelCase_ : str): """simple docstring""" __UpperCAmelCase : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def a_ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None): """simple docstring""" __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] , UpperCamelCase_ : Optional[str] , **UpperCamelCase_ : Optional[int]): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") __UpperCAmelCase : Dict = src_lang __UpperCAmelCase : int = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_) __UpperCAmelCase : Any = self.convert_tokens_to_ids(UpperCamelCase_) __UpperCAmelCase : str = tgt_lang_id return inputs def a_ ( self : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str = "en_XX" , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "ro_RO" , **UpperCamelCase_ : Union[str, Any] , ): """simple docstring""" __UpperCAmelCase : Tuple = src_lang __UpperCAmelCase : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_) def a_ ( self : str): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang) def a_ ( self : int): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang) def a_ ( self : List[Any] , UpperCamelCase_ : Optional[int]): """simple docstring""" __UpperCAmelCase : Optional[int] = self.convert_tokens_to_ids(UpperCamelCase_) __UpperCAmelCase : Dict = [] __UpperCAmelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] __UpperCAmelCase : Dict = self.convert_ids_to_tokens(self.prefix_tokens) __UpperCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens) __UpperCAmelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def a_ ( self : Optional[Any] , UpperCamelCase_ : str): """simple docstring""" __UpperCAmelCase : int = self.convert_tokens_to_ids(UpperCamelCase_) __UpperCAmelCase : int = [] __UpperCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] __UpperCAmelCase : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens) __UpperCAmelCase : int = self.convert_ids_to_tokens(self.suffix_tokens) __UpperCAmelCase : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def a_ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(UpperCamelCase_): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return __UpperCAmelCase : int = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase_): copyfile(self.vocab_file , UpperCamelCase_) return (out_vocab_file,)
701
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __UpperCAmelCase : int = grid[0] for row_n in range(1 , len(UpperCamelCase ) ): __UpperCAmelCase : int = grid[row_n] __UpperCAmelCase : str = fill_row(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : List[str] = grid[row_n] return grid[-1][-1] def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(UpperCamelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
487
0
'''simple docstring''' from collections.abc import Callable import numpy as np def a_ ( lowerCamelCase : Callable , lowerCamelCase : float , lowerCamelCase : float , lowerCamelCase : float , lowerCamelCase : float ): lowerCAmelCase = int(np.ceil((x_end - xa) / step_size ) ) lowerCAmelCase = np.zeros((n + 1,) ) lowerCAmelCase = ya lowerCAmelCase = xa for k in range(lowerCamelCase ): lowerCAmelCase = y[k] + step_size * ode_func(lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
133
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] ): # Initialise PyTorch model lowerCAmelCase = RemBertConfig.from_json_file(lowerCamelCase ) print('Building PyTorch model from configuration: {}'.format(str(lowerCamelCase ) ) ) lowerCAmelCase = RemBertModel(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCamelCase ) ) torch.save(model.state_dict() , lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __snake_case =parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
133
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : Optional[Any] = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCamelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __A : '''simple docstring''' def __init__( self , _snake_case , _snake_case=14 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=4 , _snake_case=4 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=0.02 , ): _lowerCAmelCase : Any = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : int = seq_length _lowerCAmelCase : Any = is_training _lowerCAmelCase : Dict = use_input_mask _lowerCAmelCase : int = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : Union[str, Any] = vocab_size _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : Optional[Any] = rotary_dim _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : List[Any] = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : str = max_position_embeddings _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : List[Any] = None _lowerCAmelCase : List[Any] = vocab_size - 1 _lowerCAmelCase : List[str] = vocab_size - 1 _lowerCAmelCase : Dict = vocab_size - 1 def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[Any] = None if self.use_input_mask: _lowerCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Tuple = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() _lowerCAmelCase : Optional[Any] = config_and_inputs _lowerCAmelCase : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): _lowerCAmelCase : Optional[Any] = 20 _lowerCAmelCase : List[Any] = model_class_name(UpperCamelCase_ ) _lowerCAmelCase : List[str] = model.init_cache(input_ids.shape[0] , UpperCamelCase_ ) _lowerCAmelCase : int = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) _lowerCAmelCase : Union[str, Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) _lowerCAmelCase : Union[str, Any] = model( input_ids[:, :-1] , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , position_ids=UpperCamelCase_ , ) _lowerCAmelCase : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) _lowerCAmelCase : int = model( input_ids[:, -1:] , attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCamelCase_ , ) _lowerCAmelCase : Any = model(UpperCamelCase_ ) _lowerCAmelCase : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): _lowerCAmelCase : Union[str, Any] = 20 _lowerCAmelCase : int = model_class_name(UpperCamelCase_ ) _lowerCAmelCase : int = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) _lowerCAmelCase : Tuple = model.init_cache(input_ids.shape[0] , UpperCamelCase_ ) _lowerCAmelCase : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) _lowerCAmelCase : Optional[Any] = model( input_ids[:, :-1] , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , position_ids=UpperCamelCase_ , ) _lowerCAmelCase : List[Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) _lowerCAmelCase : Union[str, Any] = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCamelCase_ , position_ids=UpperCamelCase_ , ) _lowerCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) _lowerCAmelCase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class __A ( A__ ,A__ ,unittest.TestCase ): '''simple docstring''' a_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () a_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = FlaxGPTJModelTester(self ) def SCREAMING_SNAKE_CASE__ ( self ): for model_class_name in self.all_model_classes: _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ): for model_class_name in self.all_model_classes: _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @tooslow def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[str] = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) _lowerCAmelCase : str = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) _lowerCAmelCase : Tuple = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) _lowerCAmelCase : Dict = False _lowerCAmelCase : List[Any] = model.config.eos_token_id _lowerCAmelCase : str = jax.jit(model.generate ) _lowerCAmelCase : List[Any] = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences _lowerCAmelCase : Any = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) _lowerCAmelCase : Optional[Any] = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Optional[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _lowerCAmelCase : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = pt_inputs['''input_ids'''].shape _lowerCAmelCase : Dict = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase_ ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Optional[int] = pt_model_class(UpperCamelCase_ ).eval() _lowerCAmelCase : Optional[int] = model_class(UpperCamelCase_ , dtype=jnp.floataa ) _lowerCAmelCase : List[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCamelCase_ ) _lowerCAmelCase : List[str] = fx_state with torch.no_grad(): _lowerCAmelCase : Dict = pt_model(**UpperCamelCase_ ).to_tuple() _lowerCAmelCase : Optional[int] = fx_model(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCamelCase_ ) _lowerCAmelCase : List[str] = model_class.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) _lowerCAmelCase : str = fx_model_loaded(**UpperCamelCase_ ).to_tuple() self.assertEqual( len(UpperCamelCase_ ) , len(UpperCamelCase_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _lowerCAmelCase : Any = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Any = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _lowerCAmelCase : int = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Tuple = pt_model_class(UpperCamelCase_ ).eval() _lowerCAmelCase : Tuple = model_class(UpperCamelCase_ , dtype=jnp.floataa ) _lowerCAmelCase : Optional[int] = load_flax_weights_in_pytorch_model(UpperCamelCase_ , fx_model.params ) _lowerCAmelCase : Union[str, Any] = pt_inputs['''input_ids'''].shape _lowerCAmelCase : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase_ ): _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Any = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): _lowerCAmelCase : Dict = pt_model(**UpperCamelCase_ ).to_tuple() _lowerCAmelCase : Optional[Any] = fx_model(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCamelCase_ ) _lowerCAmelCase : Any = pt_model_class.from_pretrained(UpperCamelCase_ , from_flax=UpperCamelCase_ ) with torch.no_grad(): _lowerCAmelCase : Dict = pt_model_loaded(**UpperCamelCase_ ).to_tuple() self.assertEqual( len(UpperCamelCase_ ) , len(UpperCamelCase_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def SCREAMING_SNAKE_CASE__ ( self ): for model_class_name in self.all_model_classes: _lowerCAmelCase : Dict = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) _lowerCAmelCase : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ )
424
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) UpperCamelCase__ :List[str] = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase__ :Union[str, Any] = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ :Union[str, Any] = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ :Any = model(UpperCamelCase_ )['''last_hidden_state'''].detach() self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1e-3 ) ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) UpperCamelCase__ :List[str] = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase__ :Any = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ :List[Any] = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ :Optional[int] = model(UpperCamelCase_ )['''last_hidden_state'''].detach() self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1e-3 ) )
189
0
import math def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 1_0001 ): '''simple docstring''' try: lowercase_ = int(__lowerCamelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) lowercase_ = [] lowercase_ = 2 while len(__lowerCamelCase ) < nth: if is_prime(__lowerCamelCase ): primes.append(__lowerCamelCase ) num += 1 else: num += 1 return primes[len(__lowerCamelCase ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
601
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) class __lowerCamelCase ( enum.Enum ): """simple docstring""" lowerCAmelCase__ = "all_checks" lowerCAmelCase__ = "basic_checks" lowerCAmelCase__ = "no_checks" class __lowerCamelCase ( snake_case_ ): """simple docstring""" class __lowerCamelCase ( snake_case_ ): """simple docstring""" class __lowerCamelCase ( snake_case_ ): """simple docstring""" class __lowerCamelCase ( snake_case_ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[dict] , __lowerCamelCase: dict , __lowerCamelCase: Optional[int]=None ): '''simple docstring''' if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) lowercase_ = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] lowercase_ = " for " + verification_name if verification_name is not None else "" if len(__lowerCamelCase ) > 0: raise NonMatchingChecksumError( F'Checksums didn\'t match{for_verification_name}:\n' F'{bad_urls}\n' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" class __lowerCamelCase ( snake_case_ ): """simple docstring""" class __lowerCamelCase ( snake_case_ ): """simple docstring""" class __lowerCamelCase ( snake_case_ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[dict] , __lowerCamelCase: dict ): '''simple docstring''' if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) lowercase_ = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCamelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCamelCase ) ) logger.info("All the splits matched successfully." ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: bool = True ): '''simple docstring''' if record_checksum: lowercase_ = shaaaa() with open(__lowerCamelCase , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"" ): m.update(__lowerCamelCase ) lowercase_ = m.hexdigest() else: lowercase_ = None return {"num_bytes": os.path.getsize(__lowerCamelCase ), "checksum": checksum} def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple ): '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
601
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __A : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __A : Dict = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' __A : int = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def a_ ( self ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , ): UpperCamelCase : List[str] = len(references[0] ) if any(len(SCREAMING_SNAKE_CASE_ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) UpperCamelCase : Union[str, Any] = [[refs[i] for refs in references] for i in range(SCREAMING_SNAKE_CASE_ )] UpperCamelCase : Optional[int] = TER( normalized=SCREAMING_SNAKE_CASE_ , no_punct=SCREAMING_SNAKE_CASE_ , asian_support=SCREAMING_SNAKE_CASE_ , case_sensitive=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : int = sb_ter.corpus_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
499
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowerCamelCase ( _UpperCAmelCase ): def a_ ( self ): UpperCamelCase : int = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def a_ ( self ): with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def a_ ( self ): with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def a_ ( self ): UpperCamelCase : List[Any] = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def a_ ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCamelCase : List[str] = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def a_ ( self ): UpperCamelCase : str = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def a_ ( self ): UpperCamelCase : int = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def a_ ( self ): UpperCamelCase : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def a_ ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCamelCase : Tuple = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def a_ ( self ): UpperCamelCase : str = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def a_ ( self ): UpperCamelCase : Optional[int] = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def a_ ( self ): import PIL.Image UpperCamelCase : Any = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=SCREAMING_SNAKE_CASE_ ) as mock_cast_to_python_objects: UpperCamelCase : Union[str, Any] = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) ) UpperCamelCase , UpperCamelCase : Tuple = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , SCREAMING_SNAKE_CASE_ ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : int ): '''simple docstring''' UpperCamelCase : Tuple = pa.BufferReader(snake_case_ ) if isinstance(snake_case_ ,pa.Buffer ) else pa.memory_map(snake_case_ ) UpperCamelCase : Union[str, Any] = pa.ipc.open_stream(snake_case_ ) UpperCamelCase : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" ,[None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" ,[None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def A_ ( snake_case_ : List[str] ,snake_case_ : Union[str, Any] ): '''simple docstring''' UpperCamelCase : Union[str, Any] = pa.BufferOutputStream() UpperCamelCase : Optional[Any] = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ ,schema=snake_case_ ,writer_batch_size=snake_case_ ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) UpperCamelCase , UpperCamelCase : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase : Optional[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def A_ ( ): '''simple docstring''' UpperCamelCase : Any = pa.BufferOutputStream() UpperCamelCase : Optional[Any] = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=snake_case_ ,features=snake_case_ ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) UpperCamelCase , UpperCamelCase : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata UpperCamelCase : Optional[Any] = pa.BufferReader(output.getvalue() ) UpperCamelCase : Dict = pa.ipc.open_stream(snake_case_ ) UpperCamelCase : pa.Table = f.read_all() UpperCamelCase : str = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(snake_case_ ) @pytest.mark.parametrize("""writer_batch_size""" ,[None, 1, 1_0] ) def A_ ( snake_case_ : Optional[Any] ): '''simple docstring''' UpperCamelCase : List[Any] = pa.BufferOutputStream() with ArrowWriter( stream=snake_case_ ,writer_batch_size=snake_case_ ,hash_salt="""split_name""" ,check_duplicates=snake_case_ ,) as writer: with pytest.raises(snake_case_ ): writer.write({"""col_1""": """foo""", """col_2""": 1} ,key=[1, 2] ) UpperCamelCase , UpperCamelCase : List[str] = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" ,[None, 2, 1_0] ) def A_ ( snake_case_ : Tuple ): '''simple docstring''' UpperCamelCase : str = pa.BufferOutputStream() with ArrowWriter( stream=snake_case_ ,writer_batch_size=snake_case_ ,hash_salt="""split_name""" ,check_duplicates=snake_case_ ,) as writer: with pytest.raises(snake_case_ ): writer.write({"""col_1""": """foo""", """col_2""": 1} ,key=1_0 ) writer.write({"""col_1""": """bar""", """col_2""": 2} ,key=1_0 ) UpperCamelCase , UpperCamelCase : Optional[Any] = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" ,[None, 2, 1_0] ) def A_ ( snake_case_ : int ): '''simple docstring''' UpperCamelCase : int = pa.BufferOutputStream() with ArrowWriter( stream=snake_case_ ,writer_batch_size=snake_case_ ,hash_salt="""split_name""" ,check_duplicates=snake_case_ ,) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ,key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} ,key=2 ) UpperCamelCase , UpperCamelCase : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" ,[None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" ,[None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def A_ ( snake_case_ : Any ,snake_case_ : int ): '''simple docstring''' UpperCamelCase : Optional[int] = pa.BufferOutputStream() UpperCamelCase : List[Any] = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ ,schema=snake_case_ ,writer_batch_size=snake_case_ ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) UpperCamelCase , UpperCamelCase : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase : Any = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" ,[None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" ,[None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Any ): '''simple docstring''' UpperCamelCase : Optional[int] = pa.BufferOutputStream() UpperCamelCase : Optional[Any] = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ ,schema=snake_case_ ,writer_batch_size=snake_case_ ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) UpperCamelCase , UpperCamelCase : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase : List[str] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" ,[None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" ,[None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def A_ ( snake_case_ : Optional[int] ,snake_case_ : Tuple ): '''simple docstring''' UpperCamelCase : int = pa.BufferOutputStream() UpperCamelCase : Dict = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ ,schema=snake_case_ ,writer_batch_size=snake_case_ ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) UpperCamelCase , UpperCamelCase : Tuple = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase : Optional[int] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def A_ ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Optional[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} UpperCamelCase : str = os.path.join(snake_case_ ,"""test.arrow""" ) with ArrowWriter(path=snake_case_ ,schema=pa.schema(snake_case_ ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) UpperCamelCase , UpperCamelCase : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(snake_case_ ,metadata=writer._schema.metadata ) _check_output(snake_case_ ,1 ) def A_ ( snake_case_ : Any ): '''simple docstring''' if pa.types.is_list(snake_case_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def A_ ( snake_case_ : Optional[int] ,snake_case_ : Optional[Any] ): '''simple docstring''' if isinstance(lst[0] ,snake_case_ ): change_first_primitive_element_in_list(lst[0] ,snake_case_ ) else: UpperCamelCase : Optional[Any] = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" ,[(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def A_ ( snake_case_ : Dict ,snake_case_ : Tuple ,snake_case_ : Tuple ): '''simple docstring''' UpperCamelCase : int = pa.array(TypedSequence(snake_case_ ,optimized_int_type=snake_case_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" ,[ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] ,) @pytest.mark.parametrize("""sequence""" ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def A_ ( snake_case_ : Any ,snake_case_ : Any ,snake_case_ : List[Any] ): '''simple docstring''' # in range UpperCamelCase : Union[str, Any] = pa.array(OptimizedTypedSequence(snake_case_ ,col=snake_case_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications UpperCamelCase : Dict = copy.deepcopy(snake_case_ ) UpperCamelCase : Optional[int] = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(snake_case_ ,snake_case_ ) UpperCamelCase : Any = pa.array(OptimizedTypedSequence(snake_case_ ,col=snake_case_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" ,[False, True] ) def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : List[str] ): '''simple docstring''' UpperCamelCase : Optional[Any] = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=snake_case_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def A_ ( snake_case_ : Any ): '''simple docstring''' UpperCamelCase : Tuple = """mock://dataset-train.arrow""" with ArrowWriter(path=snake_case_ ,storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs ,type(snake_case_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) UpperCamelCase , UpperCamelCase : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(snake_case_ ) def A_ ( ): '''simple docstring''' UpperCamelCase : Dict = pa.BufferOutputStream() with ParquetWriter(stream=snake_case_ ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) UpperCamelCase , UpperCamelCase : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 UpperCamelCase : Union[str, Any] = pa.BufferReader(output.getvalue() ) UpperCamelCase : pa.Table = pq.read_table(snake_case_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" ,[False, True] ) def A_ ( snake_case_ : Tuple ,snake_case_ : List[str] ): '''simple docstring''' import PIL.Image UpperCamelCase : Tuple = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) ,dtype=np.uinta ) ).save(snake_case_ ,format="""png""" ) UpperCamelCase : Dict = pa.BufferOutputStream() with ParquetWriter( stream=snake_case_ ,features=Features({"""image""": Image()} ) ,embed_local_files=snake_case_ ) as writer: writer.write({"""image""": image_path} ) writer.finalize() UpperCamelCase : Any = pa.BufferReader(output.getvalue() ) UpperCamelCase : pa.Table = pq.read_table(snake_case_ ) UpperCamelCase : Any = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] ,snake_case_ ) with open(snake_case_ ,"""rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def A_ ( ): '''simple docstring''' UpperCamelCase : Any = pa.schema([pa.field("""col_1""" ,pa.string() ,nullable=snake_case_ )] ) UpperCamelCase : Optional[int] = pa.BufferOutputStream() with ArrowWriter(stream=snake_case_ ) as writer: writer._build_writer(inferred_schema=snake_case_ ) assert writer._schema == pa.schema([pa.field("""col_1""" ,pa.string() )] )
499
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
21
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
1
def lowerCAmelCase__ ( a__: str , a__: str ) -> bool: '''simple docstring''' _UpperCAmelCase = len(a__ ) _UpperCAmelCase = len(a__ ) _UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _UpperCAmelCase = True for i in range(a__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _UpperCAmelCase = True if a[i].islower(): _UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
618
def lowerCAmelCase__ ( a__: int , a__: int ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(a__ , x % y ) def lowerCAmelCase__ ( a__: int , a__: int ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(a__ , a__ ) def lowerCAmelCase__ ( a__: int = 2_0 ) -> int: '''simple docstring''' _UpperCAmelCase = 1 for i in range(1 , n + 1 ): _UpperCAmelCase = lcm(a__ , a__ ) return g if __name__ == "__main__": print(f'''{solution() = }''')
618
1
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _UpperCamelCase ( __A , __A ) -> List[Any]: '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_lowerCAmelCase , _lowerCAmelCase ) ) ) def _UpperCamelCase ( __A , __A ) -> Dict: '''simple docstring''' if dataset.ndim != value_array.ndim: UpperCamelCase__ = ( "Wrong input data's dimensions... " F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(_lowerCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase__ = ( "Wrong input data's shape... " F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(_lowerCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: UpperCamelCase__ = ( "Input data have different datatype... " F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(_lowerCAmelCase ) UpperCamelCase__ = [] for value in value_array: UpperCamelCase__ = euclidean(_lowerCAmelCase , dataset[0] ) UpperCamelCase__ = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase__ = euclidean(_lowerCAmelCase , _lowerCAmelCase ) if dist > temp_dist: UpperCamelCase__ = temp_dist UpperCamelCase__ = dataset_value.tolist() answer.append([vector, dist] ) return answer def _UpperCamelCase ( __A , __A ) -> str: '''simple docstring''' return np.dot(_lowerCAmelCase , _lowerCAmelCase ) / (norm(_lowerCAmelCase ) * norm(_lowerCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase_ ( a__ , unittest.TestCase ): __UpperCAmelCase = BioGptTokenizer __UpperCAmelCase = False def __a ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCamelCase__ = dict(zip(a , range(len(a ) ) ) ) UpperCamelCase__ = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(a ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(a ) ) def __a ( self , a ): UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def __a ( self ): UpperCamelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase__ = "lower" UpperCamelCase__ = ["low", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a ) self.assertListEqual(a , a ) UpperCamelCase__ = tokens + ["<unk>"] UpperCamelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) @slow def __a ( self ): UpperCamelCase__ = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) UpperCamelCase__ = tokenizer.encode("sequence builders" , add_special_tokens=a ) UpperCamelCase__ = tokenizer.encode("multi-sequence build" , add_special_tokens=a ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(a ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(a , a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
223
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __SCREAMING_SNAKE_CASE = [144, 192, 240] __SCREAMING_SNAKE_CASE = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __SCREAMING_SNAKE_CASE = [96, 120, 144] __SCREAMING_SNAKE_CASE = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __SCREAMING_SNAKE_CASE = [64, 80, 96] __SCREAMING_SNAKE_CASE = [16, 16, 24, 48, 64, 80, 320] __SCREAMING_SNAKE_CASE = 0.0_5 __SCREAMING_SNAKE_CASE = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): __SCREAMING_SNAKE_CASE = 512 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 21 __SCREAMING_SNAKE_CASE = """pascal-voc-id2label.json""" else: __SCREAMING_SNAKE_CASE = 1000 __SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" __SCREAMING_SNAKE_CASE = """huggingface/label-files""" __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(1 , 6 ): if f"""layer_{i}.""" in name: __SCREAMING_SNAKE_CASE = name.replace(f"""layer_{i}.""" , f"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: __SCREAMING_SNAKE_CASE = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: __SCREAMING_SNAKE_CASE = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: __SCREAMING_SNAKE_CASE = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: __SCREAMING_SNAKE_CASE = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: __SCREAMING_SNAKE_CASE = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: __SCREAMING_SNAKE_CASE = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: __SCREAMING_SNAKE_CASE = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: __SCREAMING_SNAKE_CASE = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: __SCREAMING_SNAKE_CASE = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f""".{i}.{j}.""" in name: __SCREAMING_SNAKE_CASE = name.replace(f""".{i}.{j}.""" , f""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f""".{i}.{j}.""" in name: __SCREAMING_SNAKE_CASE = name.replace(f""".{i}.{j}.""" , f""".{i}.""" ) if "expand_1x1" in name: __SCREAMING_SNAKE_CASE = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: __SCREAMING_SNAKE_CASE = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: __SCREAMING_SNAKE_CASE = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if f""".global_rep.{i}.weight""" in name: __SCREAMING_SNAKE_CASE = name.replace(f""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if f""".global_rep.{i}.bias""" in name: __SCREAMING_SNAKE_CASE = name.replace(f""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: __SCREAMING_SNAKE_CASE = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: __SCREAMING_SNAKE_CASE = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: __SCREAMING_SNAKE_CASE = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: __SCREAMING_SNAKE_CASE = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: __SCREAMING_SNAKE_CASE = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: __SCREAMING_SNAKE_CASE = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: __SCREAMING_SNAKE_CASE = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: __SCREAMING_SNAKE_CASE = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: __SCREAMING_SNAKE_CASE = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: __SCREAMING_SNAKE_CASE = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: __SCREAMING_SNAKE_CASE = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: __SCREAMING_SNAKE_CASE = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): __SCREAMING_SNAKE_CASE = """mobilevit.""" + name return name def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' if base_model: __SCREAMING_SNAKE_CASE = """""" else: __SCREAMING_SNAKE_CASE = """mobilevit.""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = orig_state_dict.pop(__UpperCAmelCase ) if key[:8] == "encoder.": __SCREAMING_SNAKE_CASE = key[8:] if "qkv" in key: __SCREAMING_SNAKE_CASE = key.split(""".""" ) __SCREAMING_SNAKE_CASE = int(key_split[0][6:] ) - 1 __SCREAMING_SNAKE_CASE = int(key_split[3] ) __SCREAMING_SNAKE_CASE = model.get_submodule(f"""{model_prefix}encoder.layer.{layer_num}""" ) __SCREAMING_SNAKE_CASE = layer.transformer.layer[transformer_num].attention.attention.all_head_size __SCREAMING_SNAKE_CASE = ( f"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: __SCREAMING_SNAKE_CASE = val[:dim, :] __SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE = val[-dim:, :] else: __SCREAMING_SNAKE_CASE = val[:dim] __SCREAMING_SNAKE_CASE = val[dim : dim * 2] __SCREAMING_SNAKE_CASE = val[-dim:] else: __SCREAMING_SNAKE_CASE = val return orig_state_dict def __magic_name__ ( ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" __SCREAMING_SNAKE_CASE = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = get_mobilevit_config(__UpperCAmelCase ) # load original state_dict __SCREAMING_SNAKE_CASE = torch.load(__UpperCAmelCase , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): __SCREAMING_SNAKE_CASE = MobileViTForSemanticSegmentation(__UpperCAmelCase ).eval() else: __SCREAMING_SNAKE_CASE = MobileViTForImageClassification(__UpperCAmelCase ).eval() __SCREAMING_SNAKE_CASE = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor __SCREAMING_SNAKE_CASE = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) __SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE = model(**__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __SCREAMING_SNAKE_CASE = torch.tensor( [ [[6.2_0_6_5, 6.1_2_9_2, 6.2_0_7_0], [6.1_0_7_9, 6.1_2_5_4, 6.1_7_4_7], [6.0_0_4_2, 6.1_0_7_1, 6.1_0_3_4]], [[-6.9_2_5_3, -6.8_6_5_3, -7.0_3_9_8], [-7.3_2_1_8, -7.3_9_8_3, -7.3_6_7_0], [-7.1_9_6_1, -7.2_4_8_2, -7.1_5_6_9]], [[-4.4_7_2_3, -4.4_3_4_8, -4.3_7_6_9], [-5.3_6_2_9, -5.4_6_3_2, -5.4_5_9_8], [-5.1_5_8_7, -5.3_4_0_2, -5.5_0_5_9]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __SCREAMING_SNAKE_CASE = torch.tensor( [ [[5.4_4_4_9, 5.5_7_3_3, 5.6_3_1_4], [5.1_8_1_5, 5.3_9_3_0, 5.5_9_6_3], [5.1_6_5_6, 5.4_3_3_3, 5.4_8_5_3]], [[-9.4_4_2_3, -9.7_7_6_6, -9.6_7_1_4], [-9.1_5_8_1, -9.5_7_2_0, -9.5_5_1_9], [-9.1_0_0_6, -9.6_4_5_8, -9.5_7_0_3]], [[-7.7_7_2_1, -7.3_7_1_6, -7.1_5_8_3], [-8.4_5_9_9, -8.0_6_2_4, -7.7_9_4_4], [-8.4_1_7_2, -7.8_3_6_6, -7.5_0_2_5]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __SCREAMING_SNAKE_CASE = torch.tensor( [ [[6.9_8_1_1, 6.9_7_4_3, 7.3_1_2_3], [7.1_7_7_7, 7.1_9_3_1, 7.3_9_3_8], [7.5_6_3_3, 7.8_0_5_0, 7.8_9_0_1]], [[-1_0.5_5_3_6, -1_0.2_3_3_2, -1_0.2_9_2_4], [-1_0.2_3_3_6, -9.8_6_2_4, -9.5_9_6_4], [-1_0.8_8_4_0, -1_0.8_1_5_8, -1_0.6_6_5_9]], [[-3.4_9_3_8, -3.0_6_3_1, -2.8_6_2_0], [-3.4_2_0_5, -2.8_1_3_5, -2.6_8_7_5], [-3.4_1_7_9, -2.7_9_4_5, -2.8_7_5_0]], ] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __SCREAMING_SNAKE_CASE = torch.tensor([-0.9_8_6_6, 0.2_3_9_2, -1.1_2_4_1] ) elif mobilevit_name == "mobilevit_xs": __SCREAMING_SNAKE_CASE = torch.tensor([-2.4_7_6_1, -0.9_3_9_9, -1.9_5_8_7] ) elif mobilevit_name == "mobilevit_xxs": __SCREAMING_SNAKE_CASE = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: __SCREAMING_SNAKE_CASE = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) __SCREAMING_SNAKE_CASE = model_mapping[mobilevit_name] image_processor.push_to_hub(__UpperCAmelCase , organization="""apple""" ) model.push_to_hub(__UpperCAmelCase , organization="""apple""" ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--mobilevit_name", default="mobilevit_s", type=str, help=( "Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs'," " 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'." ), ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
109
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _UpperCamelCase = get_logger(__name__) _UpperCamelCase = Path(__file__).parent / """model_card_template.md""" _UpperCamelCase = uuida().hex _UpperCamelCase = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES _UpperCamelCase = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES _UpperCamelCase = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def _a ( _snake_case = None ): """simple docstring""" UpperCAmelCase = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_snake_case , _snake_case ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(_snake_case , _snake_case ): ua += "; " + user_agent return ua def _a ( _snake_case , _snake_case = None , _snake_case = None ): """simple docstring""" if token is None: UpperCAmelCase = HfFolder.get_token() if organization is None: UpperCAmelCase = whoami(_snake_case )["""name"""] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def _a ( _snake_case , _snake_case ): """simple docstring""" if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(_snake_case , """local_rank""" ) and args.local_rank not in [-1, 0]: return UpperCAmelCase = args.hub_token if hasattr(_snake_case , """hub_token""" ) else None UpperCAmelCase = get_full_repo_name(_snake_case , token=_snake_case ) UpperCAmelCase = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_snake_case , model_name=_snake_case , repo_name=_snake_case , dataset_name=args.dataset_name if hasattr(_snake_case , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_snake_case , """gradient_accumulation_steps""" ) else None ) , adam_betaa=args.adam_betaa if hasattr(_snake_case , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(_snake_case , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_snake_case , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(_snake_case , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(_snake_case , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_snake_case , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_snake_case , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(_snake_case , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(_snake_case , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , ) UpperCAmelCase = os.path.join(args.output_dir , """README.md""" ) model_card.save(_snake_case ) def _a ( _snake_case , _snake_case = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash UpperCAmelCase = str(Path(_snake_case ).as_posix() ) UpperCAmelCase = re.search(R"""snapshots/([^/]+)/""" , _snake_case ) if search is None: return None UpperCAmelCase = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _UpperCamelCase = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) _UpperCamelCase = os.path.join(hf_cache_home, """diffusers""") def _a ( _snake_case = None , _snake_case = None ): """simple docstring""" if new_cache_dir is None: UpperCAmelCase = DIFFUSERS_CACHE if old_cache_dir is None: UpperCAmelCase = old_diffusers_cache UpperCAmelCase = Path(_snake_case ).expanduser() UpperCAmelCase = Path(_snake_case ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCAmelCase = new_cache_dir / old_blob_path.relative_to(_snake_case ) new_blob_path.parent.mkdir(parents=_snake_case , exist_ok=_snake_case ) os.replace(_snake_case , _snake_case ) try: os.symlink(_snake_case , _snake_case ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _UpperCamelCase = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): _UpperCamelCase = 0 else: with open(cache_version_file) as f: try: _UpperCamelCase = int(f.read()) except ValueError: _UpperCamelCase = 0 if cache_version < 1: _UpperCamelCase = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: _UpperCamelCase = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def _a ( _snake_case , _snake_case = None ): """simple docstring""" if variant is not None: UpperCAmelCase = weights_name.split(""".""" ) UpperCAmelCase = splits[:-1] + [variant] + splits[-1:] UpperCAmelCase = """.""".join(_snake_case ) return weights_name def _a ( _snake_case , *, _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , ): """simple docstring""" UpperCAmelCase = str(_snake_case ) if os.path.isfile(_snake_case ): return pretrained_model_name_or_path elif os.path.isdir(_snake_case ): if os.path.isfile(os.path.join(_snake_case , _snake_case ) ): # Load from a PyTorch checkpoint UpperCAmelCase = os.path.join(_snake_case , _snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_snake_case , _snake_case , _snake_case ) ): UpperCAmelCase = os.path.join(_snake_case , _snake_case , _snake_case ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_snake_case ).base_version ) >= version.parse("""0.20.0""" ) ): try: UpperCAmelCase = hf_hub_download( _snake_case , filename=_add_variant(_snake_case , _snake_case ) , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , use_auth_token=_snake_case , user_agent=_snake_case , subfolder=_snake_case , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , _snake_case , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_snake_case , _snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(_snake_case , _snake_case )}\' so that the correct variant file can be added.''' , _snake_case , ) try: # 2. Load model file as usual UpperCAmelCase = hf_hub_download( _snake_case , filename=_snake_case , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , use_auth_token=_snake_case , user_agent=_snake_case , subfolder=_snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' """listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' """this model name. Check the model page at """ F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.""" ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' """'https://huggingface.co/models', make sure you don't have a local directory with the same name. """ F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
341
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , __a : List[Any] , __a : Optional[int]=13 , __a : Tuple=7 , __a : Any=True , __a : Dict=True , __a : str=True , __a : Union[str, Any]=True , __a : Dict=99 , __a : List[str]=32 , __a : int=5 , __a : Union[str, Any]=4 , __a : Tuple=37 , __a : List[str]="gelu" , __a : List[Any]=0.1 , __a : Optional[int]=0.1 , __a : Optional[Any]=512 , __a : Tuple=16 , __a : List[Any]=2 , __a : Optional[int]=0.02 , __a : Dict=4 , ) -> int: """simple docstring""" __lowercase : List[Any] = parent __lowercase : Optional[int] = batch_size __lowercase : Union[str, Any] = seq_length __lowercase : str = is_training __lowercase : List[str] = use_attention_mask __lowercase : Any = use_token_type_ids __lowercase : Optional[int] = use_labels __lowercase : Union[str, Any] = vocab_size __lowercase : str = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Optional[int] = num_attention_heads __lowercase : List[str] = intermediate_size __lowercase : Any = hidden_act __lowercase : Any = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Union[str, Any] = max_position_embeddings __lowercase : List[str] = type_vocab_size __lowercase : List[str] = type_sequence_label_size __lowercase : Optional[int] = initializer_range __lowercase : Optional[int] = num_choices def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : List[str] = None if self.use_attention_mask: __lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() __lowercase : Tuple = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : Tuple = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase : str = model_class_name.from_pretrained("""albert-base-v2""" ) __lowercase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a ) @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : Dict = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) __lowercase : Any = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __lowercase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowercase : int = model(__a , attention_mask=__a )[0] __lowercase : Dict = (1, 11, 768) self.assertEqual(output.shape , __a ) __lowercase : List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __a , atol=1E-4 ) )
715
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __UpperCamelCase : int = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __UpperCamelCase : str = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "maskformer" _UpperCAmelCase = {"hidden_size": "mask_feature_size"} _UpperCAmelCase = ["resnet", "swin"] _UpperCAmelCase = ["detr"] def __init__( self: Any , UpperCamelCase: int = 2_56 , UpperCamelCase: int = 2_56 , UpperCamelCase: float = 0.1 , UpperCamelCase: bool = False , UpperCamelCase: Optional[Dict] = None , UpperCamelCase: Optional[Dict] = None , UpperCamelCase: float = 0.02 , UpperCamelCase: float = 1.0 , UpperCamelCase: float = 1.0 , UpperCamelCase: float = 1.0 , UpperCamelCase: float = 20.0 , UpperCamelCase: Optional[bool] = None , **UpperCamelCase: int , ) -> int: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k snake_case__ = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ = backbone_config.pop('model_type' ) snake_case__ = CONFIG_MAPPING[backbone_model_type] snake_case__ = config_class.from_dict(_lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 snake_case__ = DetrConfig() else: # verify that the decoder is supported snake_case__ = ( decoder_config.pop('model_type' ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'''Transformer Decoder {decoder_type} not supported, please use one of''' F''' {','.join(self.decoders_supported )}''' ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ = CONFIG_MAPPING[decoder_type] snake_case__ = config_class.from_dict(_lowerCAmelCase ) snake_case__ = backbone_config snake_case__ = decoder_config # main feature dimension for the model snake_case__ = fpn_feature_size snake_case__ = mask_feature_size # initializer snake_case__ = init_std snake_case__ = init_xavier_std # Hungarian matcher && loss snake_case__ = cross_entropy_weight snake_case__ = dice_weight snake_case__ = mask_weight snake_case__ = use_auxiliary_loss snake_case__ = no_object_weight snake_case__ = output_auxiliary_logits snake_case__ = self.decoder_config.encoder_attention_heads snake_case__ = self.decoder_config.num_hidden_layers super().__init__(**_lowerCAmelCase ) @classmethod def lowerCAmelCase_ ( cls: Optional[Any] , UpperCamelCase: PretrainedConfig , UpperCamelCase: PretrainedConfig , **UpperCamelCase: List[str] ) -> Union[str, Any]: return cls( backbone_config=_lowerCAmelCase , decoder_config=_lowerCAmelCase , **_lowerCAmelCase , ) def lowerCAmelCase_ ( self: int ) -> str: snake_case__ = copy.deepcopy(self.__dict__ ) snake_case__ = self.backbone_config.to_dict() snake_case__ = self.decoder_config.to_dict() snake_case__ = self.__class__.model_type return output
328
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """conditional_detr""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , _lowerCAmelCase : int=True , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Union[str, Any]=3_0_0 , _lowerCAmelCase : Tuple=6 , _lowerCAmelCase : Dict=2_0_4_8 , _lowerCAmelCase : Union[str, Any]=8 , _lowerCAmelCase : Dict=6 , _lowerCAmelCase : Optional[int]=2_0_4_8 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : int=True , _lowerCAmelCase : List[str]="relu" , _lowerCAmelCase : Optional[int]=2_5_6 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : str=1.0 , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : List[str]="sine" , _lowerCAmelCase : str="resnet50" , _lowerCAmelCase : Any=True , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Dict=5 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : int=5 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Tuple=0.25 , **_lowerCAmelCase : Any , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __lowercase =CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(_lowerCAmelCase , _lowerCAmelCase): __lowercase =backbone_config.get('model_type') __lowercase =CONFIG_MAPPING[backbone_model_type] __lowercase =config_class.from_dict(_lowerCAmelCase) __lowercase =use_timm_backbone __lowercase =backbone_config __lowercase =num_channels __lowercase =num_queries __lowercase =d_model __lowercase =encoder_ffn_dim __lowercase =encoder_layers __lowercase =encoder_attention_heads __lowercase =decoder_ffn_dim __lowercase =decoder_layers __lowercase =decoder_attention_heads __lowercase =dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =activation_function __lowercase =init_std __lowercase =init_xavier_std __lowercase =encoder_layerdrop __lowercase =decoder_layerdrop __lowercase =encoder_layers __lowercase =auxiliary_loss __lowercase =position_embedding_type __lowercase =backbone __lowercase =use_pretrained_backbone __lowercase =dilation # Hungarian matcher __lowercase =class_cost __lowercase =bbox_cost __lowercase =giou_cost # Loss coefficients __lowercase =mask_loss_coefficient __lowercase =dice_loss_coefficient __lowercase =cls_loss_coefficient __lowercase =bbox_loss_coefficient __lowercase =giou_loss_coefficient __lowercase =focal_alpha super().__init__(is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase) @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return self.encoder_attention_heads @property def __lowerCamelCase ( self : List[str]): '''simple docstring''' return self.d_model def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =copy.deepcopy(self.__dict__) if self.backbone_config is not None: __lowercase =self.backbone_config.to_dict() __lowercase =self.__class__.model_type return output class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = version.parse("""1.11""" ) @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def __lowerCamelCase ( self : int): '''simple docstring''' return 1e-5 @property def __lowerCamelCase ( self : str): '''simple docstring''' return 1_2
474
0
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params A = getLogger(__name__) A = '''cuda''' if torch.cuda.is_available() else '''cpu''' def __A ( a_ :List[str] , a_ :str , a_ :str , a_ :int = 8 , a_ :str = DEFAULT_DEVICE , a_ :List[str]=False , a_ :List[str]="summarization" , a_ :Optional[Any]=None , **a_ :Optional[Any] , ) -> Dict: __a : List[Any] = Path(a_).open('''w''' , encoding='''utf-8''') __a : Optional[Any] = str(a_) __a : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(a_).to(a_) if fpaa: __a : List[str] = model.half() __a : List[str] = AutoTokenizer.from_pretrained(a_) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""") # if this is wrong, check config.model_type. __a : Optional[int] = time.time() # update config with task specific params use_task_specific_params(a_ , a_) if prefix is None: __a : Tuple = prefix or getattr(model.config , '''prefix''' , '''''') or '''''' for examples_chunk in tqdm(list(chunks(a_ , a_))): __a : Optional[Any] = [prefix + text for text in examples_chunk] __a : Optional[Any] = tokenizer(a_ , return_tensors='''pt''' , truncation=a_ , padding='''longest''').to(a_) __a : List[str] = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a_ , ) __a : str = tokenizer.batch_decode(a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_) for hypothesis in dec: fout.write(hypothesis + '''\n''') fout.flush() fout.close() __a : List[str] = int(time.time() - start_time) # seconds __a : List[str] = len(a_) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4)} def __A ( ) -> List[str]: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''') def __A ( a_ :List[Any]=True) -> int: __a : Any = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a_ , help='''like facebook/bart-large-cnn,t5-base, etc.''') parser.add_argument('''input_path''' , type=a_ , help='''like cnn_dm/test.source''') parser.add_argument('''save_path''' , type=a_ , help='''where to save summaries''') parser.add_argument('''--reference_path''' , type=a_ , required=a_ , help='''like cnn_dm/test.target''') parser.add_argument('''--score_path''' , type=a_ , required=a_ , default='''metrics.json''' , help='''where to save metrics''') parser.add_argument('''--device''' , type=a_ , required=a_ , default=a_ , help='''cuda, cuda:1, cpu etc.''') parser.add_argument( '''--prefix''' , type=a_ , required=a_ , default=a_ , help='''will be added to the begininng of src examples''') parser.add_argument('''--task''' , type=a_ , default='''summarization''' , help='''used for task_specific_params + metrics''') parser.add_argument('''--bs''' , type=a_ , default=8 , required=a_ , help='''batch size''') parser.add_argument( '''--n_obs''' , type=a_ , default=-1 , required=a_ , help='''How many observations. Defaults to all.''') parser.add_argument('''--fp16''' , action='''store_true''') parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''') parser.add_argument( '''--info''' , nargs='''?''' , type=a_ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __a , __a : Union[str, Any] = parser.parse_known_args() __a : List[str] = parse_numeric_n_bool_cl_kwargs(a_) if parsed_args and verbose: print(F"""parsed the following generate kwargs: {parsed_args}""") __a : Optional[Any] = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path).readlines()] if args.n_obs > 0: __a : List[str] = examples[: args.n_obs] Path(args.save_path).parent.mkdir(exist_ok=a_) if args.reference_path is None and Path(args.score_path).exists(): warnings.warn(F"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""") if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''') __a : List[Any] = generate_summaries_or_translations( a_ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a_ , ) if args.reference_path is None: return {} # Compute scores __a : int = calculate_bleu if '''translation''' in args.task else calculate_rouge __a : Optional[int] = [x.rstrip() for x in open(args.save_path).readlines()] __a : List[Any] = [x.rstrip() for x in open(args.reference_path).readlines()][: len(a_)] __a : dict = score_fn(a_ , a_) scores.update(a_) if args.dump_args: scores.update(a_) if args.info: __a : Optional[int] = args.info if verbose: print(a_) if args.score_path is not None: json.dump(a_ , open(args.score_path , '''w''')) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
101
"""simple docstring""" from math import isqrt, loga def __A ( a_ :int) -> list[int]: __a : int = [True] * max_number for i in range(2 , isqrt(max_number - 1) + 1): if is_prime[i]: for j in range(i**2 , a_ , a_): __a : int = False return [i for i in range(2 , a_) if is_prime[i]] def __A ( a_ :int = 80_08_00 , a_ :int = 80_08_00) -> int: __a : str = degree * loga(a_) __a : Tuple = int(a_) __a : int = calculate_prime_numbers(a_) __a : List[Any] = 0 __a : Optional[Any] = 0 __a : Dict = len(a_) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left]) + prime_numbers[left] * loga(prime_numbers[right]) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'{solution() = }')
101
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCamelCase : Union[str, Any] = ''' Human: <<task>> Assistant: ''' _lowerCamelCase : Optional[Any] = '''huggingface-tools/default-prompts''' _lowerCamelCase : int = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple="run" ): if prompt_or_repo_id is None: SCREAMING_SNAKE_CASE = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , UpperCAmelCase__ ) is not None: return prompt_or_repo_id SCREAMING_SNAKE_CASE = cached_file( UpperCAmelCase__ , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(UpperCAmelCase__ , "r" , encoding="utf-8" ) as f: return f.read()
403
class lowercase : # Public class to implement a graph def __init__( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[bool]] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = row SCREAMING_SNAKE_CASE = col SCREAMING_SNAKE_CASE = graph def __snake_case( self : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[bool]] ) -> bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __snake_case( self : Dict , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[bool]] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order SCREAMING_SNAKE_CASE = [-1, 0, 1, -1, 1, -1, 0, 1] SCREAMING_SNAKE_CASE = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _UpperCamelCase ) def __snake_case( self : Any ) -> int: # And finally, count all islands. '''simple docstring''' SCREAMING_SNAKE_CASE = [[False for j in range(self.COL )] for i in range(self.ROW )] SCREAMING_SNAKE_CASE = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) count += 1 return count
403
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :int __magic_name__ :TreeNode | None = None __magic_name__ :TreeNode | None = None __A = namedtuple("""CoinsDistribResult""", """moves excess""") def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCAmelCase__ , lowerCAmelCase__ :str = get_distrib(node.left ) lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = get_distrib(node.right ) lowerCAmelCase__ :Union[str, Any] = 1 - left_distrib_excess lowerCAmelCase__ :List[str] = 1 - right_distrib_excess lowerCAmelCase__ :Union[str, Any] = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ :Optional[int] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
560
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __A = {"""UserAgent""": UserAgent().random} def __A (_SCREAMING_SNAKE_CASE ) ->dict: """simple docstring""" lowerCAmelCase__ :Dict = script.contents[0] lowerCAmelCase__ :int = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = F"https://www.instagram.com/{username}/" lowerCAmelCase__ :List[str] = self.get_json() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = requests.get(self.url , headers=__UpperCAmelCase ).text lowerCAmelCase__ :Optional[int] = BeautifulSoup(__UpperCAmelCase , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"{self.__class__.__name__}('{self.username}')" def __str__( self ): '''simple docstring''' return F"{self.fullname} ({self.username}) is {self.biography}" @property def snake_case ( self ): '''simple docstring''' return self.user_data["username"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["full_name"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["biography"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["business_email"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["external_url"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["is_private"] def __A (_SCREAMING_SNAKE_CASE = "github" ) ->None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions lowerCAmelCase__ :str = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __A = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
560
1
def lowerCamelCase__ ( _lowerCamelCase ) ->str: _UpperCAmelCase =0 # if input_string is "aba" than new_input_string become "a|b|a" _UpperCAmelCase ="" _UpperCAmelCase ="" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _UpperCAmelCase , _UpperCAmelCase =0, 0 # length[i] shows the length of palindromic substring with center i _UpperCAmelCase =[1 for i in range(len(_lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string _UpperCAmelCase =0 for j in range(len(_lowerCamelCase ) ): _UpperCAmelCase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _UpperCAmelCase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _UpperCAmelCase =j - k + 1 # noqa: E741 _UpperCAmelCase =j + k - 1 # update max_length and start position if max_length < length[j]: _UpperCAmelCase =length[j] _UpperCAmelCase =j # create that string _UpperCAmelCase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
408
from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->bool: if len(_lowerCamelCase ) == 0: return False _UpperCAmelCase =len(_lowerCamelCase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _lowerCamelCase ) else: return binary_search(a_list[midpoint + 1 :] , _lowerCamelCase ) if __name__ == "__main__": snake_case__ : Tuple = input('Enter numbers separated by comma:\n').strip() snake_case__ : str = [int(item.strip()) for item in user_input.split(',')] snake_case__ : Union[str, Any] = int(input('Enter the number to be found in the list:\n').strip()) snake_case__ : str = '' if binary_search(sequence, target) else 'not ' print(F"""{target} was {not_str}found in {sequence}""")
408
1
'''simple docstring''' from __future__ import annotations import numpy as np def lowerCamelCase__ ( a ): __snake_case , __snake_case = np.shape(a ) if rows != columns: __snake_case = ( '\'table\' has to be of square shaped array but got a ' f'{rows}x{columns} array:\n{table}' ) raise ValueError(a ) __snake_case = np.zeros((rows, columns) ) __snake_case = np.zeros((rows, columns) ) for i in range(a ): for j in range(a ): __snake_case = sum(lower[i][k] * upper[k][j] for k in range(a ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) __snake_case = (table[i][j] - total) / upper[j][j] __snake_case = 1 for j in range(a , a ): __snake_case = sum(lower[i][k] * upper[k][j] for k in range(a ) ) __snake_case = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
427
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( a , a ): print(f'Vertex\tShortest Distance from vertex {src}' ) for i, d in enumerate(a ): print(f'{i}\t\t{d}' ) def lowerCamelCase__ ( a , a , a ): for j in range(a ): __snake_case , __snake_case , __snake_case = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: return True return False def lowerCamelCase__ ( a , a , a , a ): __snake_case = [float('inf' )] * vertex_count __snake_case = 0.0 for _ in range(vertex_count - 1 ): for j in range(a ): __snake_case , __snake_case , __snake_case = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: __snake_case = distance[u] + w __snake_case = check_negative_cycle(a , a , a ) if negative_cycle_exists: raise Exception('Negative cycle found' ) return distance if __name__ == "__main__": import doctest doctest.testmod() _lowercase = int(input("""Enter number of vertices: """).strip()) _lowercase = int(input("""Enter number of edges: """).strip()) _lowercase = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) _lowercase , _lowercase , _lowercase = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) _lowercase = {"""src""": src, """dst""": dest, """weight""": weight} _lowercase = int(input("""\nEnter shortest path source:""").strip()) _lowercase = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
427
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class A ( unittest.TestCase ): lowerCamelCase : Tuple = StableDiffusionLDMaDPipeline lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(lowerCamelCase__ ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A__ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(lowerCamelCase__ ).startswith("""mps""" ): lowercase__ = torch.manual_seed(lowerCamelCase__ ) else: lowercase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowercase__ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A__ ( self ) -> str: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionLDMaDPipeline(**lowerCamelCase__ ) lowercase__ = ldmad_pipe.to(lowerCamelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = ldmad_pipe(**lowerCamelCase__ ) lowercase__ , lowercase__ = output.rgb, output.depth lowercase__ = rgb[0, -3:, -3:, -1] lowercase__ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowercase__ = np.array( [0.37_33_81_76, 0.7_02_47, 0.74_20_31_93, 0.51_64_36_04, 0.58_25_67_93, 0.60_93_21_36, 0.4_18_10_95, 0.48_35_58_77, 0.46_53_52_62] ) lowercase__ = np.array([1_03.4_67_27, 85.81_20_04, 87.84_92_36] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionLDMaDPipeline(**lowerCamelCase__ ) lowercase__ = ldmad_pipe.to(lowerCamelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = 3 * [inputs["""prompt"""]] # forward lowercase__ = ldmad_pipe(**lowerCamelCase__ ) lowercase__ , lowercase__ = output.rgb, output.depth lowercase__ = rgb_slice_a[0, -3:, -3:, -1] lowercase__ = depth_slice_a[0, -3:, -1] lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = 3 * [inputs.pop("""prompt""" )] lowercase__ = ldmad_pipe.tokenizer( lowerCamelCase__ , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=lowerCamelCase__ , return_tensors="""pt""" , ) lowercase__ = text_inputs["""input_ids"""].to(lowerCamelCase__ ) lowercase__ = ldmad_pipe.text_encoder(lowerCamelCase__ )[0] lowercase__ = prompt_embeds # forward lowercase__ = ldmad_pipe(**lowerCamelCase__ ) lowercase__ , lowercase__ = output.rgb, output.depth lowercase__ = rgb_slice_a[0, -3:, -3:, -1] lowercase__ = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) lowercase__ = StableDiffusionLDMaDPipeline(**lowerCamelCase__ ) lowercase__ = ldmad_pipe.to(lowerCamelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = """french fries""" lowercase__ = ldmad_pipe(**lowerCamelCase__ , negative_prompt=lowerCamelCase__ ) lowercase__ , lowercase__ = output.rgb, output.depth lowercase__ = rgb[0, -3:, -3:, -1] lowercase__ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowercase__ = np.array( [0.3_70_44, 0.71_81_15_03, 0.7_22_32_51, 0.48_60_36_75, 0.5_63_83_91, 0.6_36_49_48, 0.42_83_37_04, 0.4_90_13_15, 0.47_92_62_17] ) lowercase__ = np.array([1_07.8_47_38, 84.6_28_02, 89.96_21_35] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class A ( unittest.TestCase ): def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self , lowerCamelCase__ , lowerCamelCase__="cpu" , lowerCamelCase__=torch.floataa , lowerCamelCase__=0 ) -> List[str]: '''simple docstring''' lowercase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowercase__ = np.random.RandomState(lowerCamelCase__ ).standard_normal((1, 4, 64, 64) ) lowercase__ = torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) lowercase__ = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) lowercase__ = ldmad_pipe.to(lowerCamelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_inputs(lowerCamelCase__ ) lowercase__ = ldmad_pipe(**lowerCamelCase__ ) lowercase__ , lowercase__ = output.rgb, output.depth lowercase__ = rgb[0, -3:, -3:, -1].flatten() lowercase__ = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) lowercase__ = np.array( [0.53_80_54_65, 0.56_70_73_05, 0.5_48_65_15, 0.57_01_22_36, 0.5_81_45_11, 0.56_25_34_87, 0.54_84_30_14, 0.55_09_22_63, 0.6_45_97_06] ) lowercase__ = np.array( [0.9_26_37_81, 0.6_67_86_72, 0.5_48_65_15, 0.92_20_21_45, 0.67_83_11_35, 0.56_25_34_87, 0.9_24_16_94, 0.7_55_14_78, 0.6_45_97_06] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class A ( unittest.TestCase ): def A__ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self , lowerCamelCase__ , lowerCamelCase__="cpu" , lowerCamelCase__=torch.floataa , lowerCamelCase__=0 ) -> Union[str, Any]: '''simple docstring''' lowercase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowercase__ = np.random.RandomState(lowerCamelCase__ ).standard_normal((1, 4, 64, 64) ) lowercase__ = torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ) lowercase__ = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(lowerCamelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_inputs(lowerCamelCase__ ) lowercase__ = ldmad_pipe(**lowerCamelCase__ ) lowercase__ , lowercase__ = output.rgb, output.depth lowercase__ = 0.49_55_86 lowercase__ = 0.33_79_55_15 lowercase__ = 1_12.4_85_18 lowercase__ = 98.48_97_46 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(lowerCamelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_inputs(lowerCamelCase__ ) lowercase__ = ldmad_pipe(**lowerCamelCase__ ) lowercase__ , lowercase__ = output.rgb, output.depth lowercase__ = 0.4_19_41_27 lowercase__ = 0.35_37_55_86 lowercase__ = 0.5_63_85_02 lowercase__ = 0.34_68_61_03 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
325
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __A = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __A = { "RUCAIBox/mvp": 1_024, } class A ( __UpperCAmelCase ): lowerCamelCase : List[str] = VOCAB_FILES_NAMES lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Tuple = ["""input_ids""", """attention_mask"""] lowerCamelCase : Dict = MvpTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="replace" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=False , lowerCamelCase__=True , **lowerCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowerCamelCase__ ) != add_prefix_space: lowercase__ = getattr(lowerCamelCase__ , pre_tok_state.pop("""type""" ) ) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCamelCase__ ) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = """post_processor""" lowercase__ = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state["""sep"""] ) if "cls" in state: lowercase__ = tuple(state["""cls"""] ) lowercase__ = False if state.get("""add_prefix_space""" , lowerCamelCase__ ) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get("""trim_offsets""" , lowerCamelCase__ ) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(lowerCamelCase__ , state.pop("""type""" ) ) lowercase__ = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property def A__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' lowercase__ = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value lowercase__ = value def A__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__ = kwargs.get("""is_split_into_words""" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def A__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__ = kwargs.get("""is_split_into_words""" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[int]: '''simple docstring''' lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
325
1
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' A__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('RGB' ) A__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3) , (0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1) ), ] ) A__ = transform(UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ ) return image def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if "visual_encoder" in key: A__ = re.sub('visual_encoder*' , 'vision_model.encoder' , UpperCamelCase__ ) if "blocks" in key: A__ = re.sub(r'blocks' , 'layers' , UpperCamelCase__ ) if "attn" in key: A__ = re.sub(r'attn' , 'self_attn' , UpperCamelCase__ ) if "norm1" in key: A__ = re.sub(r'norm1' , 'layer_norm1' , UpperCamelCase__ ) if "norm2" in key: A__ = re.sub(r'norm2' , 'layer_norm2' , UpperCamelCase__ ) if "encoder.norm" in key: A__ = re.sub(r'encoder.norm' , 'post_layernorm' , UpperCamelCase__ ) if "encoder.patch_embed.proj" in key: A__ = re.sub(r'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , UpperCamelCase__ ) if "encoder.pos_embed" in key: A__ = re.sub(r'encoder.pos_embed' , 'embeddings.position_embedding' , UpperCamelCase__ ) if "encoder.cls_token" in key: A__ = re.sub(r'encoder.cls_token' , 'embeddings.class_embedding' , UpperCamelCase__ ) if "self_attn" in key: A__ = re.sub(r'self_attn.proj' , 'self_attn.projection' , UpperCamelCase__ ) return key @torch.no_grad() def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__=None ): """simple docstring""" if config_path is not None: A__ = BlipConfig.from_pretrained(UpperCamelCase__ ) else: A__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) A__ = BlipForConditionalGeneration(UpperCamelCase__ ).eval() A__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' A__ = blip_decoder(pretrained=UpperCamelCase__ , image_size=384 , vit='base' ) A__ = pt_model.eval() A__ = pt_model.state_dict() for key in modified_state_dict.copy(): A__ = modified_state_dict.pop(UpperCamelCase__ ) A__ = rename_key(UpperCamelCase__ ) A__ = value hf_model.load_state_dict(UpperCamelCase__ ) A__ = 384 A__ = load_demo_image(image_size=UpperCamelCase__ , device='cpu' ) A__ = BertTokenizer.from_pretrained('bert-base-uncased' ) A__ = tokenizer(['a picture of'] ).input_ids A__ = hf_model.generate(UpperCamelCase__ , UpperCamelCase__ ) assert out[0].tolist() == [30_522, 1_037, 3_861, 1_997, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] A__ = hf_model.generate(UpperCamelCase__ ) assert out[0].tolist() == [30_522, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(UpperCamelCase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' A__ = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) A__ = blip_vqa(pretrained=UpperCamelCase__ , image_size=UpperCamelCase__ , vit='base' ) vqa_model.eval() A__ = vqa_model.state_dict() for key in modified_state_dict.copy(): A__ = modified_state_dict.pop(UpperCamelCase__ ) A__ = rename_key(UpperCamelCase__ ) A__ = value A__ = BlipForQuestionAnswering(UpperCamelCase__ ) hf_vqa_model.load_state_dict(UpperCamelCase__ ) A__ = ['How many dogs are in this image?'] A__ = tokenizer(UpperCamelCase__ , return_tensors='pt' ).input_ids A__ = hf_vqa_model.generate(UpperCamelCase__ , UpperCamelCase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) A__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' A__ = blip_itm(pretrained=UpperCamelCase__ , image_size=UpperCamelCase__ , vit='base' ) itm_model.eval() A__ = itm_model.state_dict() for key in modified_state_dict.copy(): A__ = modified_state_dict.pop(UpperCamelCase__ ) A__ = rename_key(UpperCamelCase__ ) A__ = value A__ = BlipForImageTextRetrieval(UpperCamelCase__ ) A__ = ['A picture of a woman with a dog sitting in a beach'] A__ = tokenizer( UpperCamelCase__ , return_tensors='pt' , padding='max_length' , truncation=UpperCamelCase__ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(UpperCamelCase__ ) hf_itm_model.eval() A__ = hf_itm_model(UpperCamelCase__ , UpperCamelCase__ , use_itm_head=UpperCamelCase__ ) A__ = hf_itm_model(UpperCamelCase__ , UpperCamelCase__ , use_itm_head=UpperCamelCase__ ) assert out[0].item() == 0.2_1_1_0_6_8_7_4_9_4_2_7_7_9_5_4 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5_6_9_8_8_4_5_3_8_6_5_0_5_1_2_7 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __lowerCamelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
536
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1 / sqrt(2 ) ): """simple docstring""" A__ = tau * frequency / samplerate A__ = sin(UpperCamelCase__ ) A__ = cos(UpperCamelCase__ ) A__ = _sin / (2 * q_factor) A__ = (1 - _cos) / 2 A__ = 1 - _cos A__ = 1 + alpha A__ = -2 * _cos A__ = 1 - alpha A__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1 / sqrt(2 ) ): """simple docstring""" A__ = tau * frequency / samplerate A__ = sin(UpperCamelCase__ ) A__ = cos(UpperCamelCase__ ) A__ = _sin / (2 * q_factor) A__ = (1 + _cos) / 2 A__ = -1 - _cos A__ = 1 + alpha A__ = -2 * _cos A__ = 1 - alpha A__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1 / sqrt(2 ) ): """simple docstring""" A__ = tau * frequency / samplerate A__ = sin(UpperCamelCase__ ) A__ = cos(UpperCamelCase__ ) A__ = _sin / (2 * q_factor) A__ = _sin / 2 A__ = 0 A__ = -ba A__ = 1 + alpha A__ = -2 * _cos A__ = 1 - alpha A__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1 / sqrt(2 ) ): """simple docstring""" A__ = tau * frequency / samplerate A__ = sin(UpperCamelCase__ ) A__ = cos(UpperCamelCase__ ) A__ = _sin / (2 * q_factor) A__ = 1 - alpha A__ = -2 * _cos A__ = 1 + alpha A__ = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1 / sqrt(2 ) , ): """simple docstring""" A__ = tau * frequency / samplerate A__ = sin(UpperCamelCase__ ) A__ = cos(UpperCamelCase__ ) A__ = _sin / (2 * q_factor) A__ = 10 ** (gain_db / 40) A__ = 1 + alpha * big_a A__ = -2 * _cos A__ = 1 - alpha * big_a A__ = 1 + alpha / big_a A__ = -2 * _cos A__ = 1 - alpha / big_a A__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1 / sqrt(2 ) , ): """simple docstring""" A__ = tau * frequency / samplerate A__ = sin(UpperCamelCase__ ) A__ = cos(UpperCamelCase__ ) A__ = _sin / (2 * q_factor) A__ = 10 ** (gain_db / 40) A__ = (big_a + 1) - (big_a - 1) * _cos A__ = (big_a + 1) + (big_a - 1) * _cos A__ = (big_a - 1) - (big_a + 1) * _cos A__ = (big_a - 1) + (big_a + 1) * _cos A__ = 2 * sqrt(UpperCamelCase__ ) * alpha A__ = big_a * (pmc + aaa) A__ = 2 * big_a * mpc A__ = big_a * (pmc - aaa) A__ = ppmc + aaa A__ = -2 * pmpc A__ = ppmc - aaa A__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1 / sqrt(2 ) , ): """simple docstring""" A__ = tau * frequency / samplerate A__ = sin(UpperCamelCase__ ) A__ = cos(UpperCamelCase__ ) A__ = _sin / (2 * q_factor) A__ = 10 ** (gain_db / 40) A__ = (big_a + 1) - (big_a - 1) * _cos A__ = (big_a + 1) + (big_a - 1) * _cos A__ = (big_a - 1) - (big_a + 1) * _cos A__ = (big_a - 1) + (big_a + 1) * _cos A__ = 2 * sqrt(UpperCamelCase__ ) * alpha A__ = big_a * (ppmc + aaa) A__ = -2 * big_a * pmpc A__ = big_a * (ppmc - aaa) A__ = pmc + aaa A__ = 2 * mpc A__ = pmc - aaa A__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
536
1
lowerCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase__ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 ) lowercase__ : List[str] = state_late + state_absent + state_ontime lowercase__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( lowercase_ = 30 ) -> int: '''simple docstring''' return _calculate(lowercase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
12
lowerCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase__ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 ) lowercase__ : List[str] = state_late + state_absent + state_ontime lowercase__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( lowercase_ = 30 ) -> int: '''simple docstring''' return _calculate(lowercase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
12
1
from math import pi, sqrt, tan def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float: if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float: if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float: if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __lowercase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float: if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __lowercase = (sidea + sidea + sidea) / 2 __lowercase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float: if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> float: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("""[DEMO] Areas of various geometric shapes: \n""") print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print("""\nSurface Areas of various geometric shapes: \n""") print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
688
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
1
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } UpperCAmelCase = {'''allegro/herbert-base-cased''': 514} UpperCAmelCase = {} class __magic_name__ ( __UpperCAmelCase ): __A : str = VOCAB_FILES_NAMES __A : Tuple = PRETRAINED_VOCAB_FILES_MAP __A : Dict = PRETRAINED_INIT_CONFIGURATION __A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[str] = HerbertTokenizer def __init__( self : Any , snake_case__ : Tuple=None , snake_case__ : List[str]=None , snake_case__ : List[Any]=None , snake_case__ : Any="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Dict="<pad>" , snake_case__ : Union[str, Any]="<mask>" , snake_case__ : int="</s>" , **snake_case__ : Any , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def __snake_case ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' lowercase :Dict = [self.cls_token_id] lowercase :Union[str, Any] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __snake_case ( self : Dict , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def __snake_case ( self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' lowercase :List[str] = [self.sep_token_id] lowercase :List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case ( self : Dict , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' lowercase :List[str] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
677
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str]=3 , snake_case__ : int=3_2 , snake_case__ : int=3 , snake_case__ : str=1_0 , snake_case__ : str=[1_0, 2_0, 3_0, 4_0] , snake_case__ : int=[1, 1, 2, 1] , snake_case__ : List[Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[Any]="relu" , snake_case__ : Optional[int]=3 , snake_case__ : Optional[Any]=None , ): '''simple docstring''' lowercase :Union[str, Any] = parent lowercase :Optional[Any] = batch_size lowercase :Dict = image_size lowercase :Any = num_channels lowercase :List[str] = embeddings_size lowercase :Union[str, Any] = hidden_sizes lowercase :Any = depths lowercase :Dict = is_training lowercase :Any = use_labels lowercase :Any = hidden_act lowercase :List[str] = num_labels lowercase :List[Any] = scope lowercase :int = len(snake_case__ ) def __snake_case ( self : Any ): '''simple docstring''' lowercase :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase :Union[str, Any] = self.get_config() return config, pixel_values def __snake_case ( self : Dict ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __snake_case ( self : str , snake_case__ : Tuple , snake_case__ : List[Any] ): '''simple docstring''' lowercase :Any = FlaxRegNetModel(config=snake_case__ ) lowercase :str = model(snake_case__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __snake_case ( self : List[str] , snake_case__ : Optional[int] , snake_case__ : str ): '''simple docstring''' lowercase :Tuple = self.num_labels lowercase :str = FlaxRegNetForImageClassification(config=snake_case__ ) lowercase :Union[str, Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : str ): '''simple docstring''' lowercase :int = self.prepare_config_and_inputs() lowercase , lowercase :Tuple = config_and_inputs lowercase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __magic_name__ ( __UpperCAmelCase , unittest.TestCase ): __A : List[Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __A : str = False __A : Tuple = False __A : Dict = False def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase :Dict = FlaxRegNetModelTester(self ) lowercase :Tuple = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : List[Any] ): '''simple docstring''' return def __snake_case ( self : str ): '''simple docstring''' lowercase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __snake_case ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __snake_case ( self : List[Any] ): '''simple docstring''' pass def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase , lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :Union[str, Any] = model_class(snake_case__ ) lowercase :int = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase :Tuple = [*signature.parameters.keys()] lowercase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case__ ) def __snake_case ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): lowercase :int = model_class(snake_case__ ) lowercase :Tuple = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowercase :Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase :Dict = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) lowercase , lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :Optional[int] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase :str = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase , lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase :Optional[Any] = self._prepare_for_class(snake_case__ , snake_case__ ) lowercase :List[Any] = model_class(snake_case__ ) @jax.jit def model_jitted(snake_case__ : str , **snake_case__ : Optional[int] ): return model(pixel_values=snake_case__ , **snake_case__ ) with self.subTest('''JIT Enabled''' ): lowercase :Optional[int] = model_jitted(**snake_case__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase :Optional[int] = model_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase () -> Tuple: lowercase :Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_flax class __magic_name__ ( unittest.TestCase ): @cached_property def __snake_case ( self : int ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :int = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) lowercase :Optional[Any] = self.default_image_processor lowercase :Dict = prepare_img() lowercase :Any = image_processor(images=snake_case__ , return_tensors='''np''' ) lowercase :List[str] = model(**snake_case__ ) # verify the logits lowercase :Any = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , snake_case__ ) lowercase :List[Any] = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
677
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=4 , ): '''simple docstring''' snake_case: str = parent snake_case: Any = batch_size snake_case: List[str] = seq_length snake_case: Union[str, Any] = is_training snake_case: Any = use_attention_mask snake_case: Union[str, Any] = use_token_type_ids snake_case: Union[str, Any] = use_labels snake_case: Tuple = vocab_size snake_case: Tuple = hidden_size snake_case: Union[str, Any] = num_hidden_layers snake_case: Optional[Any] = num_attention_heads snake_case: int = intermediate_size snake_case: Union[str, Any] = hidden_act snake_case: Any = hidden_dropout_prob snake_case: Optional[int] = attention_probs_dropout_prob snake_case: Optional[int] = max_position_embeddings snake_case: int = type_vocab_size snake_case: Union[str, Any] = type_sequence_label_size snake_case: List[str] = initializer_range snake_case: Dict = num_choices def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case: str = None if self.use_attention_mask: snake_case: Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case: Any = None if self.use_token_type_ids: snake_case: str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case: Any = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case: Optional[Any] = config_and_inputs snake_case: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case: str = config_and_inputs snake_case: int = True snake_case: int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case: Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def _UpperCamelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: snake_case: Tuple = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) snake_case: List[Any] = model(SCREAMING_SNAKE_CASE__ )[0] snake_case: Tuple = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice. snake_case: Optional[Any] = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) snake_case: Any = model(SCREAMING_SNAKE_CASE__ )[0] # compare the actual values for a slice. snake_case: str = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
692
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
1
"""simple docstring""" def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # Return True if there is node that has not iterated. UpperCamelCase : List[str] = [False] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [] queue.append(SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = True while queue: UpperCamelCase : Tuple = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = True UpperCamelCase : Tuple = u return visited[t] def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # This array is filled by BFS and to store path UpperCamelCase : int = [-1] * (len(SCREAMING_SNAKE_CASE )) UpperCamelCase : Any = 0 while bfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : str = float("""Inf""" ) UpperCamelCase : str = sink while s != source: # Find the minimum value in select path UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , graph[parent[s]][s] ) UpperCamelCase : List[Any] = parent[s] max_flow += path_flow UpperCamelCase : List[str] = sink while v != source: UpperCamelCase : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCamelCase : Tuple = parent[v] return max_flow __magic_name__ : Dict = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __magic_name__ , __magic_name__ : Union[str, Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
102
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __magic_name__ : Dict = logging.getLogger(__name__) @dataclass class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : Optional[float] = field( default=0.0 , metadata={"""help""": """The label smoothing epsilon to apply (if not zero)."""} ) __lowerCAmelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to SortishSamler or not."""} ) __lowerCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) __lowerCAmelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """whether to use adafactor"""} ) __lowerCAmelCase : Optional[float] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Encoder layer dropout probability. Goes into model.config."""} ) __lowerCAmelCase : Optional[float] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Decoder layer dropout probability. Goes into model.config."""} ) __lowerCAmelCase : Optional[float] = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Dropout probability. Goes into model.config."""} ) __lowerCAmelCase : Optional[float] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Attention dropout probability. Goes into model.config."""} ) __lowerCAmelCase : Optional[str] = field( default="""linear""" , metadata={"""help""": f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
102
1
import requests from bsa import BeautifulSoup def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = BeautifulSoup(requests.get(lowercase , params=lowercase ).content , '''html.parser''' ) __lowercase = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) __lowercase = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __a : Union[str, Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 3_0, """pages""": """3979-3990""", """year""": 2_0_1_8, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
522
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a : List[str] = { """configuration_tapas""": ["""TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TapasConfig"""], """tokenization_tapas""": ["""TapasTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : str = [ """TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TapasForMaskedLM""", """TapasForQuestionAnswering""", """TapasForSequenceClassification""", """TapasModel""", """TapasPreTrainedModel""", """load_tf_weights_in_tapas""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[str] = [ """TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFTapasForMaskedLM""", """TFTapasForQuestionAnswering""", """TFTapasForSequenceClassification""", """TFTapasModel""", """TFTapasPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __a : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
522
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase_ : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys lowercase_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
64
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Union[str, Any] =(DPMSolverSDEScheduler,) lowercase : Any =10 def UpperCamelCase ( self , **UpperCamelCase_ ): lowercase_ :Union[str, Any] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**UpperCamelCase_ ) return config def UpperCamelCase ( self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :Any = self.scheduler_classes[0] lowercase_ :Tuple = self.get_scheduler_config() lowercase_ :int = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase_ :Union[str, Any] = self.dummy_model() lowercase_ :Dict = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ :int = sample.to(UpperCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ :Optional[Any] = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Any = model(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Tuple = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Dict = output.prev_sample lowercase_ :Dict = torch.sum(torch.abs(UpperCamelCase_ ) ) lowercase_ :Union[str, Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = self.scheduler_classes[0] lowercase_ :Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowercase_ :Union[str, Any] = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase_ :List[str] = self.dummy_model() lowercase_ :Dict = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ :Optional[int] = sample.to(UpperCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ :Any = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :str = model(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Optional[int] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :List[str] = output.prev_sample lowercase_ :Union[str, Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowercase_ :int = torch.mean(torch.abs(UpperCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = self.scheduler_classes[0] lowercase_ :List[str] = self.get_scheduler_config() lowercase_ :Tuple = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase_ ) lowercase_ :Tuple = self.dummy_model() lowercase_ :str = self.dummy_sample_deter.to(UpperCamelCase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowercase_ :str = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :int = model(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :int = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :List[str] = output.prev_sample lowercase_ :Dict = torch.sum(torch.abs(UpperCamelCase_ ) ) lowercase_ :Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def UpperCamelCase ( self ): lowercase_ :Any = self.scheduler_classes[0] lowercase_ :Optional[int] = self.get_scheduler_config() lowercase_ :Tuple = scheduler_class(**UpperCamelCase_ , use_karras_sigmas=UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase_ ) lowercase_ :List[str] = self.dummy_model() lowercase_ :Dict = self.dummy_sample_deter.to(UpperCamelCase_ ) * scheduler.init_noise_sigma lowercase_ :Union[str, Any] = sample.to(UpperCamelCase_ ) for t in scheduler.timesteps: lowercase_ :List[Any] = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :int = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :int = output.prev_sample lowercase_ :List[Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowercase_ :Tuple = torch.mean(torch.abs(UpperCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
257
0
from __future__ import annotations __magic_name__ = tuple[int, int, int] __magic_name__ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase __magic_name__ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' # -------------------------- default selection -------------------------- # rotors -------------------------- __magic_name__ = '''EGZWVONAHDCLFQMSIPJBYUKXTR''' __magic_name__ = '''FOBHMDKEXQNRAULPGSJVTYICZW''' __magic_name__ = '''ZJXESIUQLHAVRMDOYGTNFWPBKC''' # reflector -------------------------- __magic_name__ = { '''A''': '''N''', '''N''': '''A''', '''B''': '''O''', '''O''': '''B''', '''C''': '''P''', '''P''': '''C''', '''D''': '''Q''', '''Q''': '''D''', '''E''': '''R''', '''R''': '''E''', '''F''': '''S''', '''S''': '''F''', '''G''': '''T''', '''T''': '''G''', '''H''': '''U''', '''U''': '''H''', '''I''': '''V''', '''V''': '''I''', '''J''': '''W''', '''W''': '''J''', '''K''': '''X''', '''X''': '''K''', '''L''': '''Y''', '''Y''': '''L''', '''M''': '''Z''', '''Z''': '''M''', } # -------------------------- extra rotors -------------------------- __magic_name__ = '''RMDJXFUWGISLHVTCQNKYPBEZOA''' __magic_name__ = '''SGLCPQWZHKXAREONTFBVIYJUDM''' __magic_name__ = '''HVSICLTYKQUBXDWAJZOMFGPREN''' __magic_name__ = '''RZWQHFMVDBKICJLNTUXAGYPSOE''' __magic_name__ = '''LFKIJODBEGAMQPXVUHYSTCZRWN''' __magic_name__ = '''KOAEGVDHXPQZMLFTYWJNBRCIUS''' def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if (unique_rotsel := len(set(_UpperCAmelCase ) )) < 3: lowercase = f"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(_UpperCAmelCase ) # Checks if rotor positions are valid lowercase , lowercase , lowercase = rotpos if not 0 < rotorposa <= len(_UpperCAmelCase ): lowercase = f"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(_UpperCAmelCase ) if not 0 < rotorposa <= len(_UpperCAmelCase ): lowercase = f"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(_UpperCAmelCase ) if not 0 < rotorposa <= len(_UpperCAmelCase ): lowercase = f"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(_UpperCAmelCase ) # Validates string and returns dict lowercase = _plugboard(_UpperCAmelCase ) return rotpos, rotsel, pbdict def __snake_case ( _UpperCAmelCase ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase = f"""Plugboard setting isn't type string ({type(_UpperCAmelCase )})""" raise TypeError(_UpperCAmelCase ) elif len(_UpperCAmelCase ) % 2 != 0: lowercase = f"""Odd number of symbols ({len(_UpperCAmelCase )})""" raise Exception(_UpperCAmelCase ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique lowercase = set() for i in pbstring: if i not in abc: lowercase = f"""'{i}' not in list of symbols""" raise Exception(_UpperCAmelCase ) elif i in tmppbl: lowercase = f"""Duplicate symbol ({i})""" raise Exception(_UpperCAmelCase ) else: tmppbl.add(_UpperCAmelCase ) del tmppbl # Created the dictionary lowercase = {} for j in range(0 , len(_UpperCAmelCase ) - 1 , 2 ): lowercase = pbstring[j + 1] lowercase = pbstring[j] return pb def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = (rotora, rotora, rotora) , _UpperCAmelCase = "" , ): """simple docstring""" lowercase = text.upper() lowercase , lowercase , lowercase = _validator( _UpperCAmelCase , _UpperCAmelCase , plugb.upper() ) lowercase , lowercase , lowercase = rotor_position lowercase , lowercase , lowercase = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowercase = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowercase = plugboard[symbol] # rotor ra -------------------------- lowercase = abc.index(_UpperCAmelCase ) + rotorposa lowercase = rotora[index % len(_UpperCAmelCase )] # rotor rb -------------------------- lowercase = abc.index(_UpperCAmelCase ) + rotorposa lowercase = rotora[index % len(_UpperCAmelCase )] # rotor rc -------------------------- lowercase = abc.index(_UpperCAmelCase ) + rotorposa lowercase = rotora[index % len(_UpperCAmelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowercase = reflector[symbol] # 2nd rotors lowercase = abc[rotora.index(_UpperCAmelCase ) - rotorposa] lowercase = abc[rotora.index(_UpperCAmelCase ) - rotorposa] lowercase = abc[rotora.index(_UpperCAmelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowercase = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): lowercase = 0 rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): lowercase = 0 rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): lowercase = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = '''This is my Python script that emulates the Enigma machine from WWII.''' __magic_name__ = (1, 1, 1) __magic_name__ = '''pictures''' __magic_name__ = (rotora, rotora, rotora) __magic_name__ = enigma(message, rotor_pos, rotor_sel, pb) print('''Encrypted message:''', en) print('''Decrypted message:''', enigma(en, rotor_pos, rotor_sel, pb))
314
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __magic_name__ = { '''configuration_vision_text_dual_encoder''': ['''VisionTextDualEncoderConfig'''], '''processing_vision_text_dual_encoder''': ['''VisionTextDualEncoderProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''VisionTextDualEncoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''FlaxVisionTextDualEncoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''TFVisionTextDualEncoderModel'''] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
1
'''simple docstring''' import os from distutils.util import strtobool def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : List[Any] ) -> Optional[int]: for e in env_keys: __snake_case = int(os.environ.get(lowerCAmelCase__ , -1 ) ) if val >= 0: return val return default def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=False ) -> Dict: __snake_case = os.environ.get(lowerCAmelCase__ , str(lowerCAmelCase__ ) ) return strtobool(lowerCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]="no" ) -> Tuple: __snake_case = os.environ.get(lowerCAmelCase__ , str(lowerCAmelCase__ ) ) return value
69
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __SCREAMING_SNAKE_CASE : Dict =HfArgumentParser(InitializationArguments) __SCREAMING_SNAKE_CASE : Optional[Any] =parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __SCREAMING_SNAKE_CASE : Optional[int] =AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __SCREAMING_SNAKE_CASE : List[Any] ={ '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) __SCREAMING_SNAKE_CASE : Union[str, Any] =AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __SCREAMING_SNAKE_CASE : List[str] =AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
428
0
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase_ = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase_ = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) UpperCAmelCase_ = spec.loader.load_module() UpperCAmelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCAmelCase_ = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") UpperCAmelCase_ = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def SCREAMING_SNAKE_CASE ( ): __a = [] for config_class in list(CONFIG_MAPPING.values() ): __a = False # source code of `config_class` __a = inspect.getsource(_lowerCAmelCase ) __a = _re_checkpoint.findall(_lowerCAmelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` __a , __a = checkpoint # verify the checkpoint name corresponds to the checkpoint link __a = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: __a = True break __a = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __a = '\n'.join(sorted(_lowerCAmelCase ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
701
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def SCREAMING_SNAKE_CASE ( a_ : Optional[Any] , a_ : int , a_ : Tuple , a_ : Tuple ): __a = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] __a = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } __a = f"{src_lang}-{tgt_lang}" __a = f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=a_ , exist_ok=a_ ) __a = os.path.join(a_ , 'README.md' ) print(f"Generating {path}" ) with open(a_ , 'w' , encoding='utf-8' ) as f: f.write(a_ ) # make sure we are under the root of the project UpperCAmelCase_ = Path(__file__).resolve().parent.parent.parent UpperCAmelCase_ = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCAmelCase_ = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
490
0
def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" while second != 0: lowerCAmelCase__ = first & second first ^= second lowerCAmelCase__ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = int(input('Enter the first number: ').strip()) UpperCamelCase = int(input('Enter the second number: ').strip()) print(F"""{add(first, second) = }""")
61
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class A__ : lowerCamelCase__ : List[str] lowerCamelCase__ : Optional[str] =None # Automatically constructed lowerCamelCase__ : ClassVar[str] ="dict" lowerCamelCase__ : ClassVar[Any] =None lowerCamelCase__ : str =field(default="Translation" , init=UpperCAmelCase_ , repr=UpperCAmelCase_ ) def __call__( self ) -> str: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class A__ : lowerCamelCase__ : Optional[List] =None lowerCamelCase__ : Optional[int] =None lowerCamelCase__ : Optional[str] =None # Automatically constructed lowerCamelCase__ : ClassVar[str] ="dict" lowerCamelCase__ : ClassVar[Any] =None lowerCamelCase__ : str =field(default="TranslationVariableLanguages" , init=UpperCAmelCase_ , repr=UpperCAmelCase_ ) def lowercase ( self ) -> List[Any]: """simple docstring""" __magic_name__ : Union[str, Any] = sorted(set(self.languages ) ) if self.languages else None __magic_name__ : str = len(self.languages ) if self.languages else None def __call__( self ) -> Union[str, Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def lowercase ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __magic_name__ : Union[str, Any] = set(self.languages ) if self.languages and set(_lowercase ) - lang_set: raise ValueError( F'''Some languages in example ({", ".join(sorted(set(_lowercase ) - lang_set ) )}) are not in valid set ({", ".join(_lowercase )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : List[Any] = [] for lang, text in translation_dict.items(): if isinstance(_lowercase , _lowercase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ : int = zip(*sorted(_lowercase ) ) return {"language": languages, "translation": translations} def lowercase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
707
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowercase_ = trt.Logger(trt.Logger.WARNING) lowercase_ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowercase_ = logging.getLogger(__name__) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowercase_ = parser.parse_args() if args.tokenizer_name: lowercase_ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowercase_ = args.per_device_eval_batch_size lowercase_ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowercase_ = True lowercase_ = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowercase_ = '''temp_engine/bert-fp16.engine''' if args.inta: lowercase_ = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowercase_ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowercase_ = [network.get_input(i) for i in range(network.num_inputs)] lowercase_ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowercase_ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowercase_ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowercase_ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) ->Optional[Any]: """simple docstring""" __magic_name__ : Union[str, Any] = np.asarray(inputs['''input_ids'''], dtype=np.intaa ) __magic_name__ : Optional[int] = np.asarray(inputs['''attention_mask'''], dtype=np.intaa ) __magic_name__ : Tuple = np.asarray(inputs['''token_type_ids'''], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), UpperCAmelCase ) # start time __magic_name__ : Optional[int] = time.time() # Run inference context.execute_async( bindings=[int(UpperCAmelCase ) for d_inp in d_inputs] + [int(UpperCAmelCase ), int(UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) cuda.memcpy_dtoh_async(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time __magic_name__ : str = time.time() __magic_name__ : Any = end_time - start_time __magic_name__ : Tuple = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowercase_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase_ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowercase_ = raw_datasets['''validation'''].column_names lowercase_ = '''question''' if '''question''' in column_names else column_names[0] lowercase_ = '''context''' if '''context''' in column_names else column_names[1] lowercase_ = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowercase_ = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowercase_ = min(args.max_seq_length, tokenizer.model_max_length) def lowerCAmelCase ( UpperCAmelCase ) ->int: """simple docstring""" __magic_name__ : Optional[int] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __magic_name__ : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='''only_second''' if pad_on_right else '''only_first''', max_length=UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=UpperCAmelCase, return_offsets_mapping=UpperCAmelCase, padding='''max_length''', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __magic_name__ : str = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __magic_name__ : str = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __magic_name__ : Dict = tokenized_examples.sequence_ids(UpperCAmelCase ) __magic_name__ : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __magic_name__ : int = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __magic_name__ : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples lowercase_ = raw_datasets['''validation'''] # Validation Feature Creation lowercase_ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowercase_ = default_data_collator lowercase_ = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowercase_ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase="eval" ) ->List[str]: """simple docstring""" __magic_name__ : List[str] = postprocess_qa_predictions( examples=UpperCAmelCase, features=UpperCAmelCase, predictions=UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: __magic_name__ : str = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: __magic_name__ : int = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] __magic_name__ : Optional[int] = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=UpperCAmelCase, label_ids=UpperCAmelCase ) lowercase_ = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCAmelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" return trt.volume(engine.get_binding_shape(UpperCAmelCase ) ) * engine.get_binding_dtype(UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. lowercase_ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowercase_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowercase_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowercase_ = cuda.mem_alloc(h_outputa.nbytes) lowercase_ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowercase_ = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f" Num examples = {len(eval_dataset)}") logger.info(f" Batch size = {args.per_device_eval_batch_size}") lowercase_ = 0.0 lowercase_ = 0 lowercase_ = timeit.default_timer() lowercase_ = None for step, batch in enumerate(eval_dataloader): lowercase_, lowercase_ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowercase_, lowercase_ = outputs lowercase_ = torch.tensor(start_logits) lowercase_ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowercase_ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) lowercase_ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) lowercase_ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowercase_ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: lowercase_ = nested_truncate(all_preds, len(eval_dataset)) lowercase_ = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) lowercase_ = post_processing_function(eval_examples, eval_dataset, all_preds) lowercase_ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"Evaluation metrics: {eval_metric}")
336
0
__SCREAMING_SNAKE_CASE : str = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def snake_case (__lowercase , __lowercase , __lowercase , __lowercase ) -> List[str]: '''simple docstring''' _snake_case : Union[str, Any] = [False] * len(__lowercase ) _snake_case : Any = [s] _snake_case : List[Any] = True while queue: _snake_case : Optional[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowercase ) _snake_case : Dict = True _snake_case : Dict = u return visited[t] def snake_case (__lowercase , __lowercase , __lowercase ) -> int: '''simple docstring''' _snake_case : Union[str, Any] = [-1] * (len(__lowercase )) _snake_case : Any = 0 _snake_case : Any = [] _snake_case : List[Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(__lowercase , __lowercase , __lowercase , __lowercase ): _snake_case : Dict = float("Inf" ) _snake_case : Any = sink while s != source: # Find the minimum value in select path _snake_case : Union[str, Any] = min(__lowercase , graph[parent[s]][s] ) _snake_case : Union[str, Any] = parent[s] max_flow += path_flow _snake_case : List[Any] = sink while v != source: _snake_case : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _snake_case : List[str] = parent[v] for i in range(len(__lowercase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
670
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowercase_ ( __snake_case , unittest.TestCase ): _lowerCamelCase = ReformerTokenizer _lowerCamelCase = ReformerTokenizerFast _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = True def UpperCamelCase ( self ): super().setUp() _snake_case : Union[str, Any] = ReformerTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self ): _snake_case : int = "<s>" _snake_case : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def UpperCamelCase ( self ): _snake_case : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowercase_ ) , 1_000 ) def UpperCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def UpperCamelCase ( self ): if not self.test_rust_tokenizer: return _snake_case : Tuple = self.get_tokenizer() _snake_case : List[str] = self.get_rust_tokenizer() _snake_case : int = "I was born in 92000, and this is falsé." _snake_case : Tuple = tokenizer.tokenize(lowercase_ ) _snake_case : List[Any] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _snake_case : str = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) _snake_case : Tuple = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _snake_case : Dict = self.get_rust_tokenizer() _snake_case : List[Any] = tokenizer.encode(lowercase_ ) _snake_case : str = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCamelCase ( self , lowercase_=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) # Simple input _snake_case : List[str] = "This is a simple input" _snake_case : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _snake_case : Union[str, Any] = ("This is a simple input", "This is a pair") _snake_case : int = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Simple input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Simple input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" , ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Pair input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" , ) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): _snake_case : Dict = ReformerTokenizer(lowercase_ , keep_accents=lowercase_ ) _snake_case : Tuple = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [285, 46, 10, 170, 382] , ) _snake_case : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _snake_case : Any = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _snake_case : List[Any] = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def UpperCamelCase ( self ): return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def UpperCamelCase ( self ): _snake_case : int = "Hello World!" _snake_case : Dict = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def UpperCamelCase ( self ): _snake_case : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _snake_case : Dict = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @require_torch @slow def UpperCamelCase ( self ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence _snake_case : str = list(self.big_tokenizer.get_vocab().keys() )[:10] _snake_case : str = " ".join(lowercase_ ) _snake_case : Tuple = self.big_tokenizer.encode_plus(lowercase_ , return_tensors="pt" ) _snake_case : Tuple = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) _snake_case : int = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _snake_case : Union[str, Any] = encoded_sequence["input_ids"].shape _snake_case : List[str] = ReformerModel(lowercase_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase_ ) model(**lowercase_ ) @slow def UpperCamelCase ( self ): # fmt: off _snake_case : Union[str, Any] = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _snake_case : Tuple = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=lowercase_ , sequences=lowercase_ , )
670
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset SCREAMING_SNAKE_CASE : Optional[int] = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) SCREAMING_SNAKE_CASE : Union[str, Any] = dataset.iloc[:, 1:2].values SCREAMING_SNAKE_CASE : str = dataset.iloc[:, 2].values SCREAMING_SNAKE_CASE : Tuple = train_test_split(X, y, test_size=0.2, random_state=0) SCREAMING_SNAKE_CASE : List[str] = PolynomialFeatures(degree=4) SCREAMING_SNAKE_CASE : Tuple = poly_reg.fit_transform(X) SCREAMING_SNAKE_CASE : Optional[Any] = LinearRegression() pol_reg.fit(X_poly, y) def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' plt.scatter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color='''red''' ) plt.plot(_SCREAMING_SNAKE_CASE , pol_reg.predict(poly_reg.fit_transform(_SCREAMING_SNAKE_CASE ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
702
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu SCREAMING_SNAKE_CASE : int = False class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self ): return 12 @property def UpperCamelCase ( self ): return 12 @property def UpperCamelCase ( self ): return 32 @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCamelCase ( self ): lowercase_ :Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(UpperCamelCase_ ) @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :int = 12 lowercase_ :List[Any] = 12 lowercase_ :Dict = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } lowercase_ :int = TransformeraDModel(**UpperCamelCase_ ) return model def UpperCamelCase ( self ): lowercase_ :List[str] = '''cpu''' lowercase_ :int = self.dummy_vqvae lowercase_ :int = self.dummy_text_encoder lowercase_ :Any = self.dummy_tokenizer lowercase_ :Optional[int] = self.dummy_transformer lowercase_ :List[str] = VQDiffusionScheduler(self.num_embed ) lowercase_ :int = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCamelCase_ ) lowercase_ :List[Any] = VQDiffusionPipeline( vqvae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , transformer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) lowercase_ :Union[str, Any] = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :Dict = '''teddy bear playing in the pool''' lowercase_ :Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[int] = pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' ) lowercase_ :Any = output.images lowercase_ :Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :str = pipe( [prompt] , generator=UpperCamelCase_ , output_type='''np''' , return_dict=UpperCamelCase_ , num_inference_steps=2 )[0] lowercase_ :Optional[Any] = image[0, -3:, -3:, -1] lowercase_ :Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowercase_ :str = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :int = '''cpu''' lowercase_ :Dict = self.dummy_vqvae lowercase_ :str = self.dummy_text_encoder lowercase_ :List[Any] = self.dummy_tokenizer lowercase_ :Any = self.dummy_transformer lowercase_ :Optional[Any] = VQDiffusionScheduler(self.num_embed ) lowercase_ :List[str] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCamelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) lowercase_ :Optional[int] = VQDiffusionPipeline( vqvae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , transformer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) lowercase_ :Dict = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :int = '''teddy bear playing in the pool''' lowercase_ :Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[int] = pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' ) lowercase_ :Optional[Any] = output.images lowercase_ :Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Dict = pipe( [prompt] , generator=UpperCamelCase_ , output_type='''np''' , return_dict=UpperCamelCase_ , num_inference_steps=2 )[0] lowercase_ :List[str] = image[0, -3:, -3:, -1] lowercase_ :Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowercase_ :Dict = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): lowercase_ :List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) lowercase_ :int = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) lowercase_ :Tuple = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though lowercase_ :Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :int = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=UpperCamelCase_ , output_type='''np''' , ) lowercase_ :List[str] = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
441
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : Dict = DiTPipeline __lowercase : List[str] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __lowercase : Optional[int] = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } __lowercase : str = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __lowercase : Any = False def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) __snake_case = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__SCREAMING_SNAKE_CASE , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=__SCREAMING_SNAKE_CASE , ) __snake_case = AutoencoderKL() __snake_case = DDIMScheduler() __snake_case = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> List[Any]: '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): __snake_case = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __snake_case = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __snake_case = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = '''cpu''' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __snake_case = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __snake_case = pipe(**__SCREAMING_SNAKE_CASE ).images __snake_case = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __snake_case = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) __snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-3 ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=__SCREAMING_SNAKE_CASE , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowerCAmelCase ( unittest.TestCase): def lowerCAmelCase ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = torch.manual_seed(0 ) __snake_case = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) __snake_case = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] __snake_case = pipe.get_label_ids(__SCREAMING_SNAKE_CASE ) __snake_case = pipe(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) __snake_case = ['''vase''', '''umbrella'''] __snake_case = pipe.get_label_ids(__SCREAMING_SNAKE_CASE ) __snake_case = torch.manual_seed(0 ) __snake_case = pipe(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
24
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __a = logging.get_logger(__name__) __a = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[str] = '''deberta-v2''' def __init__( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_2_8_1_0_0 , lowerCAmelCase__ : Optional[int]=1_5_3_6 , lowerCAmelCase__ : Dict=2_4 , lowerCAmelCase__ : Optional[Any]=2_4 , lowerCAmelCase__ : str=6_1_4_4 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Optional[Any]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Tuple=1e-7 , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Any=-1 , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : int=0 , lowerCAmelCase__ : Optional[int]="gelu" , **lowerCAmelCase__ : List[Any] , ) -> List[Any]: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : Dict = relative_attention _UpperCAmelCase : Tuple = max_relative_positions _UpperCAmelCase : Optional[int] = pad_token_id _UpperCAmelCase : Optional[int] = position_biased_input # Backwards compatibility if type(lowerCAmelCase__ ) == str: _UpperCAmelCase : List[Any] = [x.strip() for x in pos_att_type.lower().split("|" )] _UpperCAmelCase : Any = pos_att_type _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : str = layer_norm_eps _UpperCAmelCase : Any = kwargs.get("pooler_hidden_size" , lowerCAmelCase__ ) _UpperCAmelCase : Any = pooler_dropout _UpperCAmelCase : Any = pooler_hidden_act class A__ ( UpperCamelCase ): """simple docstring""" @property def _lowerCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 1_2 def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional["TensorType"] = None , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 4_0 , lowerCAmelCase__ : int = 4_0 , lowerCAmelCase__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase : List[Any] = super().generate_dummy_inputs(preprocessor=lowerCAmelCase__ , framework=lowerCAmelCase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
494
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=10, lowerCamelCase=3, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=37, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=10, lowerCamelCase=0.0_2, lowerCamelCase=0.9, lowerCamelCase=None, ) -> Any: """simple docstring""" _lowercase : List[str] = parent _lowercase : Union[str, Any] = batch_size _lowercase : Optional[int] = image_size _lowercase : Union[str, Any] = num_channels _lowercase : int = patch_size _lowercase : str = tubelet_size _lowercase : List[Any] = num_frames _lowercase : str = is_training _lowercase : Any = use_labels _lowercase : List[Any] = hidden_size _lowercase : List[Any] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : str = type_sequence_label_size _lowercase : Optional[Any] = initializer_range _lowercase : Dict = mask_ratio _lowercase : int = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _lowercase : List[Any] = (image_size // patch_size) ** 2 _lowercase : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _lowercase : Optional[int] = int(mask_ratio * self.seq_length) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) _lowercase : str = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : List[str] = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self) -> List[str]: """simple docstring""" return VideoMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, tubelet_size=self.tubelet_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : List[str] = VideoMAEModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = VideoMAEForPreTraining(lowerCamelCase) model.to(lowerCamelCase) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _lowercase : Union[str, Any] = torch.ones((self.num_masks,)) _lowercase : Union[str, Any] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) _lowercase : Union[str, Any] = mask.expand(self.batch_size, -1).bool() _lowercase : str = model(lowerCamelCase, lowerCamelCase) # model only returns predictions for masked patches _lowercase : Optional[int] = mask.sum().item() _lowercase : Any = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels)) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() _lowercase : Any = config_and_inputs _lowercase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Optional[int] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase_ : List[str] = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase_ : str = False lowercase_ : Tuple = False lowercase_ : Tuple = False lowercase_ : str = False def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = VideoMAEModelTester(self) _lowercase : List[str] = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=False) -> Optional[int]: """simple docstring""" _lowercase : List[str] = copy.deepcopy(lowerCamelCase) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _lowercase : int = torch.ones((self.model_tester.num_masks,)) _lowercase : List[str] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) _lowercase : int = mask.expand(self.model_tester.batch_size, -1).bool() _lowercase : List[str] = bool_masked_pos.to(lowerCamelCase) if return_labels: if model_class in [ *get_values(lowerCamelCase), ]: _lowercase : int = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase) return inputs_dict def UpperCamelCase ( self) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds') def UpperCamelCase ( self) -> Tuple: """simple docstring""" pass def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[Any] = model_class(lowerCamelCase) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) _lowercase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear)) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : str = model_class(lowerCamelCase) _lowercase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Tuple = [*signature.parameters.keys()] _lowercase : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase) @slow def UpperCamelCase ( self) -> Any: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Any = VideoMAEModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : List[str] = True for model_class in self.all_model_classes: _lowercase : List[str] = self.model_tester.seq_length - self.model_tester.num_masks _lowercase : Tuple = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _lowercase : Any = True _lowercase : Tuple = False _lowercase : List[str] = True _lowercase : str = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) _lowercase : List[Any] = outputs.attentions self.assertEqual(len(lowerCamelCase), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowercase : Optional[int] = True _lowercase : List[Any] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : str = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) _lowercase : str = outputs.attentions self.assertEqual(len(lowerCamelCase), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) _lowercase : Optional[Any] = len(lowerCamelCase) # Check attention is always last and order is fine _lowercase : Optional[int] = True _lowercase : Union[str, Any] = True _lowercase : Dict = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : List[str] = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) self.assertEqual(out_len + 1, len(lowerCamelCase)) _lowercase : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCamelCase), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def UpperCamelCase ( self) -> int: """simple docstring""" def check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase): _lowercase : Tuple = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : Dict = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) _lowercase : Dict = outputs.hidden_states _lowercase : Tuple = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCamelCase), lowerCamelCase) _lowercase : Dict = self.model_tester.seq_length - self.model_tester.num_masks _lowercase : Optional[int] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[Any] = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : List[str] = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase_( ) -> List[Any]: _lowercase : Dict = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _lowercase : Dict = np.load(lowerCamelCase_ ) return list(lowerCamelCase_ ) @require_torch @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Tuple = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics').to( lowerCamelCase) _lowercase : int = self.default_image_processor _lowercase : str = prepare_video() _lowercase : Tuple = image_processor(lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : int = model(**lowerCamelCase) # verify the logits _lowercase : List[str] = torch.Size((1, 4_00)) self.assertEqual(outputs.logits.shape, lowerCamelCase) _lowercase : str = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1]).to(lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Dict = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short').to(lowerCamelCase) _lowercase : Tuple = self.default_image_processor _lowercase : str = prepare_video() _lowercase : Optional[int] = image_processor(lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # add boolean mask, indicating which patches to mask _lowercase : Any = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos', filename='bool_masked_pos.pt') _lowercase : Any = torch.load(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Optional[int] = model(**lowerCamelCase) # verify the logits _lowercase : int = torch.Size([1, 14_08, 15_36]) _lowercase : List[str] = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]], device=lowerCamelCase) self.assertEqual(outputs.logits.shape, lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], lowerCamelCase, atol=1E-4)) # verify the loss (`config.norm_pix_loss` = `True`) _lowercase : Union[str, Any] = torch.tensor([0.5_1_4_2], device=lowerCamelCase) self.assertTrue(torch.allclose(outputs.loss, lowerCamelCase, atol=1E-4)) # verify the loss (`config.norm_pix_loss` = `False`) _lowercase : Any = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short', norm_pix_loss=lowerCamelCase).to( lowerCamelCase) with torch.no_grad(): _lowercase : Union[str, Any] = model(**lowerCamelCase) _lowercase : str = torch.tensor(torch.tensor([0.6_4_6_9]), device=lowerCamelCase) self.assertTrue(torch.allclose(outputs.loss, lowerCamelCase, atol=1E-4))
716
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCamelCase( _a ): lowercase_ : int = ["""image_processor""", """tokenizer"""] lowercase_ : List[str] = """CLIPImageProcessor""" lowercase_ : Union[str, Any] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> Dict: """simple docstring""" _lowercase : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase, ) _lowercase : Dict = kwargs.pop('feature_extractor') _lowercase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowerCamelCase, lowerCamelCase) def __call__( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> Tuple: """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: _lowercase : Optional[Any] = self.tokenizer(lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase) if images is not None: _lowercase : List[Any] = self.image_processor(lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase) if text is not None and images is not None: _lowercase : int = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase), tensor_type=lowerCamelCase) def UpperCamelCase ( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : int = self.tokenizer.model_input_names _lowercase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.', lowerCamelCase, ) return self.image_processor_class @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.', lowerCamelCase, ) return self.image_processor
354
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : str = LongformerTokenizer lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : Any = LongformerTokenizerFast lowerCAmelCase__ : Union[str, Any] = True def _lowerCamelCase ( self : int ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowercase : List[str] = dict(zip(UpperCamelCase ,range(len(UpperCamelCase ) ) ) ) _lowercase : Optional[int] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowercase : Union[str, Any] = {'unk_token': '<unk>'} _lowercase : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) def _lowerCamelCase ( self : Union[str, Any] ,**UpperCamelCase : str ) -> Dict: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCamelCase ) def _lowerCamelCase ( self : int ,**UpperCamelCase : str ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCamelCase ) def _lowerCamelCase ( self : Union[str, Any] ,UpperCamelCase : Union[str, Any] ) -> Optional[Any]: _lowercase : Any = 'lower newer' _lowercase : Tuple = 'lower newer' return input_text, output_text def _lowerCamelCase ( self : Tuple ) -> List[Any]: _lowercase : Tuple = self.tokenizer_class(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _lowercase : int = 'lower newer' _lowercase : Optional[Any] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowercase : Optional[int] = tokenizer.tokenize(UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) _lowercase : List[str] = tokens + [tokenizer.unk_token] _lowercase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) ,UpperCamelCase ) def _lowerCamelCase ( self : str ) -> Optional[Any]: _lowercase : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' ,add_special_tokens=UpperCamelCase ) ,[0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' ,add_special_tokens=UpperCamelCase ) ,[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] ,) @slow def _lowerCamelCase ( self : Dict ) -> str: _lowercase : List[str] = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) _lowercase : int = tokenizer.encode('sequence builders' ,add_special_tokens=UpperCamelCase ) _lowercase : List[str] = tokenizer.encode('multi-sequence build' ,add_special_tokens=UpperCamelCase ) _lowercase : Dict = tokenizer.encode( 'sequence builders' ,add_special_tokens=UpperCamelCase ,add_prefix_space=UpperCamelCase ) _lowercase : List[str] = tokenizer.encode( 'sequence builders' ,'multi-sequence build' ,add_special_tokens=UpperCamelCase ,add_prefix_space=UpperCamelCase ) _lowercase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) _lowercase : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ,UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowerCamelCase ( self : Optional[Any] ) -> Union[str, Any]: _lowercase : int = self.get_tokenizer() _lowercase : int = 'Encode this sequence.' _lowercase : Union[str, Any] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _lowercase : List[Any] = tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ,add_prefix_space=UpperCamelCase ) _lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase ,UpperCamelCase ) _lowercase : Dict = tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ,add_prefix_space=UpperCamelCase ) _lowercase : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase ,UpperCamelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _lowercase : Any = tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ) _lowercase : int = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase ,UpperCamelCase ) # Testing spaces after special tokens _lowercase : Union[str, Any] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase )} ) # mask token has a left space _lowercase : Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase ) _lowercase : str = 'Encode <mask> sequence' _lowercase : Optional[int] = 'Encode <mask>sequence' _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase ) _lowercase : int = encoded.index(UpperCamelCase ) _lowercase : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase ,UpperCamelCase ) _lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase ) _lowercase : List[str] = encoded.index(UpperCamelCase ) _lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase ,UpperCamelCase ) def _lowerCamelCase ( self : Dict ) -> int: pass def _lowerCamelCase ( self : Dict ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase ,**UpperCamelCase ) _lowercase : str = self.tokenizer_class.from_pretrained(UpperCamelCase ,**UpperCamelCase ) _lowercase : Union[str, Any] = 'A, <mask> AllenNLP sentence.' _lowercase : List[str] = tokenizer_r.encode_plus(UpperCamelCase ,add_special_tokens=UpperCamelCase ,return_token_type_ids=UpperCamelCase ) _lowercase : Optional[int] = tokenizer_p.encode_plus(UpperCamelCase ,add_special_tokens=UpperCamelCase ,return_token_type_ids=UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) ,sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) ,sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) ,) _lowercase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowercase : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( UpperCamelCase ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def _lowerCamelCase ( self : List[str] ) -> List[str]: for trim_offsets, add_prefix_space in itertools.product([True, False] ,repeat=2 ): _lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] ,UpperCamelCase ) self.assertEqual(post_processor_state['add_prefix_space'] ,UpperCamelCase ) self.assertEqual(post_processor_state['trim_offsets'] ,UpperCamelCase ) def _lowerCamelCase ( self : List[str] ) -> List[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : List[Any] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _lowercase : Optional[Any] = F'''{text_of_1_token} {text_of_1_token}''' _lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Tuple = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(UpperCamelCase ) + 1, len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Any = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(UpperCamelCase ) + 1, len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : str = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Any = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(UpperCamelCase ), len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Optional[Any] = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(UpperCamelCase ), len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : Optional[int] = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowercase : Any = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Optional[Any] = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(UpperCamelCase ) + 1, 1 + len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Optional[Any] = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(UpperCamelCase ), 1 + len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : List[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : int = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(UpperCamelCase ), 1 + len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,)
125
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) # TODO Update this A = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : str = "esm" def __init__( self : str ,UpperCamelCase : Tuple=None ,UpperCamelCase : Union[str, Any]=None ,UpperCamelCase : str=None ,UpperCamelCase : str=768 ,UpperCamelCase : List[str]=12 ,UpperCamelCase : Dict=12 ,UpperCamelCase : Any=3072 ,UpperCamelCase : List[str]=0.1 ,UpperCamelCase : int=0.1 ,UpperCamelCase : int=1026 ,UpperCamelCase : int=0.0_2 ,UpperCamelCase : Optional[Any]=1e-12 ,UpperCamelCase : str="absolute" ,UpperCamelCase : Tuple=True ,UpperCamelCase : int=None ,UpperCamelCase : Union[str, Any]=False ,UpperCamelCase : Tuple=False ,UpperCamelCase : Optional[int]=None ,UpperCamelCase : Any=None ,**UpperCamelCase : Dict ,) -> str: super().__init__(pad_token_id=UpperCamelCase ,mask_token_id=UpperCamelCase ,**UpperCamelCase ) _lowercase : Any = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : str = max_position_embeddings _lowercase : List[str] = initializer_range _lowercase : Any = layer_norm_eps _lowercase : Optional[int] = position_embedding_type _lowercase : int = use_cache _lowercase : Dict = emb_layer_norm_before _lowercase : Optional[int] = token_dropout _lowercase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) _lowercase : str = EsmFoldConfig() elif isinstance(UpperCamelCase ,UpperCamelCase ): _lowercase : Tuple = EsmFoldConfig(**UpperCamelCase ) _lowercase : str = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) _lowercase : Optional[int] = get_default_vocab_list() else: _lowercase : Optional[Any] = vocab_list else: _lowercase : Any = None _lowercase : List[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config ,'use_esm_attn_map' ,UpperCamelCase ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def _lowerCamelCase ( self : str ) -> Tuple: _lowercase : List[str] = super().to_dict() if isinstance(self.esmfold_config ,UpperCamelCase ): _lowercase : Union[str, Any] = self.esmfold_config.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCAmelCase__ : str = None lowerCAmelCase__ : bool = True lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = False lowerCAmelCase__ : float = 0 lowerCAmelCase__ : bool = True lowerCAmelCase__ : bool = False lowerCAmelCase__ : int = 128 lowerCAmelCase__ : "TrunkConfig" = None def _lowerCamelCase ( self : List[Any] ) -> str: if self.trunk is None: _lowercase : Optional[Any] = TrunkConfig() elif isinstance(self.trunk ,UpperCamelCase ): _lowercase : List[str] = TrunkConfig(**self.trunk ) def _lowerCamelCase ( self : Optional[Any] ) -> Union[str, Any]: _lowercase : Any = asdict(self ) _lowercase : Tuple = self.trunk.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCAmelCase__ : int = 48 lowerCAmelCase__ : int = 1_024 lowerCAmelCase__ : int = 128 lowerCAmelCase__ : int = 32 lowerCAmelCase__ : int = 32 lowerCAmelCase__ : int = 32 lowerCAmelCase__ : float = 0 lowerCAmelCase__ : float = 0 lowerCAmelCase__ : bool = False lowerCAmelCase__ : int = 4 lowerCAmelCase__ : Optional[int] = 128 lowerCAmelCase__ : "StructureModuleConfig" = None def _lowerCamelCase ( self : Dict ) -> Optional[Any]: if self.structure_module is None: _lowercase : Any = StructureModuleConfig() elif isinstance(self.structure_module ,UpperCamelCase ): _lowercase : int = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) _lowercase : Any = self.sequence_state_dim // self.sequence_head_width _lowercase : Tuple = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def _lowerCamelCase ( self : List[Any] ) -> str: _lowercase : int = asdict(self ) _lowercase : Any = self.structure_module.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCAmelCase__ : int = 384 lowerCAmelCase__ : int = 128 lowerCAmelCase__ : int = 16 lowerCAmelCase__ : int = 128 lowerCAmelCase__ : int = 12 lowerCAmelCase__ : int = 4 lowerCAmelCase__ : int = 8 lowerCAmelCase__ : float = 0.1 lowerCAmelCase__ : int = 8 lowerCAmelCase__ : int = 1 lowerCAmelCase__ : int = 2 lowerCAmelCase__ : int = 7 lowerCAmelCase__ : int = 10 lowerCAmelCase__ : float = 1e-8 lowerCAmelCase__ : float = 1e5 def _lowerCamelCase ( self : List[str] ) -> Union[str, Any]: return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
125
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = "codegen" A = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , _UpperCAmelCase=5_0_4_0_0 , _UpperCAmelCase=2_0_4_8 , _UpperCAmelCase=2_0_4_8 , _UpperCAmelCase=4_0_9_6 , _UpperCAmelCase=2_8 , _UpperCAmelCase=1_6 , _UpperCAmelCase=6_4 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=5_0_2_5_6 , _UpperCAmelCase=5_0_2_5_6 , _UpperCAmelCase=False , **_UpperCAmelCase , ) -> Union[str, Any]: __UpperCamelCase : Tuple = vocab_size __UpperCamelCase : int = n_ctx __UpperCamelCase : Any = n_positions __UpperCamelCase : int = n_embd __UpperCamelCase : List[str] = n_layer __UpperCamelCase : List[Any] = n_head __UpperCamelCase : Tuple = n_inner __UpperCamelCase : Dict = rotary_dim __UpperCamelCase : List[Any] = activation_function __UpperCamelCase : Tuple = resid_pdrop __UpperCamelCase : List[Any] = embd_pdrop __UpperCamelCase : Optional[int] = attn_pdrop __UpperCamelCase : List[Any] = layer_norm_epsilon __UpperCamelCase : Union[str, Any] = initializer_range __UpperCamelCase : List[str] = use_cache __UpperCamelCase : Any = bos_token_id __UpperCamelCase : Tuple = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ) -> List[str]: super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , "pad_token_id" , _UpperCAmelCase ): # TODO: how to do that better? __UpperCamelCase : Any = 0 @property def a_ (self ) -> Mapping[str, Mapping[int, str]]: __UpperCamelCase : List[str] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction="inputs" ) __UpperCamelCase : Any = {0: "batch", 1: "past_sequence + sequence"} else: __UpperCamelCase : Dict = {0: "batch", 1: "sequence"} return common_inputs @property def a_ (self ) -> int: return self._config.n_layer @property def a_ (self ) -> int: return self._config.n_head def a_ (self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]: __UpperCamelCase : Optional[Any] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() __UpperCamelCase : Tuple = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __UpperCamelCase , __UpperCamelCase : Optional[int] = common_inputs["input_ids"].shape # Not using the same length for past_key_values __UpperCamelCase : Tuple = seqlen + 2 __UpperCamelCase : Optional[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase : Optional[int] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] __UpperCamelCase : int = common_inputs["attention_mask"] if self.use_past: __UpperCamelCase : List[str] = ordered_inputs["attention_mask"].dtype __UpperCamelCase : List[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def a_ (self ) -> int: return 1_3
399
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = '''▁''' _lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} _lowerCAmelCase = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } _lowerCAmelCase = { '''google/pegasus-xsum''': 512, } _lowerCAmelCase = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = VOCAB_FILES_NAMES A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ["input_ids", "attention_mask"] def __init__(self , _UpperCAmelCase , _UpperCAmelCase="<pad>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<mask_2>" , _UpperCAmelCase="<mask_1>" , _UpperCAmelCase=None , _UpperCAmelCase=1_0_3 , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None: __UpperCamelCase : Union[str, Any] = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f"additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is" f" {type(_UpperCAmelCase )}" ) __UpperCamelCase : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) __UpperCamelCase : Dict = additional_special_tokens_extended else: __UpperCamelCase : int = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] __UpperCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __UpperCamelCase : Union[str, Any] = mask_token_sent __UpperCamelCase : Optional[int] = vocab_file __UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) # add special tokens to encoder dict __UpperCamelCase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __UpperCamelCase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def a_ (self ) -> int: return len(self.sp_model ) + self.offset def a_ (self ) -> Dict[str, int]: __UpperCamelCase : List[Any] = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Union[str, Any]: __UpperCamelCase : Optional[Any] = self.__dict__.copy() __UpperCamelCase : Dict = None return state def __setstate__(self , _UpperCAmelCase ) -> List[Any]: __UpperCamelCase : List[str] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : Dict = {} __UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a_ (self , _UpperCAmelCase ) -> List[str]: return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def a_ (self , _UpperCAmelCase ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __UpperCamelCase : str = self.sp_model.piece_to_id(_UpperCAmelCase ) return sp_id + self.offset def a_ (self , _UpperCAmelCase ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __UpperCamelCase : List[Any] = self.sp_model.IdToPiece(index - self.offset ) return token def a_ (self , _UpperCAmelCase ) -> List[str]: __UpperCamelCase : Optional[Any] = [] __UpperCamelCase : List[Any] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_UpperCAmelCase ) + token __UpperCamelCase : str = [] else: current_sub_tokens.append(_UpperCAmelCase ) out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def a_ (self , _UpperCAmelCase=False ) -> Optional[int]: return 1 def a_ (self , _UpperCAmelCase ) -> Dict: __UpperCamelCase : Any = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def a_ (self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def a_ (self , _UpperCAmelCase , _UpperCAmelCase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def a_ (self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_UpperCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __UpperCamelCase : str = os.path.join( _UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , "wb" ) as fi: __UpperCamelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
399
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : float | Decimal , lowerCAmelCase__ : float = 10**-10 ) -> int: __a = a while True: __a = Decimal(snake_case__ ) - ( Decimal(eval(snake_case__ ) ) / Decimal(eval(str(diff(snake_case__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case__ ) ) < precision: # noqa: S307 return float(snake_case__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
695
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[int] = BlenderbotSmallTokenizer _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: super().setUp() A = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] A = dict(zip(A_ ,range(len(A_ ) ) ) ) A = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] A = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,**A_ : Union[str, Any] ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Tuple ) -> List[Any]: A = 'adapt act apte' A = 'adapt act apte' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: A = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) A = 'adapt act apte' A = ['adapt', 'act', 'ap@@', 'te'] A = tokenizer.tokenize(A_ ) self.assertListEqual(A_ ,A_ ) A = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] A = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] A = 'I am a small frog.' A = tok([src_text] ,padding=A_ ,truncation=A_ )['input_ids'] A = tok.batch_decode(A_ ,skip_special_tokens=A_ ,clean_up_tokenization_spaces=A_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: A = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) A = 'I am a small frog .' A = '.' A = tok(A_ )['input_ids'] A = tok(A_ )['input_ids'] assert encoded[-1] == encoded_dot[0]
91
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : str = "upernet" def __init__( self : Union[str, Any] , snake_case : int=None , snake_case : Optional[int]=512 , snake_case : Union[str, Any]=0.02 , snake_case : Tuple=[1, 2, 3, 6] , snake_case : str=True , snake_case : Optional[int]=0.4 , snake_case : Dict=384 , snake_case : Optional[int]=256 , snake_case : Union[str, Any]=1 , snake_case : Tuple=False , snake_case : List[str]=255 , **snake_case : Union[str, Any] , ): super().__init__(**UpperCamelCase__ ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCamelCase = backbone_config.get('''model_type''' ) __UpperCamelCase = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase = config_class.from_dict(UpperCamelCase__ ) __UpperCamelCase = backbone_config __UpperCamelCase = hidden_size __UpperCamelCase = initializer_range __UpperCamelCase = pool_scales __UpperCamelCase = use_auxiliary_head __UpperCamelCase = auxiliary_loss_weight __UpperCamelCase = auxiliary_in_channels __UpperCamelCase = auxiliary_channels __UpperCamelCase = auxiliary_num_convs __UpperCamelCase = auxiliary_concat_input __UpperCamelCase = loss_ignore_index def snake_case ( self : int ): __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.backbone_config.to_dict() __UpperCamelCase = self.__class__.model_type return output
700
import heapq import sys import numpy as np a_ = tuple[int, int] class _lowerCamelCase : """simple docstring""" def __init__( self : Dict ): __UpperCamelCase = [] __UpperCamelCase = set() def snake_case ( self : Dict ): if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case ( self : Optional[Any] ): return len(self.elements ) == 0 def snake_case ( self : Optional[int] , snake_case : Tuple , snake_case : Any ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case ) else: # update # print("update", item) __UpperCamelCase = [] ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case ( self : Any , snake_case : int ): if item in self.set: self.set.remove(snake_case ) __UpperCamelCase = [] ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case ( self : Tuple ): return self.elements[0][1] def snake_case ( self : List[str] ): ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) self.set.remove(snake_case ) return (priority, item) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" __UpperCamelCase = np.array(lowercase_ ) __UpperCamelCase = np.array(lowercase_ ) return np.linalg.norm(a - b ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return consistent_heuristic(lowercase_ , lowercase_ ) // t def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" __UpperCamelCase = g_function[start] + Wa * heuristics[i](lowercase_ , lowercase_ ) return ans def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: """simple docstring""" __UpperCamelCase = np.chararray((n, n) ) for i in range(lowercase_ ): for j in range(lowercase_ ): __UpperCamelCase = '''*''' for i in range(lowercase_ ): for j in range(lowercase_ ): if (j, (n - 1) - i) in blocks: __UpperCamelCase = '''#''' __UpperCamelCase = '''-''' __UpperCamelCase = back_pointer[goal] while x != start: ((__UpperCamelCase) , (__UpperCamelCase)) = x # print(x) __UpperCamelCase = '''-''' __UpperCamelCase = back_pointer[x] __UpperCamelCase = '''-''' for i in range(lowercase_ ): for j in range(lowercase_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCamelCase = back_pointer[goal] while x != start: print(lowercase_ , end=''' ''' ) __UpperCamelCase = back_pointer[x] print(lowercase_ ) sys.exit() def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: """simple docstring""" for itera in range(lowercase_ ): open_list[itera].remove_element(lowercase_ ) # print("s", s) # print("j", j) ((__UpperCamelCase) , (__UpperCamelCase)) = s __UpperCamelCase = (x - 1, y) __UpperCamelCase = (x + 1, y) __UpperCamelCase = (x, y + 1) __UpperCamelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowercase_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowercase_ ) __UpperCamelCase = -1 __UpperCamelCase = float('''inf''' ) if valid(lowercase_ ) and g_function[neighbours] > g_function[s] + 1: __UpperCamelCase = g_function[s] + 1 __UpperCamelCase = s if neighbours not in close_list_anchor: open_list[0].put(lowercase_ , key(lowercase_ , 0 , lowercase_ , lowercase_ ) ) if neighbours not in close_list_inad: for var in range(1 , lowercase_ ): if key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) <= Wa * key( lowercase_ , 0 , lowercase_ , lowercase_ ): open_list[j].put( lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( ) -> str: """simple docstring""" __UpperCamelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ = make_common_ground() a_ = blocks_blk # hyper parameters a_ = 1 a_ = 1 a_ = 20 a_ = 3 # one consistent and two other inconsistent # start and end destination a_ = (0, 0) a_ = (n - 1, n - 1) a_ = 1 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" __UpperCamelCase = {start: 0, goal: float('''inf''' )} __UpperCamelCase = {start: -1, goal: -1} __UpperCamelCase = [] __UpperCamelCase = set() for i in range(lowercase_ ): open_list.append(PriorityQueue() ) open_list[i].put(lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ) __UpperCamelCase = [] __UpperCamelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , lowercase_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowercase_ , lowercase_ , lowercase_ ) else: __UpperCamelCase , __UpperCamelCase = open_list[i].top_show() visited.add(lowercase_ ) expand_state( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) close_list_inad.append(lowercase_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowercase_ , lowercase_ , lowercase_ ) else: __UpperCamelCase = open_list[0].top_show() visited.add(lowercase_ ) expand_state( lowercase_ , 0 , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) close_list_anchor.append(lowercase_ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowercase_ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
375
0
def A__ ( snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : int ): if height >= 1: move_tower(height - 1 , snake_case_ , snake_case_ , snake_case_ ) move_disk(snake_case_ , snake_case_ ) move_tower(height - 1 , snake_case_ , snake_case_ , snake_case_ ) def A__ ( snake_case_ : Dict , snake_case_ : List[Any] ): print('''moving disk from''' , snake_case_ , '''to''' , snake_case_ ) def A__ ( ): SCREAMING_SNAKE_CASE__: Any= int(input('''Height of hanoi: ''' ).strip() ) move_tower(snake_case_ , '''A''' , '''B''' , '''C''' ) if __name__ == "__main__": main()
64
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase_ : Tuple = TypeVar('T') class _lowerCamelCase ( Generic[T] ): def __init__( self , lowerCAmelCase , lowerCAmelCase ) -> None: SCREAMING_SNAKE_CASE__: Any | T= None SCREAMING_SNAKE_CASE__: int= len(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: list[T]= [any_type for _ in range(self.N )] + arr SCREAMING_SNAKE_CASE__: List[Any]= fnc self.build() def UpperCamelCase_ ( self ) -> None: for p in range(self.N - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE__: Optional[Any]= self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> None: p += self.N SCREAMING_SNAKE_CASE__: Union[str, Any]= v while p > 1: SCREAMING_SNAKE_CASE__: Any= p // 2 SCREAMING_SNAKE_CASE__: Optional[Any]= self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> T | None: # noqa: E741 SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: str= l + self.N, r + self.N SCREAMING_SNAKE_CASE__: T | None= None while l <= r: if l % 2 == 1: SCREAMING_SNAKE_CASE__: str= self.st[l] if res is None else self.fn(lowerCAmelCase , self.st[l] ) if r % 2 == 0: SCREAMING_SNAKE_CASE__: Optional[Any]= self.st[r] if res is None else self.fn(lowerCAmelCase , self.st[r] ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Any= (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase_ : str = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] lowercase_ : str = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } lowercase_ : int = SegmentTree(test_array, min) lowercase_ : Optional[int] = SegmentTree(test_array, max) lowercase_ : Optional[Any] = SegmentTree(test_array, lambda a, b: a + b) def A__ ( ): for i in range(len(snake_case_ ) ): for j in range(snake_case_ , len(snake_case_ ) ): SCREAMING_SNAKE_CASE__: Any= reduce(snake_case_ , test_array[i : j + 1] ) SCREAMING_SNAKE_CASE__: Optional[Any]= reduce(snake_case_ , test_array[i : j + 1] ) SCREAMING_SNAKE_CASE__: int= reduce(lambda snake_case_ , snake_case_ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(snake_case_ , snake_case_ ) assert max_range == max_segment_tree.query(snake_case_ , snake_case_ ) assert sum_range == sum_segment_tree.query(snake_case_ , snake_case_ ) test_all_segments() for index, value in test_updates.items(): lowercase_ : int = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
64
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''sentencepiece.bpe.model'''} __A ={ '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } __A ={ '''moussaKam/mbarthez''': 1_0_2_4, '''moussaKam/barthez''': 1_0_2_4, '''moussaKam/barthez-orangesum-title''': 1_0_2_4, } __A ='''▁''' class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] def __init__( self , lowercase , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase = None , **lowercase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase_ ) ) lowerCamelCase_ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} lowerCamelCase_ = len(self.sp_model ) - 1 lowerCamelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE_( self ) -> Dict: return len(self.sp_model ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ = self.sp_model.PieceToId(lowerCamelCase_ ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Any: lowerCamelCase_ = [] lowerCamelCase_ = "" lowerCamelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase_ ) + token lowerCamelCase_ = True lowerCamelCase_ = [] else: current_sub_tokens.append(lowerCamelCase_ ) lowerCamelCase_ = False out_string += self.sp_model.decode(lowerCamelCase_ ) return out_string.strip() def __getstate__( self ) -> int: lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , lowercase ) -> Tuple: lowerCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase_ = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , "wb" ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,)
463
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument UpperCAmelCase ={ "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def _A ( _a : str ): """simple docstring""" A = list(s_dict.keys() ) for key in keys: A = r""".*/layers_(\d+)""" A = key if re.match(_a , _a ): A = re.sub(r"""layers_(\d+)""" , r"""block/\1/layer""" , _a ) A = r"""(encoder|decoder)\/""" if re.match(_a , _a ): A = re.match(_a , _a ).groups() if groups[0] == "encoder": A = re.sub(r"""/mlp/""" , r"""/1/mlp/""" , _a ) A = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/1/layer_norm/""" , _a ) elif groups[0] == "decoder": A = re.sub(r"""/mlp/""" , r"""/2/mlp/""" , _a ) A = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/2/layer_norm/""" , _a ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A = new_key.replace(_a , _a ) print(f'{key} -> {new_key}' ) A = s_dict.pop(_a ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A = s_dict[key].shape[0] A = s_dict[key] for idx in range(_a ): A = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(_a ) return s_dict UpperCAmelCase ={ "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def _A ( _a : Dict , _a : int ): """simple docstring""" import regex as re with open(_a , """r""" ) as f: A = f.read() A = re.findall(r"""(.*) = ([0-9.]*)""" , _a ) A = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A = float(_a ) if """.""" in value else int(_a ) A = re.findall(r"""(.*activations) = \(\'(.*)\',\)""" , _a )[0] A = str(activation[1] ) A = num_experts A = SwitchTransformersConfig(**_a ) return config def _A ( _a : Union[str, Any] , _a : Dict , _a : Optional[Any]=None , _a : Dict="./" , _a : Dict=8 ): """simple docstring""" print(f'Loading flax weights from : {flax_checkpoint_path}' ) A = checkpoints.load_tax_checkpoint(_a ) if gin_file is not None: A = convert_gin_to_config(_a , _a ) else: A = SwitchTransformersConfig.from_pretrained(_a ) A = SwitchTransformersForConditionalGeneration(_a ) A = flax_params["""target"""] A = flatten_dict(_a , sep="""/""" ) A = rename_keys(_a ) A = unflatten_dict(_a , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_a , _a ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(_a ) if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") UpperCAmelCase =parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
617
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) lowerCAmelCase__ = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(lowerCamelCase_ ) , torch_builtin(lowerCamelCase_ ) ) ) self.assertFalse(torch.allclose(gelu_python(lowerCamelCase_ ) , gelu_new(lowerCamelCase_ ) ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) lowerCAmelCase__ = get_activation('''gelu''' ) lowerCAmelCase__ = get_activation('''gelu_10''' ) lowerCAmelCase__ = torch_builtin(lowerCamelCase_ ) lowerCAmelCase__ = geluaa(lowerCamelCase_ ) lowerCAmelCase__ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(lowerCamelCase_ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(lowerCamelCase_ ): get_activation('''bogus''' ) with self.assertRaises(lowerCamelCase_ ): get_activation(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = get_activation('''gelu''' ) lowerCAmelCase__ = 1 lowerCAmelCase__ = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = acta.a
98
'''simple docstring''' import doctest from collections import deque import numpy as np class a__ : '''simple docstring''' def __init__( self ) -> None: lowerCAmelCase__ = [2, 1, 2, -1] lowerCAmelCase__ = [1, 2, 3, 4] def __SCREAMING_SNAKE_CASE ( self ) -> list[float]: lowerCAmelCase__ = len(self.first_signal ) lowerCAmelCase__ = len(self.second_signal ) lowerCAmelCase__ = max(lowerCamelCase_ , lowerCamelCase_ ) # create a zero matrix of max_length x max_length lowerCAmelCase__ = [[0] * max_length for i in range(lowerCamelCase_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCamelCase_ ): lowerCAmelCase__ = deque(self.second_signal ) rotated_signal.rotate(lowerCamelCase_ ) for j, item in enumerate(lowerCamelCase_ ): matrix[i][j] += item # multiply the matrix with the first signal lowerCAmelCase__ = np.matmul(np.transpose(lowerCamelCase_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCamelCase_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
98
1
from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : str , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Tuple , *_UpperCAmelCase : int , **_UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Optional[Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : int ) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : str , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> int: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Any , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Tuple ) -> int: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Any , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Dict , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : List[str] ) -> Dict: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : List[Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Optional[int] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Optional[int] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Optional[int] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
15
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Tuple=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class SCREAMING_SNAKE_CASE : __lowerCamelCase : List[str] =list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) __lowerCamelCase : List[int] =list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) __lowerCamelCase : List[int] =list_field( default=[8, 32, 128, 512] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) __lowerCamelCase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) __lowerCamelCase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) __lowerCamelCase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) __lowerCamelCase : bool =field(default=lowerCamelCase__ , metadata={'help': 'Use FP16 to accelerate inference.'} ) __lowerCamelCase : bool =field(default=lowerCamelCase__ , metadata={'help': 'Benchmark training of model'} ) __lowerCamelCase : bool =field(default=lowerCamelCase__ , metadata={'help': 'Verbose memory tracing'} ) __lowerCamelCase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) __lowerCamelCase : bool =field( default=lowerCamelCase__ , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) __lowerCamelCase : bool =field(default=lowerCamelCase__ , metadata={'help': 'Trace memory line by line'} ) __lowerCamelCase : bool =field(default=lowerCamelCase__ , metadata={'help': 'Save result to a CSV file'} ) __lowerCamelCase : bool =field(default=lowerCamelCase__ , metadata={'help': 'Save all print statements in a log file'} ) __lowerCamelCase : bool =field(default=lowerCamelCase__ , metadata={'help': 'Whether to print environment information'} ) __lowerCamelCase : bool =field( default=lowerCamelCase__ , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) __lowerCamelCase : str =field( default=F'''inference_time_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) __lowerCamelCase : str =field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) __lowerCamelCase : str =field( default=F'''train_time_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) __lowerCamelCase : str =field( default=F'''train_memory_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) __lowerCamelCase : str =field( default=F'''env_info_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving environment information.'} , ) __lowerCamelCase : str =field( default=F'''log_{round(time() )}.csv''' , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) __lowerCamelCase : int =field(default=3 , metadata={'help': 'Times an experiment will be run.'} ) __lowerCamelCase : bool =field( default=lowerCamelCase__ , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' warnings.warn( F"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , __lowercase , ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
225
0
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class _SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , __UpperCamelCase : List[Any] ) -> str: """simple docstring""" snake_case__ : Union[str, Any] = data snake_case__ : List[str] = [0X67_45_23_01, 0XEF_CD_AB_89, 0X98_BA_DC_FE, 0X10_32_54_76, 0XC3_D2_E1_F0] @staticmethod def lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XFF_FF_FF_FF def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" snake_case__ : Dict = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) snake_case__ : int = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def lowerCAmelCase ( self : str , __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" snake_case__ : List[str] = list(struct.unpack('''>16L''' , UpperCamelCase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case__ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" snake_case__ : Dict = self.padding() snake_case__ : Union[str, Any] = self.split_blocks() for block in self.blocks: snake_case__ : str = self.expand_block(UpperCamelCase__ ) snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case__ : Optional[Any] = (b & c) | ((~b) & d) snake_case__ : Dict = 0X5A_82_79_99 elif 20 <= i < 40: snake_case__ : List[Any] = b ^ c ^ d snake_case__ : Any = 0X6E_D9_EB_A1 elif 40 <= i < 60: snake_case__ : Tuple = (b & c) | (b & d) | (c & d) snake_case__ : List[str] = 0X8F_1B_BC_DC elif 60 <= i < 80: snake_case__ : str = b ^ c ^ d snake_case__ : List[str] = 0XCA_62_C1_D6 snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = ( self.rotate(UpperCamelCase__ , 5 ) + f + e + k + expanded_block[i] & 0XFF_FF_FF_FF, a, self.rotate(UpperCamelCase__ , 30 ), c, d, ) snake_case__ : Union[str, Any] = ( self.h[0] + a & 0XFF_FF_FF_FF, self.h[1] + b & 0XFF_FF_FF_FF, self.h[2] + c & 0XFF_FF_FF_FF, self.h[3] + d & 0XFF_FF_FF_FF, self.h[4] + e & 0XFF_FF_FF_FF, ) return ("{:08x}" * 5).format(*self.h ) def __UpperCAmelCase ( ) -> Dict: snake_case__ : int = B'''Test String''' assert SHAaHash(_lowerCamelCase ).final_hash() == hashlib.shaa(_lowerCamelCase ).hexdigest() # noqa: S324 def __UpperCAmelCase ( ) -> Optional[int]: snake_case__ : str = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) snake_case__ : Dict = parser.parse_args() snake_case__ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: snake_case__ : List[str] = f.read() else: snake_case__ : List[str] = bytes(_lowerCamelCase , '''utf-8''' ) print(SHAaHash(_lowerCamelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
700
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE (lowercase__ ): A__ = 'ClapFeatureExtractor' A__ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ) -> List[str]: """simple docstring""" super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self : Optional[int] , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Dict=None , **__UpperCamelCase : Dict ) -> List[Any]: """simple docstring""" snake_case__ : List[str] = kwargs.pop('''sampling_rate''' , __UpperCamelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: snake_case__ : List[str] = self.tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if audios is not None: snake_case__ : List[Any] = self.feature_extractor( __UpperCamelCase , sampling_rate=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if text is not None and audios is not None: snake_case__ : Optional[int] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def lowerCAmelCase ( self : str , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : List[str] ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase ( self : str , *__UpperCamelCase : Tuple , **__UpperCamelCase : int ) -> Dict: """simple docstring""" return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" snake_case__ : Union[str, Any] = self.tokenizer.model_input_names snake_case__ : Optional[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
574
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class __a ( lowercase__ ): __UpperCamelCase : int = ['pixel_values'] def __init__( self : str ,lowerCamelCase : bool = True ,lowerCamelCase : Optional[Dict[str, int]] = None ,lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase : bool = True ,lowerCamelCase : Dict[str, int] = None ,lowerCamelCase : bool = True ,lowerCamelCase : Union[int, float] = 1 / 255 ,lowerCamelCase : bool = True ,lowerCamelCase : Optional[Union[float, List[float]]] = None ,lowerCamelCase : Optional[Union[float, List[float]]] = None ,**lowerCamelCase : int ,): '''simple docstring''' super().__init__(**snake_case_ ) __SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 256} __SCREAMING_SNAKE_CASE = get_size_dict(snake_case_ ,default_to_square=snake_case_ ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __SCREAMING_SNAKE_CASE = get_size_dict(snake_case_ ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : np.ndarray ,lowerCamelCase : Dict[str, int] ,lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC ,lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase : Tuple ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_size_dict(snake_case_ ,default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = get_resize_output_image_size(snake_case_ ,size=size["""shortest_edge"""] ,default_to_square=snake_case_ ) return resize(snake_case_ ,size=snake_case_ ,resample=snake_case_ ,data_format=snake_case_ ,**snake_case_ ) def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : np.ndarray ,lowerCamelCase : Dict[str, int] ,lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase : Optional[int] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_size_dict(snake_case_ ) return center_crop(snake_case_ ,size=(size["""height"""], size["""width"""]) ,data_format=snake_case_ ,**snake_case_ ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : np.ndarray ,lowerCamelCase : float ,lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase : List[str] ): '''simple docstring''' return rescale(snake_case_ ,scale=snake_case_ ,data_format=snake_case_ ,**snake_case_ ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : np.ndarray ,lowerCamelCase : Union[float, List[float]] ,lowerCamelCase : Union[float, List[float]] ,lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' return normalize(snake_case_ ,mean=snake_case_ ,std=snake_case_ ,data_format=snake_case_ ,**snake_case_ ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : ImageInput ,lowerCamelCase : Optional[bool] = None ,lowerCamelCase : Dict[str, int] = None ,lowerCamelCase : PILImageResampling = None ,lowerCamelCase : bool = None ,lowerCamelCase : Dict[str, int] = None ,lowerCamelCase : Optional[bool] = None ,lowerCamelCase : Optional[float] = None ,lowerCamelCase : Optional[bool] = None ,lowerCamelCase : Optional[Union[float, List[float]]] = None ,lowerCamelCase : Optional[Union[float, List[float]]] = None ,lowerCamelCase : Optional[Union[str, TensorType]] = None ,lowerCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**lowerCamelCase : Any ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(snake_case_ ,default_to_square=snake_case_ ) __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE = get_size_dict(snake_case_ ) __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(snake_case_ ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=snake_case_ ,size=snake_case_ ,resample=snake_case_ ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE = [self.center_crop(image=snake_case_ ,size=snake_case_ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=snake_case_ ,scale=snake_case_ ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=snake_case_ ,mean=snake_case_ ,std=snake_case_ ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(snake_case_ ,snake_case_ ) for image in images] __SCREAMING_SNAKE_CASE = {"""pixel_values""": images} return BatchFeature(data=snake_case_ ,tensor_type=snake_case_ )
109
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""MaskFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _SCREAMING_SNAKE_CASE = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
163
0
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( A ): '''simple docstring''' lowercase__ , lowercase__ = image.size lowercase__ , lowercase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowercase__ = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) lowercase__ = np.array(A ).astype(np.floataa ) / 255.0 lowercase__ = image[None].transpose(0 , 3 , 1 , 2 ) lowercase__ = torch.from_numpy(A ) return 2.0 * image - 1.0 class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' super().__init__() self.register_modules(vqvae=_UpperCAmelCase, unet=_UpperCAmelCase, scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self, _UpperCAmelCase = None, _UpperCAmelCase = 1, _UpperCAmelCase = 100, _UpperCAmelCase = 0.0, _UpperCAmelCase = None, _UpperCAmelCase = "pil", _UpperCAmelCase = True, ): '''simple docstring''' if isinstance(_UpperCAmelCase, PIL.Image.Image ): lowercase__ = 1 elif isinstance(_UpperCAmelCase, torch.Tensor ): lowercase__ = image.shape[0] else: raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_UpperCAmelCase )}''' ) if isinstance(_UpperCAmelCase, PIL.Image.Image ): lowercase__ = preprocess(_UpperCAmelCase ) lowercase__ , lowercase__ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowercase__ = (batch_size, self.unet.config.in_channels // 2, height, width) lowercase__ = next(self.unet.parameters() ).dtype lowercase__ = randn_tensor(_UpperCAmelCase, generator=_UpperCAmelCase, device=self.device, dtype=_UpperCAmelCase ) lowercase__ = image.to(device=self.device, dtype=_UpperCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_UpperCAmelCase, device=self.device ) lowercase__ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for t in self.progress_bar(_UpperCAmelCase ): # concat latents and low resolution image in the channel dimension. lowercase__ = torch.cat([latents, image], dim=1 ) lowercase__ = self.scheduler.scale_model_input(_UpperCAmelCase, _UpperCAmelCase ) # predict the noise residual lowercase__ = self.unet(_UpperCAmelCase, _UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample # decode the image latents with the VQVAE lowercase__ = self.vqvae.decode(_UpperCAmelCase ).sample lowercase__ = torch.clamp(_UpperCAmelCase, -1.0, 1.0 ) lowercase__ = image / 2 + 0.5 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
668
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
1
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __snake_case ( _lowerCAmelCase : Optional[Any] ) -> List[str]: return EnvironmentCommand() class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( snake_case :ArgumentParser ): '''simple docstring''' A_ : Union[str, Any] = parser.add_parser("env" ) download_parser.set_defaults(func=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Dict = huggingface_hub.__version__ A_ : Tuple = "not installed" A_ : int = "NA" if is_torch_available(): import torch A_ : List[str] = torch.__version__ A_ : Optional[int] = torch.cuda.is_available() A_ : int = "not installed" if is_transformers_available(): import transformers A_ : Optional[Any] = transformers.__version__ A_ : Tuple = "not installed" if is_accelerate_available(): import accelerate A_ : Optional[int] = accelerate.__version__ A_ : Dict = "not installed" if is_xformers_available(): import xformers A_ : Tuple = xformers.__version__ A_ : Optional[int] = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})", "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(snake_case ) ) return info @staticmethod def SCREAMING_SNAKE_CASE ( snake_case :Dict ): '''simple docstring''' return "\n".join([f"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
454
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = IFInpaintingPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return self._get_dummy_components() def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :str , snake_case :List[Any]=0 ): '''simple docstring''' if str(snake_case ).startswith("mps" ): A_ : Optional[Any] = torch.manual_seed(snake_case ) else: A_ : Any = torch.Generator(device=snake_case ).manual_seed(snake_case ) A_ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) A_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) A_ : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
454
1
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ = '''src/diffusers''' # Matches is_xxx_available() a_ = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') a_ = ''' {0} = None ''' a_ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' a_ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Tuple = _re_backend.findall(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE__ , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : str = f.readlines() # Get to the point we do the actual imports for type checking snake_case_ : Any = 0 snake_case_ : str = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block snake_case_ : Any = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 snake_case_ : Optional[Any] = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE__ ) and len(lines[line_index] ) > 1: snake_case_ : int = lines[line_index] snake_case_ : Optional[int] = _re_single_line_import.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case_ : int = objects else: line_index += 1 return backend_specific_objects def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE__ ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int]=None ): """simple docstring""" if backend_specific_objects is None: snake_case_ : Any = read_init() # For special correspondence backend to module name as used in the function requires_modulename snake_case_ : Any = {} for backend, objects in backend_specific_objects.items(): snake_case_ : Optional[Any] = """[""" + """, """.join(f'"{b}"' for b in backend.split("""_and_""" ) ) + """]""" snake_case_ : str = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for o in objects] ) snake_case_ : str = dummy_file return dummy_files def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict=False ): """simple docstring""" snake_case_ : List[str] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py snake_case_ : Optional[int] = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. snake_case_ : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """utils""" ) snake_case_ : Dict = { backend: os.path.join(SCREAMING_SNAKE_CASE__ , f'dummy_{short_names.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}_objects.py' ) for backend in dummy_files.keys() } snake_case_ : Optional[Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Any = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}_objects.py as the main ' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ f'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}_objects.py. Run `make fix-copies` ' """to fix this.""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() check_dummies(args.fix_and_overwrite)
48
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
1
'''simple docstring''' from __future__ import annotations class UpperCamelCase__ : def __init__( self : List[str] , lowerCamelCase : int = 0 ): '''simple docstring''' a__ = key def __a ( self : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : str ): '''simple docstring''' assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) a__ = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(A__ ) ^ key ) for ch in content] def __a ( self : int , lowerCamelCase : int , lowerCamelCase : Tuple ): '''simple docstring''' assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) a__ = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(A__ ) ^ key ) for ch in content] def __a ( self : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] = 0 ): '''simple docstring''' assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) a__ = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned a__ = "" for ch in content: ans += chr(ord(A__ ) ^ key ) return ans def __a ( self : List[str] , lowerCamelCase : Dict , lowerCamelCase : int = 0 ): '''simple docstring''' assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) a__ = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned a__ = "" for ch in content: ans += chr(ord(A__ ) ^ key ) return ans def __a ( self : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Dict = 0 ): '''simple docstring''' assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) try: with open(A__ ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(A__ , A__ ) ) except OSError: return False return True def __a ( self : str , lowerCamelCase : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) try: with open(A__ ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(A__ , A__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
489
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowercase = 250_004 _lowercase = 250_020 @require_sentencepiece @require_tokenizers class _lowercase ( __a , unittest.TestCase ): _UpperCAmelCase = MBartTokenizer _UpperCAmelCase = MBartTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def UpperCamelCase ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing snake_case = MBartTokenizer(A__ , keep_accents=A__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self ) -> int: snake_case = MBartTokenizer(A__ , keep_accents=A__ ) snake_case = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) snake_case = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) snake_case = tokenizer.convert_tokens_to_ids(A__ ) self.assertListEqual( A__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case = tokenizer.convert_ids_to_tokens(A__ ) self.assertListEqual( A__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def UpperCamelCase ( self ) -> Dict: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) snake_case = self.tokenizer_class.from_pretrained(A__ , **A__ ) snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(A__ ) snake_case = tokenizer_p.save_pretrained(A__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) snake_case = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(A__ , A__ ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(A__ ) snake_case = tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A__ ) # Save tokenizer rust, legacy_format=True snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(A__ , legacy_format=A__ ) snake_case = tokenizer_p.save_pretrained(A__ ) # Checks it save with the same files self.assertSequenceEqual(A__ , A__ ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(A__ ) snake_case = tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) shutil.rmtree(A__ ) # Save tokenizer rust, legacy_format=False snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(A__ , legacy_format=A__ ) snake_case = tokenizer_p.save_pretrained(A__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(A__ ) snake_case = tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) shutil.rmtree(A__ ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): _UpperCAmelCase = '''facebook/mbart-large-en-ro''' _UpperCAmelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _UpperCAmelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _UpperCAmelCase = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def UpperCamelCase ( cls ) -> Optional[Any]: snake_case = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) snake_case = 1 return cls def UpperCamelCase ( self ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) def UpperCamelCase ( self ) -> Optional[Any]: snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: self.assertIn(A__ , self.tokenizer.all_special_ids ) snake_case = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] snake_case = self.tokenizer.decode(A__ , skip_special_tokens=A__ ) snake_case = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A__ ) self.assertEqual(A__ , A__ ) self.assertNotIn(self.tokenizer.eos_token , A__ ) def UpperCamelCase ( self ) -> Tuple: snake_case = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , A__ ) snake_case = 10 snake_case = self.tokenizer(A__ , max_length=A__ , truncation=A__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , A__ ) self.assertEqual(len(A__ ) , A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_26, 25_00_01] ) def UpperCamelCase ( self ) -> Dict: snake_case = tempfile.mkdtemp() snake_case = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A__ ) snake_case = MBartTokenizer.from_pretrained(A__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A__ ) @require_torch def UpperCamelCase ( self ) -> Dict: snake_case = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A__ , return_tensors='''pt''' ) snake_case = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase ( self ) -> List[Any]: snake_case = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A__ , truncation=A__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) snake_case = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(A__ , A__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) snake_case = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase ( self ) -> Dict: snake_case = self.tokenizer(self.src_text , padding=A__ , truncation=A__ , max_length=3 , return_tensors='''pt''' ) snake_case = self.tokenizer( text_target=self.tgt_text , padding=A__ , truncation=A__ , max_length=10 , return_tensors='''pt''' ) snake_case = targets['''input_ids'''] snake_case = shift_tokens_right(A__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase ( self ) -> Union[str, Any]: snake_case = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(A__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 30_34, 2, 25_00_04]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
342
0
import os import pytest from transformers.dynamic_module_utils import get_imports SCREAMING_SNAKE_CASE : Union[str, Any] = """ import os """ SCREAMING_SNAKE_CASE : Optional[int] = """ def foo(): import os return False """ SCREAMING_SNAKE_CASE : Union[str, Any] = """ def foo(): def bar(): if True: import os return False return bar() """ SCREAMING_SNAKE_CASE : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ SCREAMING_SNAKE_CASE : Tuple = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ SCREAMING_SNAKE_CASE : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ SCREAMING_SNAKE_CASE : str = """ import os try: import bar except ImportError as e: raise ValueError() """ SCREAMING_SNAKE_CASE : int = """ import os try: import bar except: raise ValueError() """ SCREAMING_SNAKE_CASE : Union[str, Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ SCREAMING_SNAKE_CASE : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ SCREAMING_SNAKE_CASE : Tuple = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" , _A ) def __A ( _A , _A ): """simple docstring""" __a = os.path.join(_A , "test_file.py" ) with open(_A , "w" ) as _tmp_file: _tmp_file.write(_A ) __a = get_imports(_A ) assert parsed_imports == ["os"]
525
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class A_ ( unittest.TestCase ): @slow def _UpperCAmelCase ( self : Dict ): __a = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base" ) __a = AutoTokenizer.from_pretrained("xlm-roberta-base" ) __a = "The dog is cute and lives in the garden house" __a = jnp.array([tokenizer.encode(__SCREAMING_SNAKE_CASE )] ) __a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim __a = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) __a = model(__SCREAMING_SNAKE_CASE )["last_hidden_state"] self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) )
525
1
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : """simple docstring""" def __init__( self : str , lowerCamelCase : List[str] , lowerCamelCase : List[Any]=13 , lowerCamelCase : Union[str, Any]=32 , lowerCamelCase : Optional[Any]=2 , lowerCamelCase : Any=3 , lowerCamelCase : Union[str, Any]=16 , lowerCamelCase : List[Any]=[32, 64, 128] , lowerCamelCase : Optional[Any]=[1, 2, 1] , lowerCamelCase : str=[2, 2, 4] , lowerCamelCase : str=2 , lowerCamelCase : str=2.0 , lowerCamelCase : Optional[int]=True , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : str=False , lowerCamelCase : Tuple=True , lowerCamelCase : int=0.02 , lowerCamelCase : Optional[Any]=1E-5 , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]=None , lowerCamelCase : int=True , lowerCamelCase : Tuple=10 , lowerCamelCase : int=8 , lowerCamelCase : Any=["stage1", "stage2"] , lowerCamelCase : Optional[int]=[1, 2] , ) -> Optional[Any]: __snake_case : Optional[Any] = parent __snake_case : List[str] = batch_size __snake_case : List[str] = image_size __snake_case : List[Any] = patch_size __snake_case : str = num_channels __snake_case : Any = embed_dim __snake_case : List[Any] = hidden_sizes __snake_case : List[Any] = depths __snake_case : Union[str, Any] = num_heads __snake_case : int = window_size __snake_case : Any = mlp_ratio __snake_case : int = qkv_bias __snake_case : Dict = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : Optional[int] = drop_path_rate __snake_case : Tuple = hidden_act __snake_case : str = use_absolute_embeddings __snake_case : List[Any] = patch_norm __snake_case : Union[str, Any] = layer_norm_eps __snake_case : Dict = initializer_range __snake_case : Union[str, Any] = is_training __snake_case : Dict = scope __snake_case : Union[str, Any] = use_labels __snake_case : List[Any] = type_sequence_label_size __snake_case : str = encoder_stride __snake_case : str = out_features __snake_case : Any = out_indices def __snake_case ( self : Optional[int] ) -> Tuple: __snake_case : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : List[str] = None if self.use_labels: __snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Dict = self.get_config() return config, pixel_values, labels def __snake_case ( self : Union[str, Any] ) -> Tuple: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __snake_case ( self : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict ) -> List[Any]: __snake_case : int = FocalNetModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Dict = model(lowerCamelCase ) __snake_case : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __snake_case : List[str] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __snake_case ( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] ) -> Optional[Any]: __snake_case : Union[str, Any] = FocalNetBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __snake_case : Any = None __snake_case : Optional[int] = FocalNetBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __snake_case ( self : List[str] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ) -> List[str]: __snake_case : int = FocalNetForMaskedImageModeling(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Any = model(lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __snake_case : Optional[int] = 1 __snake_case : Tuple = FocalNetForMaskedImageModeling(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : Tuple = model(lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __snake_case ( self : Any , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] ) -> List[str]: __snake_case : Optional[Any] = self.type_sequence_label_size __snake_case : Union[str, Any] = FocalNetForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Dict = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case : Dict = 1 __snake_case : int = FocalNetForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : int = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case ( self : List[Any] ) -> Dict: __snake_case : Dict = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Union[str, Any] = config_and_inputs __snake_case : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __UpperCAmelCase : int = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[int] = False def __snake_case ( self : Optional[Any] ) -> List[str]: __snake_case : Optional[int] = FocalNetModelTester(self ) __snake_case : Tuple = ConfigTester(self , config_class=lowerCamelCase , embed_dim=37 , has_text_modality=lowerCamelCase ) def __snake_case ( self : str ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : List[str] ) -> Any: return def __snake_case ( self : int ) -> str: __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __snake_case ( self : Dict ) -> List[str]: __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase ) def __snake_case ( self : str ) -> str: __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase ) def __snake_case ( self : Tuple ) -> Any: __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def __snake_case ( self : Optional[int] ) -> int: pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def __snake_case ( self : List[Any] ) -> List[str]: pass def __snake_case ( self : str ) -> Optional[int]: __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __snake_case : int = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def __snake_case ( self : Dict ) -> List[str]: __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __snake_case : Any = model_class(lowerCamelCase ) __snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __snake_case ( self : str , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any] ) -> Any: __snake_case : Tuple = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __snake_case : Optional[int] = outputs.hidden_states __snake_case : Tuple = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # FocalNet has a different seq_length __snake_case : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __snake_case : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) __snake_case , __snake_case , __snake_case , __snake_case : Tuple = reshaped_hidden_states[0].shape __snake_case : str = ( reshaped_hidden_states[0].view(lowerCamelCase , lowerCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __snake_case ( self : Union[str, Any] ) -> Optional[Any]: __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __snake_case : Any = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Any = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __snake_case ( self : str ) -> Dict: __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[str] = 3 __snake_case : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __snake_case : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case : Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __snake_case : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __snake_case : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , (padded_height, padded_width) ) @slow def __snake_case ( self : Optional[Any] ) -> Tuple: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[Any] = FocalNetModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def __snake_case ( self : List[str] ) -> Union[str, Any]: __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : str = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: __snake_case : List[str] = model_class(config=lowerCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class a (unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : Dict ) -> Tuple: # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def __snake_case ( self : List[str] ) -> Tuple: __snake_case : int = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(lowerCamelCase ) __snake_case : Optional[int] = self.default_image_processor __snake_case : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __snake_case : str = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : List[Any] = model(**lowerCamelCase ) # verify the logits __snake_case : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __snake_case : Any = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = (FocalNetBackbone,) if is_torch_available() else () __UpperCAmelCase : Optional[int] = FocalNetConfig __UpperCAmelCase : Dict = False def __snake_case ( self : int ) -> Tuple: __snake_case : Tuple = FocalNetModelTester(self )
81
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Any = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class __lowerCAmelCase ( __a ): snake_case : int = """dpt""" def __init__(self , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=3_8_4 , lowerCAmelCase__=1_6 , lowerCAmelCase__=3 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=[2, 5, 8, 1_1] , lowerCAmelCase__="project" , lowerCAmelCase__=[4, 2, 1, 0.5] , lowerCAmelCase__=[9_6, 1_9_2, 3_8_4, 7_6_8] , lowerCAmelCase__=2_5_6 , lowerCAmelCase__=-1 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.4 , lowerCAmelCase__=2_5_5 , lowerCAmelCase__=0.1 , lowerCAmelCase__=[1, 1_0_2_4, 2_4, 2_4] , lowerCAmelCase__=[0, 1] , lowerCAmelCase__=None , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : str = hidden_size _UpperCAmelCase : str = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) _UpperCAmelCase : str = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } _UpperCAmelCase : int = BitConfig(**lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Initializing the config with a `BiT` backbone.""" ) _UpperCAmelCase : Union[str, Any] = BitConfig(**lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = backbone_config else: raise ValueError( F"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." ) _UpperCAmelCase : Dict = backbone_featmap_shape _UpperCAmelCase : Optional[Any] = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Tuple = None _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : str = initializer_range _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Union[str, Any] = patch_size _UpperCAmelCase : Any = num_channels _UpperCAmelCase : List[Any] = qkv_bias _UpperCAmelCase : str = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) _UpperCAmelCase : str = readout_type _UpperCAmelCase : Optional[int] = reassemble_factors _UpperCAmelCase : Union[str, Any] = neck_hidden_sizes _UpperCAmelCase : Optional[int] = fusion_hidden_size _UpperCAmelCase : Tuple = head_in_index _UpperCAmelCase : str = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase : int = use_auxiliary_head _UpperCAmelCase : Optional[Any] = auxiliary_loss_weight _UpperCAmelCase : Optional[int] = semantic_loss_ignore_index _UpperCAmelCase : Optional[Any] = semantic_classifier_dropout def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase : List[Any] = self.backbone_config.to_dict() _UpperCAmelCase : List[Any] = self.__class__.model_type return output
414
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , lowerCAmelCase__ : Optional[Union[float, List[float]]] = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : List[str]=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Optional[int]=3 , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 2_8_8} SCREAMING_SNAKE_CASE = size_divisor SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = do_center_crop SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std SCREAMING_SNAKE_CASE = do_pad SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution def __UpperCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str=False) -> List[Any]: """simple docstring""" if not batched: SCREAMING_SNAKE_CASE = self.size["shortest_edge"] SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image): SCREAMING_SNAKE_CASE = image.size else: SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] SCREAMING_SNAKE_CASE = size / min(__lowerCamelCase , __lowerCamelCase) if h < w: SCREAMING_SNAKE_CASE = size, scale * w else: SCREAMING_SNAKE_CASE = scale * h, size SCREAMING_SNAKE_CASE = int((1_3_3_3 / 8_0_0) * size) if max(__lowerCamelCase , __lowerCamelCase) > max_size: SCREAMING_SNAKE_CASE = max_size / max(__lowerCamelCase , __lowerCamelCase) SCREAMING_SNAKE_CASE = newh * scale SCREAMING_SNAKE_CASE = neww * scale SCREAMING_SNAKE_CASE = int(newh + 0.5), int(neww + 0.5) SCREAMING_SNAKE_CASE = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: SCREAMING_SNAKE_CASE = [] for image in image_inputs: SCREAMING_SNAKE_CASE = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) SCREAMING_SNAKE_CASE = max(__lowerCamelCase , key=lambda lowerCAmelCase__: item[0])[0] SCREAMING_SNAKE_CASE = max(__lowerCamelCase , key=lambda lowerCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_( lowercase__ , unittest.TestCase ): """simple docstring""" __snake_case : int =BridgeTowerImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = BridgeTowerImageProcessingTester(self) @property def __UpperCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__lowerCamelCase , 'image_mean')) self.assertTrue(hasattr(__lowerCamelCase , 'image_std')) self.assertTrue(hasattr(__lowerCamelCase , 'do_normalize')) self.assertTrue(hasattr(__lowerCamelCase , 'do_resize')) self.assertTrue(hasattr(__lowerCamelCase , 'size')) self.assertTrue(hasattr(__lowerCamelCase , 'size_divisor')) def __UpperCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors='pt').pixel_values SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors='pt').pixel_values SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors='pt').pixel_values SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
705
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __UpperCAmelCase = logging.get_logger(__name__) class a_( lowercase__ ): """simple docstring""" def __init__( self : Any , **lowerCAmelCase__ : Tuple) -> str: """simple docstring""" requires_backends(self , ['bs4']) super().__init__(**lowerCAmelCase__) def __UpperCamelCase ( self : str , lowerCAmelCase__ : Tuple) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag SCREAMING_SNAKE_CASE = parent.find_all(child.name , recursive=lowerCAmelCase__) xpath_tags.append(child.name) xpath_subscripts.append( 0 if 1 == len(lowerCAmelCase__) else next(i for i, s in enumerate(lowerCAmelCase__ , 1) if s is child)) SCREAMING_SNAKE_CASE = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def __UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any]) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = BeautifulSoup(lowerCAmelCase__ , 'html.parser') SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for element in html_code.descendants: if type(lowerCAmelCase__) == bsa.element.NavigableString: if type(element.parent) != bsa.element.Tag: continue SCREAMING_SNAKE_CASE = html.unescape(lowerCAmelCase__).strip() if not text_in_this_tag: continue all_doc_strings.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.xpath_soup(lowerCAmelCase__) stringaxtag_seq.append(lowerCAmelCase__) stringaxsubs_seq.append(lowerCAmelCase__) if len(lowerCAmelCase__) != len(lowerCAmelCase__): raise ValueError('Number of doc strings and xtags does not correspond') if len(lowerCAmelCase__) != len(lowerCAmelCase__): raise ValueError('Number of doc strings and xsubs does not correspond') return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def __UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = '' for tagname, subs in zip(lowerCAmelCase__ , lowerCAmelCase__): xpath += f'''/{tagname}''' if subs != 0: xpath += f'''[{subs}]''' return xpath def __call__( self : List[Any] , lowerCAmelCase__ : List[Any]) -> BatchFeature: """simple docstring""" SCREAMING_SNAKE_CASE = False # Check that strings has a valid type if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE = True elif isinstance(lowerCAmelCase__ , (list, tuple)): if len(lowerCAmelCase__) == 0 or isinstance(html_strings[0] , lowerCAmelCase__): SCREAMING_SNAKE_CASE = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' f'''but is of type {type(lowerCAmelCase__)}.''') SCREAMING_SNAKE_CASE = bool(isinstance(lowerCAmelCase__ , (list, tuple)) and (isinstance(html_strings[0] , lowerCAmelCase__))) if not is_batched: SCREAMING_SNAKE_CASE = [html_strings] # Get nodes + xpaths SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for html_string in html_strings: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_three_from_single(lowerCAmelCase__) nodes.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE = [] for node, tag_list, sub_list in zip(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE = self.construct_xpath(lowerCAmelCase__ , lowerCAmelCase__) xpath_strings.append(lowerCAmelCase__) xpaths.append(lowerCAmelCase__) # return as Dict SCREAMING_SNAKE_CASE = {'nodes': nodes, 'xpaths': xpaths} SCREAMING_SNAKE_CASE = BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__) return encoded_inputs
259
0
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : Any = (boundary[1] - boundary[0]) / steps snake_case_ : List[Any] = boundary[0] snake_case_ : Tuple = boundary[1] snake_case_ : Any = make_points(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ : int = 0.0 y += (h / 2.0) * f(_UpperCamelCase ) for i in x_i: # print(i) y += h * f(_UpperCamelCase ) y += (h / 2.0) * f(_UpperCamelCase ) return y def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : Optional[int] = a + h while x < (b - h): yield x snake_case_ : List[Any] = x + h def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: # enter your function here """simple docstring""" snake_case_ : Any = (x - 0) * (x - 0) return y def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = 0.0 # Lower bound of integration snake_case_ : Dict = 1.0 # Upper bound of integration snake_case_ : List[Any] = 10.0 # define number of steps or resolution snake_case_ : Tuple = [a, b] # define boundary of integration snake_case_ : str = method_a(_UpperCamelCase , _UpperCamelCase ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
60
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers snake_case : List[Any] = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
124
0
import math def lowercase__ ( _UpperCamelCase) -> list[int]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = 2 UpperCamelCase = int(math.sqrt(_UpperCamelCase)) # Size of every segment UpperCamelCase = [True] * (end + 1) UpperCamelCase = [] while start <= end: if temp[start] is True: in_prime.append(_UpperCamelCase) for i in range(start * start , end + 1 , _UpperCamelCase): UpperCamelCase = False start += 1 prime += in_prime UpperCamelCase = end + 1 UpperCamelCase = min(2 * end , _UpperCamelCase) while low <= n: UpperCamelCase = [True] * (high - low + 1) for each in in_prime: UpperCamelCase = math.floor(low / each) * each if t < low: t += each for j in range(_UpperCamelCase , high + 1 , _UpperCamelCase): UpperCamelCase = False for j in range(len(_UpperCamelCase)): if temp[j] is True: prime.append(j + low) UpperCamelCase = high + 1 UpperCamelCase = min(high + end , _UpperCamelCase) return prime print(sieve(10**6))
410
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __magic_name__ : Optional[Any] = logging.get_logger(__name__) __magic_name__ : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ : str = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } __magic_name__ : Any = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } __magic_name__ : Any = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class A__ ( __snake_case ): '''simple docstring''' snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = RealmTokenizer def __init__( self : str , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Optional[Any]=True , _SCREAMING_SNAKE_CASE : Tuple="[UNK]" , _SCREAMING_SNAKE_CASE : Optional[int]="[SEP]" , _SCREAMING_SNAKE_CASE : Dict="[PAD]" , _SCREAMING_SNAKE_CASE : Any="[CLS]" , _SCREAMING_SNAKE_CASE : int="[MASK]" , _SCREAMING_SNAKE_CASE : int=True , _SCREAMING_SNAKE_CASE : List[str]=None , **_SCREAMING_SNAKE_CASE : int , ): """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('strip_accents' , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop('type' ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = do_lower_case def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase = PaddingStrategy.MAX_LENGTH UpperCamelCase = text UpperCamelCase = kwargs.pop('text_pair' , _SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop('return_tensors' , _SCREAMING_SNAKE_CASE ) UpperCamelCase = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(_SCREAMING_SNAKE_CASE ): if batch_text_pair is not None: UpperCamelCase = batch_text_pair[idx] else: UpperCamelCase = None UpperCamelCase = super().__call__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = encoded_candidates.get('input_ids' ) UpperCamelCase = encoded_candidates.get('attention_mask' ) UpperCamelCase = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(_SCREAMING_SNAKE_CASE ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_SCREAMING_SNAKE_CASE ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = {key: item for key, item in output_data.items() if len(_SCREAMING_SNAKE_CASE ) != 0} return BatchEncoding(_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" UpperCamelCase = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
410
1
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' SCREAMING_SNAKE_CASE_ = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' SCREAMING_SNAKE_CASE_ = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def A__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def A__ ( self , snake_case_ , snake_case_ , snake_case_=False ) -> Dict: if return_pvalue: __lowerCAmelCase = pearsonr(snake_case_ , snake_case_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(snake_case_ , snake_case_ )[0] )}
465
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, nicht wahr?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCAmelCase = { """wmt16-en-de-dist-12-1""": [28.3, 27.52], """wmt16-en-de-dist-6-1""": [27.4, 27.11], """wmt16-en-de-12-1""": [26.9, 25.75], } __lowerCAmelCase = f"""{src_lang}-{tgt_lang}""" __lowerCAmelCase = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase ) __lowerCAmelCase = os.path.join(_lowerCAmelCase , """README.md""" ) print(f"""Generating {path}""" ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(_lowerCAmelCase ) # make sure we are under the root of the project SCREAMING_SNAKE_CASE_ = Path(__file__).resolve().parent.parent.parent SCREAMING_SNAKE_CASE_ = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: SCREAMING_SNAKE_CASE_ = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
465
1
"""simple docstring""" from cva import destroyAllWindows, imread, imshow, waitKey def _A ( _a : Optional[Any] ): """simple docstring""" A , A = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_a ): for j in range(_a ): A = [2_5_5, 2_5_5, 2_5_5] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase =imread("image_data/lena.jpg", 1) # convert to its negative UpperCAmelCase =convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
255
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger UpperCAmelCase =get_logger(__name__) UpperCAmelCase =R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class lowerCamelCase__ : '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCamelCase__ : '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> jnp.ndarray: for processor in self: A = inspect.signature(processor.__call__ ).parameters if len(lowerCamelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys() )} for ' f'{processor.__class__} are passed to the logits processor.' ) A = processor(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) else: A = processor(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ) -> List[str]: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' ) A = temperature def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A = scores / self.temperature return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ = -float("""Inf""" ) ,lowerCamelCase_ = 1 ) -> Dict: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) A = top_p A = filter_value A = min_tokens_to_keep def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A , A = lax.top_k(lowerCamelCase_ ,scores.shape[-1] ) A = jnp.full_like(lowerCamelCase_ ,self.filter_value ) A = jax.nn.softmax(lowerCamelCase_ ,axis=-1 ).cumsum(axis=-1 ) A = cumulative_probs < self.top_p # include the token that is higher than top_p as well A = jnp.roll(lowerCamelCase_ ,1 ) score_mask |= score_mask.at[:, 0].set(lowerCamelCase_ ) # min tokens to keep A = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCamelCase_ ) A = jnp.where(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) A = jax.lax.sort_key_val(lowerCamelCase_ ,lowerCamelCase_ )[-1] return next_scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ = -float("""Inf""" ) ,lowerCamelCase_ = 1 ) -> List[Any]: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' ) A = max(lowerCamelCase_ ,lowerCamelCase_ ) A = filter_value def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A , A = scores.shape A = jnp.full(batch_size * vocab_size ,self.filter_value ) A = min(self.top_k ,scores.shape[-1] ) # Safety check A , A = lax.top_k(lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.broadcast_to((jnp.arange(lowerCamelCase_ ) * vocab_size)[:, None] ,(batch_size, topk) ).flatten() A = topk_scores.flatten() A = topk_indices.flatten() + shift A = next_scores_flat.at[topk_indices_flat].set(lowerCamelCase_ ) A = next_scores_flat.reshape(lowerCamelCase_ ,lowerCamelCase_ ) return next_scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ) -> List[Any]: A = bos_token_id def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A = jnp.full(scores.shape ,-float("""inf""" ) ) A = 1 - jnp.bool_(cur_len - 1 ) A = jnp.where(lowerCamelCase_ ,new_scores.at[:, self.bos_token_id].set(0 ) ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Union[str, Any]: A = max_length A = eos_token_id def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A = jnp.full(scores.shape ,-float("""inf""" ) ) A = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A = jnp.where(lowerCamelCase_ ,new_scores.at[:, self.eos_token_id].set(0 ) ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) A = min_length A = eos_token_id def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied A = 1 - jnp.clip(cur_len - self.min_length ,0 ,1 ) A = jnp.where(lowerCamelCase_ ,scores.at[:, self.eos_token_id].set(-float("""inf""" ) ) ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: A = list(lowerCamelCase_ ) A = begin_index def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Dict: A = 1 - jnp.bool_(cur_len - self.begin_index ) A = jnp.where(lowerCamelCase_ ,scores.at[:, self.begin_suppress_tokens].set(-float("""inf""" ) ) ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ) -> str: A = list(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A = scores.at[..., self.suppress_tokens].set(-float("""inf""" ) ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ) -> Union[str, Any]: A = dict(lowerCamelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A = jnp.ones((max(force_token_map.keys() ) + 1) ,dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A = force_token_array.at[index].set(lowerCamelCase_ ) A = jnp.intaa(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: def _force_token(lowerCamelCase_ ): A = scores.shape[0] A = self.force_token_array[generation_idx] A = jnp.ones_like(lowerCamelCase_ ,dtype=scores.dtype ) * -float("""inf""" ) A = jnp.zeros((batch_size, 1) ,dtype=scores.dtype ) A = lax.dynamic_update_slice(lowerCamelCase_ ,lowerCamelCase_ ,(0, current_token) ) return new_scores A = lax.cond( cur_len >= self.force_token_array.shape[0] ,lambda: scores ,lambda: lax.cond( self.force_token_array[cur_len] >= 0 ,lambda: _force_token(lowerCamelCase_ ) ,lambda: scores ,) ,) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[int]: A = generate_config.eos_token_id A = generate_config.no_timestamps_token_id A = generate_config.no_timestamps_token_id + 1 A = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCamelCase_ ,"""max_initial_timestamp_index""" ): A = generate_config.max_initial_timestamp_index else: A = model_config.vocab_size if self.max_initial_timestamp_index is None: A = model_config.vocab_size def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[Any]: # suppress <|notimestamps|> which is handled by without_timestamps A = scores.at[:, self.no_timestamps_token_id].set(-float("""inf""" ) ) def handle_pairs(lowerCamelCase_ ,lowerCamelCase_ ): A = jnp.where((cur_len - self.begin_index) >= 1 ,lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin ,True and last_was_timestamp ,lowerCamelCase_ ,) A = jnp.where((cur_len - self.begin_index) < 2 ,lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin ,lowerCamelCase_ ,lowerCamelCase_ ,) return jnp.where( lowerCamelCase_ ,jnp.where( penultimate_was_timestamp > 0 ,scores_k.at[self.timestamp_begin :].set(-float("""inf""" ) ) ,scores_k.at[: self.eos_token_id].set(-float("""inf""" ) ) ,) ,lowerCamelCase_ ,) A = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.where(cur_len == self.begin_index ,lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.where( self.max_initial_timestamp_index is not None ,True and apply_max_initial_timestamp ,lowerCamelCase_ ,) A = self.timestamp_begin + self.max_initial_timestamp_index A = jnp.where( lowerCamelCase_ ,scores.at[:, last_allowed + 1 :].set(-float("""inf""" ) ) ,lowerCamelCase_ ,) # if sum of probability over timestamps is above any other token, sample timestamp A = jax.nn.log_softmax(lowerCamelCase_ ,axis=-1 ) def handle_cumulative_probs(lowerCamelCase_ ,lowerCamelCase_ ): A = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] ,axis=-1 ) A = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob ,scores_k.at[: self.timestamp_begin].set(-float("""inf""" ) ) ,lowerCamelCase_ ,) A = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ ,lowerCamelCase_ ) return scores
255
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = ["""torch""", """torchsde"""] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: requires_backends(self , ['torch', 'torchsde'] ) @classmethod def __A ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: requires_backends(cls , ['torch', 'torchsde'] ) @classmethod def __A ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: requires_backends(cls , ['torch', 'torchsde'] )
247
"""simple docstring""" from __future__ import annotations __UpperCamelCase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __UpperCamelCase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowercase (SCREAMING_SNAKE_CASE_ : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = -1 for j in range(i + 1 , SCREAMING_SNAKE_CASE_ ): if arr[i] < arr[j]: SCREAMING_SNAKE_CASE = arr[j] break result.append(SCREAMING_SNAKE_CASE_ ) return result def lowercase (SCREAMING_SNAKE_CASE_ : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE = [] for i, outer in enumerate(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = -1 for inner in arr[i + 1 :]: if outer < inner: SCREAMING_SNAKE_CASE = inner break result.append(SCREAMING_SNAKE_CASE_ ) return result def lowercase (SCREAMING_SNAKE_CASE_ : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [-1] * arr_size for index in reversed(range(SCREAMING_SNAKE_CASE_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: SCREAMING_SNAKE_CASE = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __UpperCamelCase = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
247
1
def __lowercase ( _SCREAMING_SNAKE_CASE = 60_08_51_47_51_43 ) -> int: '''simple docstring''' try: SCREAMING_SNAKE_CASE = int(_SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 SCREAMING_SNAKE_CASE = i while n % i == 0: SCREAMING_SNAKE_CASE = n // i i += 1 return int(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'''{solution() = }''')
702
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
116
0
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): UpperCamelCase_ = True from torch.cuda.amp import autocast UpperCamelCase_ = logging.getLogger(__name__) def _lowerCamelCase ( lowerCamelCase_: Union[str, Any]=None , lowerCamelCase_: Tuple=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=lowerCamelCase_ ) @dataclass class _SCREAMING_SNAKE_CASE : lowerCamelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase_ = field( default=snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) lowerCamelCase_ = field( default=snake_case, metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowerCamelCase_ = field( default=0.1, metadata={'help': 'The dropout ratio for the attention probabilities.'} ) lowerCamelCase_ = field( default=0.1, metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) lowerCamelCase_ = field( default=0.1, metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' }, ) lowerCamelCase_ = field( default=0.1, metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'}, ) lowerCamelCase_ = field( default=0.05, metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) }, ) lowerCamelCase_ = field(default=0.0, metadata={'help': 'The LayerDrop probability.'} ) @dataclass class _SCREAMING_SNAKE_CASE : lowerCamelCase_ = field( default=snake_case, metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase_ = field( default='train+validation', metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' }, ) lowerCamelCase_ = field( default=snake_case, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCamelCase_ = field( default=snake_case, metadata={'help': 'The number of processes to use for the preprocessing.'}, ) lowerCamelCase_ = field( default=snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) lowerCamelCase_ = field( default=snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) }, ) lowerCamelCase_ = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'], metadata={'help': 'A list of characters to remove from the transcripts.'}, ) @dataclass class _SCREAMING_SNAKE_CASE : lowerCamelCase_ = 42 lowerCamelCase_ = True lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None def __call__( self : Dict , snake_case_ : List[Dict[str, Union[List[int], torch.Tensor]]] ): """simple docstring""" A : Union[str, Any] = [{'''input_values''': feature['''input_values''']} for feature in features] A : Dict = [{'''input_ids''': feature['''labels''']} for feature in features] A : List[Any] = self.processor.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) A : List[str] = self.processor.pad( labels=snake_case_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly A : Tuple = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) A : int = labels return batch class _SCREAMING_SNAKE_CASE ( snake_case ): def _UpperCAmelCase ( self : Tuple , snake_case_ : nn.Module , snake_case_ : Dict[str, Union[torch.Tensor, Any]] ): """simple docstring""" model.train() A : List[str] = self._prepare_inputs(snake_case_ ) if self.use_amp: with autocast(): A : Dict = self.compute_loss(snake_case_ , snake_case_ ) else: A : str = self.compute_loss(snake_case_ , snake_case_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": A : Tuple = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": A : List[Any] = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: A : str = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(snake_case_ ).backward() elif self.use_apex: with amp.scale_loss(snake_case_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(snake_case_ ) else: loss.backward() return loss.detach() def _lowerCamelCase ( ): '''simple docstring''' A : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A : Union[str, Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: A : Any = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) A : Any = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer A : Tuple = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCamelCase_: Union[str, Any] ): A : List[Any] = re.sub(lowerCamelCase_ , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch A : Optional[int] = train_dataset.map(lowerCamelCase_ , remove_columns=['''sentence'''] ) A : Optional[Any] = eval_dataset.map(lowerCamelCase_ , remove_columns=['''sentence'''] ) def extract_all_chars(lowerCamelCase_: List[str] ): A : Union[str, Any] = ''' '''.join(batch['''text'''] ) A : str = list(set(lowerCamelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} A : Tuple = train_dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , batch_size=-1 , keep_in_memory=lowerCamelCase_ , remove_columns=train_dataset.column_names , ) A : str = train_dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , batch_size=-1 , keep_in_memory=lowerCamelCase_ , remove_columns=eval_dataset.column_names , ) A : Tuple = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) A : Any = {v: k for k, v in enumerate(lowerCamelCase_ )} A : Optional[Any] = vocab_dict[''' '''] del vocab_dict[" "] A : Tuple = len(lowerCamelCase_ ) A : int = len(lowerCamelCase_ ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(lowerCamelCase_ , lowerCamelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A : Dict = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) A : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ ) A : Optional[Any] = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) A : Dict = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: A : Any = min(len(lowerCamelCase_ ) , data_args.max_train_samples ) A : Union[str, Any] = train_dataset.select(range(lowerCamelCase_ ) ) if data_args.max_val_samples is not None: A : Any = eval_dataset.select(range(data_args.max_val_samples ) ) A : Optional[Any] = torchaudio.transforms.Resample(4_8000 , 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCamelCase_: Any ): A , A : int = torchaudio.load(batch['''path'''] ) A : Tuple = resampler(lowerCamelCase_ ).squeeze().numpy() A : Tuple = 1_6000 A : Any = batch['''text'''] return batch A : Any = train_dataset.map( lowerCamelCase_ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) A : List[Any] = eval_dataset.map( lowerCamelCase_ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(lowerCamelCase_: List[Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" A : Dict = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(lowerCamelCase_ ) return batch A : Union[str, Any] = train_dataset.map( lowerCamelCase_ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCamelCase_ , num_proc=data_args.preprocessing_num_workers , ) A : Union[str, Any] = eval_dataset.map( lowerCamelCase_ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCamelCase_ , num_proc=data_args.preprocessing_num_workers , ) # Metric A : Optional[int] = datasets.load_metric('''wer''' ) def compute_metrics(lowerCamelCase_: Dict ): A : List[str] = pred.predictions A : Union[str, Any] = np.argmax(lowerCamelCase_ , axis=-1 ) A : List[Any] = processor.tokenizer.pad_token_id A : List[Any] = processor.batch_decode(lowerCamelCase_ ) # we do not want to group tokens when computing the metrics A : Any = processor.batch_decode(pred.label_ids , group_tokens=lowerCamelCase_ ) A : Tuple = wer_metric.compute(predictions=lowerCamelCase_ , references=lowerCamelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator A : Dict = DataCollatorCTCWithPadding(processor=lowerCamelCase_ , padding=lowerCamelCase_ ) # Initialize our Trainer A : Any = CTCTrainer( model=lowerCamelCase_ , data_collator=lowerCamelCase_ , args=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: A : Optional[int] = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): A : Dict = model_args.model_name_or_path else: A : Any = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) A : Any = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) trainer.save_model() A : int = train_result.metrics A : Any = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase_ ) ) A : Dict = min(lowerCamelCase_ , len(lowerCamelCase_ ) ) trainer.log_metrics('''train''' , lowerCamelCase_ ) trainer.save_metrics('''train''' , lowerCamelCase_ ) trainer.save_state() # Evaluation A : str = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A : str = trainer.evaluate() A : Optional[Any] = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCamelCase_ ) A : str = min(lowerCamelCase_ , len(lowerCamelCase_ ) ) trainer.log_metrics('''eval''' , lowerCamelCase_ ) trainer.save_metrics('''eval''' , lowerCamelCase_ ) return results if __name__ == "__main__": main()
256
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = (CMStochasticIterativeScheduler,) lowerCamelCase_ = 1_0 def _UpperCAmelCase ( self : Any , **snake_case_ : Tuple ): """simple docstring""" A : str = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_02, '''sigma_max''': 80.0, } config.update(**snake_case_ ) return config def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" A : List[str] = 10 A : Dict = self.get_scheduler_config() A : Optional[int] = self.scheduler_classes[0](**snake_case_ ) scheduler.set_timesteps(snake_case_ ) A : List[str] = scheduler.timesteps[0] A : Any = scheduler.timesteps[1] A : int = self.dummy_sample A : str = 0.1 * sample A : Tuple = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample A : Tuple = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=snake_case_ ) def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" A : List[Any] = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config() A : List[str] = scheduler_class(**snake_case_ ) A : str = 1 scheduler.set_timesteps(snake_case_ ) A : Optional[int] = scheduler.timesteps A : int = torch.manual_seed(0 ) A : Optional[Any] = self.dummy_model() A : int = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(snake_case_ ): # 1. scale model input A : Dict = scheduler.scale_model_input(snake_case_ , snake_case_ ) # 2. predict noise residual A : List[Any] = model(snake_case_ , snake_case_ ) # 3. predict previous sample x_t-1 A : Union[str, Any] = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample A : Union[str, Any] = pred_prev_sample A : List[str] = torch.sum(torch.abs(snake_case_ ) ) A : int = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 1_92.76_14 ) < 1E-2 assert abs(result_mean.item() - 0.25_10 ) < 1E-3 def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" A : Tuple = self.scheduler_classes[0] A : Tuple = self.get_scheduler_config() A : str = scheduler_class(**snake_case_ ) A : Optional[int] = [106, 0] scheduler.set_timesteps(timesteps=snake_case_ ) A : Optional[int] = scheduler.timesteps A : Any = torch.manual_seed(0 ) A : Tuple = self.dummy_model() A : str = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input A : Tuple = scheduler.scale_model_input(snake_case_ , snake_case_ ) # 2. predict noise residual A : str = model(snake_case_ , snake_case_ ) # 3. predict previous sample x_t-1 A : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample A : str = pred_prev_sample A : str = torch.sum(torch.abs(snake_case_ ) ) A : Union[str, Any] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 3_47.63_57 ) < 1E-2 assert abs(result_mean.item() - 0.45_27 ) < 1E-3 def _UpperCAmelCase ( self : int ): """simple docstring""" A : Optional[int] = self.scheduler_classes[0] A : Optional[int] = self.get_scheduler_config() A : Any = scheduler_class(**snake_case_ ) A : Union[str, Any] = [39, 30, 12, 15, 0] with self.assertRaises(snake_case_ , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=snake_case_ ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" A : List[str] = self.scheduler_classes[0] A : Dict = self.get_scheduler_config() A : Tuple = scheduler_class(**snake_case_ ) A : Any = [39, 30, 12, 1, 0] A : List[Any] = len(snake_case_ ) with self.assertRaises(snake_case_ , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=snake_case_ , timesteps=snake_case_ ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" A : List[Any] = self.scheduler_classes[0] A : str = self.get_scheduler_config() A : List[Any] = scheduler_class(**snake_case_ ) A : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=snake_case_ )
256
1
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): # This function is recursive '''simple docstring''' lowerCAmelCase : List[Any] = len(SCREAMING_SNAKE_CASE__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCAmelCase : Tuple = array[0] lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : int = 1 lowerCAmelCase : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : str = [element for element in array[i:] if element >= array[i]] lowerCAmelCase : Optional[int] = longest_subsequence(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > len(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Tuple = temp_array else: i += 1 lowerCAmelCase : List[Any] = [element for element in array[1:] if element >= pivot] lowerCAmelCase : List[str] = [pivot, *longest_subsequence(SCREAMING_SNAKE_CASE__ )] if len(SCREAMING_SNAKE_CASE__ ) > len(SCREAMING_SNAKE_CASE__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
693
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" while a != 0: lowerCamelCase , lowerCamelCase = b % a, a return b def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if gcd(UpperCAmelCase__ , UpperCAmelCase__ ) != 1: lowerCamelCase = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(UpperCAmelCase__ ) lowerCamelCase , lowerCamelCase , lowerCamelCase = 1, 0, a lowerCamelCase , lowerCamelCase , lowerCamelCase = 0, 1, m while va != 0: lowerCamelCase = ua // va lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
623
import socket def __lowercase( ): """simple docstring""" lowerCamelCase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowerCamelCase = socket.gethostname() lowerCamelCase = 12312 sock.connect((host, port) ) sock.send(B"Hello server!" ) with open("Received_file" , "wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: lowerCamelCase = sock.recv(1024 ) if not data: break out_file.write(UpperCAmelCase__ ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
623
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( lowercase , unittest.TestCase ): __lowercase : Dict = XLMRobertaTokenizer __lowercase : List[Any] = XLMRobertaTokenizerFast __lowercase : Dict = True __lowercase : Union[str, Any] = True def lowercase ( self ) -> List[str]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self ) -> List[str]: """simple docstring""" _UpperCamelCase = "<pad>" _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCamelCase_ ) , 10_02 ) def lowercase ( self ) -> int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) _UpperCamelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _UpperCamelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def lowercase ( self ) -> str: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCamelCase = (self.rust_tokenizer_class, "hf-internal-testing/tiny-xlm-roberta", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) _UpperCamelCase = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @cached_property def lowercase ( self ) -> str: """simple docstring""" return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def lowercase ( self ) -> str: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase_ , f.name ) _UpperCamelCase = XLMRobertaTokenizer(f.name , keep_accents=lowerCamelCase_ ) _UpperCamelCase = pickle.dumps(lowerCamelCase_ ) pickle.loads(lowerCamelCase_ ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = "I was born in 92000, and this is falsé." _UpperCamelCase = tokenizer.tokenize(lowerCamelCase_ ) _UpperCamelCase = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(lowerCamelCase_ ) _UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = "Hello World!" _UpperCamelCase = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _UpperCamelCase = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def lowercase ( self ) -> str: """simple docstring""" _UpperCamelCase = {"input_ids": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="xlm-roberta-base" , revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3" , )
706
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCamelCase_ ( lowercase ): __lowercase : torch.FloatTensor class lowerCamelCase_ ( nn.Module ): def __init__( self , lowerCamelCase_=3 , lowerCamelCase_=3 , lowerCamelCase_=("DownEncoderBlock2D",) , lowerCamelCase_=(64,) , lowerCamelCase_=2 , lowerCamelCase_=32 , lowerCamelCase_="silu" , lowerCamelCase_=True , ) -> List[str]: """simple docstring""" super().__init__() _UpperCamelCase = layers_per_block _UpperCamelCase = torch.nn.Convad( lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase = None _UpperCamelCase = nn.ModuleList([] ) # down _UpperCamelCase = block_out_channels[0] for i, down_block_type in enumerate(lowerCamelCase_ ): _UpperCamelCase = output_channel _UpperCamelCase = block_out_channels[i] _UpperCamelCase = i == len(lowerCamelCase_ ) - 1 _UpperCamelCase = get_down_block( lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) self.down_blocks.append(lowerCamelCase_ ) # mid _UpperCamelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # out _UpperCamelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1E-6 ) _UpperCamelCase = nn.SiLU() _UpperCamelCase = 2 * out_channels if double_z else out_channels _UpperCamelCase = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 ) _UpperCamelCase = False def lowercase ( self , lowerCamelCase_ ) -> str: """simple docstring""" _UpperCamelCase = x _UpperCamelCase = self.conv_in(lowerCamelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ ): def custom_forward(*lowerCamelCase_ ): return module(*lowerCamelCase_ ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) # middle _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: for down_block in self.down_blocks: _UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ ) # middle _UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ ) else: # down for down_block in self.down_blocks: _UpperCamelCase = down_block(lowerCamelCase_ ) # middle _UpperCamelCase = self.mid_block(lowerCamelCase_ ) # post-process _UpperCamelCase = self.conv_norm_out(lowerCamelCase_ ) _UpperCamelCase = self.conv_act(lowerCamelCase_ ) _UpperCamelCase = self.conv_out(lowerCamelCase_ ) return sample class lowerCamelCase_ ( nn.Module ): def __init__( self , lowerCamelCase_=3 , lowerCamelCase_=3 , lowerCamelCase_=("UpDecoderBlock2D",) , lowerCamelCase_=(64,) , lowerCamelCase_=2 , lowerCamelCase_=32 , lowerCamelCase_="silu" , lowerCamelCase_="group" , ) -> Union[str, Any]: """simple docstring""" super().__init__() _UpperCamelCase = layers_per_block _UpperCamelCase = nn.Convad( lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase = None _UpperCamelCase = nn.ModuleList([] ) _UpperCamelCase = in_channels if norm_type == "spatial" else None # mid _UpperCamelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # up _UpperCamelCase = list(reversed(lowerCamelCase_ ) ) _UpperCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_ ): _UpperCamelCase = output_channel _UpperCamelCase = reversed_block_out_channels[i] _UpperCamelCase = i == len(lowerCamelCase_ ) - 1 _UpperCamelCase = get_up_block( lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , ) self.up_blocks.append(lowerCamelCase_ ) _UpperCamelCase = output_channel # out if norm_type == "spatial": _UpperCamelCase = SpatialNorm(block_out_channels[0] , lowerCamelCase_ ) else: _UpperCamelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1E-6 ) _UpperCamelCase = nn.SiLU() _UpperCamelCase = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 ) _UpperCamelCase = False def lowercase ( self , lowerCamelCase_ , lowerCamelCase_=None ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = z _UpperCamelCase = self.conv_in(lowerCamelCase_ ) _UpperCamelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ ): def custom_forward(*lowerCamelCase_ ): return module(*lowerCamelCase_ ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) _UpperCamelCase = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: # middle _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: _UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ ) else: # middle _UpperCamelCase = self.mid_block(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: _UpperCamelCase = up_block(lowerCamelCase_ , lowerCamelCase_ ) # post-process if latent_embeds is None: _UpperCamelCase = self.conv_norm_out(lowerCamelCase_ ) else: _UpperCamelCase = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = self.conv_act(lowerCamelCase_ ) _UpperCamelCase = self.conv_out(lowerCamelCase_ ) return sample class lowerCamelCase_ ( nn.Module ): def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="random" , lowerCamelCase_=False , lowerCamelCase_=True ) -> List[Any]: """simple docstring""" super().__init__() _UpperCamelCase = n_e _UpperCamelCase = vq_embed_dim _UpperCamelCase = beta _UpperCamelCase = legacy _UpperCamelCase = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCamelCase = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) _UpperCamelCase = self.used.shape[0] _UpperCamelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase = self.re_embed _UpperCamelCase = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: _UpperCamelCase = n_e _UpperCamelCase = sane_index_shape def lowercase ( self , lowerCamelCase_ ) -> str: """simple docstring""" _UpperCamelCase = inds.shape assert len(lowerCamelCase_ ) > 1 _UpperCamelCase = inds.reshape(ishape[0] , -1 ) _UpperCamelCase = self.used.to(lowerCamelCase_ ) _UpperCamelCase = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase = match.argmax(-1 ) _UpperCamelCase = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCamelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCamelCase = self.unknown_index return new.reshape(lowerCamelCase_ ) def lowercase ( self , lowerCamelCase_ ) -> Tuple: """simple docstring""" _UpperCamelCase = inds.shape assert len(lowerCamelCase_ ) > 1 _UpperCamelCase = inds.reshape(ishape[0] , -1 ) _UpperCamelCase = self.used.to(lowerCamelCase_ ) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase = 0 # simply set to zero _UpperCamelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ ) return back.reshape(lowerCamelCase_ ) def lowercase ( self , lowerCamelCase_ ) -> int: """simple docstring""" _UpperCamelCase = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCamelCase = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 ) _UpperCamelCase = self.embedding(lowerCamelCase_ ).view(z.shape ) _UpperCamelCase = None _UpperCamelCase = None # compute loss for embedding if not self.legacy: _UpperCamelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCamelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCamelCase = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCamelCase = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCamelCase = self.remap_to_used(lowerCamelCase_ ) _UpperCamelCase = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCamelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: """simple docstring""" if self.remap is not None: _UpperCamelCase = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCamelCase = self.unmap_to_all(lowerCamelCase_ ) _UpperCamelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCamelCase = self.embedding(lowerCamelCase_ ) if shape is not None: _UpperCamelCase = z_q.view(lowerCamelCase_ ) # reshape back to match original input shape _UpperCamelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowerCamelCase_ ( lowercase ): def __init__( self , lowerCamelCase_ , lowerCamelCase_=False ) -> List[str]: """simple docstring""" _UpperCamelCase = parameters _UpperCamelCase , _UpperCamelCase = torch.chunk(lowerCamelCase_ , 2 , dim=1 ) _UpperCamelCase = torch.clamp(self.logvar , -30.0 , 20.0 ) _UpperCamelCase = deterministic _UpperCamelCase = torch.exp(0.5 * self.logvar ) _UpperCamelCase = torch.exp(self.logvar ) if self.deterministic: _UpperCamelCase = _UpperCamelCase = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowercase ( self , lowerCamelCase_ = None ) -> torch.FloatTensor: """simple docstring""" _UpperCamelCase = randn_tensor( self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCamelCase = self.mean + self.std * sample return x def lowercase ( self , lowerCamelCase_=None ) -> List[Any]: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_=[1, 2, 3] ) -> int: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) _UpperCamelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ ) def lowercase ( self ) -> List[Any]: """simple docstring""" return self.mean
589
0
def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = 0 __A = len(a_ ) for i in range(n - 1 ): for j in range(i + 1 , a_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" if len(a_ ) <= 1: return arr, 0 __A = len(a_ ) // 2 __A = arr[0:mid] __A = arr[mid:] __A , __A = count_inversions_recursive(a_ ) __A , __A = count_inversions_recursive(a_ ) __A , __A = _count_cross_inversions(a_ , a_ ) __A = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" __A = [] __A = __A = __A = 0 while i < len(a_ ) and j < len(a_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(a_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(a_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __A = count_inversions_bf(a_ ) __A , __A = count_inversions_recursive(a_ ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , a_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __A = count_inversions_bf(a_ ) __A , __A = count_inversions_recursive(a_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , a_ ) # an empty list should also have zero inversions __A = [] __A = count_inversions_bf(a_ ) __A , __A = count_inversions_recursive(a_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , a_ ) if __name__ == "__main__": main()
55
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def _SCREAMING_SNAKE_CASE ( UpperCamelCase="ro" , UpperCamelCase="en" , UpperCamelCase="wmt16" , UpperCamelCase=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) lowerCAmelCase__ : Optional[Any] = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) lowerCAmelCase__ : Any = datasets.load_dataset(UpperCamelCase , UpperCamelCase ) if save_dir is None: lowerCAmelCase__ : Optional[Any] = f"""{dataset}-{pair}""" lowerCAmelCase__ : Optional[Any] = Path(UpperCamelCase ) save_dir.mkdir(exist_ok=UpperCamelCase ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets lowerCAmelCase__ : str = """val""" if split == """validation""" else split lowerCAmelCase__ : Optional[int] = save_dir.joinpath(f"""{fn}.source""" ) lowerCAmelCase__ : Any = save_dir.joinpath(f"""{fn}.target""" ) lowerCAmelCase__ : Union[str, Any] = src_path.open("""w+""" ) lowerCAmelCase__ : Optional[int] = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowerCAmelCase__ : Optional[int] = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
565
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a =logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE ): def __init__( self : Tuple ,*SCREAMING_SNAKE_CASE__ : Any ,**SCREAMING_SNAKE_CASE__ : List[Any]): warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' ,SCREAMING_SNAKE_CASE__ ,) super().__init__(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__)
708
import os import pytest from attr import dataclass a ="""us-east-1""" # defaults region @dataclass class A_ : _UpperCAmelCase : str _UpperCAmelCase : Tuple = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' _UpperCAmelCase : Optional[int] = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 16, '''per_device_eval_batch_size''': 16, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 500, '''save_steps''': 5_500, } _UpperCAmelCase : int = {**hyperparameters, '''max_steps''': 1_000} @property def lowerCAmelCase ( self : Dict): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase ( self : List[str]): return F"{self.framework}-transfromers-test" @property def lowerCAmelCase ( self : List[Any]): return F"./tests/sagemaker/scripts/{self.framework}" @property def lowerCAmelCase ( self : List[Any]): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Any: __lowerCamelCase : List[str] = SageMakerTestEnvironment(framework=request.cls.framework )
337
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) A_ = Features({'''text''': Value('''string''' )} ) A_ = Features({'''summary''': Value('''string''' )} ) A_ = "text" A_ = "summary" @property def UpperCAmelCase__ ( self) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
34
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
1
"""simple docstring""" def _lowerCamelCase ( lowerCamelCase__ : list ): lowercase__ : Dict = 0 while len(lowerCamelCase__ ) > 1: lowercase__ : int = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): lowercase__ : Dict = files.index(min(lowerCamelCase__ ) ) temp += files[min_index] files.pop(lowerCamelCase__ ) files.append(lowerCamelCase__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
128
"""simple docstring""" from scipy.stats import spearmanr import datasets __snake_case = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __snake_case = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __snake_case = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Optional[int]: lowercase__ : List[Any] = spearmanr(lowerCamelCase__ , lowerCamelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
128
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a ( __UpperCAmelCase ): def __init__( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : int ): """simple docstring""" warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
611
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } UpperCamelCase_ = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } UpperCamelCase_ = { "ctrl": 2_5_6, } UpperCamelCase_ = { "Pregnancy": 1_6_8_6_2_9, "Christianity": 7_6_7_5, "Explain": 1_0_6_4_2_3, "Fitness": 6_3_4_4_0, "Saving": 6_3_1_6_3, "Ask": 2_7_1_7_1, "Ass": 9_5_9_8_5, "Joke": 1_6_3_5_0_9, "Questions": 4_5_6_2_2, "Thoughts": 4_9_6_0_5, "Retail": 5_2_3_4_2, "Feminism": 1_6_4_3_3_8, "Writing": 1_1_9_9_2, "Atheism": 1_9_2_2_6_3, "Netflix": 4_8_6_1_6, "Computing": 3_9_6_3_9, "Opinion": 4_3_2_1_3, "Alone": 4_4_9_6_7, "Funny": 5_8_9_1_7, "Gaming": 4_0_3_5_8, "Human": 4_0_8_8, "India": 1_3_3_1, "Joker": 7_7_1_3_8, "Diet": 3_6_2_0_6, "Legal": 1_1_8_5_9, "Norman": 4_9_3_9, "Tip": 7_2_6_8_9, "Weight": 5_2_3_4_3, "Movies": 4_6_2_7_3, "Running": 2_3_4_2_5, "Science": 2_0_9_0, "Horror": 3_7_7_9_3, "Confession": 6_0_5_7_2, "Finance": 1_2_2_5_0, "Politics": 1_6_3_6_0, "Scary": 1_9_1_9_8_5, "Support": 1_2_6_5_4, "Technologies": 3_2_5_1_6, "Teenage": 6_6_1_6_0, "Event": 3_2_7_6_9, "Learned": 6_7_4_6_0, "Notion": 1_8_2_7_7_0, "Wikipedia": 3_7_5_8_3, "Books": 6_6_6_5, "Extract": 7_6_0_5_0, "Confessions": 1_0_2_7_0_1, "Conspiracy": 7_5_9_3_2, "Links": 6_3_6_7_4, "Narcissus": 1_5_0_4_2_5, "Relationship": 5_4_7_6_6, "Relationships": 1_3_4_7_9_6, "Reviews": 4_1_6_7_1, "News": 4_2_5_6, "Translation": 2_6_8_2_0, "multilingual": 1_2_8_4_0_6, } def _UpperCAmelCase ( UpperCamelCase: Optional[Any] ): """simple docstring""" __lowerCAmelCase = set() __lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCAmelCase = char __lowerCAmelCase = set(UpperCamelCase ) return pairs class a ( __UpperCAmelCase ): lowercase_ : str = VOCAB_FILES_NAMES lowercase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Dict = CONTROL_CODES def __init__( self : Dict , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : List[Any]="<unk>" , **snake_case__ : Dict ): """simple docstring""" super().__init__(unk_token=snake_case__ , **snake_case__ ) with open(snake_case__ , encoding="utf-8" ) as vocab_handle: __lowerCAmelCase = json.load(snake_case__ ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: __lowerCAmelCase = merges_handle.read().split("\n" )[1:-1] __lowerCAmelCase = [tuple(merge.split() ) for merge in merges] __lowerCAmelCase = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) __lowerCAmelCase = {} @property def UpperCAmelCase__ ( self : Any ): """simple docstring""" return len(self.encoder ) def UpperCAmelCase__ ( self : int ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : List[str] ): """simple docstring""" if token in self.cache: return self.cache[token] __lowerCAmelCase = tuple(snake_case__ ) __lowerCAmelCase = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) __lowerCAmelCase = get_pairs(snake_case__ ) if not pairs: return token while True: __lowerCAmelCase = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowerCAmelCase , __lowerCAmelCase = bigram __lowerCAmelCase = [] __lowerCAmelCase = 0 while i < len(snake_case__ ): try: __lowerCAmelCase = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCAmelCase = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCAmelCase = tuple(snake_case__ ) __lowerCAmelCase = new_word if len(snake_case__ ) == 1: break else: __lowerCAmelCase = get_pairs(snake_case__ ) __lowerCAmelCase = "@@ ".join(snake_case__ ) __lowerCAmelCase = word[:-4] __lowerCAmelCase = word return word def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Tuple ): """simple docstring""" __lowerCAmelCase = [] __lowerCAmelCase = re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def UpperCAmelCase__ ( self : int , snake_case__ : List[str] ): """simple docstring""" return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Any , snake_case__ : int ): """simple docstring""" return self.decoder.get(snake_case__ , self.unk_token ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : List[str] ): """simple docstring""" __lowerCAmelCase = " ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowerCAmelCase = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(snake_case__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + "\n" ) __lowerCAmelCase = 0 with open(snake_case__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) __lowerCAmelCase = token_index writer.write(" ".join(snake_case__ ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
611
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase : str = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = ["MobileViTFeatureExtractor"] UpperCamelCase : Union[str, Any] = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
293
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase : Tuple = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase : Dict = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( snake_case :List[str] , snake_case :Optional[int] , snake_case :Optional[Any] ) -> Any: __UpperCamelCase = SavedModel() __UpperCamelCase = [] with open(os.path.join(snake_case , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __UpperCamelCase = json.load(snake_case )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(snake_case )] ) with open(snake_case , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __UpperCamelCase = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __UpperCamelCase = sorted(snake_case ) __UpperCamelCase = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(snake_case ) if strict and len(snake_case ) > 0: raise Exception(f'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops ) elif len(snake_case ) > 0: print(f'Found the following incompatible ops for the opset {opset}:' ) print(*snake_case , sep='\n' ) else: print(f'The saved model {saved_model_path} can properly be converted with ONNX.' ) if __name__ == "__main__": UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=1_2, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase : str = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
293
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Any = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys A_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class snake_case_ ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: torch.FloatTensor SCREAMING_SNAKE_CASE_: Optional[torch.FloatTensor] = None def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__=0.9_9_9 ,lowerCAmelCase__="cosine" ,): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ ): return math.exp(t * -1_2.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) A__ = [] for i in range(lowerCAmelCase__ ): A__ = i / num_diffusion_timesteps A__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) ,lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ ,dtype=torch.floataa ) class snake_case_ ( _lowerCamelCase , _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: List[Any] = 1 @register_to_config def __init__( self , __a = 1000 , __a = 0.0001 , __a = 0.02 , __a = "linear" , __a = None , __a = True , __a = True , __a = 0 , __a = "epsilon" , __a = 1.0 , **__a , ): """simple docstring""" if kwargs.get('set_alpha_to_one' , __a ) is not None: A__ = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' , '1.0.0' , __a , standard_warn=__a ) A__ = kwargs['set_alpha_to_one'] if trained_betas is not None: A__ = torch.tensor(__a , dtype=torch.floataa ) elif beta_schedule == "linear": A__ = torch.linspace(__a , __a , __a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A__ = betas_for_alpha_bar(__a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) A__ = 1.0 - self.betas A__ = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. A__ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution A__ = 1.0 # setable values A__ = None A__ = torch.from_numpy(np.arange(0 , __a ).copy().astype(np.intaa ) ) def _UpperCAmelCase ( self , __a , __a = None ): """simple docstring""" return sample def _UpperCAmelCase ( self , __a , __a = None ): """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) A__ = num_inference_steps A__ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A__ = (np.arange(0 , __a ) * step_ratio).round().copy().astype(np.intaa ) A__ = torch.from_numpy(__a ).to(__a ) self.timesteps += self.config.steps_offset def _UpperCAmelCase ( self , __a , __a , __a , __a = 0.0 , __a = False , __a = None , __a = True , ): """simple docstring""" A__ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process A__ = self.alphas_cumprod[timestep] A__ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) A__ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": A__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 A__ = model_output elif self.config.prediction_type == "sample": A__ = model_output A__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": A__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output A__ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ' `v_prediction`' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: A__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A__ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__a , pred_original_sample=__a ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
260
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCAmelCase_: Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=_UpperCAmelCase, scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self, _UpperCAmelCase = 1, _UpperCAmelCase = 100, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = True, ): '''simple docstring''' if audio_length_in_s is None: lowercase__ = self.unet.config.sample_size / self.unet.config.sample_rate lowercase__ = audio_length_in_s * self.unet.config.sample_rate lowercase__ = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase__ = int(_UpperCAmelCase ) if sample_size % down_scale_factor != 0: lowercase__ = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' " process." ) lowercase__ = int(_UpperCAmelCase ) lowercase__ = next(iter(self.unet.parameters() ) ).dtype lowercase__ = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_UpperCAmelCase, _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase__ = randn_tensor(_UpperCAmelCase, generator=_UpperCAmelCase, device=self.device, dtype=_UpperCAmelCase ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase, device=audio.device ) lowercase__ = self.scheduler.timesteps.to(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase__ = self.unet(_UpperCAmelCase, _UpperCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 lowercase__ = self.scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample lowercase__ = audio.clamp(-1, 1 ).float().cpu().numpy() lowercase__ = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_UpperCAmelCase )
668
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Union[str, Any] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
1
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __lowerCamelCase = logging.getLogger(__name__) @dataclass class __A : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 @dataclass class __A : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "train" UpperCAmelCase__ = "dev" UpperCAmelCase__ = "test" class __A : @staticmethod def lowerCamelCase__ ( __snake_case : Union[str, Any] , __snake_case : Union[Split, str] ) -> List[InputExample]: raise NotImplementedError @staticmethod def lowerCamelCase__ ( __snake_case : str ) -> List[str]: raise NotImplementedError @staticmethod def lowerCamelCase__ ( __snake_case : List[InputExample] , __snake_case : List[str] , __snake_case : int , __snake_case : PreTrainedTokenizer , __snake_case : int=False , __snake_case : Union[str, Any]="[CLS]" , __snake_case : str=1 , __snake_case : Dict="[SEP]" , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Dict=0 , __snake_case : Dict=0 , __snake_case : Optional[int]=-1_0_0 , __snake_case : Optional[int]=0 , __snake_case : str=True , ) -> List[InputFeatures]: __magic_name__: str = {label: i for i, label in enumerate(__snake_case )} __magic_name__: Optional[Any] = [] for ex_index, example in enumerate(__snake_case ): if ex_index % 1_0_0_0_0 == 0: logger.info("""Writing example %d of %d""" , __snake_case , len(__snake_case ) ) __magic_name__: int = [] __magic_name__: List[Any] = [] for word, label in zip(example.words , example.labels ): __magic_name__: Optional[Any] = tokenizer.tokenize(__snake_case ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__snake_case ) > 0: tokens.extend(__snake_case ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__snake_case ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. __magic_name__: int = tokenizer.num_special_tokens_to_add() if len(__snake_case ) > max_seq_length - special_tokens_count: __magic_name__: List[str] = tokens[: (max_seq_length - special_tokens_count)] __magic_name__: Optional[int] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] __magic_name__: Union[str, Any] = [sequence_a_segment_id] * len(__snake_case ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: __magic_name__: Union[str, Any] = [cls_token] + tokens __magic_name__: List[str] = [pad_token_label_id] + label_ids __magic_name__: Dict = [cls_token_segment_id] + segment_ids __magic_name__: str = tokenizer.convert_tokens_to_ids(__snake_case ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. __magic_name__: int = [1 if mask_padding_with_zero else 0] * len(__snake_case ) # Zero-pad up to the sequence length. __magic_name__: Union[str, Any] = max_seq_length - len(__snake_case ) if pad_on_left: __magic_name__: Union[str, Any] = ([pad_token] * padding_length) + input_ids __magic_name__: Dict = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask __magic_name__: Dict = ([pad_token_segment_id] * padding_length) + segment_ids __magic_name__: Optional[int] = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__snake_case ) == max_seq_length assert len(__snake_case ) == max_seq_length assert len(__snake_case ) == max_seq_length assert len(__snake_case ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(__snake_case ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(__snake_case ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(__snake_case ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(__snake_case ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(__snake_case ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: __magic_name__: Any = None features.append( InputFeatures( input_ids=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , label_ids=__snake_case ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = 42 UpperCAmelCase__ = nn.CrossEntropyLoss().ignore_index def __init__( self : int , __snake_case : TokenClassificationTask , __snake_case : str , __snake_case : PreTrainedTokenizer , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[int] = None , __snake_case : Any=False , __snake_case : Split = Split.train , ) -> Optional[int]: # Load data features from cache or dataset file __magic_name__: Union[str, Any] = os.path.join( __snake_case , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(__snake_case ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __magic_name__: Union[str, Any] = cached_features_file + """.lock""" with FileLock(__snake_case ): if os.path.exists(__snake_case ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) __magic_name__: List[Any] = torch.load(__snake_case ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) __magic_name__: int = token_classification_task.read_examples_from_file(__snake_case , __snake_case ) # TODO clean up all this to leverage built-in features of tokenizers __magic_name__: List[str] = token_classification_task.convert_examples_to_features( __snake_case , __snake_case , __snake_case , __snake_case , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F'Saving features into cached file {cached_features_file}' ) torch.save(self.features , __snake_case ) def __len__( self : str ) -> str: return len(self.features ) def __getitem__( self : Any , __snake_case : Optional[int] ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class __A : UpperCAmelCase__ = 42 UpperCAmelCase__ = -1_0_0 def __init__( self : Tuple , __snake_case : TokenClassificationTask , __snake_case : str , __snake_case : PreTrainedTokenizer , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[int] = None , __snake_case : str=False , __snake_case : Split = Split.train , ) -> List[Any]: __magic_name__: Optional[int] = token_classification_task.read_examples_from_file(__snake_case , __snake_case ) # TODO clean up all this to leverage built-in features of tokenizers __magic_name__: Optional[int] = token_classification_task.convert_examples_to_features( __snake_case , __snake_case , __snake_case , __snake_case , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: __magic_name__: Union[str, Any] = tf.data.Dataset.from_generator( __snake_case , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: __magic_name__: str = tf.data.Dataset.from_generator( __snake_case , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowerCamelCase__ ( self : Tuple ) -> Dict: __magic_name__: Optional[Any] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Union[str, Any] ) -> int: return len(self.features ) def __getitem__( self : Dict , __snake_case : int ) -> InputFeatures: return self.features[i]
96
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = [] for line in lines: lowerCamelCase__ = re.sub(R"""#.*""" , """""" , __lowerCAmelCase ) # remove comments if line: filtered_lines.append(__lowerCAmelCase ) lowerCamelCase__ = """\n""".join(__lowerCAmelCase ) # Make a hash from all this code lowerCamelCase__ = full_str.encode("""utf-8""" ) return shaaaa(__lowerCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCamelCase : Dict = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCamelCase : str = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCamelCase : List[Any] = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
50
0
"""simple docstring""" import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging __a = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] __a = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = " Hello world! cécé herlolip" __a = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def A_ ( _lowercase ): '''simple docstring''' snake_case_ :str = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowercase, _lowercase ) def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Dict = dct.pop(_lowercase ) snake_case_ :Optional[int] = val def A_ ( _lowercase ): '''simple docstring''' snake_case_ :int = torch.load(_lowercase, map_location="""cpu""" ) snake_case_ :str = torch.hub.load("""pytorch/fairseq""", """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def A_ ( _lowercase ): '''simple docstring''' snake_case_ :List[str] = emb.weight.shape snake_case_ :Union[str, Any] = nn.Linear(_lowercase, _lowercase, bias=_lowercase ) snake_case_ :List[str] = emb.weight.data return lin_layer @torch.no_grad() def A_ ( _lowercase, _lowercase, _lowercase=None ): '''simple docstring''' if not os.path.exists(_lowercase ): snake_case_ :Any = torch.hub.load("""pytorch/fairseq""", _lowercase ).eval() else: snake_case_ :Dict = load_xsum_checkpoint(_lowercase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: snake_case_ :Any = checkpoint_path.replace(""".""", """-""" ) snake_case_ :Tuple = BartConfig.from_pretrained(_lowercase ) snake_case_ :Union[str, Any] = bart.encode(_lowercase ).unsqueeze(0 ) snake_case_ :List[str] = BartTokenizer.from_pretrained(_lowercase ).encode(_lowercase, return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(_lowercase, _lowercase ).all(): raise ValueError( f"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": snake_case_ :Union[str, Any] = bart.state_dict() remove_ignore_keys_(_lowercase ) snake_case_ :Tuple = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(_lowercase, _lowercase, _lowercase ) snake_case_ :Dict = BartForSequenceClassification(_lowercase ).eval() model.load_state_dict(_lowercase ) snake_case_ :Dict = bart.predict("""mnli""", _lowercase, return_logits=_lowercase ) snake_case_ :Tuple = model(_lowercase )[0] # logits else: # no classification heads to worry about snake_case_ :List[str] = bart.model.state_dict() remove_ignore_keys_(_lowercase ) snake_case_ :List[str] = state_dict["""decoder.embed_tokens.weight"""] snake_case_ :List[str] = bart.extract_features(_lowercase ) if hf_checkpoint_name == "facebook/bart-large": snake_case_ :List[str] = BartModel(_lowercase ).eval() model.load_state_dict(_lowercase ) snake_case_ :Tuple = model(_lowercase ).model[0] else: snake_case_ :Tuple = BartForConditionalGeneration(_lowercase ).eval() # an existing summarization ckpt model.model.load_state_dict(_lowercase ) if hasattr(_lowercase, """lm_head""" ): snake_case_ :str = make_linear_from_emb(model.model.shared ) snake_case_ :Tuple = model.model(_lowercase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) __a = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
706
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __a = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __a = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __a = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __a = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __a = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def A_ ( _lowercase, _lowercase ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case_ :Any = k.replace(_lowercase, _lowercase ) return k def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :int = BigBirdPegasusConfig(**_lowercase ) snake_case_ :int = BigBirdPegasusForConditionalGeneration(_lowercase ) snake_case_ :List[str] = torch_model.state_dict() snake_case_ :Dict = {} # separating decoder weights snake_case_ :Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} snake_case_ :int = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items(), """tf -> hf conversion""" ): snake_case_ :List[str] = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue snake_case_ :Optional[int] = DECODER_PATTERNS snake_case_ :int = rename_state_dict_key(_lowercase, _lowercase ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): snake_case_ :Any = v.T snake_case_ :Tuple = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items(), """tf -> hf conversion""" ): snake_case_ :int = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue snake_case_ :int = REMAINING_PATTERNS snake_case_ :Optional[int] = rename_state_dict_key(_lowercase, _lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): snake_case_ :Tuple = v.T snake_case_ :str = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case_ :Union[str, Any] = mapping["""model.embed_positions.weight"""] snake_case_ :List[str] = mapping.pop("""model.embed_positions.weight""" ) snake_case_, snake_case_ :Optional[Any] = torch_model.load_state_dict(_lowercase, strict=_lowercase ) snake_case_ :Any = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def A_ ( _lowercase ): '''simple docstring''' snake_case_ :List[Any] = tf.train.list_variables(_lowercase ) snake_case_ :Union[str, Any] = {} snake_case_ :Any = ["""global_step"""] for name, shape in tqdm(_lowercase, desc="""converting tf checkpoint to dict""" ): snake_case_ :int = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case_ :List[Any] = tf.train.load_variable(_lowercase, _lowercase ) snake_case_ :str = array return tf_weights def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Any = get_tf_weights_as_numpy(_lowercase ) snake_case_ :Any = convert_bigbird_pegasus(_lowercase, _lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __a = parser.parse_args() __a = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
310
0
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } __lowerCamelCase = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def a__ ( UpperCamelCase_ : List[str] ): UpperCAmelCase__ :List[str] = EfficientNetConfig() UpperCAmelCase__ :Union[str, Any] = CONFIG_MAP[model_name]['''hidden_dim'''] UpperCAmelCase__ :int = CONFIG_MAP[model_name]['''width_coef'''] UpperCAmelCase__ :Optional[Any] = CONFIG_MAP[model_name]['''depth_coef'''] UpperCAmelCase__ :str = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase__ :int = CONFIG_MAP[model_name]['''dropout_rate'''] UpperCAmelCase__ :Optional[int] = CONFIG_MAP[model_name]['''dw_padding'''] UpperCAmelCase__ :List[Any] = '''huggingface/label-files''' UpperCAmelCase__ :Optional[int] = '''imagenet-1k-id2label.json''' UpperCAmelCase__ :Tuple = 1_000 UpperCAmelCase__ :Dict = json.load(open(hf_hub_download(UpperCamelCase_, UpperCamelCase_, repo_type='''dataset''' ), '''r''' ) ) UpperCAmelCase__ :List[Any] = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} UpperCAmelCase__ :Optional[int] = idalabel UpperCAmelCase__ :int = {v: k for k, v in idalabel.items()} return config def a__ ( ): UpperCAmelCase__ :List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase__ :Dict = Image.open(requests.get(UpperCamelCase_, stream=UpperCamelCase_ ).raw ) return im def a__ ( UpperCamelCase_ : List[str] ): UpperCAmelCase__ :Any = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase__ :Dict = EfficientNetImageProcessor( size={'''height''': size, '''width''': size}, image_mean=[0.485, 0.456, 0.406], image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163], do_center_crop=UpperCamelCase_, ) return preprocessor def a__ ( UpperCamelCase_ : int ): UpperCAmelCase__ :List[str] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] UpperCAmelCase__ :List[str] = sorted(set(UpperCamelCase_ ) ) UpperCAmelCase__ :int = len(UpperCamelCase_ ) UpperCAmelCase__ :Optional[int] = {b: str(UpperCamelCase_ ) for b, i in zip(UpperCamelCase_, range(UpperCamelCase_ ) )} UpperCAmelCase__ :Optional[int] = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: UpperCAmelCase__ :List[Any] = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) UpperCAmelCase__ :int = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase__ :int = '''efficientnet.''' + item[1] UpperCAmelCase__ :Tuple = '''classifier.weight''' UpperCAmelCase__ :Optional[Any] = '''classifier.bias''' return key_mapping def a__ ( UpperCamelCase_ : Tuple, UpperCamelCase_ : List[Any], UpperCamelCase_ : Dict ): for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase__ :Optional[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase__ :Optional[int] = torch.from_numpy(UpperCamelCase_ ).permute(3, 2, 0, 1 ) elif "depthwise_kernel" in key: UpperCAmelCase__ :int = torch.from_numpy(UpperCamelCase_ ).permute(2, 3, 0, 1 ) elif "kernel" in key: UpperCAmelCase__ :str = torch.from_numpy(np.transpose(UpperCamelCase_ ) ) else: UpperCAmelCase__ :Dict = torch.from_numpy(UpperCamelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(UpperCamelCase_ ) @torch.no_grad() def a__ ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : int, UpperCamelCase_ : Any, UpperCamelCase_ : Dict ): UpperCAmelCase__ :Union[str, Any] = model_classes[model_name]( include_top=UpperCamelCase_, weights='''imagenet''', input_tensor=UpperCamelCase_, input_shape=UpperCamelCase_, pooling=UpperCamelCase_, classes=1_000, classifier_activation='''softmax''', ) UpperCAmelCase__ :Tuple = original_model.trainable_variables UpperCAmelCase__ :Optional[Any] = original_model.non_trainable_variables UpperCAmelCase__ :str = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase__ :List[Any] = param.numpy() UpperCAmelCase__ :int = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase__ :Optional[Any] = get_efficientnet_config(UpperCamelCase_ ) UpperCAmelCase__ :str = EfficientNetForImageClassification(UpperCamelCase_ ).eval() UpperCAmelCase__ :int = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) UpperCAmelCase__ :Dict = rename_keys(UpperCamelCase_ ) replace_params(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) # Initialize preprocessor and preprocess input image UpperCAmelCase__ :Any = convert_image_processor(UpperCamelCase_ ) UpperCAmelCase__ :Optional[Any] = preprocessor(images=prepare_img(), return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase__ :int = hf_model(**UpperCamelCase_ ) UpperCAmelCase__ :str = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase__ :Any = False UpperCAmelCase__ :List[Any] = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase__ :Optional[int] = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST ) UpperCAmelCase__ :Any = image.img_to_array(UpperCamelCase_ ) UpperCAmelCase__ :Tuple = np.expand_dims(UpperCamelCase_, axis=0 ) UpperCAmelCase__ :List[str] = original_model.predict(UpperCamelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(UpperCamelCase_, UpperCamelCase_, atol=1e-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(UpperCamelCase_ ): os.mkdir(UpperCamelCase_ ) # Save converted model and image processor hf_model.save_pretrained(UpperCamelCase_ ) preprocessor.save_pretrained(UpperCamelCase_ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) UpperCAmelCase__ :Dict = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(UpperCamelCase_ ) hf_model.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') __lowerCamelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
467
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : float , snake_case : float )-> float: if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
650
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class a ( unittest.TestCase ): def __init__( self : int , snake_case__ : List[Any] , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=3 , snake_case__ : List[str]=30 , snake_case__ : Union[str, Any]=400 , snake_case__ : List[Any]=True , snake_case__ : Tuple=None , snake_case__ : Optional[int]=0.9 , snake_case__ : int=None , snake_case__ : List[str]=True , snake_case__ : Dict=[0.5, 0.5, 0.5] , snake_case__ : int=[0.5, 0.5, 0.5] , ): """simple docstring""" __lowerCAmelCase = size if size is not None else {"shortest_edge": 30} __lowerCAmelCase = crop_size if crop_size is not None else {"height": 30, "width": 30} __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize_and_center_crop __lowerCAmelCase = size __lowerCAmelCase = crop_pct __lowerCAmelCase = crop_size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a ( snake_case__ , unittest.TestCase ): lowercase_ : Dict = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __lowerCAmelCase = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std" ) ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30} ) __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" pass def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
702
import fire from utils import calculate_rouge, save_json def _UpperCAmelCase ( UpperCamelCase: Any , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any]=None , **UpperCamelCase: Optional[int] ): """simple docstring""" __lowerCAmelCase = [x.strip() for x in open(UpperCamelCase ).readlines()] __lowerCAmelCase = [x.strip() for x in open(UpperCamelCase ).readlines()][: len(UpperCamelCase )] __lowerCAmelCase = calculate_rouge(UpperCamelCase , UpperCamelCase , **UpperCamelCase ) if save_path is not None: save_json(UpperCamelCase , UpperCamelCase , indent=UpperCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
376
0
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( A , A , A , unittest.TestCase ): '''simple docstring''' a__ = StableDiffusionInpaintPipeline a__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS a__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a__ = frozenset([] ) def _UpperCAmelCase ( self : str ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a , ) SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=a ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(a ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _UpperCAmelCase ( self : Tuple , a : Union[str, Any] , a : List[str]=0 ) -> List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(a ) ).convert("""RGB""" ).resize((64, 64) ) SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(a ).startswith("""mps""" ): SCREAMING_SNAKE_CASE = torch.manual_seed(a ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=a ).manual_seed(a ) SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _UpperCAmelCase ( self : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline(**a ) SCREAMING_SNAKE_CASE = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a ) SCREAMING_SNAKE_CASE = sd_pipe(**a ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase ( self : Any ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self : List[Any] ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) SCREAMING_SNAKE_CASE = """stabilityai/stable-diffusion-2-inpainting""" SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline.from_pretrained(a , safety_checker=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE = """Face of a yellow cat, high resolution, sitting on a park bench""" SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , ) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def _UpperCAmelCase ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) SCREAMING_SNAKE_CASE = """stabilityai/stable-diffusion-2-inpainting""" SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline.from_pretrained( a , torch_dtype=torch.floataa , safety_checker=a , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE = """Face of a yellow cat, high resolution, sitting on a park bench""" SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , ) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _UpperCAmelCase ( self : Tuple ) -> Any: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) SCREAMING_SNAKE_CASE = """stabilityai/stable-diffusion-2-inpainting""" SCREAMING_SNAKE_CASE = PNDMScheduler.from_pretrained(a , subfolder="""scheduler""" ) SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline.from_pretrained( a , safety_checker=a , scheduler=a , torch_dtype=torch.floataa , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE = """Face of a yellow cat, high resolution, sitting on a park bench""" SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=a , image=a , mask_image=a , generator=a , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
450
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __A : Dict = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __A : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def lowerCamelCase_ ( ): '''simple docstring''' from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=1_00_00 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=1_00_00 , globals=globals() , ) ) benchmark()
450
1
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Any ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __a ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str ): return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int ): a__ : Union[str, Any] = [line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] a__ : Union[str, Any] = [] if args.gold_data_mode == "qa": a__ : Dict = pd.read_csv(lowerCAmelCase__ , sep='''\t''' , header=lowerCAmelCase__ ) for answer_list in data[1]: a__ : Any = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: a__ : int = [line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] a__ : List[Any] = [[reference] for reference in references] a__ : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : List[str] = 100.0 * em / total a__ : List[str] = 100.0 * fa / total logger.info(F'F1: {fa:.2f}' ) logger.info(F'EM: {em:.2f}' ) def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] ): a__ : List[str] = args.k a__ : Dict = [line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] a__ : Any = [line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] a__ : Optional[Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : List[str] = set(hypo.split('''\t''' )[:k] ) a__ : Tuple = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a__ : Optional[Any] = 100.0 * em / total logger.info(F'Precision@{k}: {em: .2f}' ) def __a ( lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] ): def strip_title(lowerCAmelCase__ : Optional[int] ): if title.startswith('''"''' ): a__ : Optional[Any] = title[1:] if title.endswith('''"''' ): a__ : str = title[:-1] return title a__ : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors='''pt''' , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )['''input_ids'''].to(args.device ) a__ : Optional[Any] = rag_model.rag.question_encoder(lowerCAmelCase__ ) a__ : List[Any] = question_enc_outputs[0] a__ : Any = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) a__ : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a__ : str = [] for docs in all_docs: a__ : Any = [strip_title(lowerCAmelCase__ ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(lowerCAmelCase__ ) ) return provenance_strings def __a ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] ): with torch.no_grad(): a__ : Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors='''pt''' , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) a__ : Tuple = inputs_dict.input_ids.to(args.device ) a__ : Optional[int] = inputs_dict.attention_mask.to(args.device ) a__ : Optional[Any] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a__ : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info('''Q: {} - A: {}'''.format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def __a ( ): a__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=lowerCAmelCase__ , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=lowerCAmelCase__ , choices=['''exact''', '''compressed''', '''legacy'''] , type=lowerCAmelCase__ , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=lowerCAmelCase__ , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=lowerCAmelCase__ , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=lowerCAmelCase__ , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=lowerCAmelCase__ , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=lowerCAmelCase__ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=lowerCAmelCase__ , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=lowerCAmelCase__ , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=lowerCAmelCase__ , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=lowerCAmelCase__ , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) a__ : Dict = parser.parse_args() a__ : List[str] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def __a ( lowerCAmelCase__ : int ): a__ : List[str] = {} if args.model_type is None: a__ : Optional[Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): a__ : Tuple = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration a__ : List[Any] = args.n_docs if args.index_name is not None: a__ : str = args.index_name if args.index_path is not None: a__ : Tuple = args.index_path else: a__ : Tuple = BartForConditionalGeneration a__ : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , lowerCAmelCase__ ) a__ : List[str] = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k a__ : Optional[int] = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(lowerCAmelCase__ ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): a__ : Any = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Tuple = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: a__ : str = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: a__ : List[Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: a__ : Optional[int] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write('''\n'''.join(lowerCAmelCase__ ) + '''\n''' ) preds_file.flush() a__ : List[str] = [] if len(lowerCAmelCase__ ) > 0: a__ : str = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write('''\n'''.join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = get_args() main(args)
688
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' a__ : int = 0 def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' a__ : Optional[int] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : List[Any] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[Any] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[Any] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[int] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally a__ : List[Any] = AutoImageProcessor.from_pretrained(A__ ).to_dict() config_dict.pop('''image_processor_type''' ) a__ : Union[str, Any] = CLIPImageProcessor(**A__ ) # save in new folder model_config.save_pretrained(A__ ) config.save_pretrained(A__ ) a__ : Union[str, Any] = AutoImageProcessor.from_pretrained(A__ ) # make sure private variable is not incorrectly saved a__ : Optional[Any] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''clip-base is not a local folder and is not a valid model identifier''' ): a__ : str = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' with self.assertRaisesRegex( A__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a__ : Tuple = AutoImageProcessor.from_pretrained(A__ , revision='''aaaaaa''' ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): a__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' with self.assertRaises(A__ ): a__ : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A__ ): a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : str = AutoImageProcessor.from_pretrained(A__ , trust_remote_code=A__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A__ ): AutoImageProcessor.register(A__ , A__ ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[str] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = CustomImageProcessor.from_pretrained(A__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = True try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # If remote code is not set, the default is to use local a__ : Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. a__ : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub a__ : Optional[int] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(A__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
688
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = "▁" __lowerCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __lowerCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __lowerCAmelCase = { "facebook/xglm-564M": 2_0_4_8, } class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : str="<s>" , __UpperCamelCase : str="</s>" , __UpperCamelCase : Tuple="</s>" , __UpperCamelCase : Dict="<s>" , __UpperCamelCase : List[Any]="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : List[str] , ): _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _UpperCAmelCase = 7 _UpperCAmelCase = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] _UpperCAmelCase = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) _UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCAmelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token _UpperCAmelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _UpperCAmelCase = len(self.sp_model ) _UpperCAmelCase = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCamelCase ) _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None _UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , __UpperCamelCase : str ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a _UpperCAmelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase__ ( self : int , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase__ ( self : Optional[Any] ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self : Any , __UpperCamelCase : str ): return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : List[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : Optional[int] ): _UpperCAmelCase = "".join(__UpperCamelCase ).replace(__UpperCamelCase , " " ).strip() return out_string def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
129
from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=lowercase): __SCREAMING_SNAKE_CASE : Optional[int] = ["""keras_nlp"""] def __init__( self : Optional[int] , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Optional[int] ): requires_backends(self , ["keras_nlp"] )
129
1
A__: Optional[int] = 6_5521 def lowerCAmelCase_ ( A_): UpperCamelCase__: Tuple = 1 UpperCamelCase__: Any = 0 for plain_chr in plain_text: UpperCamelCase__: Optional[int] = (a + ord(A_)) % MOD_ADLER UpperCamelCase__: Any = (b + a) % MOD_ADLER return (b << 16) | a
380
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable A__: Any = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Union[str, Any] = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys A__: str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
380
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
245
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCamelCase ( a ) -> int: '''simple docstring''' if isinstance(a , collections.abc.Iterable ): return x return (x, x) @require_tf class _SCREAMING_SNAKE_CASE : def snake_case__ ( self : List[Any] , a__ : Optional[int] , a__ : List[str] ): pass def snake_case__ ( self : Dict ): pass def snake_case__ ( self : Optional[int] ): pass def snake_case__ ( self : List[Any] , a__ : List[Any] , a__ : List[Any] , a__ : int , a__ : Dict , a__ : str=None , **a__ : Dict ): __magic_name__ = VisionTextDualEncoderConfig.from_vision_text_configs(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def snake_case__ ( self : Any , a__ : Tuple , a__ : List[Any] , a__ : Union[str, Any] , a__ : Any , a__ : Dict=None , **a__ : Optional[Any] ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case__ ( self : str , a__ : Tuple , a__ : Optional[Any] , a__ : int , a__ : Optional[int] , a__ : int=None , **a__ : int ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = {'''vision_model''': vision_model, '''text_model''': text_model} __magic_name__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case__ ( self : str , a__ : List[Any] , a__ : Optional[int] , a__ : int , a__ : Union[str, Any] , a__ : Tuple=None , **a__ : Union[str, Any] ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) __magic_name__ = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__ ) __magic_name__ = TFVisionTextDualEncoderModel.from_pretrained(a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) __magic_name__ = after_output[0].numpy() __magic_name__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1E-5 ) def snake_case__ ( self : str , a__ : Any , a__ : Optional[int] , a__ : List[str] , a__ : Tuple , a__ : Optional[Any]=None , **a__ : int ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) __magic_name__ = model( input_ids=a__ , pixel_values=a__ , attention_mask=a__ , output_attentions=a__ ) __magic_name__ = output.vision_model_output.attentions self.assertEqual(len(a__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ = to_atuple(vision_model.config.image_size ) __magic_name__ = to_atuple(vision_model.config.patch_size ) __magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __magic_name__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __magic_name__ = output.text_model_output.attentions self.assertEqual(len(a__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case__ ( self : Optional[Any] , a__ : np.ndarray , a__ : np.ndarray , a__ : float ): __magic_name__ = np.abs((a - b) ).max() self.assertLessEqual(a__ , a__ , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def snake_case__ ( self : Tuple ): __magic_name__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a__ ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a__ ) def snake_case__ ( self : int ): __magic_name__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a__ ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.prepare_config_and_inputs() self.check_save_load(**a__ ) def snake_case__ ( self : Tuple ): __magic_name__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a__ ) @slow def snake_case__ ( self : int ): __magic_name__ , __magic_name__ = self.get_pretrained_model_and_inputs() __magic_name__ = model_a(**a__ ) __magic_name__ = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a__ ) __magic_name__ = TFVisionTextDualEncoderModel.from_pretrained(a__ ) __magic_name__ = model_a(**a__ ) __magic_name__ = after_outputs[0].numpy() __magic_name__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1E-5 ) @require_tf class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): def snake_case__ ( self : int ): __magic_name__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' ) __magic_name__ = 13 __magic_name__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ = random_attention_mask([batch_size, 4] ) __magic_name__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : Union[str, Any] , a__ : Any , a__ : List[Any] ): __magic_name__ = TFViTModel(a__ , name='''vision_model''' ) __magic_name__ = TFBertModel(a__ , name='''text_model''' ) return vision_model, text_model def snake_case__ ( self : List[str] ): __magic_name__ = TFViTModelTester(self ) __magic_name__ = TFBertModelTester(self ) __magic_name__ = vit_model_tester.prepare_config_and_inputs() __magic_name__ = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): def snake_case__ ( self : Tuple ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. __magic_name__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' ) __magic_name__ = 13 __magic_name__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ = random_attention_mask([batch_size, 4] ) __magic_name__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : Dict , a__ : Any , a__ : Tuple , a__ : str , a__ : Any , a__ : Union[str, Any]=None , **a__ : List[str] ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) __magic_name__ = model( input_ids=a__ , pixel_values=a__ , attention_mask=a__ , output_attentions=a__ ) __magic_name__ = output.vision_model_output.attentions self.assertEqual(len(a__ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __magic_name__ = to_atuple(vision_model.config.image_size ) __magic_name__ = to_atuple(vision_model.config.patch_size ) __magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __magic_name__ = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __magic_name__ = output.text_model_output.attentions self.assertEqual(len(a__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case__ ( self : str , a__ : int , a__ : Any ): __magic_name__ = TFDeiTModel(a__ , name='''vision_model''' ) __magic_name__ = TFRobertaModel(a__ , name='''text_model''' ) return vision_model, text_model def snake_case__ ( self : Dict ): __magic_name__ = TFDeiTModelTester(self ) __magic_name__ = TFRobertaModelTester(self ) __magic_name__ = vit_model_tester.prepare_config_and_inputs() __magic_name__ = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): def snake_case__ ( self : List[str] ): __magic_name__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' ) __magic_name__ = 13 __magic_name__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ = random_attention_mask([batch_size, 4] ) __magic_name__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : int , a__ : int , a__ : Dict ): __magic_name__ = TFCLIPVisionModel(a__ , name='''vision_model''' ) __magic_name__ = TFBertModel(a__ , name='''text_model''' ) return vision_model, text_model def snake_case__ ( self : str ): __magic_name__ = TFCLIPVisionModelTester(self ) __magic_name__ = TFBertModelTester(self ) __magic_name__ = clip_model_tester.prepare_config_and_inputs() __magic_name__ = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def snake_case__ ( self : Union[str, Any] ): __magic_name__ = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=a__ ) __magic_name__ = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __magic_name__ = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=a__ , padding=a__ , return_tensors='''np''' ) __magic_name__ = model(**a__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __magic_name__ = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a__ , atol=1E-3 ) )
245
1
from timeit import timeit lowerCAmelCase_ = { '''MALAYALAM''': True, '''String''': False, '''rotor''': True, '''level''': True, '''A''': True, '''BB''': True, '''ABC''': False, '''amanaplanacanalpanama''': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = 0 snake_case_ = len(SCREAMING_SNAKE_CASE__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) // 2 snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return s == s[::-1] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = F'''all({name}(key) is value for key, value in test_data.items())''' snake_case_ = F'''from __main__ import test_data, {name}''' snake_case_ = 500000 snake_case_ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"""{key:21} {value}""") print('''a man a plan a canal panama''') # finished 500,000 runs in 0.46793 seconds benchmark_function('''is_palindrome_slice''') # finished 500,000 runs in 0.85234 seconds benchmark_function('''is_palindrome''') # finished 500,000 runs in 1.32028 seconds benchmark_function('''is_palindrome_recursive''') # finished 500,000 runs in 2.08679 seconds benchmark_function('''is_palindrome_traversal''')
39
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
1
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' raise NotImplementedError def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : str ): '''simple docstring''' raise NotImplementedError def lowerCamelCase_ ( self : int , lowerCamelCase_ : Dict ): '''simple docstring''' raise NotImplementedError def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def lowerCamelCase_ ( cls : Any ): '''simple docstring''' return f'''`pip install {cls.pip_package or cls.name}`''' class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''optuna''' @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' return is_optuna_available() def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : Dict ): '''simple docstring''' return run_hp_search_optuna(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : Any ): '''simple docstring''' return default_hp_space_optuna(lowerCamelCase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''ray''' SCREAMING_SNAKE_CASE__ = '''\'ray[tune]\'''' @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' return is_ray_available() def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : int ): '''simple docstring''' return run_hp_search_ray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Optional[int] ): '''simple docstring''' return default_hp_space_ray(lowerCamelCase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''sigopt''' @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' return is_sigopt_available() def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : int ): '''simple docstring''' return run_hp_search_sigopt(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return default_hp_space_sigopt(lowerCamelCase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''wandb''' @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' return is_wandb_available() def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return run_hp_search_wandb(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Tuple ): '''simple docstring''' return default_hp_space_wandb(lowerCamelCase_ ) __UpperCAmelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowerCamelCase_ ) > 0: SCREAMING_SNAKE_CASE : List[Any] = available_backends[0].name if len(lowerCamelCase_ ) > 1: logger.info( f'''{len(lowerCamelCase_ )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
79
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) SCREAMING_SNAKE_CASE : Dict = { """input_ids""": tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ )["""last_hidden_state"""] SCREAMING_SNAKE_CASE : Union[str, Any] = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape , lowerCamelCase_ ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE : Optional[int] = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
79
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE :str = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :Tuple = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
236
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE :int = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } __SCREAMING_SNAKE_CASE :List[str] = { '''allenai/led-base-16384''': 16384, } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Optional[Any] = LEDTokenizer _lowerCamelCase : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self : Union[str, Any] , snake_case_ : Optional[Any]=None , snake_case_ : Optional[int]=None , snake_case_ : Dict=None , snake_case_ : Union[str, Any]="replace" , snake_case_ : List[Any]="<s>" , snake_case_ : str="</s>" , snake_case_ : Any="</s>" , snake_case_ : Optional[int]="<s>" , snake_case_ : Tuple="<unk>" , snake_case_ : Dict="<pad>" , snake_case_ : Dict="<mask>" , snake_case_ : Optional[Any]=False , snake_case_ : List[str]=True , **snake_case_ : Optional[int] , ): super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _UpperCAmelCase = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = pre_tok_class(**snake_case_ ) _UpperCAmelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _UpperCAmelCase = "post_processor" _UpperCAmelCase = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase = tuple(state["sep"] ) if "cls" in state: _UpperCAmelCase = tuple(state["cls"] ) _UpperCAmelCase = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _UpperCAmelCase = add_prefix_space _UpperCAmelCase = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _UpperCAmelCase = trim_offsets _UpperCAmelCase = True if changes_to_apply: _UpperCAmelCase = getattr(snake_case_ , state.pop("type" ) ) _UpperCAmelCase = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowercase ( self : List[str] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase ( self : Dict , snake_case_ : str ): _UpperCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _UpperCAmelCase = value def lowercase ( self : Union[str, Any] , *snake_case_ : Union[str, Any] , **snake_case_ : List[str] ): _UpperCAmelCase = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def lowercase ( self : int , *snake_case_ : List[str] , **snake_case_ : Optional[int] ): _UpperCAmelCase = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def lowercase ( self : str , snake_case_ : str , snake_case_ : Optional[str] = None ): _UpperCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowercase ( self : Tuple , snake_case_ : Optional[Any] , snake_case_ : Any=None ): _UpperCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase ( self : Any , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self : Union[str, Any] , snake_case_ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case_ : Optional[int] = None , snake_case_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , ): _UpperCAmelCase = super()._pad( encoded_inputs=snake_case_ , max_length=snake_case_ , padding_strategy=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , ) # Load from model defaults if return_attention_mask is None: _UpperCAmelCase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _UpperCAmelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _UpperCAmelCase = len(encoded_inputs["global_attention_mask"] ) != len(snake_case_ ) if needs_to_be_padded: _UpperCAmelCase = len(snake_case_ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _UpperCAmelCase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _UpperCAmelCase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
236
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class snake_case_ ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: int = SpeechTaTokenizer SCREAMING_SNAKE_CASE_: List[Any] = False SCREAMING_SNAKE_CASE_: List[Any] = True def _UpperCAmelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A__ = SpeechTaTokenizer(__a ) A__ = AddedToken('<mask>' , lstrip=__a , rstrip=__a ) A__ = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self , __a ): """simple docstring""" A__ = 'this is a test' A__ = 'this is a test' return input_text, output_text def _UpperCAmelCase ( self , __a , __a=False , __a=20 , __a=5 ): """simple docstring""" A__ , A__ = self.get_input_output_texts(__a ) A__ = tokenizer.encode(__a , add_special_tokens=__a ) A__ = tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) return text, ids def _UpperCAmelCase ( self ): """simple docstring""" A__ = '<pad>' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(__a ) , 81 ) def _UpperCAmelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): A__ = tokenizer.vocab_size A__ = len(__a ) self.assertNotEqual(__a , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A__ = ['aaaaa bbbbbb', 'cccccccccdddddddd'] A__ = tokenizer.add_tokens(__a ) A__ = tokenizer.vocab_size A__ = len(__a ) self.assertNotEqual(__a , 0 ) self.assertEqual(__a , __a ) self.assertEqual(__a , len(__a ) ) self.assertEqual(__a , all_size + len(__a ) ) A__ = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=__a ) self.assertGreaterEqual(len(__a ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A__ = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} A__ = tokenizer.add_special_tokens(__a ) A__ = tokenizer.vocab_size A__ = len(__a ) self.assertNotEqual(__a , 0 ) self.assertEqual(__a , __a ) self.assertEqual(__a , len(__a ) ) self.assertEqual(__a , all_size_a + len(__a ) ) A__ = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=__a ) self.assertGreaterEqual(len(__a ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def _UpperCAmelCase ( self ): """simple docstring""" pass def _UpperCAmelCase ( self ): """simple docstring""" pass def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.get_tokenizer() A__ = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(__a , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __a , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) A__ = tokenizer.convert_tokens_to_ids(__a ) # fmt: off self.assertListEqual(__a , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on A__ = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def _UpperCAmelCase ( self ): """simple docstring""" A__ = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off A__ = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=__a , )
554
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , __a , __a=7 , __a=3 , __a=30 , __a=400 , __a=True , __a=None , __a=0.9 , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , ): """simple docstring""" A__ = size if size is not None else {'shortest_edge': 30} A__ = crop_size if crop_size is not None else {'height': 30, 'width': 30} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize_and_center_crop A__ = size A__ = crop_pct A__ = crop_size A__ = do_normalize A__ = image_mean A__ = image_std def _UpperCAmelCase ( self ): """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class snake_case_ ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: List[Any] = PoolFormerImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ): """simple docstring""" A__ = PoolFormerImageProcessingTester(self ) @property def _UpperCAmelCase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(__a , 'size' ) ) self.assertTrue(hasattr(__a , 'crop_pct' ) ) self.assertTrue(hasattr(__a , 'do_normalize' ) ) self.assertTrue(hasattr(__a , 'image_mean' ) ) self.assertTrue(hasattr(__a , 'image_std' ) ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def _UpperCAmelCase ( self ): """simple docstring""" pass def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched A__ = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched A__ = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched A__ = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
554
1
import qiskit def _lowerCAmelCase ( UpperCamelCase__: int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" A = qubits # Using Aer's simulator A = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register A = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , UpperCamelCase__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , UpperCamelCase__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(UpperCamelCase__ ) ) , list(range(UpperCamelCase__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator A = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=10_00 ) return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": print(f'''Total count for various states are: {quantum_entanglement(3)}''')
641
_lowercase : Dict = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
641
1
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} __UpperCamelCase = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } __UpperCamelCase = { '''openbmb/cpm-ant-10b''': 1024, } def lowercase (SCREAMING_SNAKE_CASE_ : Any ) -> Any: SCREAMING_SNAKE_CASE = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE_ , 'r' , encoding='utf-8' ) as reader: SCREAMING_SNAKE_CASE = reader.readlines() for index, token in enumerate(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = token.rstrip('\n' ) SCREAMING_SNAKE_CASE = index return vocab class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<unk>" , lowerCAmelCase__=200 ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = vocab SCREAMING_SNAKE_CASE = unk_token SCREAMING_SNAKE_CASE = max_input_chars_per_word def __A ( self , lowerCAmelCase__ ) -> Any: SCREAMING_SNAKE_CASE = list(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > self.max_input_chars_per_word: return [self.unk_token] SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [] while start < len(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = None while start < end: SCREAMING_SNAKE_CASE = ''.join(chars[start:end] ) if substr in self.vocab: SCREAMING_SNAKE_CASE = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = end return sub_tokens class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : Union[str, Any] = False def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<d>" , lowerCAmelCase__="</d>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="</n>" , lowerCAmelCase__="</_>" , lowerCAmelCase__="left" , **lowerCAmelCase__ , ) -> Dict: requires_backends(self , ['jieba'] ) super().__init__( bod_token=lowerCAmelCase__ , eod_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , line_token=lowerCAmelCase__ , space_token=lowerCAmelCase__ , padding_side=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = bod_token SCREAMING_SNAKE_CASE = eod_token SCREAMING_SNAKE_CASE = load_vocab(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.encoder[space_token] SCREAMING_SNAKE_CASE = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] SCREAMING_SNAKE_CASE = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCAmelCase__ : x[1] ) ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __A ( self ) -> List[str]: return self.encoder[self.bod_token] @property def __A ( self ) -> Optional[int]: return self.encoder[self.eod_token] @property def __A ( self ) -> Any: return self.encoder["\n"] @property def __A ( self ) -> int: return len(self.encoder ) def __A ( self ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , lowerCAmelCase__ ) -> Optional[Any]: SCREAMING_SNAKE_CASE = [] for x in jieba.cut(lowerCAmelCase__ , cut_all=lowerCAmelCase__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCAmelCase__ ) ) return output_tokens def __A ( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: SCREAMING_SNAKE_CASE = [i for i in token_ids if i >= 0] SCREAMING_SNAKE_CASE = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> Tuple: return token in self.encoder def __A ( self , lowerCAmelCase__ ) -> str: return "".join(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> int: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __A ( self , lowerCAmelCase__ ) -> List[Any]: return self.decoder.get(lowerCAmelCase__ , self.unk_token ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if os.path.isdir(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: SCREAMING_SNAKE_CASE = (filename_prefix + '-' if filename_prefix else '') + save_directory SCREAMING_SNAKE_CASE = 0 if " " in self.encoder: SCREAMING_SNAKE_CASE = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: SCREAMING_SNAKE_CASE = self.encoder['\n'] del self.encoder["\n"] SCREAMING_SNAKE_CASE = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCAmelCase__ : x[1] ) ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) return [1] + ([0] * len(lowerCAmelCase__ ))
327
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = """efficientformer""" def __init__( self , lowerCAmelCase__ = [3, 2, 6, 4] , lowerCAmelCase__ = [48, 96, 224, 448] , lowerCAmelCase__ = [True, True, True, True] , lowerCAmelCase__ = 448 , lowerCAmelCase__ = 32 , lowerCAmelCase__ = 4 , lowerCAmelCase__ = 7 , lowerCAmelCase__ = 5 , lowerCAmelCase__ = 8 , lowerCAmelCase__ = 4 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 16 , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = 1e-5 , lowerCAmelCase__ = "gelu" , lowerCAmelCase__ = 0.02 , lowerCAmelCase__ = 1e-12 , lowerCAmelCase__ = 224 , lowerCAmelCase__ = 1e-05 , **lowerCAmelCase__ , ) -> None: super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_expansion_ratio SCREAMING_SNAKE_CASE = downsamples SCREAMING_SNAKE_CASE = dim SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = resolution SCREAMING_SNAKE_CASE = pool_size SCREAMING_SNAKE_CASE = downsample_patch_size SCREAMING_SNAKE_CASE = downsample_stride SCREAMING_SNAKE_CASE = downsample_pad SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = num_metaad_blocks SCREAMING_SNAKE_CASE = distillation SCREAMING_SNAKE_CASE = use_layer_scale SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = batch_norm_eps
327
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : int = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
255
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> List[str]: '''simple docstring''' A__ = len(SCREAMING_SNAKE_CASE_ ) for i in range(length - 1 ): A__ = i for k in range(i + 1 , SCREAMING_SNAKE_CASE_ ): if collection[k] < collection[least]: A__ = k if least != i: A__ , A__ = (collection[i], collection[least]) return collection if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
514
0
from __future__ import annotations _lowercase = "Muhammad Umer Farooq" _lowercase = "MIT" _lowercase = "1.0.0" _lowercase = "Muhammad Umer Farooq" _lowercase = "[email protected]" _lowercase = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class _UpperCAmelCase ( A__ ): def __init__( self , a__): super().__init__() A__ = [] A__ = domain def snake_case_ ( self , a__ , a__): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: A__ = parse.urljoin(self.domain , a__) self.urls.append(a__) def lowerCAmelCase__ ( UpperCamelCase_ : str )-> str: return ".".join(get_sub_domain_name(UpperCamelCase_ ).split('''.''' )[-2:] ) def lowerCAmelCase__ ( UpperCamelCase_ : str )-> str: return parse.urlparse(UpperCamelCase_ ).netloc def lowerCAmelCase__ ( UpperCamelCase_ : str = "https://github.com" )-> list[str]: A__ = get_domain_name(UpperCamelCase_ ) # Initialize the parser A__ = Parser(UpperCamelCase_ ) try: # Open URL A__ = requests.get(UpperCamelCase_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through A__ = set() for link in parser.urls: # open URL. # read = requests.get(link) try: A__ = requests.get(UpperCamelCase_ ) # Get the valid email. A__ = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(UpperCamelCase_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(UpperCamelCase_ ) if __name__ == "__main__": _lowercase = emails_from_url("https://github.com") print(F"{len(emails)} emails found:") print("\n".join(sorted(emails)))
526
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _lowercase = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class _UpperCAmelCase ( A__ ): UpperCamelCase__ = '''albert''' def __init__( self , a__=3_0_0_0_0 , a__=1_2_8 , a__=4_0_9_6 , a__=1_2 , a__=1 , a__=6_4 , a__=1_6_3_8_4 , a__=1 , a__="gelu_new" , a__=0 , a__=0 , a__=5_1_2 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=0.1 , a__="absolute" , a__=0 , a__=2 , a__=3 , **a__ , ): super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__) A__ = vocab_size A__ = embedding_size A__ = hidden_size A__ = num_hidden_layers A__ = num_hidden_groups A__ = num_attention_heads A__ = inner_group_num A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = classifier_dropout_prob A__ = position_embedding_type class _UpperCAmelCase ( A__ ): @property def snake_case_ ( self): if self.task == "multiple-choice": A__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
526
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=_lowerCAmelCase ): a__ : Tuple = ["torch", "transformers", "onnx"] def __init__( self : Optional[int] , *_lowercase : int , **_lowercase : Optional[int] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a ( cls : Tuple , *_lowercase : List[Any] , **_lowercase : Tuple ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a ( cls : List[str] , *_lowercase : Optional[int] , **_lowercase : List[Any] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class _UpperCAmelCase ( metaclass=_lowerCAmelCase ): a__ : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self : Tuple , *_lowercase : Optional[Any] , **_lowercase : List[Any] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a ( cls : Optional[Any] , *_lowercase : Tuple , **_lowercase : Tuple ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a ( cls : Dict , *_lowercase : List[Any] , **_lowercase : Union[str, Any] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class _UpperCAmelCase ( metaclass=_lowerCAmelCase ): a__ : Optional[Any] = ["torch", "transformers", "onnx"] def __init__( self : List[str] , *_lowercase : int , **_lowercase : List[Any] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a ( cls : Any , *_lowercase : str , **_lowercase : Any ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a ( cls : int , *_lowercase : Dict , **_lowercase : List[Any] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class _UpperCAmelCase ( metaclass=_lowerCAmelCase ): a__ : str = ["torch", "transformers", "onnx"] def __init__( self : str , *_lowercase : str , **_lowercase : Optional[int] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a ( cls : Union[str, Any] , *_lowercase : Any , **_lowercase : Tuple ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a ( cls : Tuple , *_lowercase : Tuple , **_lowercase : str ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class _UpperCAmelCase ( metaclass=_lowerCAmelCase ): a__ : int = ["torch", "transformers", "onnx"] def __init__( self : List[str] , *_lowercase : List[str] , **_lowercase : Any ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a ( cls : List[str] , *_lowercase : List[str] , **_lowercase : Union[str, Any] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a ( cls : int , *_lowercase : Any , **_lowercase : Optional[int] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class _UpperCAmelCase ( metaclass=_lowerCAmelCase ): a__ : Any = ["torch", "transformers", "onnx"] def __init__( self : int , *_lowercase : Any , **_lowercase : Optional[int] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a ( cls : Tuple , *_lowercase : Any , **_lowercase : Optional[int] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a ( cls : Optional[Any] , *_lowercase : Optional[int] , **_lowercase : int ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
49
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowercase : '''simple docstring''' @staticmethod def _UpperCAmelCase (*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' a : Optional[int] = MODEL_FOR_OBJECT_DETECTION_MAPPING def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = ObjectDetectionPipeline(model=_lowerCamelCase ,image_processor=_lowerCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ,threshold=0.0 ) self.assertGreater(len(_lowerCamelCase ) ,0 ) for detected_object in outputs: self.assertEqual( _lowerCamelCase ,{ '''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase ), '''box''': {'''xmin''': ANY(_lowerCamelCase ), '''ymin''': ANY(_lowerCamelCase ), '''xmax''': ANY(_lowerCamelCase ), '''ymax''': ANY(_lowerCamelCase )}, } ,) import datasets __lowercase = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' ,'''image''' ,split='''test''' ) __lowercase = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] __lowercase = object_detector(_lowerCamelCase ,threshold=0.0 ) self.assertEqual(len(_lowerCamelCase ) ,len(_lowerCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(_lowerCamelCase ) ,0 ) for detected_object in outputs: self.assertEqual( _lowerCamelCase ,{ '''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase ), '''box''': {'''xmin''': ANY(_lowerCamelCase ), '''ymin''': ANY(_lowerCamelCase ), '''xmax''': ANY(_lowerCamelCase ), '''ymax''': ANY(_lowerCamelCase )}, } ,) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass @require_torch def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = '''hf-internal-testing/tiny-detr-mobilenetsv3''' __lowercase = AutoModelForObjectDetection.from_pretrained(_lowerCamelCase ) __lowercase = AutoFeatureExtractor.from_pretrained(_lowerCamelCase ) __lowercase = ObjectDetectionPipeline(model=_lowerCamelCase ,feature_extractor=_lowerCamelCase ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ,threshold=0.0 ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ] ,) __lowercase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ,threshold=0.0 ,) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], ] ,) @require_torch @slow def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = '''facebook/detr-resnet-50''' __lowercase = AutoModelForObjectDetection.from_pretrained(_lowerCamelCase ) __lowercase = AutoFeatureExtractor.from_pretrained(_lowerCamelCase ) __lowercase = ObjectDetectionPipeline(model=_lowerCamelCase ,feature_extractor=_lowerCamelCase ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] ,) __lowercase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] ,) @require_torch @slow def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = '''facebook/detr-resnet-50''' __lowercase = pipeline('''object-detection''' ,model=_lowerCamelCase ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] ,) __lowercase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] ,) @require_torch @slow def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = 0.9_9_8_5 __lowercase = '''facebook/detr-resnet-50''' __lowercase = pipeline('''object-detection''' ,model=_lowerCamelCase ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ,threshold=_lowerCamelCase ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] ,) @require_torch @require_pytesseract @slow def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = '''Narsil/layoutlmv3-finetuned-funsd''' __lowercase = 0.9_9_9_3 __lowercase = pipeline('''object-detection''' ,model=_lowerCamelCase ,threshold=_lowerCamelCase ) __lowercase = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, {'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, ] ,)
502
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github __A : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowerCAmelCase_ ( ): a__ = Github(os.environ['GITHUB_TOKEN'] ) a__ = g.get_repo('huggingface/diffusers' ) a__ = repo.get_issues(state='open' ) for issue in open_issues: a__ = sorted(issue.get_comments() , key=lambda a : i.created_at , reverse=_A ) a__ = comments[0] if len(_A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
705
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCAmelCase_ ( ): a__ = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' a__ = Image.open(requests.get(a , stream=a ).raw ).convert('RGB' ) return image def lowerCAmelCase_ ( a : int ): a__ = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def lowerCAmelCase_ ( a : int , a : Dict , a : Optional[Any] ): a__ = dct.pop(a ) a__ = val def lowerCAmelCase_ ( a : List[Any] , a : Any ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a__ = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) a__ = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict a__ = torch.cat((q_bias, torch.zeros_like(a , requires_grad=a ), v_bias) ) a__ = qkv_bias def lowerCAmelCase_ ( a : List[Any] ): a__ = 364 if 'coco' in model_name else 224 a__ = InstructBlipVisionConfig(image_size=a ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: a__ = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a__ = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: a__ = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: a__ = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=32001 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 a__ = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() a__ = InstructBlipConfig(vision_config=a , text_config=a , qformer_config=a ) return config, image_size @torch.no_grad() def lowerCAmelCase_ ( a : Optional[int] , a : Optional[Any]=None , a : Any=False ): a__ = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: a__ = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) a__ = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) a__ , a__ = get_blipa_config(a ) a__ = InstructBlipForConditionalGeneration(a ).eval() a__ = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } a__ , a__ = model_name_to_original[model_name] # load original model print('Loading original model...' ) a__ = 'cuda:1' if torch.cuda.is_available() else 'cpu' a__ = 'cuda:2' if torch.cuda.is_available() else 'cpu' a__ , a__ , a__ = load_model_and_preprocess( name=a , model_type=a , is_eval=a , device=a ) original_model.eval() print('Done!' ) # update state dict keys a__ = original_model.state_dict() a__ = create_rename_keys(a ) for src, dest in rename_keys: rename_key(a , a , a ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a__ = state_dict.pop(a ) if key.startswith('Qformer.bert' ): a__ = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: a__ = key.replace('self' , 'attention' ) if "llm_proj" in key: a__ = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: a__ = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): a__ = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): a__ = key.replace('t5' , 'language' ) a__ = val # read in qv biases read_in_q_v_bias(a , a ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(a , strict=a ) a__ = load_demo_image() a__ = 'What is unusual about this image?' # create processor a__ = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=a , image_std=a ) a__ = InstructBlipProcessor( image_processor=a , tokenizer=a , qformer_tokenizer=a , ) a__ = processor(images=a , text=a , return_tensors='pt' ).to(a ) # make sure processor creates exact same pixel values a__ = vis_processors['eval'](a ).unsqueeze(0 ).to(a ) a__ = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , a ) original_model.to(a ) hf_model.to(a ) with torch.no_grad(): if "vicuna" in model_name: a__ = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits a__ = hf_model(**a ).logits else: a__ = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits a__ = tokenizer('\n' , return_tensors='pt' ).input_ids.to(a ) a__ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) a__ = hf_model(**a , labels=a ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape a__ = 1e-4 if 'vicuna' in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , a , atol=a ) print('Looks ok!' ) print('Generating with original model...' ) a__ = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) a__ = hf_model.generate( **a , do_sample=a , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? a__ = 2 print('Original generation:' , a ) a__ = processor.batch_decode(a , skip_special_tokens=a ) a__ = [text.strip() for text in output_text] print('HF generation:' , a ) if pytorch_dump_folder_path is not None: processor.save_pretrained(a ) hf_model.save_pretrained(a ) if push_to_hub: processor.push_to_hub(f'''Salesforce/{model_name}''' ) hf_model.push_to_hub(f'''Salesforce/{model_name}''' ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() __A : Tuple = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( '--model_name', default='instructblip-flan-t5-xl', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __A : Union[str, Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
126
0
import operator def A__ ( __A : str , __A : int = False , __A : Any = None ) ->List[Any]: __A =operator.lt if reverse else operator.gt __A =solution or [] if not arr: return solution __A =[arr.pop(0 )] for i, item in enumerate(__A ): if _operator(__A , sublist[-1] ): sublist.append(__A ) arr.pop(__A ) # merging sublist into solution list if not solution: solution.extend(__A ) else: while sublist: __A =sublist.pop(0 ) for i, xx in enumerate(__A ): if not _operator(__A , __A ): solution.insert(__A , __A ) break else: solution.append(__A ) strand_sort(__A , __A , __A ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
184
'''simple docstring''' def lowerCamelCase__ ( a ): assert ( isinstance(a , a ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 __snake_case , __snake_case = 1, 1 for _ in range(number_of_steps - 1 ): __snake_case , __snake_case = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
356
0
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __magic_name__ ( _UpperCamelCase ): def __init__( self , __magic_name__ , __magic_name__=1_3 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=False , __magic_name__=True , __magic_name__=9_9 , __magic_name__=3_2 , __magic_name__=5 , __magic_name__=4 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_1_2 , __magic_name__=1_6 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=3 , __magic_name__=4 , __magic_name__=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ): """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = DistilBertModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ , __magic_name__ ) _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = DistilBertForMaskedLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = DistilBertForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model( __magic_name__ , attention_mask=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = DistilBertForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = DistilBertForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = self.num_choices _lowerCAmelCase = DistilBertForMultipleChoice(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( __magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : str = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase : Dict = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase : Optional[int] = True UpperCamelCase : List[str] = True UpperCamelCase : Optional[int] = True UpperCamelCase : List[Any] = True def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = DistilBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__magic_name__ , dim=3_7 ) def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = DistilBertModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @slow @require_torch_gpu def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _lowerCAmelCase = True _lowerCAmelCase = model_class(config=__magic_name__ ) _lowerCAmelCase = self._prepare_for_class(__magic_name__ , __magic_name__ ) _lowerCAmelCase = torch.jit.trace( __magic_name__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__magic_name__ , os.path.join(__magic_name__ , 'traced_model.pt' ) ) _lowerCAmelCase = torch.jit.load(os.path.join(__magic_name__ , 'traced_model.pt' ) , map_location=__magic_name__ ) loaded(inputs_dict['input_ids'].to(__magic_name__ ) , inputs_dict['attention_mask'].to(__magic_name__ ) ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = DistilBertModel.from_pretrained('distilbert-base-uncased' ) _lowerCAmelCase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase = model(__magic_name__ , attention_mask=__magic_name__ )[0] _lowerCAmelCase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __magic_name__ ) _lowerCAmelCase = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __magic_name__ , atol=1e-4 ) )
309
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports a__ : Optional[Any] = """ import os """ a__ : Optional[Any] = """ def foo(): import os return False """ a__ : Tuple = """ def foo(): def bar(): if True: import os return False return bar() """ a__ : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ a__ : Optional[Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ a__ : Optional[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ a__ : Dict = """ import os try: import bar except ImportError as e: raise ValueError() """ a__ : str = """ import os try: import bar except: raise ValueError() """ a__ : List[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ a__ : List[str] = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ a__ : Union[str, Any] = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('case', __lowerCamelCase ) def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = os.path.join(__lowerCamelCase, 'test_file.py' ) with open(__lowerCamelCase, 'w' ) as _tmp_file: _tmp_file.write(__lowerCamelCase ) _lowerCAmelCase = get_imports(__lowerCamelCase ) assert parsed_imports == ["os"]
309
1
__a :List[str] = 6_5521 def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = 1 A_ = 0 for plain_chr in plain_text: A_ = (a + ord(__UpperCamelCase )) % MOD_ADLER A_ = (b + a) % MOD_ADLER return (b << 16) | a
86
import math def a__ ( A_ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(A_ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( A_ = 0.1 ): '''simple docstring''' __magic_name__ = 3 __magic_name__ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1, (j + 2) * (j + 2), j + 1 ): primes += is_prime(A_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
529
0
'''simple docstring''' def snake_case_ (UpperCamelCase : Optional[int] ): '''simple docstring''' return " ".join( ''''''.join(word[::-1] ) if len(_UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
716
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case : List[Any] = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Any = ['BeitFeatureExtractor'] _snake_case : Any = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
377
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
252
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = " " ) -> list: """simple docstring""" snake_case__ : str = [] snake_case__ : int = 0 for index, char in enumerate(__lowerCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) snake_case__ : Dict = index + 1 elif index + 1 == len(__lowerCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
252
1
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=False ): """simple docstring""" try: lowercase_ : List[str] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase_ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase_ : Tuple = strtobool(_UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value UpperCamelCase__ = parse_flag_from_env('RUN_SLOW', default=False) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skip("Test was skipped" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(_run_slow_tests , "test is slow" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase=None , _UpperCamelCase=None ): """simple docstring""" if test_case is None: return partial(_UpperCamelCase , version=_UpperCamelCase ) return unittest.skipUnless(is_torch_version(">=" , _UpperCamelCase ) , F"""test requires torch version >= {version}""" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(_UpperCamelCase ) UpperCamelCase__ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_UpperCamelCase ) class _UpperCAmelCase ( unittest.TestCase ): __lowerCamelCase: Union[str, Any] = True @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ): '''simple docstring''' lowercase_ : List[Any] = tempfile.mkdtemp() @classmethod def lowerCAmelCase__ ( cls : List[str] ): '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(a ) class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[Any] , a : Union[mock.Mock, List[mock.Mock]] ): '''simple docstring''' lowercase_ : int = mocks if isinstance(a , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[Any] = AcceleratorState() lowercase_ : List[Any] = tensor[None].clone().to(state.device ) lowercase_ : Any = gather(_UpperCamelCase ).cpu() lowercase_ : Union[str, Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _UpperCamelCase ): return False return True class _UpperCAmelCase : def __init__( self : List[Any] , a : str , a : Any , a : List[Any] ): '''simple docstring''' lowercase_ : Dict = returncode lowercase_ : str = stdout lowercase_ : List[Any] = stderr async def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" while True: lowercase_ : Optional[int] = await stream.readline() if line: callback(_UpperCamelCase ) else: break async def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False ): """simple docstring""" if echo: print("\nRunning: " , " ".join(_UpperCamelCase ) ) lowercase_ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase_ : Tuple = [] lowercase_ : Any = [] def tee(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="" ): lowercase_ : List[Any] = line.decode("utf-8" ).rstrip() sink.append(_UpperCamelCase ) if not quiet: print(_UpperCamelCase , _UpperCamelCase , file=_UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stdout , label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stderr , label="stderr:" ) ) ), ] , timeout=_UpperCamelCase , ) return _RunOutput(await p.wait() , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=180 , _UpperCamelCase=False , _UpperCamelCase=True ): """simple docstring""" lowercase_ : Dict = asyncio.get_event_loop() lowercase_ : List[str] = loop.run_until_complete( _stream_subprocess(_UpperCamelCase , env=_UpperCamelCase , stdin=_UpperCamelCase , timeout=_UpperCamelCase , quiet=_UpperCamelCase , echo=_UpperCamelCase ) ) lowercase_ : Optional[int] = " ".join(_UpperCamelCase ) if result.returncode > 0: lowercase_ : str = "\n".join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class _UpperCAmelCase ( snake_case ): pass def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=False ): """simple docstring""" try: lowercase_ : List[Any] = subprocess.check_output(_UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_UpperCamelCase , "decode" ): lowercase_ : List[str] = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{" ".join(_UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
640
'''simple docstring''' import heapq def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_UpperCamelCase , [-1 * len(_UpperCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase_ : Optional[Any] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase_ : Any = heapq.heappop(_UpperCamelCase )[1][0] chosen_vertices.add(_UpperCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase_ : str = elem[1][1].index(_UpperCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_UpperCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
640
1