code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import numpy as np def lowerCAmelCase_ (lowerCAmelCase__: np.ndarray , lowerCAmelCase__: float ): """simple docstring""" return np.where(vector > 0 , lowerCAmelCase__ , (alpha * (np.exp(lowerCAmelCase__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
556
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments a : Optional[int] = logging.getLogger(__name__) @dataclass class _a ( _lowerCAmelCase ): A = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) A = field(default=_lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) A = field(default=_lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) A = field(default=_lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) A = field( default='''linear''' , metadata={'''help''': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
556
1
'''simple docstring''' def _lowerCAmelCase ( lowercase : Any ) ->int: """simple docstring""" lowercase__ = [] lowercase__ = [] lowercase__ = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowercase__ = len(lowercase ) if (len(lowercase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(lowercase ) , '''Postfix'''.center(lowercase ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowercase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowercase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowercase ) == 0: stack.append(lowercase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowercase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowercase ) # push x to stack print( x.center(8 ) , (''''''.join(lowercase )).ljust(lowercase ) , (''''''.join(lowercase )).ljust(lowercase ) , sep=''' | ''' , ) # Output in tabular format while len(lowercase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(lowercase )).ljust(lowercase ) , (''''''.join(lowercase )).ljust(lowercase ) , sep=''' | ''' , ) # Output in tabular format return "".join(lowercase ) # return Postfix as str def _lowerCAmelCase ( lowercase : str ) ->List[str]: """simple docstring""" lowercase__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowercase ) ): if infix[i] == "(": lowercase__ = ')' # change "(" to ")" elif infix[i] == ")": lowercase__ = '(' # change ")" to "(" return (infix_2_postfix(''''''.join(lowercase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _lowerCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation _lowerCAmelCase = ''''''.join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
711
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _lowerCAmelCase ( lowercase : str , lowercase : str , lowercase : Optional[str] = None ) ->str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path lowercase__ = quote(lowercase ) return hfh.hf_hub_url(lowercase , lowercase , repo_type='''dataset''' , revision=lowercase )
318
0
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __lowercase ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self )-> List[str]: _SCREAMING_SNAKE_CASE = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(A_ ) ) def __magic_name__ ( self )-> Optional[int]: _SCREAMING_SNAKE_CASE = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(A_ ) ) def __magic_name__ ( self )-> List[str]: _SCREAMING_SNAKE_CASE = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(A_ ) ) def __magic_name__ ( self )-> Union[str, Any]: _SCREAMING_SNAKE_CASE = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(A_ ) ) def __magic_name__ ( self )-> Union[str, Any]: _SCREAMING_SNAKE_CASE = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(A_ ) ) def __magic_name__ ( self )-> Union[str, Any]: _SCREAMING_SNAKE_CASE = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _SCREAMING_SNAKE_CASE = 'fp16' self.assertTrue(is_safetensors_compatible(A_ , variant=A_ ) ) def __magic_name__ ( self )-> Optional[Any]: _SCREAMING_SNAKE_CASE = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _SCREAMING_SNAKE_CASE = 'fp16' self.assertTrue(is_safetensors_compatible(A_ , variant=A_ ) ) def __magic_name__ ( self )-> Tuple: # pass variant but use the non-variant filenames _SCREAMING_SNAKE_CASE = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] _SCREAMING_SNAKE_CASE = 'fp16' self.assertTrue(is_safetensors_compatible(A_ , variant=A_ ) ) def __magic_name__ ( self )-> Union[str, Any]: _SCREAMING_SNAKE_CASE = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _SCREAMING_SNAKE_CASE = 'fp16' self.assertFalse(is_safetensors_compatible(A_ , variant=A_ ) ) def __magic_name__ ( self )-> Dict: _SCREAMING_SNAKE_CASE = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] _SCREAMING_SNAKE_CASE = 'fp16' self.assertTrue(is_safetensors_compatible(A_ , variant=A_ ) ) def __magic_name__ ( self )-> List[Any]: # pass variant but use the non-variant filenames _SCREAMING_SNAKE_CASE = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] _SCREAMING_SNAKE_CASE = 'fp16' self.assertTrue(is_safetensors_compatible(A_ , variant=A_ ) ) def __magic_name__ ( self )-> Dict: _SCREAMING_SNAKE_CASE = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _SCREAMING_SNAKE_CASE = 'fp16' self.assertFalse(is_safetensors_compatible(A_ , variant=A_ ) )
605
from __future__ import annotations class __lowercase : """simple docstring""" def __init__( self , A_ )-> None: _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" return 1 + max(depth_of_tree(tree.left ) ,depth_of_tree(tree.right ) ) if tree else 0 def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def SCREAMING_SNAKE_CASE ( ): # Main function for testing. """simple docstring""" _SCREAMING_SNAKE_CASE = Node(1 ) _SCREAMING_SNAKE_CASE = Node(2 ) _SCREAMING_SNAKE_CASE = Node(3 ) _SCREAMING_SNAKE_CASE = Node(4 ) _SCREAMING_SNAKE_CASE = Node(5 ) _SCREAMING_SNAKE_CASE = Node(6 ) _SCREAMING_SNAKE_CASE = Node(7 ) _SCREAMING_SNAKE_CASE = Node(8 ) _SCREAMING_SNAKE_CASE = Node(9 ) print(is_full_binary_tree(UpperCAmelCase__ ) ) print(depth_of_tree(UpperCAmelCase__ ) ) print('Tree is: ' ) display(UpperCAmelCase__ ) if __name__ == "__main__": main()
605
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class __snake_case ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = 'owlvit_text_model' def __init__( self ,a_=4_9408 ,a_=512 ,a_=2048 ,a_=12 ,a_=8 ,a_=16 ,a_="quick_gelu" ,a_=1e-5 ,a_=0.0 ,a_=0.02 ,a_=1.0 ,a_=0 ,a_=4_9406 ,a_=4_9407 ,**a_ ,): """simple docstring""" super().__init__(pad_token_id=a_ ,bos_token_id=a_ ,eos_token_id=a_ ,**a_ ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = hidden_act lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = initializer_range lowerCAmelCase__ = initializer_factor @classmethod def SCREAMING_SNAKE_CASE_ ( cls ,a_ ,**a_ ): """simple docstring""" cls._set_token_in_kwargs(a_ ) lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(a_ ,**a_ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": lowerCAmelCase__ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a_ ,**a_ ) class __snake_case ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = 'owlvit_vision_model' def __init__( self ,a_=768 ,a_=3072 ,a_=12 ,a_=12 ,a_=3 ,a_=768 ,a_=32 ,a_="quick_gelu" ,a_=1e-5 ,a_=0.0 ,a_=0.02 ,a_=1.0 ,**a_ ,): """simple docstring""" super().__init__(**a_ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = initializer_range lowerCAmelCase__ = initializer_factor @classmethod def SCREAMING_SNAKE_CASE_ ( cls ,a_ ,**a_ ): """simple docstring""" cls._set_token_in_kwargs(a_ ) lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(a_ ,**a_ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": lowerCAmelCase__ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a_ ,**a_ ) class __snake_case ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = 'owlvit' SCREAMING_SNAKE_CASE__ = True def __init__( self ,a_=None ,a_=None ,a_=512 ,a_=2.6592 ,a_=True ,**a_ ,): """simple docstring""" super().__init__(**a_ ) if text_config is None: lowerCAmelCase__ = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: lowerCAmelCase__ = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) lowerCAmelCase__ = OwlViTTextConfig(**a_ ) lowerCAmelCase__ = OwlViTVisionConfig(**a_ ) lowerCAmelCase__ = projection_dim lowerCAmelCase__ = logit_scale_init_value lowerCAmelCase__ = return_dict lowerCAmelCase__ = 1.0 @classmethod def SCREAMING_SNAKE_CASE_ ( cls ,a_ ,**a_ ): """simple docstring""" cls._set_token_in_kwargs(a_ ) lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(a_ ,**a_ ) if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a_ ,**a_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ,a_ ,a_ ,**a_ ): """simple docstring""" lowerCAmelCase__ = {} lowerCAmelCase__ = text_config lowerCAmelCase__ = vision_config return cls.from_dict(a_ ,**a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ = self.text_config.to_dict() lowerCAmelCase__ = self.vision_config.to_dict() lowerCAmelCase__ = self.__class__.model_type return output class __snake_case ( SCREAMING_SNAKE_CASE ): @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return 1e-4 def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ = -1 ,a_ = -1 ,a_ = None ,): """simple docstring""" lowerCAmelCase__ = super().generate_dummy_inputs( processor.tokenizer ,batch_size=a_ ,seq_length=a_ ,framework=a_ ) lowerCAmelCase__ = super().generate_dummy_inputs( processor.image_processor ,batch_size=a_ ,framework=a_ ) return {**text_input_dict, **image_input_dict} @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return 14
604
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _lowerCAmelCase : Optional[Any] = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } _lowerCAmelCase : str = {"facebook/blenderbot_small-90M": 5_1_2} def UpperCAmelCase_ ( snake_case__ ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = set() lowerCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ = char lowerCAmelCase__ = set(snake_case__ ) return pairs class __snake_case ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask'] def __init__( self ,a_ ,a_ ,a_="__start__" ,a_="__end__" ,a_="__unk__" ,a_="__null__" ,**a_ ,): """simple docstring""" super().__init__(unk_token=a_ ,bos_token=a_ ,eos_token=a_ ,pad_token=a_ ,**a_ ) with open(a_ ,encoding='utf-8' ) as vocab_handle: lowerCAmelCase__ = json.load(a_ ) lowerCAmelCase__ = {v: k for k, v in self.encoder.items()} with open(a_ ,encoding='utf-8' ) as merges_handle: lowerCAmelCase__ = merges_handle.read().split('\n' )[1:-1] lowerCAmelCase__ = [tuple(merge.split() ) for merge in merges] lowerCAmelCase__ = dict(zip(a_ ,range(len(a_ ) ) ) ) lowerCAmelCase__ = {} @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return len(self.encoder ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return dict(self.encoder ,**self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" if token in self.cache: return self.cache[token] lowerCAmelCase__ = re.sub('([.,!?()])' ,r' \1' ,a_ ) lowerCAmelCase__ = re.sub('(\')' ,r' \1 ' ,a_ ) lowerCAmelCase__ = re.sub(r'\s{2,}' ,' ' ,a_ ) if "\n" in token: lowerCAmelCase__ = token.replace('\n' ,' __newln__' ) lowerCAmelCase__ = token.split(' ' ) lowerCAmelCase__ = [] for token in tokens: if not len(a_ ): continue lowerCAmelCase__ = token.lower() lowerCAmelCase__ = tuple(a_ ) lowerCAmelCase__ = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) lowerCAmelCase__ = get_pairs(a_ ) if not pairs: words.append(a_ ) continue while True: lowerCAmelCase__ = min(a_ ,key=lambda a_ : self.bpe_ranks.get(a_ ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ = bigram lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while i < len(a_ ): try: lowerCAmelCase__ = word.index(a_ ,a_ ) new_word.extend(word[i:j] ) lowerCAmelCase__ = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(a_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ = tuple(a_ ) lowerCAmelCase__ = new_word if len(a_ ) == 1: break else: lowerCAmelCase__ = get_pairs(a_ ) lowerCAmelCase__ = '@@ '.join(a_ ) lowerCAmelCase__ = word[:-4] lowerCAmelCase__ = word words.append(a_ ) return " ".join(a_ ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = re.findall(r'\S+\n?' ,a_ ) for token in words: split_tokens.extend(list(self.bpe(a_ ).split(' ' ) ) ) return split_tokens def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = token.lower() return self.encoder.get(a_ ,self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" return self.decoder.get(a_ ,self.unk_token ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = ' '.join(a_ ).replace('@@ ' ,'' ).strip() return out_string def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ = None ): """simple docstring""" if not os.path.isdir(a_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ = os.path.join( a_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ = os.path.join( a_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(a_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=a_ ,ensure_ascii=a_ ) + '\n' ) lowerCAmelCase__ = 0 with open(a_ ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda a_ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) lowerCAmelCase__ = token_index writer.write(' '.join(a_ ) + '\n' ) index += 1 return vocab_file, merge_file
604
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def UpperCAmelCase_ ( snake_case__ ) -> Dict: """simple docstring""" lowerCAmelCase__ = args.pruning_method lowerCAmelCase__ = args.threshold lowerCAmelCase__ = args.model_name_or_path.rstrip('/' ) lowerCAmelCase__ = args.target_model_path print(f'Load fine-pruned model from {model_name_or_path}' ) lowerCAmelCase__ = torch.load(os.path.join(snake_case__ , 'pytorch_model.bin' ) ) lowerCAmelCase__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCAmelCase__ = tensor print(f'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: lowerCAmelCase__ = tensor print(f'Copied layer {name}' ) elif "bias" in name: lowerCAmelCase__ = tensor print(f'Copied layer {name}' ) else: if pruning_method == "magnitude": lowerCAmelCase__ = MagnitudeBinarizer.apply(inputs=snake_case__ , threshold=snake_case__ ) lowerCAmelCase__ = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue lowerCAmelCase__ = name[:-6] lowerCAmelCase__ = model[f'{prefix_}mask_scores'] lowerCAmelCase__ = TopKBinarizer.apply(snake_case__ , snake_case__ ) lowerCAmelCase__ = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCAmelCase__ = name[:-6] lowerCAmelCase__ = model[f'{prefix_}mask_scores'] lowerCAmelCase__ = ThresholdBinarizer.apply(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase__ = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue lowerCAmelCase__ = name[:-6] lowerCAmelCase__ = model[f'{prefix_}mask_scores'] lowerCAmelCase__ , lowerCAmelCase__ = -0.1, 1.1 lowerCAmelCase__ = torch.sigmoid(snake_case__ ) lowerCAmelCase__ = s * (r - l) + l lowerCAmelCase__ = s_bar.clamp(min=0.0 , max=1.0 ) lowerCAmelCase__ = tensor * mask print(f'Pruned layer {name}' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: lowerCAmelCase__ = os.path.join( os.path.dirname(snake_case__ ) , f'bertarized_{os.path.basename(snake_case__ )}' ) if not os.path.isdir(snake_case__ ): shutil.copytree(snake_case__ , snake_case__ ) print(f'\nCreated folder {target_model_path}' ) torch.save(snake_case__ , os.path.join(snake_case__ , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) _lowerCAmelCase : Optional[int] = parser.parse_args() main(args)
193
def UpperCAmelCase_ ( ) -> int: """simple docstring""" return 1 def UpperCAmelCase_ ( snake_case__ ) -> int: """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase_ ( snake_case__ ) -> int: """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(snake_case__ ) def UpperCAmelCase_ ( snake_case__ ) -> int: """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(snake_case__ ) def UpperCAmelCase_ ( snake_case__ ) -> int: """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(snake_case__ ) def UpperCAmelCase_ ( snake_case__ ) -> int: """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(snake_case__ ) def UpperCAmelCase_ ( snake_case__ ) -> int: """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(snake_case__ ) def UpperCAmelCase_ ( snake_case__ ) -> int: """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(snake_case__ ) def UpperCAmelCase_ ( snake_case__ = 200 ) -> int: """simple docstring""" return two_pound(snake_case__ ) if __name__ == "__main__": print(solution(int(input().strip())))
193
1
"""simple docstring""" import mpmath # for roots of unity import numpy as np class __UpperCAmelCase : def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None ): # Input as list lowerCamelCase__ =list(poly_a or [0] )[:] lowerCamelCase__ =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowerCamelCase__ =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowerCamelCase__ =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowerCamelCase__ =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowerCamelCase__ =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowerCamelCase__ =self.__multiply() def _a ( self , _lowerCamelCase ): lowerCamelCase__ =[[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(_lowerCamelCase ) <= 1: return dft[0] # lowerCamelCase__ =self.c_max_length // 2 while next_ncol > 0: lowerCamelCase__ =[[] for i in range(_lowerCamelCase )] lowerCamelCase__ =self.root**next_ncol # First half of next step lowerCamelCase__ =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowerCamelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowerCamelCase__ =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowerCamelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowerCamelCase__ =new_dft lowerCamelCase__ =next_ncol // 2 return dft[0] def _a ( self ): lowerCamelCase__ =self.__dft("A" ) lowerCamelCase__ =self.__dft("B" ) lowerCamelCase__ =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowerCamelCase__ =2 while next_ncol <= self.c_max_length: lowerCamelCase__ =[[] for i in range(_lowerCamelCase )] lowerCamelCase__ =self.root ** (next_ncol // 2) lowerCamelCase__ =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowerCamelCase__ =new_inverse_c next_ncol *= 2 # Unpack lowerCamelCase__ =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): lowerCamelCase__ ="A = " + " + ".join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowerCamelCase__ ="B = " + " + ".join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowerCamelCase__ ="A*B = " + " + ".join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a =logging.get_logger(__name__) class __UpperCAmelCase ( __lowerCAmelCase ): def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
132
0
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase ( lowercase_ : str , lowercase_ : List[str] ) -> List[str]: '''simple docstring''' lowercase =old_name if "patch_embed" in old_name: lowercase =old_name.split('''.''' ) if layer == "0": lowercase =old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": lowercase =old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": lowercase =old_name.replace('''3''' , '''convolution2''' ) else: lowercase =old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''' , lowercase_ ): lowercase =r"\b\d{2}\b" if bool(re.search(lowercase_ , lowercase_ ) ): lowercase =re.search(R'''\d\.\d\d.''' , lowercase_ ).group() else: lowercase =re.search(R'''\d\.\d.''' , lowercase_ ).group() if int(match[0] ) < 6: lowercase =old_name.replace(lowercase_ , '''''' ) lowercase =trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) lowercase ="intermediate_stages." + trimmed_name else: lowercase =old_name.replace(lowercase_ , '''''' ) if int(match[2] ) < num_meta4D_last_stage: lowercase =trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: lowercase =str(int(match[2] ) - num_meta4D_last_stage ) lowercase =trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: lowercase =trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: lowercase =trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: lowercase =trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: lowercase =trimmed_name.replace('''fc2''' , '''linear_out''' ) lowercase ="last_stage." + trimmed_name elif "network" in old_name and re.search(R'''.\d.''' , lowercase_ ): lowercase =old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: lowercase =new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowercase =new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowercase =new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: lowercase =new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: lowercase =new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: lowercase =new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: lowercase ="efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowercase =new_name.replace('''norm''' , '''layernorm''' ) lowercase ="efficientformer." + new_name else: lowercase ="efficientformer.encoder." + new_name return new_name def UpperCamelCase ( lowercase_ : Optional[int] , lowercase_ : Optional[Any] ) -> Dict: '''simple docstring''' for key in checkpoint.copy().keys(): lowercase =checkpoint.pop(lowercase_ ) lowercase =val return checkpoint def UpperCamelCase ( ) -> Tuple: '''simple docstring''' lowercase ="http://images.cocodataset.org/val2017/000000039769.jpg" lowercase =Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return image def UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] ) -> Any: '''simple docstring''' lowercase =torch.load(lowercase_ , map_location='''cpu''' )["model"] lowercase =EfficientFormerConfig.from_json_file(lowercase_ ) lowercase =EfficientFormerForImageClassificationWithTeacher(lowercase_ ) lowercase ="_".join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) lowercase =config.depths[-1] - config.num_metaad_blocks + 1 lowercase =convert_torch_checkpoint(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() lowercase ={ "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image lowercase =prepare_img() lowercase =2_5_6 lowercase =2_2_4 lowercase =EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) lowercase =processor(images=lowercase_ , return_tensors='''pt''' ).pixel_values # original processing pipeline lowercase =Compose( [ Resize(lowercase_ , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(lowercase_ ), ToTensor(), Normalize(lowercase_ , lowercase_ ), ] ) lowercase =image_transforms(lowercase_ ).unsqueeze(0 ) assert torch.allclose(lowercase_ , lowercase_ ) lowercase =model(lowercase_ ) lowercase =outputs.logits lowercase =(1, 1_0_0_0) if "l1" in model_name: lowercase =torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :1_0] , lowercase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowercase =torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :1_0] , lowercase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowercase =torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( f'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(lowercase_ ) print(f'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f'Bearnardd/{pytorch_dump_path}' , commit_message='''Add model''' , use_temp_dir=lowercase_ , ) processor.push_to_hub( repo_id=f'Bearnardd/{pytorch_dump_path}' , commit_message='''Add image processor''' , use_temp_dir=lowercase_ , ) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
72
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = """▁""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE__ : Optional[int] = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } SCREAMING_SNAKE_CASE__ : Optional[Any] = { """google/reformer-crime-and-punishment""": 5_2_4_2_8_8, } class __lowerCAmelCase ( _UpperCamelCase ): _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case , snake_case="</s>" , snake_case="<unk>" , snake_case=[] , snake_case = None , **snake_case , ) -> None: """simple docstring""" a__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case , unk_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) a__ : Union[str, Any] = vocab_file a__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def _snake_case ( self ) -> str: """simple docstring""" return self.sp_model.get_piece_size() def _snake_case ( self ) -> Dict[str, int]: """simple docstring""" a__ : Dict = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: """simple docstring""" a__ : Tuple = self.__dict__.copy() a__ : Optional[int] = None return state def __setstate__( self , snake_case ) -> Union[str, Any]: """simple docstring""" a__ : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__ : List[Any] = {} a__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , snake_case ) -> List[str]: """simple docstring""" return self.sp_model.encode(snake_case , out_type=snake_case ) def _snake_case ( self , snake_case ) -> Union[str, Any]: """simple docstring""" return self.sp_model.piece_to_id(snake_case ) def _snake_case ( self , snake_case ) -> Any: """simple docstring""" if index < self.sp_model.get_piece_size(): a__ : Optional[Any] = self.sp_model.IdToPiece(snake_case ) return token def _snake_case ( self , snake_case ) -> Any: """simple docstring""" a__ : int = [] a__ : Dict = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case ) + token a__ : Dict = [] else: current_sub_tokens.append(snake_case ) out_string += self.sp_model.decode(snake_case ) return out_string.strip() def _snake_case ( self , snake_case , snake_case = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a__ : Tuple = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , "wb" ) as fi: a__ : str = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
112
0
from math import factorial, radians def _lowercase ( a_ : float ,a_ : int = 1_8 ,a_ : int = 1_0 ) -> float: '''simple docstring''' __magic_name__ = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __magic_name__ = radians(a_ ) __magic_name__ = angle_in_radians __magic_name__ = 3 __magic_name__ = -1 for _ in range(a_ ): result += (b * (angle_in_radians**a)) / factorial(a_ ) __magic_name__ = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(a_ ,a_ ) if __name__ == "__main__": __import__("doctest").testmod()
705
from math import factorial, radians def _lowercase ( a_ : float ,a_ : int = 1_8 ,a_ : int = 1_0 ) -> float: '''simple docstring''' __magic_name__ = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __magic_name__ = radians(a_ ) __magic_name__ = angle_in_radians __magic_name__ = 3 __magic_name__ = -1 for _ in range(a_ ): result += (b * (angle_in_radians**a)) / factorial(a_ ) __magic_name__ = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(a_ ,a_ ) if __name__ == "__main__": __import__("doctest").testmod()
184
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCAmelCase ( lowercase , unittest.TestCase ): lowerCamelCase_ : int = BarthezTokenizer lowerCamelCase_ : Optional[Any] = BarthezTokenizerFast lowerCamelCase_ : Dict = True lowerCamelCase_ : Optional[Any] = True def _snake_case ( self : Union[str, Any]): super().setUp() SCREAMING_SNAKE_CASE_ :Any = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Union[str, Any] = tokenizer def _snake_case ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ :List[Any] = "<pad>" SCREAMING_SNAKE_CASE_ :Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase) , UpperCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase) , UpperCAmelCase) def _snake_case ( self : List[str]): SCREAMING_SNAKE_CASE_ :str = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(vocab_keys[-1] , "<mask>") self.assertEqual(len(UpperCAmelCase) , 10_11_22) def _snake_case ( self : Optional[Any]): self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22) @require_torch def _snake_case ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ :Optional[int] = ["A long paragraph for summarization.", "Another paragraph for summarization."] SCREAMING_SNAKE_CASE_ :Any = [0, 57, 30_18, 7_03_07, 91, 2] SCREAMING_SNAKE_CASE_ :Any = self.tokenizer( UpperCAmelCase , max_length=len(UpperCAmelCase) , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors="pt") self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) SCREAMING_SNAKE_CASE_ :Dict = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase , UpperCAmelCase) def _snake_case ( self : Union[str, Any]): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_ :Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ :List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ :List[str] = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_ :List[Any] = tokenizer.tokenize(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = rust_tokenizer.tokenize(UpperCAmelCase) self.assertListEqual(UpperCAmelCase , UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Tuple = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Any = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase) self.assertListEqual(UpperCAmelCase , UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ :Any = tokenizer.encode(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[Any] = rust_tokenizer.encode(UpperCAmelCase) self.assertListEqual(UpperCAmelCase , UpperCAmelCase) @slow def _snake_case ( self : Optional[Any]): # fmt: off SCREAMING_SNAKE_CASE_ :Union[str, Any] = {"input_ids": [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. SCREAMING_SNAKE_CASE_ :int = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=UpperCAmelCase , )
631
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class _UpperCAmelCase ( unittest.TestCase ): def _snake_case ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ :Optional[int] = ["a", "b", "c"] # Defaults to last layer if both are None SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Dict = get_aligned_output_features_output_indices(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase) self.assertEqual(UpperCAmelCase , ["c"]) self.assertEqual(UpperCAmelCase , [2]) # Out indices set to match out features SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Tuple = get_aligned_output_features_output_indices(["a", "c"] , UpperCAmelCase , UpperCAmelCase) self.assertEqual(UpperCAmelCase , ["a", "c"]) self.assertEqual(UpperCAmelCase , [0, 2]) # Out features set to match out indices SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :int = get_aligned_output_features_output_indices(UpperCAmelCase , [0, 2] , UpperCAmelCase) self.assertEqual(UpperCAmelCase , ["a", "c"]) self.assertEqual(UpperCAmelCase , [0, 2]) # Out features selected from negative indices SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Any = get_aligned_output_features_output_indices(UpperCAmelCase , [-3, -1] , UpperCAmelCase) self.assertEqual(UpperCAmelCase , ["a", "c"]) self.assertEqual(UpperCAmelCase , [-3, -1]) def _snake_case ( self : str): # Stage names must be set with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["a", "b"] , (0, 1) , UpperCAmelCase) # Out features must be a list with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"]) # Out features must be a subset of stage names with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"]) # Out indices must be a list or tuple with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(UpperCAmelCase , 0 , ["a", "b"]) # Out indices must be a subset of stage names with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(UpperCAmelCase , (0, 1) , ["a"]) # Out features and out indices must be the same length with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"]) # Out features should match out indices with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"]) # Out features and out indices should be in order with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"]) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"]) def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ :int = BackboneMixin() SCREAMING_SNAKE_CASE_ :List[str] = ["a", "b", "c"] SCREAMING_SNAKE_CASE_ :str = ["a", "c"] SCREAMING_SNAKE_CASE_ :Union[str, Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly SCREAMING_SNAKE_CASE_ :Tuple = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"]) self.assertEqual(backbone.out_indices , [0, 1]) SCREAMING_SNAKE_CASE_ :List[str] = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"]) self.assertEqual(backbone.out_indices , [-3, -1])
631
1
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowercase_ ( unittest.TestCase ): @slow def _lowercase ( self: Dict): '''simple docstring''' __lowerCAmelCase = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""") __lowerCAmelCase = AutoTokenizer.from_pretrained("""xlm-roberta-base""") __lowerCAmelCase = """The dog is cute and lives in the garden house""" __lowerCAmelCase = jnp.array([tokenizer.encode(_lowercase)]) __lowerCAmelCase = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim __lowerCAmelCase = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]]) __lowerCAmelCase = model(_lowercase)["""last_hidden_state"""] self.assertEqual(output.shape, _lowercase) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1], _lowercase, atol=1e-3))
334
def UpperCAmelCase ( UpperCamelCase__ ) -> str: '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" __lowerCAmelCase = False if num < 0: __lowerCAmelCase = True __lowerCAmelCase = -num __lowerCAmelCase = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(UpperCamelCase__ ) for e in binary ) return "0b" + "".join(str(UpperCamelCase__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
334
1
"""simple docstring""" def A_ ( lowercase = 1000 ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = 3 UpperCAmelCase_ : List[str] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
470
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase_ (lowerCamelCase_ ): """simple docstring""" UpperCamelCase_ : str = ["""image_processor""", """tokenizer"""] UpperCamelCase_ : List[str] = """OwlViTImageProcessor""" UpperCamelCase_ : str = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Any , a_ : Any=None , a_ : str=None , **a_ : List[str] )-> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , a_ , ) UpperCAmelCase_ : List[Any] = kwargs.pop("""feature_extractor""" ) UpperCAmelCase_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(a_ , a_ ) def __call__( self : Any , a_ : Optional[int]=None , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="max_length" , a_ : List[Any]="np" , **a_ : int )-> Tuple: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(a_ , a_ ) or (isinstance(a_ , a_ ) and not isinstance(text[0] , a_ )): UpperCAmelCase_ : List[str] = [self.tokenizer(a_ , padding=a_ , return_tensors=a_ , **a_ )] elif isinstance(a_ , a_ ) and isinstance(text[0] , a_ ): UpperCAmelCase_ : Optional[int] = [] # Maximum number of queries across batch UpperCAmelCase_ : Union[str, Any] = max([len(a_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(a_ ) != max_num_queries: UpperCAmelCase_ : str = t + [""" """] * (max_num_queries - len(a_ )) UpperCAmelCase_ : Optional[int] = self.tokenizer(a_ , padding=a_ , return_tensors=a_ , **a_ ) encodings.append(a_ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCAmelCase_ : List[Any] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Tuple = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase_ : Tuple = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Tuple = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase_ : str = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCAmelCase_ : str = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase_ : Union[str, Any] = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Optional[int] = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCAmelCase_ : Union[str, Any] = BatchEncoding() UpperCAmelCase_ : int = input_ids UpperCAmelCase_ : List[str] = attention_mask if query_images is not None: UpperCAmelCase_ : Optional[int] = BatchEncoding() UpperCAmelCase_ : Any = self.image_processor( a_ , return_tensors=a_ , **a_ ).pixel_values UpperCAmelCase_ : Optional[Any] = query_pixel_values if images is not None: UpperCAmelCase_ : str = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: UpperCAmelCase_ : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase_ : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def a ( self : Any , *a_ : Optional[Any] , **a_ : List[str] )-> Union[str, Any]: """simple docstring""" return self.image_processor.post_process(*a_ , **a_ ) def a ( self : Tuple , *a_ : List[str] , **a_ : Dict )-> Optional[int]: """simple docstring""" return self.image_processor.post_process_object_detection(*a_ , **a_ ) def a ( self : Optional[int] , *a_ : Tuple , **a_ : Optional[int] )-> Optional[Any]: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*a_ , **a_ ) def a ( self : str , *a_ : Optional[int] , **a_ : str )-> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*a_ , **a_ ) def a ( self : str , *a_ : List[Any] , **a_ : List[str] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*a_ , **a_ ) @property def a ( self : Tuple )-> int: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , a_ , ) return self.image_processor_class @property def a ( self : Optional[Any] )-> int: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , a_ , ) return self.image_processor
470
1
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __A : Any = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
450
from __future__ import annotations import math def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if num <= 0: SCREAMING_SNAKE_CASE = f"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = [True] * (num + 1) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE ): if sieve[i] is True: SCREAMING_SNAKE_CASE = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
450
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCamelCase_ : List[Any] = logging.get_logger(__name__) def A__ ( lowerCamelCase , lowerCamelCase ) -> Dict: try: with open(lowerCamelCase , """rb""" ) as flax_state_f: UpperCamelCase_: Tuple = from_bytes(lowerCamelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowerCamelCase ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(lowerCamelCase , lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase ) -> str: try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights UpperCamelCase_: int = flatten_dict(jax.tree_util.tree_map(lambda lowerCamelCase : x.dtype == jnp.bfloataa , lowerCamelCase ) ).values() if any(lowerCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) UpperCamelCase_: Optional[int] = jax.tree_util.tree_map( lambda lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCamelCase ) UpperCamelCase_: List[str] = """""" UpperCamelCase_: Optional[Any] = flatten_dict(lowerCamelCase , sep=""".""" ) UpperCamelCase_: List[str] = pt_model.state_dict() # keep track of unexpected & missing keys UpperCamelCase_: int = [] UpperCamelCase_: List[str] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase_: Tuple = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: UpperCamelCase_: str = flax_key_tuple_array[:-1] + ["""weight"""] UpperCamelCase_: Any = jnp.transpose(lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": UpperCamelCase_: Tuple = flax_key_tuple_array[:-1] + ["""weight"""] UpperCamelCase_: int = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": UpperCamelCase_: Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowerCamelCase ): UpperCamelCase_: Dict = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) UpperCamelCase_: Tuple = """.""".join(lowerCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict UpperCamelCase_: Union[str, Any] = np.asarray(lowerCamelCase ) if not isinstance(lowerCamelCase , np.ndarray ) else flax_tensor UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ) # remove from missing keys missing_keys.remove(lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCamelCase ) pt_model.load_state_dict(lowerCamelCase ) # re-transform missing_keys to list UpperCamelCase_: int = list(lowerCamelCase ) if len(lowerCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(lowerCamelCase ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) return pt_model
548
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Tuple = (CMStochasticIterativeScheduler,) __UpperCamelCase : List[str] = 10 def lowerCAmelCase__ ( self : Optional[int] , **snake_case_ : List[str] ): UpperCamelCase_: Optional[int] = { """num_train_timesteps""": 201, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**snake_case_ ) return config def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Tuple = 10 UpperCamelCase_: Tuple = self.get_scheduler_config() UpperCamelCase_: List[str] = self.scheduler_classes[0](**snake_case_ ) scheduler.set_timesteps(snake_case_ ) UpperCamelCase_: int = scheduler.timesteps[0] UpperCamelCase_: str = scheduler.timesteps[1] UpperCamelCase_: Optional[int] = self.dummy_sample UpperCamelCase_: int = 0.1 * sample UpperCamelCase_: Optional[Any] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample UpperCamelCase_: Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase__ ( self : Optional[Any] ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=snake_case_ ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = self.scheduler_classes[0] UpperCamelCase_: List[str] = self.get_scheduler_config() UpperCamelCase_: Tuple = scheduler_class(**snake_case_ ) UpperCamelCase_: Optional[int] = 1 scheduler.set_timesteps(snake_case_ ) UpperCamelCase_: Any = scheduler.timesteps UpperCamelCase_: int = torch.manual_seed(0 ) UpperCamelCase_: Any = self.dummy_model() UpperCamelCase_: Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(snake_case_ ): # 1. scale model input UpperCamelCase_: str = scheduler.scale_model_input(snake_case_ , snake_case_ ) # 2. predict noise residual UpperCamelCase_: List[Any] = model(snake_case_ , snake_case_ ) # 3. predict previous sample x_t-1 UpperCamelCase_: str = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample UpperCamelCase_: Union[str, Any] = pred_prev_sample UpperCamelCase_: int = torch.sum(torch.abs(snake_case_ ) ) UpperCamelCase_: List[Any] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Dict = self.scheduler_classes[0] UpperCamelCase_: Tuple = self.get_scheduler_config() UpperCamelCase_: List[Any] = scheduler_class(**snake_case_ ) UpperCamelCase_: str = [106, 0] scheduler.set_timesteps(timesteps=snake_case_ ) UpperCamelCase_: int = scheduler.timesteps UpperCamelCase_: List[Any] = torch.manual_seed(0 ) UpperCamelCase_: List[Any] = self.dummy_model() UpperCamelCase_: int = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCamelCase_: Optional[int] = scheduler.scale_model_input(snake_case_ , snake_case_ ) # 2. predict noise residual UpperCamelCase_: Dict = model(snake_case_ , snake_case_ ) # 3. predict previous sample x_t-1 UpperCamelCase_: str = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample UpperCamelCase_: List[str] = pred_prev_sample UpperCamelCase_: Union[str, Any] = torch.sum(torch.abs(snake_case_ ) ) UpperCamelCase_: str = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def lowerCAmelCase__ ( self : str ): UpperCamelCase_: int = self.scheduler_classes[0] UpperCamelCase_: Optional[int] = self.get_scheduler_config() UpperCamelCase_: Tuple = scheduler_class(**snake_case_ ) UpperCamelCase_: Any = [39, 30, 12, 15, 0] with self.assertRaises(snake_case_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=snake_case_ ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.scheduler_classes[0] UpperCamelCase_: Tuple = self.get_scheduler_config() UpperCamelCase_: List[str] = scheduler_class(**snake_case_ ) UpperCamelCase_: Tuple = [39, 30, 12, 1, 0] UpperCamelCase_: List[Any] = len(snake_case_ ) with self.assertRaises(snake_case_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=snake_case_ , timesteps=snake_case_ ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Any = self.scheduler_classes[0] UpperCamelCase_: int = self.get_scheduler_config() UpperCamelCase_: int = scheduler_class(**snake_case_ ) UpperCamelCase_: int = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=snake_case_ )
548
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowercase = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowercase_ : def __init__( self , __A , __A=14 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=3 , __A=4 , __A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ : int =parent SCREAMING_SNAKE_CASE_ : Dict =batch_size SCREAMING_SNAKE_CASE_ : int =seq_length SCREAMING_SNAKE_CASE_ : Tuple =is_training SCREAMING_SNAKE_CASE_ : int =use_token_type_ids SCREAMING_SNAKE_CASE_ : str =use_input_mask SCREAMING_SNAKE_CASE_ : Tuple =use_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] =use_mc_token_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] =vocab_size SCREAMING_SNAKE_CASE_ : List[Any] =hidden_size SCREAMING_SNAKE_CASE_ : Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[Any] =num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[int] =intermediate_size SCREAMING_SNAKE_CASE_ : Tuple =hidden_act SCREAMING_SNAKE_CASE_ : Dict =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict =max_position_embeddings SCREAMING_SNAKE_CASE_ : List[str] =type_vocab_size SCREAMING_SNAKE_CASE_ : List[Any] =type_sequence_label_size SCREAMING_SNAKE_CASE_ : str =initializer_range SCREAMING_SNAKE_CASE_ : Tuple =num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] =num_choices SCREAMING_SNAKE_CASE_ : Optional[Any] =scope SCREAMING_SNAKE_CASE_ : str =self.vocab_size - 1 def _snake_case ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Tuple =None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Dict =None if self.use_mc_token_ids: SCREAMING_SNAKE_CASE_ : Any =ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) SCREAMING_SNAKE_CASE_ : Tuple =None SCREAMING_SNAKE_CASE_ : int =None SCREAMING_SNAKE_CASE_ : Optional[Any] =None if self.use_labels: SCREAMING_SNAKE_CASE_ : Dict =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Optional[Any] =ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : Optional[Any] =self.get_config() SCREAMING_SNAKE_CASE_ : Union[str, Any] =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case ( self ) -> List[Any]: return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _snake_case ( self , __A , __A , __A , __A , __A , *__A ) -> int: SCREAMING_SNAKE_CASE_ : List[str] =CTRLModel(config=__A ) model.to(__A ) model.eval() model(__A , token_type_ids=__A , head_mask=__A ) model(__A , token_type_ids=__A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _snake_case ( self , __A , __A , __A , __A , __A , *__A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Dict =CTRLLMHeadModel(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : int =model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self ) -> str: SCREAMING_SNAKE_CASE_ : Dict =self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : int =config_and_inputs SCREAMING_SNAKE_CASE_ : int ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def _snake_case ( self , __A , __A , __A , __A , *__A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Any =self.num_labels SCREAMING_SNAKE_CASE_ : Optional[Any] =CTRLForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict =model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowercase_ ( A , A , A , unittest.TestCase ): __lowerCamelCase = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __lowerCamelCase = (CTRLLMHeadModel,) if is_torch_available() else () __lowerCamelCase = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False def _snake_case ( self , __A , __A , __A , __A , __A ) -> Optional[int]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _snake_case ( self ) -> int: SCREAMING_SNAKE_CASE_ : Tuple =CTRLModelTester(self ) SCREAMING_SNAKE_CASE_ : Dict =ConfigTester(self , config_class=__A , n_embd=37 ) def _snake_case ( self ) -> Union[str, Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> List[str]: self.config_tester.run_common_tests() def _snake_case ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__A ) def _snake_case ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _snake_case ( self ) -> Optional[int]: pass @slow def _snake_case ( self ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : str =CTRLModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _snake_case ( self ) -> Optional[int]: pass @require_torch class lowercase_ ( unittest.TestCase ): def _snake_case ( self ) -> List[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Any =CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(__A ) SCREAMING_SNAKE_CASE_ : Any =torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=__A ) # Legal the president is SCREAMING_SNAKE_CASE_ : Optional[Any] =[ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a SCREAMING_SNAKE_CASE_ : Dict =model.generate(__A , do_sample=__A ) self.assertListEqual(output_ids[0].tolist() , __A )
431
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): lowerCamelCase__ = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCamelCase__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] lowerCamelCase__ = np.concatenate(__lowerCAmelCase , axis=0 ) lowerCamelCase__ = np.array(__lowerCAmelCase ).astype(np.floataa ) / 255.0 lowerCamelCase__ = image.transpose(0 , 3 , 1 , 2 ) lowerCamelCase__ = 2.0 * image - 1.0 lowerCamelCase__ = torch.from_numpy(__lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): lowerCamelCase__ = torch.cat(__lowerCAmelCase , dim=0 ) return image def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any=0.9995 ): if not isinstance(__lowerCAmelCase , np.ndarray ): lowerCamelCase__ = True lowerCamelCase__ = va.device lowerCamelCase__ = va.cpu().numpy() lowerCamelCase__ = va.cpu().numpy() lowerCamelCase__ = np.sum(va * va / (np.linalg.norm(__lowerCAmelCase ) * np.linalg.norm(__lowerCAmelCase )) ) if np.abs(__lowerCAmelCase ) > DOT_THRESHOLD: lowerCamelCase__ = (1 - t) * va + t * va else: lowerCamelCase__ = np.arccos(__lowerCAmelCase ) lowerCamelCase__ = np.sin(__lowerCAmelCase ) lowerCamelCase__ = theta_a * t lowerCamelCase__ = np.sin(__lowerCAmelCase ) lowerCamelCase__ = np.sin(theta_a - theta_t ) / sin_theta_a lowerCamelCase__ = sin_theta_t / sin_theta_a lowerCamelCase__ = sa * va + sa * va if inputs_are_torch: lowerCamelCase__ = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) return va def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ): lowerCamelCase__ = F.normalize(__lowerCAmelCase , dim=-1 ) lowerCamelCase__ = F.normalize(__lowerCAmelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str ): for param in model.parameters(): lowerCamelCase__ = value class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,): super().__init__() self.register_modules( vae=_lowerCAmelCase ,text_encoder=_lowerCAmelCase ,clip_model=_lowerCAmelCase ,tokenizer=_lowerCAmelCase ,unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ,coca_model=_lowerCAmelCase ,coca_tokenizer=_lowerCAmelCase ,coca_transform=_lowerCAmelCase ,) lowerCamelCase__ = ( feature_extractor.size if isinstance(feature_extractor.size ,_lowerCAmelCase ) else feature_extractor.size["""shortest_edge"""] ) lowerCamelCase__ = transforms.Normalize(mean=feature_extractor.image_mean ,std=feature_extractor.image_std ) set_requires_grad(self.text_encoder ,_lowerCAmelCase ) set_requires_grad(self.clip_model ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def UpperCamelCase_ ( self ): self.enable_attention_slicing(_lowerCAmelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.vae ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.vae ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.unet ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.unet ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): # get the original timestep using init_timestep lowerCamelCase__ = min(int(num_inference_steps * strength ) ,_lowerCAmelCase ) lowerCamelCase__ = max(num_inference_steps - init_timestep ,0 ) lowerCamelCase__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ): if not isinstance(_lowerCAmelCase ,torch.Tensor ): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(_lowerCAmelCase )}''' ) lowerCamelCase__ = image.to(device=_lowerCAmelCase ,dtype=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowerCAmelCase ) ] lowerCamelCase__ = torch.cat(_lowerCAmelCase ,dim=0 ) else: lowerCamelCase__ = self.vae.encode(_lowerCAmelCase ).latent_dist.sample(_lowerCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase__ = 0.1_8215 * init_latents lowerCamelCase__ = init_latents.repeat_interleave(_lowerCAmelCase ,dim=0 ) lowerCamelCase__ = randn_tensor(init_latents.shape ,generator=_lowerCAmelCase ,device=_lowerCAmelCase ,dtype=_lowerCAmelCase ) # get latents lowerCamelCase__ = self.scheduler.add_noise(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = init_latents return latents def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = self.coca_transform(_lowerCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowerCamelCase__ = self.coca_model.generate(transformed_image.to(device=self.device ,dtype=self.coca_model.dtype ) ) lowerCamelCase__ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" ,"""""" ).rstrip(""" .,""" ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.feature_extractor.preprocess(_lowerCAmelCase ) lowerCamelCase__ = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() lowerCamelCase__ = self.clip_model.get_image_features(_lowerCAmelCase ) lowerCamelCase__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=_lowerCAmelCase ) lowerCamelCase__ = image_embeddings_clip.repeat_interleave(_lowerCAmelCase ,dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): lowerCamelCase__ = latents.detach().requires_grad_() lowerCamelCase__ = self.scheduler.scale_model_input(_lowerCAmelCase ,_lowerCAmelCase ) # predict the noise residual lowerCamelCase__ = self.unet(_lowerCAmelCase ,_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ).sample if isinstance(self.scheduler ,(PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowerCamelCase__ = self.scheduler.alphas_cumprod[timestep] lowerCamelCase__ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowerCamelCase__ = torch.sqrt(_lowerCAmelCase ) lowerCamelCase__ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler ,_lowerCAmelCase ): lowerCamelCase__ = self.scheduler.sigmas[index] lowerCamelCase__ = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase__ = 1 / 0.1_8215 * sample lowerCamelCase__ = self.vae.decode(_lowerCAmelCase ).sample lowerCamelCase__ = (image / 2 + 0.5).clamp(0 ,1 ) lowerCamelCase__ = transforms.Resize(self.feature_extractor_size )(_lowerCAmelCase ) lowerCamelCase__ = self.normalize(_lowerCAmelCase ).to(latents.dtype ) lowerCamelCase__ = self.clip_model.get_image_features(_lowerCAmelCase ) lowerCamelCase__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=_lowerCAmelCase ) lowerCamelCase__ = spherical_dist_loss(_lowerCAmelCase ,_lowerCAmelCase ).mean() * clip_guidance_scale lowerCamelCase__ = -torch.autograd.grad(_lowerCAmelCase ,_lowerCAmelCase )[0] if isinstance(self.scheduler ,_lowerCAmelCase ): lowerCamelCase__ = latents.detach() + grads * (sigma**2) lowerCamelCase__ = noise_pred_original else: lowerCamelCase__ = noise_pred_original - torch.sqrt(_lowerCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = 5_12 ,_lowerCAmelCase = 5_12 ,_lowerCAmelCase = 0.6 ,_lowerCAmelCase = 50 ,_lowerCAmelCase = 7.5 ,_lowerCAmelCase = 1 ,_lowerCAmelCase = 0.0 ,_lowerCAmelCase = 1_00 ,_lowerCAmelCase = None ,_lowerCAmelCase = "pil" ,_lowerCAmelCase = True ,_lowerCAmelCase = 0.8 ,_lowerCAmelCase = 0.1 ,_lowerCAmelCase = 0.1 ,): if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(_lowerCAmelCase )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(_lowerCAmelCase ,torch.Generator ) and batch_size > 1: lowerCamelCase__ = [generator] + [None] * (batch_size - 1) lowerCamelCase__ = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] lowerCamelCase__ = [x[0] for x in coca_is_none if x[1]] lowerCamelCase__ = """, """.join(_lowerCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_lowerCAmelCase ): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowerCamelCase__ = self.get_image_description(_lowerCAmelCase ) if style_prompt is None: if len(_lowerCAmelCase ): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowerCamelCase__ = self.get_image_description(_lowerCAmelCase ) # get prompt text embeddings for content and style lowerCamelCase__ = self.tokenizer( _lowerCAmelCase ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=_lowerCAmelCase ,return_tensors="""pt""" ,) lowerCamelCase__ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowerCamelCase__ = self.tokenizer( _lowerCAmelCase ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=_lowerCAmelCase ,return_tensors="""pt""" ,) lowerCamelCase__ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowerCamelCase__ = slerp(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # duplicate text embeddings for each generation per prompt lowerCamelCase__ = text_embeddings.repeat_interleave(_lowerCAmelCase ,dim=0 ) # set timesteps lowerCamelCase__ = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowerCamelCase__ = {} if accepts_offset: lowerCamelCase__ = 1 self.scheduler.set_timesteps(_lowerCAmelCase ,**_lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowerCamelCase__ , lowerCamelCase__ = self.get_timesteps(_lowerCAmelCase ,_lowerCAmelCase ,self.device ) lowerCamelCase__ = timesteps[:1].repeat(_lowerCAmelCase ) # Preprocess image lowerCamelCase__ = preprocess(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self.prepare_latents( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,text_embeddings.dtype ,self.device ,_lowerCAmelCase ) lowerCamelCase__ = preprocess(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self.prepare_latents( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,text_embeddings.dtype ,self.device ,_lowerCAmelCase ) lowerCamelCase__ = slerp(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) if clip_guidance_scale > 0: lowerCamelCase__ = self.get_clip_image_embeddings(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self.get_clip_image_embeddings(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = slerp( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase__ = content_text_input.input_ids.shape[-1] lowerCamelCase__ = self.tokenizer([""""""] ,padding="""max_length""" ,max_length=_lowerCAmelCase ,return_tensors="""pt""" ) lowerCamelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowerCamelCase__ = uncond_embeddings.repeat_interleave(_lowerCAmelCase ,dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase__ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowerCamelCase__ = torch.randn(_lowerCAmelCase ,generator=_lowerCAmelCase ,device="""cpu""" ,dtype=_lowerCAmelCase ).to( self.device ) else: lowerCamelCase__ = torch.randn(_lowerCAmelCase ,generator=_lowerCAmelCase ,device=self.device ,dtype=_lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase__ = {} if accepts_eta: lowerCamelCase__ = eta # check if the scheduler accepts generator lowerCamelCase__ = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowerCamelCase__ = generator with self.progress_bar(total=_lowerCAmelCase ): for i, t in enumerate(_lowerCAmelCase ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ = self.scheduler.scale_model_input(_lowerCAmelCase ,_lowerCAmelCase ) # predict the noise residual lowerCamelCase__ = self.unet(_lowerCAmelCase ,_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: lowerCamelCase__ , lowerCamelCase__ = noise_pred.chunk(2 ) lowerCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowerCamelCase__ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowerCamelCase__ , lowerCamelCase__ = self.cond_fn( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ = self.scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase__ = 1 / 0.1_8215 * latents lowerCamelCase__ = self.vae.decode(_lowerCAmelCase ).sample lowerCamelCase__ = (image / 2 + 0.5).clamp(0 ,1 ) lowerCamelCase__ = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowerCamelCase__ = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_lowerCAmelCase ,nsfw_content_detected=_lowerCAmelCase )
50
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE : int = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
28
0
'''simple docstring''' import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A: Any = logging.get_logger(__name__) class UpperCAmelCase ( snake_case__ ): _A : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , __A="</s>" , __A="<unk>" , __A="<pad>" , __A=125 , __A=None , **__A , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase = [f'<extra_id_{i}>' for i in range(_A )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __UpperCAmelCase = len(set(filter(lambda __A : bool('extra_id' in str(_A ) ) , _A ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) __UpperCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else pad_token __UpperCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else eos_token __UpperCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else unk_token super().__init__( eos_token=_A , unk_token=_A , pad_token=_A , extra_ids=_A , additional_special_tokens=_A , **_A , ) __UpperCAmelCase = extra_ids __UpperCAmelCase = 2**8 # utf is 8 bits # define special tokens dict __UpperCAmelCase = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __UpperCAmelCase = len(self.special_tokens_encoder ) __UpperCAmelCase = len(_A ) for i, token in enumerate(_A ): __UpperCAmelCase = self.vocab_size + i - n __UpperCAmelCase = {v: k for k, v in self.special_tokens_encoder.items()} @property def __lowerCamelCase ( self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __lowerCamelCase ( self , __A , __A = None , __A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_A )) + [1] return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] def __lowerCamelCase ( self , __A ): if len(_A ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def __lowerCamelCase ( self , __A , __A = None ): __UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __lowerCamelCase ( self , __A , __A = None ): __UpperCAmelCase = self._add_eos_if_not_present(_A ) if token_ids_a is None: return token_ids_a else: __UpperCAmelCase = self._add_eos_if_not_present(_A ) return token_ids_a + token_ids_a def __lowerCamelCase ( self , __A ): __UpperCAmelCase = [chr(_A ) for i in text.encode('utf-8' )] return tokens def __lowerCamelCase ( self , __A ): if token in self.special_tokens_encoder: __UpperCAmelCase = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __UpperCAmelCase = self.added_tokens_encoder[token] elif len(_A ) != 1: __UpperCAmelCase = self.unk_token_id else: __UpperCAmelCase = ord(_A ) + self._num_special_tokens return token_id def __lowerCamelCase ( self , __A ): if index in self.special_tokens_decoder: __UpperCAmelCase = self.special_tokens_decoder[index] else: __UpperCAmelCase = chr(index - self._num_special_tokens ) return token def __lowerCamelCase ( self , __A ): __UpperCAmelCase = b'' for token in tokens: if token in self.special_tokens_decoder: __UpperCAmelCase = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: __UpperCAmelCase = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: __UpperCAmelCase = token.encode('utf-8' ) elif token in self.added_tokens_encoder: __UpperCAmelCase = token.encode('utf-8' ) else: __UpperCAmelCase = bytes([ord(_A )] ) bstring += tok_string __UpperCAmelCase = bstring.decode('utf-8' , errors='ignore' ) return string def __lowerCamelCase ( self , __A , __A = None ): return ()
711
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , )-> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative in a semiconductor' ) elif hole_conc < 0: raise ValueError('Hole concentration cannot be negative in a semiconductor' ) elif intrinsic_conc < 0: raise ValueError( 'Intrinsic concentration cannot be negative in a semiconductor' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
617
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _A : int = 'hf-internal-testing/tiny-random-bert' _A : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') _A : str = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self : Dict ) ->Optional[int]: lowerCamelCase__ : Optional[int] = cached_file(A , A ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(A ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(A , A ) ) ) with open(os.path.join(A , '''refs''' , '''main''' ) ) as f: lowerCamelCase__ : Optional[int] = f.read() self.assertEqual(A , os.path.join(A , '''snapshots''' , A , A ) ) self.assertTrue(os.path.isfile(A ) ) # File is cached at the same place the second time. lowerCamelCase__ : str = cached_file(A , A ) self.assertEqual(A , A ) # Using a specific revision to test the full commit hash. lowerCamelCase__ : Tuple = cached_file(A , A , revision='''9b8c223''' ) self.assertEqual(A , os.path.join(A , '''snapshots''' , A , A ) ) def __lowerCamelCase ( self : Any ) ->int: with self.assertRaisesRegex(A , '''is not a valid model identifier''' ): lowerCamelCase__ : Tuple = cached_file('''tiny-random-bert''' , A ) with self.assertRaisesRegex(A , '''is not a valid git identifier''' ): lowerCamelCase__ : List[Any] = cached_file(A , A , revision='''aaaa''' ) with self.assertRaisesRegex(A , '''does not appear to have a file named''' ): lowerCamelCase__ : Union[str, Any] = cached_file(A , '''conf''' ) def __lowerCamelCase ( self : Union[str, Any] ) ->List[str]: with self.assertRaisesRegex(A , '''does not appear to have a file named''' ): lowerCamelCase__ : Tuple = cached_file(A , '''conf''' ) with open(os.path.join(A , '''refs''' , '''main''' ) ) as f: lowerCamelCase__ : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(A , '''.no_exist''' , A , '''conf''' ) ) ) lowerCamelCase__ : Dict = cached_file(A , '''conf''' , _raise_exceptions_for_missing_entries=A ) self.assertIsNone(A ) lowerCamelCase__ : str = cached_file(A , '''conf''' , local_files_only=A , _raise_exceptions_for_missing_entries=A ) self.assertIsNone(A ) lowerCamelCase__ : Union[str, Any] = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Dict = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=A ) as mock_head: lowerCamelCase__ : Optional[int] = cached_file(A , '''conf''' , _raise_exceptions_for_connection_errors=A ) self.assertIsNone(A ) # This check we did call the fake head request mock_head.assert_called() def __lowerCamelCase ( self : Tuple ) ->Union[str, Any]: self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , A ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , A ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , A ) ) def __lowerCamelCase ( self : List[str] ) ->List[Any]: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(A , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , A ) # The function raises if the revision does not exist. with self.assertRaisesRegex(A , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , A , revision='''ahaha''' ) lowerCamelCase__ : Tuple = get_file_from_repo('''bert-base-cased''' , A ) # The name is the cached name which is not very easy to test, so instead we load the content. lowerCamelCase__ : Union[str, Any] = json.loads(open(A , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_6_8 ) def __lowerCamelCase ( self : Optional[int] ) ->Any: with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : Dict = Path(A ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(A , '''a.txt''' ) , str(A ) ) self.assertIsNone(get_file_from_repo(A , '''b.txt''' ) )
315
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Optional[Any] = XLMTokenizer _UpperCAmelCase : List[Any] = False def __lowerCamelCase ( self : Union[str, Any] ) ->int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowerCamelCase__ : List[Any] = dict(zip(A , range(len(A ) ) ) ) lowerCamelCase__ : str = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowerCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(A ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(A ) ) def __lowerCamelCase ( self : str , A : Dict ) ->Tuple: lowerCamelCase__ : str = '''lower newer''' lowerCamelCase__ : Optional[int] = '''lower newer''' return input_text, output_text def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[Any]: lowerCamelCase__ : Dict = XLMTokenizer(self.vocab_file , self.merges_file ) lowerCamelCase__ : Optional[Any] = '''lower''' lowerCamelCase__ : Any = ['''low''', '''er</w>'''] lowerCamelCase__ : List[Any] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) lowerCamelCase__ : int = tokens + ['''<unk>'''] lowerCamelCase__ : List[str] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) @slow def __lowerCamelCase ( self : Union[str, Any] ) ->Union[str, Any]: lowerCamelCase__ : Tuple = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) lowerCamelCase__ : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=A ) lowerCamelCase__ : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A ) lowerCamelCase__ : str = tokenizer.build_inputs_with_special_tokens(A ) lowerCamelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
315
1
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _A = random.Random() def lowercase_ ( A__ , A__=1.0 , A__=None , A__=None ) -> Optional[int]: """simple docstring""" if rng is None: snake_case = global_rng snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase ( unittest.TestCase ): def __init__(self : Optional[int] , _A : Optional[int] , _A : List[str]=7 , _A : Optional[int]=4_0_0 , _A : Optional[int]=2_0_0_0 , _A : List[str]=1 , _A : int=0.0 , _A : str=1_6_0_0_0 , _A : List[Any]=True , _A : Optional[int]=True , ) -> List[Any]: snake_case = parent snake_case = batch_size snake_case = min_seq_length snake_case = max_seq_length snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case = feature_size snake_case = padding_value snake_case = sampling_rate snake_case = return_attention_mask snake_case = do_normalize def UpperCAmelCase(self : Union[str, Any] ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase(self : Tuple , _A : int=False , _A : Optional[Any]=False ) -> Dict: def _flatten(_A : int ): return list(itertools.chain(*_A ) ) if equal_length: snake_case = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case = [np.asarray(_A ) for x in speech_inputs] return speech_inputs class lowerCamelCase ( A_ , unittest.TestCase ): UpperCAmelCase__ : Any = WavaVecaFeatureExtractor def UpperCAmelCase(self : List[Any] ) -> int: snake_case = WavaVecaFeatureExtractionTester(self ) def UpperCAmelCase(self : str , _A : Optional[Any] ) -> Tuple: self.assertTrue(np.all(np.mean(_A , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_A , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCAmelCase(self : Any ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input snake_case = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values snake_case = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test batched snake_case = feat_extract(_A , return_tensors="np" ).input_values snake_case = feat_extract(_A , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case = np.asarray(_A ) snake_case = feat_extract(_A , return_tensors="np" ).input_values snake_case = feat_extract(_A , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) def UpperCAmelCase(self : Any ) -> Tuple: snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case = ["longest", "max_length", "do_not_pad"] snake_case = [None, 1_6_0_0, None] for max_length, padding in zip(_A , _A ): snake_case = feat_extract(_A , padding=_A , max_length=_A , return_tensors="np" ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def UpperCAmelCase(self : Union[str, Any] ) -> Union[str, Any]: snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = range(8_0_0 , 1_4_0_0 , 2_0_0 ) snake_case = [floats_list((1, x) )[0] for x in lengths] snake_case = ["longest", "max_length", "do_not_pad"] snake_case = [None, 1_6_0_0, None] for max_length, padding in zip(_A , _A ): snake_case = feat_extract(_A , max_length=_A , padding=_A ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def UpperCAmelCase(self : int ) -> Union[str, Any]: snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case = feat_extract( _A , truncation=_A , max_length=1_0_0_0 , padding="max_length" , return_tensors="np" ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCAmelCase(self : List[str] ) -> int: snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case = feat_extract( _A , truncation=_A , max_length=1_0_0_0 , padding="longest" , return_tensors="np" ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) snake_case = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case = feat_extract( _A , truncation=_A , max_length=2_0_0_0 , padding="longest" , return_tensors="np" ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) @require_torch def UpperCAmelCase(self : Dict ) -> Any: import torch snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = np.random.rand(1_0_0 ).astype(np.floataa ) snake_case = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCAmelCase(self : List[str] ) -> str: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: snake_case = WavaVecaConfig.from_pretrained(_A ) snake_case = WavaVecaFeatureExtractor.from_pretrained(_A ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer" )
294
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__(self : Optional[Any] , _A : List[str] , _A : Tuple=7 , _A : List[str]=3 , _A : Dict=1_8 , _A : int=3_0 , _A : str=4_0_0 , _A : List[str]=True , _A : Optional[int]=None , _A : Optional[int]=True , ) -> Dict: snake_case = size if size is not None else {"height": 1_8, "width": 1_8} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def UpperCAmelCase(self : Union[str, Any] ) -> int: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCamelCase ( A_ , unittest.TestCase ): UpperCAmelCase__ : str = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase(self : List[str] ) -> Dict: snake_case = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase(self : Union[str, Any] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase(self : Any ) -> Optional[int]: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , "do_resize" ) ) self.assertTrue(hasattr(_A , "size" ) ) self.assertTrue(hasattr(_A , "apply_ocr" ) ) def UpperCAmelCase(self : Union[str, Any] ) -> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) def UpperCAmelCase(self : List[Any] ) -> Optional[Any]: pass def UpperCAmelCase(self : Dict ) -> Optional[int]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , _A ) self.assertIsInstance(encoding.boxes , _A ) # Test batched snake_case = image_processing(_A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase(self : Tuple ) -> List[str]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched snake_case = image_processing(_A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase(self : Optional[Any] ) -> Tuple: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched snake_case = image_processing(_A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase(self : Any ) -> List[str]: # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) snake_case = Image.open(ds[0]["file"] ).convert("RGB" ) snake_case = image_processing(_A , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 snake_case = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _A ) self.assertListEqual(encoding.boxes , _A ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=_A ) snake_case = image_processing(_A , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
294
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self, _lowercase, _lowercase=13, _lowercase=7, _lowercase=True, _lowercase=True, _lowercase=True, _lowercase=True, _lowercase=99, _lowercase=32, _lowercase=5, _lowercase=4, _lowercase=37, _lowercase="gelu", _lowercase=0.1, _lowercase=0.1, _lowercase=512, _lowercase=16, _lowercase=2, _lowercase=0.02, _lowercase=4, ) -> int: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_attention_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_choices def a__ ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = RobertaPreLayerNormConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_lowercase, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def a__ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def a__ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class snake_case ( lowercase_, unittest.TestCase ): """simple docstring""" _a = True _a = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def a__ ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = FlaxRobertaPreLayerNormModelTester(self ) @slow def a__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=_lowercase ) SCREAMING_SNAKE_CASE_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class snake_case ( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=_lowercase ) SCREAMING_SNAKE_CASE_ = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]], dtype=jnp.intaa ) SCREAMING_SNAKE_CASE_ = model(_lowercase )[0] SCREAMING_SNAKE_CASE_ = [1, 11, 50265] self.assertEqual(list(output.shape ), _lowercase ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE_ = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], _lowercase, atol=1E-4 ) ) @slow def a__ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=_lowercase ) SCREAMING_SNAKE_CASE_ = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]], dtype=jnp.intaa ) SCREAMING_SNAKE_CASE_ = model(_lowercase )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE_ = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], _lowercase, atol=1E-4 ) )
294
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black SCREAMING_SNAKE_CASE : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. SCREAMING_SNAKE_CASE : List[str] = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class snake_case ( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> str: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, 'models/bert/' ) ) SCREAMING_SNAKE_CASE_ = self.transformer_dir shutil.copy( os.path.join(_lowercase, 'src/transformers/models/bert/modeling_bert.py' ), os.path.join(self.transformer_dir, 'models/bert/modeling_bert.py' ), ) def a__ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 'src/transformers' shutil.rmtree(self.transformer_dir ) def a__ ( self, _lowercase, _lowercase, _lowercase, _lowercase=None ) -> List[str]: SCREAMING_SNAKE_CASE_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result SCREAMING_SNAKE_CASE_ = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119 ) SCREAMING_SNAKE_CASE_ = black.format_str(_lowercase, mode=_lowercase ) SCREAMING_SNAKE_CASE_ = os.path.join(self.transformer_dir, 'new_code.py' ) with open(_lowercase, 'w', newline='\n' ) as f: f.write(_lowercase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_lowercase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name, overwrite=_lowercase ) with open(_lowercase, 'r' ) as f: self.assertTrue(f.read(), _lowercase ) def a__ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(_lowercase, _lowercase ) def a__ ( self ) -> Union[str, Any]: # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead', 'BertLMPredictionHead', REFERENCE_CODE + '\n', ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead', 'BertLMPredictionHead', _lowercase, ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel', 'TestModelLMPredictionHead', re.sub('Bert', 'TestModel', _lowercase ), ) # Copy consistency with a really long name SCREAMING_SNAKE_CASE_ = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""", f"""{long_class_name}LMPredictionHead""", re.sub('Bert', _lowercase, _lowercase ), ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel', 'TestModelLMPredictionHead', _lowercase, overwrite_result=re.sub('Bert', 'TestModel', _lowercase ), ) def a__ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = check_copies.LOCALIZED_READMES['README_zh-hans.md'] SCREAMING_SNAKE_CASE_ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) SCREAMING_SNAKE_CASE_ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE_ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = check_copies.convert_to_localized_md( _lowercase, _lowercase, localized_readme['format_model_list'] ) self.assertFalse(_lowercase ) self.assertEqual(_lowercase, _lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = check_copies.convert_to_localized_md( _lowercase, _lowercase, localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_lowercase ) SCREAMING_SNAKE_CASE_ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) SCREAMING_SNAKE_CASE_ = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE_ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = check_copies.convert_to_localized_md( _lowercase, _lowercase, localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(_lowercase, _lowercase )
294
1
import re def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": lowercase_ = """0094702343221""" print(is_sri_lankan_phone_number(phone))
716
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _snake_case ( unittest.TestCase): def __init__( self : Dict, __lowercase : int, __lowercase : Union[str, Any]=7, __lowercase : Union[str, Any]=3, __lowercase : Any=18, __lowercase : Union[str, Any]=30, __lowercase : Any=400, __lowercase : List[str]=True, __lowercase : Dict=None, __lowercase : List[str]=True, __lowercase : int=False, __lowercase : Union[str, Any]=True, __lowercase : str=True, __lowercase : Optional[int]=[0.5, 0.5, 0.5], __lowercase : List[Any]=[0.5, 0.5, 0.5], ): lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size if size is not None else {"height": 18, "width": 20} lowercase__ = do_thumbnail lowercase__ = do_align_axis lowercase__ = do_pad lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def A__ ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _snake_case ( lowercase__ , unittest.TestCase): UpperCamelCase__ : Optional[int] =DonutImageProcessor if is_vision_available() else None def A__ ( self : str ): lowercase__ = DonutImageProcessingTester(self ) @property def A__ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : Optional[Any] ): lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase, "do_resize" ) ) self.assertTrue(hasattr(__lowercase, "size" ) ) self.assertTrue(hasattr(__lowercase, "do_thumbnail" ) ) self.assertTrue(hasattr(__lowercase, "do_align_long_axis" ) ) self.assertTrue(hasattr(__lowercase, "do_pad" ) ) self.assertTrue(hasattr(__lowercase, "do_normalize" ) ) self.assertTrue(hasattr(__lowercase, "image_mean" ) ) self.assertTrue(hasattr(__lowercase, "image_std" ) ) def A__ ( self : str ): lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"height": 18, "width": 20} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=(42, 84) ) self.assertEqual(image_processor.size, {"height": 84, "width": 42} ) def A__ ( self : List[str] ): pass @is_flaky() def A__ ( self : Dict ): # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched lowercase__ = image_processing(__lowercase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) @is_flaky() def A__ ( self : Optional[Any] ): # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase, numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched lowercase__ = image_processing(__lowercase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) @is_flaky() def A__ ( self : Tuple ): # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase, torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched lowercase__ = image_processing(__lowercase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), )
37
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCamelCase__ : Any = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = set() SCREAMING_SNAKE_CASE_ : Any = [] def parse_line(lowerCamelCase_ : str ): for line in fp: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[str] = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase_ ) > 0: SCREAMING_SNAKE_CASE_ : Optional[int] = '\n'.join(lowerCamelCase_ ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase_ ) buffer.clear() continue else: SCREAMING_SNAKE_CASE_ : Tuple = line.strip() buffer.append(lowerCamelCase_ ) if from_gh: for filename in os.listdir(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if not os.path.isdir(lowerCamelCase_ ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase_ ) as fp: parse_line(lowerCamelCase_ ) else: try: with zipfile.ZipFile(lowerCamelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase_ ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase_ ) as fp: parse_line(lowerCamelCase_ ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = set() SCREAMING_SNAKE_CASE_ : Tuple = [os.path.join(lowerCamelCase_ , lowerCamelCase_ ) for p in os.listdir(lowerCamelCase_ ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase_ , lowerCamelCase_ ) ) return selected_warnings if __name__ == "__main__": def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Any: """simple docstring""" return values.split(',' ) UpperCamelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) UpperCamelCase__ : Optional[int] = parser.parse_args() UpperCamelCase__ : Optional[int] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCamelCase__ : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCamelCase__ : str = extract_warnings(args.output_dir, args.targets) UpperCamelCase__ : Dict = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
105
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = '''https://openaipublic.azureedge.net/jukebox/models/''' UpperCamelCase__ : Optional[Any] = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> int: """simple docstring""" if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : List[str] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Any = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Tuple = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : List[Any] = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: SCREAMING_SNAKE_CASE_ : List[Any] = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: SCREAMING_SNAKE_CASE_ : Optional[Any] = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = {} import re SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : str = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Tuple = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Dict = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[str] = re_encoder_block_conv_in.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[int] = re_encoder_block_conv_in.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_encoder_block_resnet.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[Any] = re_encoder_block_resnet.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = regex_match.groups() SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE_ : str = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : int = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : str = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[Any] = prefix + resnet_block SCREAMING_SNAKE_CASE_ : List[Any] = re_encoder_block_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_encoder_block_proj_out.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = re_encoder_block_proj_out.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = regex_match.groups() SCREAMING_SNAKE_CASE_ : int = F'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Tuple = re_encoder_block_proj_out.sub(lowerCamelCase_ , lowerCamelCase_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Any = re_decoder_block_conv_out.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE_ : Optional[int] = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[int] = re_decoder_block_conv_out.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_decoder_block_resnet.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Dict = re_decoder_block_resnet.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : str = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE_ : Optional[Any] = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : Dict = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Union[str, Any] = prefix + resnet_block SCREAMING_SNAKE_CASE_ : Dict = re_decoder_block_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_decoder_block_proj_in.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = re_decoder_block_proj_in.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : int = F'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[Any] = re_decoder_block_proj_in.sub(lowerCamelCase_ , lowerCamelCase_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[str] = re_prior_cond_conv_out.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : str = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE_ : Any = F'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : List[Any] = re_prior_cond_conv_out.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_prior_cond_resnet.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = re_prior_cond_resnet.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = regex_match.groups() SCREAMING_SNAKE_CASE_ : Tuple = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : List[str] = F'conditioner_blocks.upsampler.upsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : Optional[int] = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Dict = prefix + resnet_block SCREAMING_SNAKE_CASE_ : List[str] = re_prior_cond_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_prior_cond_proj_in.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Any = re_prior_cond_proj_in.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[Any] = F'conditioner_blocks.upsampler.proj_in.{groups[-1]}' SCREAMING_SNAKE_CASE_ : List[Any] = re_prior_cond_proj_in.sub(lowerCamelCase_ , lowerCamelCase_ ) # keep original key else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = original_key SCREAMING_SNAKE_CASE_ : Optional[Any] = replace_key(lowerCamelCase_ ) if F'{key_prefix}.{key}' not in model_state_dict or key is None: print(F'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[F'{key_prefix}.{key}'].shape: SCREAMING_SNAKE_CASE_ : str = model_state_dict[F'{key_prefix}.{key}'] print(F'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) SCREAMING_SNAKE_CASE_ : Dict = original_key SCREAMING_SNAKE_CASE_ : int = original_key SCREAMING_SNAKE_CASE_ : int = value return new_dict @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ : int=None , lowerCamelCase_ : int=None ) -> Dict: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): SCREAMING_SNAKE_CASE_ : int = requests.get(F'{PREFIX}{file}' , allow_redirects=lowerCamelCase_ ) os.makedirs(F'{pytorch_dump_folder_path}/' , exist_ok=lowerCamelCase_ ) open(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , 'wb' ).write(r.content ) SCREAMING_SNAKE_CASE_ : List[str] = MODEL_MAPPING[model_name.split('/' )[-1]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = JukeboxConfig.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = JukeboxModel(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = {} for i, dict_name in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : str = torch.load(F'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['model'] SCREAMING_SNAKE_CASE_ : int = {} for k in old_dic.keys(): if k.endswith('.b' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = old_dic[k] elif k.endswith('.w' ): SCREAMING_SNAKE_CASE_ : str = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: SCREAMING_SNAKE_CASE_ : int = old_dic[k] else: SCREAMING_SNAKE_CASE_ : List[Any] = old_dic[k] SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'vqvae' if i == 0 else F'priors.{3 - i}' SCREAMING_SNAKE_CASE_ : Any = fix_jukebox_keys(lowerCamelCase_ , model.state_dict() , lowerCamelCase_ , lowerCamelCase_ ) weight_dict.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) with open(F'{pytorch_dump_folder_path}/mapping.json' , 'w' ) as txtfile: json.dump(lowerCamelCase_ , lowerCamelCase_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase_ ) return weight_dict if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) UpperCamelCase__ : str = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
105
1
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' _lowercase : Tuple = BlenderbotSmallTokenizer _lowercase : Any = False def _lowercase ( self ): """simple docstring""" super().setUp() _lowerCAmelCase = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _lowerCAmelCase = dict(zip(__a , range(len(__a ) ) ) ) _lowerCAmelCase = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _lowerCAmelCase = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def _lowercase ( self , **_lowercase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__a ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = 'adapt act apte' _lowerCAmelCase = 'adapt act apte' return input_text, output_text def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase = 'adapt act apte' _lowerCAmelCase = ['adapt', 'act', 'ap@@', 'te'] _lowerCAmelCase = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) _lowerCAmelCase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowerCAmelCase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1_384] _lowerCAmelCase = 'I am a small frog.' _lowerCAmelCase = tok([src_text] , padding=__a , truncation=__a )['input_ids'] _lowerCAmelCase = tok.batch_decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) _lowerCAmelCase = 'I am a small frog .' _lowerCAmelCase = '.' _lowerCAmelCase = tok(__a )['input_ids'] _lowerCAmelCase = tok(__a )['input_ids'] assert encoded[-1] == encoded_dot[0]
717
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def A (__lowerCamelCase :str ): _lowerCAmelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _lowerCAmelCase = 128 elif "12-12" in model_name: _lowerCAmelCase = 12 _lowerCAmelCase = 12 elif "14-14" in model_name: _lowerCAmelCase = 14 _lowerCAmelCase = 14 elif "16-16" in model_name: _lowerCAmelCase = 16 _lowerCAmelCase = 16 else: raise ValueError("""Model not supported""" ) _lowerCAmelCase = """huggingface/label-files""" if "speech-commands" in model_name: _lowerCAmelCase = 35 _lowerCAmelCase = """speech-commands-v2-id2label.json""" else: _lowerCAmelCase = 527 _lowerCAmelCase = """audioset-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def A (__lowerCamelCase :Dict ): if "module.v" in name: _lowerCAmelCase = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: _lowerCAmelCase = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: _lowerCAmelCase = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: _lowerCAmelCase = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _lowerCAmelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: _lowerCAmelCase = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: _lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _lowerCAmelCase = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: _lowerCAmelCase = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: _lowerCAmelCase = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): for key in orig_state_dict.copy().keys(): _lowerCAmelCase = orig_state_dict.pop(__lowerCamelCase ) if "qkv" in key: _lowerCAmelCase = key.split(""".""" ) _lowerCAmelCase = int(key_split[3] ) _lowerCAmelCase = config.hidden_size if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[dim : dim * 2, :] _lowerCAmelCase = val[-dim:, :] else: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[dim : dim * 2] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = val return orig_state_dict def A (__lowerCamelCase :str ): _lowerCAmelCase = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[Any] , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :List[Any]=False ): _lowerCAmelCase = get_audio_spectrogram_transformer_config(__lowerCamelCase ) _lowerCAmelCase = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" ) # remove some keys remove_keys(__lowerCamelCase ) # rename some keys _lowerCAmelCase = convert_state_dict(__lowerCamelCase , __lowerCamelCase ) # load 🤗 model _lowerCAmelCase = ASTForAudioClassification(__lowerCamelCase ) model.eval() model.load_state_dict(__lowerCamelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _lowerCAmelCase = -4.2_677_393 if """speech-commands""" not in model_name else -6.845_978 _lowerCAmelCase = 4.5_689_974 if """speech-commands""" not in model_name else 5.5_654_526 _lowerCAmelCase = 1024 if """speech-commands""" not in model_name else 128 _lowerCAmelCase = ASTFeatureExtractor(mean=__lowerCamelCase , std=__lowerCamelCase , max_length=__lowerCamelCase ) if "speech-commands" in model_name: _lowerCAmelCase = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) _lowerCAmelCase = dataset[0]["""audio"""]["""array"""] else: _lowerCAmelCase = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) _lowerCAmelCase , _lowerCAmelCase = torchaudio.load(__lowerCamelCase ) _lowerCAmelCase = waveform.squeeze().numpy() _lowerCAmelCase = feature_extractor(__lowerCamelCase , sampling_rate=16000 , return_tensors="""pt""" ) # forward pass _lowerCAmelCase = model(**__lowerCamelCase ) _lowerCAmelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _lowerCAmelCase = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _lowerCAmelCase = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _lowerCAmelCase = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _lowerCAmelCase = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _lowerCAmelCase = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _lowerCAmelCase = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _lowerCAmelCase = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": _lowerCAmelCase = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f'MIT/{model_name}' ) feature_extractor.push_to_hub(f'MIT/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
162
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[str] ): """simple docstring""" UpperCamelCase = inspect.getfile(accelerate.test_utils ) UpperCamelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 UpperCamelCase = test_metrics @require_cpu def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __lowerCAmelCase ( self : Dict ): """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def __lowerCAmelCase ( self : List[str] ): """simple docstring""" self.test_metrics.main() @require_multi_gpu def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" print(F'Found {torch.cuda.device_count()} devices.' ) UpperCamelCase = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() )
282
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =(DEISMultistepScheduler,) SCREAMING_SNAKE_CASE_ : List[str] =(("num_inference_steps", 25),) def __lowerCAmelCase ( self : Tuple , **SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" UpperCamelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Dict=0 , **SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" UpperCamelCase = dict(self.forward_default_kwargs ) UpperCamelCase = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase , UpperCamelCase = sample, sample for t in range(SCREAMING_SNAKE_CASE__ , time_step + scheduler.config.solver_order + 1 ): UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample UpperCamelCase = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" pass def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , **SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" UpperCamelCase = dict(self.forward_default_kwargs ) UpperCamelCase = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample UpperCamelCase = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" if scheduler is None: UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = 10 UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def __lowerCAmelCase ( self : List[str] ): """simple docstring""" UpperCamelCase = dict(self.forward_default_kwargs ) UpperCamelCase = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE__ , 'set_timesteps' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE__ , 'set_timesteps' ): UpperCamelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] UpperCamelCase = scheduler.timesteps[5] UpperCamelCase = scheduler.timesteps[6] UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" UpperCamelCase = DEISMultistepScheduler(**self.get_scheduler_config() ) UpperCamelCase = self.full_loop(scheduler=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 UpperCamelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCamelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCamelCase = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCamelCase = DEISMultistepScheduler.from_config(scheduler.config ) UpperCamelCase = self.full_loop(scheduler=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def __lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str ): """simple docstring""" self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , algorithm_type='deis' , solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , algorithm_type=SCREAMING_SNAKE_CASE__ , ) UpperCamelCase = self.full_loop( solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , algorithm_type=SCREAMING_SNAKE_CASE__ , ) assert not torch.isnan(SCREAMING_SNAKE_CASE__ ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE__ ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE__ , time_step=0 ) def __lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.full_loop() UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def __lowerCAmelCase ( self : Dict ): """simple docstring""" UpperCamelCase = self.full_loop(prediction_type='v_prediction' ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def __lowerCAmelCase ( self : Tuple ): """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE__ , dynamic_thresholding_ratio=0 ) UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = 10 UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample assert sample.dtype == torch.floataa
282
1
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = len(__SCREAMING_SNAKE_CASE ) lowercase = [] for i in range(len(__SCREAMING_SNAKE_CASE ) - pat_len + 1 ): lowercase = True for j in range(__SCREAMING_SNAKE_CASE ): if s[i + j] != pattern[j]: lowercase = False break if match_found: position.append(__SCREAMING_SNAKE_CASE ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
565
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''DeiTFeatureExtractor'''] UpperCAmelCase = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
565
1
'''simple docstring''' import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu _A = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def A_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Any=None ) -> str: __SCREAMING_SNAKE_CASE : Dict = True while ask_again: __SCREAMING_SNAKE_CASE : int = input(_lowerCamelCase ) try: if default is not None and len(_lowerCamelCase ) == 0: return default return convert_value(_lowerCamelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(_lowerCamelCase ) def A_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=[] , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : List[Any]=0 ) -> List[str]: __SCREAMING_SNAKE_CASE : Union[str, Any] = BulletMenu(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = menu.run(default_choice=_lowerCamelCase ) return convert_value(_lowerCamelCase ) if convert_value is not None else result def A_ ( __SCREAMING_SNAKE_CASE : str ) -> List[str]: __SCREAMING_SNAKE_CASE : List[str] = int(_lowerCamelCase ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def A_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: __SCREAMING_SNAKE_CASE : Tuple = int(_lowerCamelCase ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def A_ ( __SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : int = int(_lowerCamelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def A_ ( __SCREAMING_SNAKE_CASE : Dict ) -> int: __SCREAMING_SNAKE_CASE : Optional[int] = int(_lowerCamelCase ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def A_ ( __SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: __SCREAMING_SNAKE_CASE : List[Any] = int(_lowerCamelCase ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def A_ ( __SCREAMING_SNAKE_CASE : Dict ) -> Any: return {"yes": True, "no": False}[value.lower()] class SCREAMING_SNAKE_CASE_ ( argparse.RawDescriptionHelpFormatter ): def _snake_case ( self , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[Any] = super()._format_usage(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __SCREAMING_SNAKE_CASE : Dict = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
158
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = DistilBertTokenizer __A = DistilBertTokenizerFast __A = True @slow def a ( self : Optional[int] ): """simple docstring""" _lowerCAmelCase = DistilBertTokenizer.from_pretrained('distilbert-base-uncased' ) _lowerCAmelCase = tokenizer.encode('sequence builders' , add_special_tokens=__lowerCAmelCase ) _lowerCAmelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=__lowerCAmelCase ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
309
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = BarthezTokenizer lowercase__ = BarthezTokenizerFast lowercase__ = True lowercase__ = True def lowercase__ ( self : int ): '''simple docstring''' super().setUp() lowercase__ = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname, legacy_format=lowerCamelCase ) lowercase__ = tokenizer def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ), lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ), lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''<s>''' ) self.assertEqual(vocab_keys[1], '''<pad>''' ) self.assertEqual(vocab_keys[-1], '''<mask>''' ) self.assertEqual(len(lowerCamelCase ), 101_122 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 101_122 ) @require_torch def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowercase__ = [0, 57, 3_018, 70_307, 91, 2] lowercase__ = self.tokenizer( lowerCamelCase, max_length=len(lowerCamelCase ), padding=lowerCamelCase, truncation=lowerCamelCase, return_tensors='''pt''' ) self.assertIsInstance(lowerCamelCase, lowerCamelCase ) self.assertEqual((2, 6), batch.input_ids.shape ) self.assertEqual((2, 6), batch.attention_mask.shape ) lowercase__ = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.tokenize(lowerCamelCase ) lowercase__ = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) lowercase__ = tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase ) lowercase__ = rust_tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCamelCase ) lowercase__ = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = {'''input_ids''': [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase__ = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase, model_name='''moussaKam/mbarthez''', revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''', sequences=lowerCamelCase, )
710
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""input_features""", """is_longer"""] def __init__( self : Optional[int], lowerCamelCase : int=64, lowerCamelCase : Union[str, Any]=48_000, lowerCamelCase : str=480, lowerCamelCase : Tuple=10, lowerCamelCase : List[Any]=1_024, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[Any]=False, lowerCamelCase : float = 0, lowerCamelCase : float = 14_000, lowerCamelCase : int = None, lowerCamelCase : str = "fusion", lowerCamelCase : str = "repeatpad", **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase, sampling_rate=lowerCamelCase, padding_value=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm=lowerCamelCase, mel_scale='''htk''', ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase, min_frequency=lowerCamelCase, max_frequency=lowerCamelCase, sampling_rate=lowerCamelCase, norm='''slaney''', mel_scale='''slaney''', ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[int], lowerCamelCase : np.array, lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase, window_function(self.fft_window_size, '''hann''' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase, log_mel='''dB''', ) return log_mel_spectrogram.T def lowercase__ ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( lowerCamelCase, size=[chunk_frames, 64], mode='''bilinear''', align_corners=lowerCamelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase__ ( self : List[str], lowerCamelCase : np.array, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(lowerCamelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(lowerCamelCase ) ) lowercase__ = np.stack(np.tile(lowerCamelCase, lowerCamelCase ) ) lowercase__ = np.pad(lowerCamelCase, (0, max_length - waveform.shape[0]), mode='''constant''', constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(lowerCamelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any], lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase : str = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : List[str], ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase, np.ndarray ): lowercase__ = np.asarray(lowerCamelCase, dtype=np.floataa ) elif isinstance(lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(lowerCamelCase, max_length if max_length else self.nb_max_samples, lowerCamelCase, lowerCamelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(lowerCamelCase ) ) lowercase__ = True if isinstance(input_mel[0], lowerCamelCase ): lowercase__ = [np.asarray(lowerCamelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowercase__ = BatchFeature(lowerCamelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(lowerCamelCase ) return input_features
671
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def UpperCAmelCase__ ( lowerCamelCase_ : str ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __a : Tuple = model_type_to_module_name(lowerCAmelCase_ ) __a : Union[str, Any] = importlib.import_module(f'''.{module_name}''' , 'transformers.models' ) try: return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase_ , '__name__' , lowerCAmelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __a : List[Any] = importlib.import_module('transformers' ) if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) return None def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] = None , lowerCamelCase_ : Tuple = False , lowerCamelCase_ : Union[str, Any] = False , lowerCamelCase_ : int = None , lowerCamelCase_ : Union[str, Any] = None , lowerCamelCase_ : Tuple = None , lowerCamelCase_ : Any = False , **lowerCamelCase_ : List[Any] , ): __a : Dict = get_file_from_repo( lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(lowerCAmelCase_ , encoding='utf-8' ) as reader: return json.load(lowerCAmelCase_ ) class _UpperCamelCase: def __init__( self : Any ): '''simple docstring''' raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(__lowerCamelCase ) def __lowerCAmelCase ( cls : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' __a : Optional[Any] = kwargs.pop('config' , __lowerCamelCase ) __a : Optional[Any] = kwargs.pop('trust_remote_code' , __lowerCamelCase ) __a : Optional[Any] = True __a , __a : Optional[Any] = ImageProcessingMixin.get_image_processor_dict(__lowerCamelCase , **__lowerCamelCase ) __a : Dict = config_dict.get('image_processor_type' , __lowerCamelCase ) __a : Dict = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): __a : List[Any] = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __a : List[Any] = config_dict.pop('feature_extractor_type' , __lowerCamelCase ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) __a : Optional[int] = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): __a : List[str] = config_dict['auto_map']['AutoFeatureExtractor'] __a : Any = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): __a : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # It could be in `config.image_processor_type`` __a : str = getattr(__lowerCamelCase , 'image_processor_type' , __lowerCamelCase ) if hasattr(__lowerCamelCase , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: __a : List[Any] = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: __a : int = image_processor_class_from_name(__lowerCamelCase ) __a : Any = image_processor_auto_map is not None __a : Dict = image_processor_class is not None or type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING __a : int = resolve_trust_remote_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if has_remote_code and trust_remote_code: __a : Tuple = get_class_from_dynamic_module( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) __a : Any = kwargs.pop('code_revision' , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING: __a : Any = IMAGE_PROCESSOR_MAPPING[type(__lowerCamelCase )] return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase )
47
"""simple docstring""" from math import sqrt def snake_case ( lowerCAmelCase_ = 1000000 ) -> int: _snake_case = 0 _snake_case = 0 _snake_case = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowerCAmelCase_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"{solution() = }")
103
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : List[str] = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = "trocr" lowerCamelCase = ["past_key_values"] lowerCamelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : Dict , __magic_name__ : Dict=5_0265 , __magic_name__ : Any=1024 , __magic_name__ : List[Any]=12 , __magic_name__ : str=16 , __magic_name__ : Optional[int]=4096 , __magic_name__ : int="gelu" , __magic_name__ : str=512 , __magic_name__ : List[Any]=0.1 , __magic_name__ : List[str]=0.0 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Optional[int]=2 , __magic_name__ : Any=0.02 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=True , __magic_name__ : List[Any]=False , __magic_name__ : Dict=True , __magic_name__ : int=True , __magic_name__ : List[Any]=1 , __magic_name__ : Dict=0 , __magic_name__ : Optional[int]=2 , **__magic_name__ : Optional[int] , ) -> List[Any]: lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : str = d_model lowerCamelCase_ : int = decoder_layers lowerCamelCase_ : Optional[int] = decoder_attention_heads lowerCamelCase_ : int = decoder_ffn_dim lowerCamelCase_ : List[Any] = activation_function lowerCamelCase_ : Union[str, Any] = max_position_embeddings lowerCamelCase_ : Union[str, Any] = dropout lowerCamelCase_ : Optional[int] = attention_dropout lowerCamelCase_ : Any = activation_dropout lowerCamelCase_ : Union[str, Any] = init_std lowerCamelCase_ : Union[str, Any] = decoder_layerdrop lowerCamelCase_ : List[str] = use_cache lowerCamelCase_ : Tuple = scale_embedding lowerCamelCase_ : Tuple = use_learned_position_embeddings lowerCamelCase_ : Optional[int] = layernorm_embedding super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , )
253
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Optional[int] = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = "gpt_bigcode" lowerCamelCase = ["past_key_values"] lowerCamelCase = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , __magic_name__ : List[str]=5_0257 , __magic_name__ : Optional[int]=1024 , __magic_name__ : Dict=768 , __magic_name__ : str=12 , __magic_name__ : Union[str, Any]=12 , __magic_name__ : Tuple=None , __magic_name__ : List[str]="gelu_pytorch_tanh" , __magic_name__ : int=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Union[str, Any]=1e-5 , __magic_name__ : List[str]=0.02 , __magic_name__ : Tuple=True , __magic_name__ : List[Any]=True , __magic_name__ : Tuple=5_0256 , __magic_name__ : str=5_0256 , __magic_name__ : List[Any]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Optional[Any]=True , **__magic_name__ : int , ) -> Optional[Any]: lowerCamelCase_ : Dict = vocab_size lowerCamelCase_ : Union[str, Any] = n_positions lowerCamelCase_ : str = n_embd lowerCamelCase_ : Tuple = n_layer lowerCamelCase_ : int = n_head lowerCamelCase_ : Union[str, Any] = n_inner lowerCamelCase_ : int = activation_function lowerCamelCase_ : Union[str, Any] = resid_pdrop lowerCamelCase_ : Optional[Any] = embd_pdrop lowerCamelCase_ : Dict = attn_pdrop lowerCamelCase_ : Union[str, Any] = layer_norm_epsilon lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Optional[int] = scale_attn_weights lowerCamelCase_ : Any = use_cache lowerCamelCase_ : Dict = attention_softmax_in_fpaa lowerCamelCase_ : Any = scale_attention_softmax_in_fpaa lowerCamelCase_ : Tuple = multi_query lowerCamelCase_ : Tuple = bos_token_id lowerCamelCase_ : int = eos_token_id super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
253
1
'''simple docstring''' import numpy as np from PIL import Image def _A ( A ,A ,A ) -> np.ndarray: lowercase : List[Any] = np.array(A ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) lowercase : List[Any] = 0 lowercase : List[Any] = 0 lowercase : Union[str, Any] = 0 lowercase : List[str] = 0 # compute the shape of the output matrix lowercase : Optional[int] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowercase : Optional[int] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowercase : List[str] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowercase : int = 0 lowercase : Tuple = 0 return updated_arr def _A ( A ,A ,A ) -> np.ndarray: lowercase : Union[str, Any] = np.array(A ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) lowercase : Tuple = 0 lowercase : List[Any] = 0 lowercase : Optional[Any] = 0 lowercase : Tuple = 0 # compute the shape of the output matrix lowercase : List[str] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowercase : List[str] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowercase : Optional[Any] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowercase : Any = 0 lowercase : str = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image lowerCAmelCase : List[str] = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
372
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Dict = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCAmelCase : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _A ( A ,A ,A ,A ,A ) -> Tuple: for attribute in key.split("." ): lowercase : Dict = getattr(A ,A ) if weight_type is not None: lowercase : List[str] = getattr(A ,A ).shape else: lowercase : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase : List[Any] = value elif weight_type == "weight_g": lowercase : List[Any] = value elif weight_type == "weight_v": lowercase : int = value elif weight_type == "bias": lowercase : Any = value elif weight_type == "running_mean": lowercase : Tuple = value elif weight_type == "running_var": lowercase : Dict = value elif weight_type == "num_batches_tracked": lowercase : Optional[int] = value elif weight_type == "inv_freq": lowercase : List[Any] = value else: lowercase : Dict = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _A ( A ,A ,A ) -> int: lowercase : Optional[int] = [] lowercase : Tuple = fairseq_model.state_dict() lowercase : Optional[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowercase : str = False if "conv_layers" in name: load_conv_layer( A ,A ,A ,A ,hf_model.config.feat_extract_norm == "group" ,) lowercase : Dict = True else: for key, mapped_key in MAPPING.items(): lowercase : List[str] = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase : List[str] = True if "*" in mapped_key: lowercase : int = name.split(A )[0].split("." )[-2] lowercase : Optional[Any] = mapped_key.replace("*" ,A ) if "pos_bias_u" in name: lowercase : str = None elif "pos_bias_v" in name: lowercase : Optional[int] = None elif "weight_g" in name: lowercase : int = "weight_g" elif "weight_v" in name: lowercase : Dict = "weight_v" elif "bias" in name: lowercase : List[str] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase : Optional[int] = "weight" elif "running_mean" in name: lowercase : Optional[int] = "running_mean" elif "inv_freq" in name: lowercase : Dict = "inv_freq" elif "running_var" in name: lowercase : int = "running_var" elif "num_batches_tracked" in name: lowercase : Optional[Any] = "num_batches_tracked" else: lowercase : int = None set_recursively(A ,A ,A ,A ,A ) continue if not is_used: unused_weights.append(A ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _A ( A ,A ,A ,A ,A ) -> List[str]: lowercase : Tuple = full_name.split("conv_layers." )[-1] lowercase : Optional[Any] = name.split("." ) lowercase : str = int(items[0] ) lowercase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase : str = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A ) @torch.no_grad() def _A ( A ,A ,A=None ,A=None ,A=True ) -> Optional[Any]: if config_path is not None: lowercase : Tuple = WavaVecaConformerConfig.from_pretrained(A ,hidden_act="swish" ) else: lowercase : Any = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowercase : str = "rotary" if is_finetuned: if dict_path: lowercase : List[str] = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase : Optional[int] = target_dict.pad_index lowercase : Optional[int] = target_dict.bos_index lowercase : Optional[Any] = target_dict.eos_index lowercase : str = len(target_dict.symbols ) lowercase : List[Any] = os.path.join(A ,"vocab.json" ) if not os.path.isdir(A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(A ) ) return os.makedirs(A ,exist_ok=A ) lowercase : Any = target_dict.indices # fairseq has the <pad> and <s> switched lowercase : Any = 0 lowercase : Tuple = 1 with open(A ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(A ,A ) lowercase : Tuple = WavaVecaCTCTokenizer( A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=A ,) lowercase : Dict = True if config.feat_extract_norm == "layer" else False lowercase : List[str] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_6_0_0_0 ,padding_value=0 ,do_normalize=A ,return_attention_mask=A ,) lowercase : List[str] = WavaVecaProcessor(feature_extractor=A ,tokenizer=A ) processor.save_pretrained(A ) lowercase : Any = WavaVecaConformerForCTC(A ) else: lowercase : str = WavaVecaConformerForPreTraining(A ) if is_finetuned: lowercase , lowercase , lowercase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowercase : List[str] = argparse.Namespace(task="audio_pretraining" ) lowercase : Union[str, Any] = fairseq.tasks.setup_task(A ) lowercase , lowercase , lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=A ) lowercase : List[str] = model[0].eval() recursively_load_weights(A ,A ,not is_finetuned ) hf_wavavec.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCAmelCase : int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
372
1
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __lowercase (_SCREAMING_SNAKE_CASE :List[Any] ): SCREAMING_SNAKE_CASE : List[Any] = args.pruning_method SCREAMING_SNAKE_CASE : List[Any] = args.threshold SCREAMING_SNAKE_CASE : Optional[int] = args.model_name_or_path.rstrip('''/''' ) SCREAMING_SNAKE_CASE : Optional[Any] = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(os.path.join(_SCREAMING_SNAKE_CASE , '''pytorch_model.bin''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: SCREAMING_SNAKE_CASE : List[Any] = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: SCREAMING_SNAKE_CASE : str = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: SCREAMING_SNAKE_CASE : str = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": SCREAMING_SNAKE_CASE : Optional[int] = MagnitudeBinarizer.apply(inputs=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE : Optional[Any] = name[:-6] SCREAMING_SNAKE_CASE : Tuple = model[F'''{prefix_}mask_scores'''] SCREAMING_SNAKE_CASE : List[Any] = TopKBinarizer.apply(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE : Any = name[:-6] SCREAMING_SNAKE_CASE : List[Any] = model[F'''{prefix_}mask_scores'''] SCREAMING_SNAKE_CASE : Tuple = ThresholdBinarizer.apply(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE : Tuple = name[:-6] SCREAMING_SNAKE_CASE : Optional[int] = model[F'''{prefix_}mask_scores'''] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = -0.1, 1.1 SCREAMING_SNAKE_CASE : Any = torch.sigmoid(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = s * (r - l) + l SCREAMING_SNAKE_CASE : Optional[int] = s_bar.clamp(min=0.0 , max=1.0 ) SCREAMING_SNAKE_CASE : Any = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: SCREAMING_SNAKE_CASE : List[Any] = os.path.join( os.path.dirname(_SCREAMING_SNAKE_CASE ) , F'''bertarized_{os.path.basename(_SCREAMING_SNAKE_CASE )}''' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): shutil.copytree(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) snake_case_ = parser.parse_args() main(args)
355
'''simple docstring''' def __lowercase (_SCREAMING_SNAKE_CASE :int ): SCREAMING_SNAKE_CASE : Tuple = 1 for i in range(1 , num + 1 ): fact *= i return fact def __lowercase (_SCREAMING_SNAKE_CASE :int ): SCREAMING_SNAKE_CASE : List[Any] = 0 while number > 0: SCREAMING_SNAKE_CASE : List[str] = number % 10 sum_of_digits += last_digit SCREAMING_SNAKE_CASE : List[str] = number // 10 # Removing the last_digit from the given number return sum_of_digits def __lowercase (_SCREAMING_SNAKE_CASE :int = 1_00 ): SCREAMING_SNAKE_CASE : List[Any] = factorial(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = split_and_add(_SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
355
1
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: __A = None try: import msvcrt except ImportError: __A = None try: import fcntl except ImportError: __A = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __A = OSError # Data # ------------------------------------------------ __A = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] __A = """3.0.12""" __A = None def __A () ->Dict: """simple docstring""" global _logger lowerCAmelCase__ :Optional[int] = _logger or logging.getLogger(__name__ ) return _logger class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = lock_file return None def __str__( self ): '''simple docstring''' lowerCAmelCase__ :Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.lock.release() return None class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = max_filename_length if max_filename_length is not None else 2_5_5 # Hash the filename if it's too long lowerCAmelCase__ :int = self.hash_filename_if_too_long(__UpperCAmelCase , __UpperCAmelCase ) # The path to the lock file. lowerCAmelCase__ :Optional[int] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowerCAmelCase__ :Any = None # The default timeout value. lowerCAmelCase__ :Optional[int] = timeout # We use this lock primarily for the lock counter. lowerCAmelCase__ :Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowerCAmelCase__ :List[Any] = 0 return None @property def snake_case ( self ): '''simple docstring''' return self._lock_file @property def snake_case ( self ): '''simple docstring''' return self._timeout @timeout.setter def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = float(__UpperCAmelCase ) return None def snake_case ( self ): '''simple docstring''' raise NotImplementedError() def snake_case ( self ): '''simple docstring''' raise NotImplementedError() @property def snake_case ( self ): '''simple docstring''' return self._lock_file_fd is not None def snake_case ( self , __UpperCAmelCase=None , __UpperCAmelCase=0.05 ): '''simple docstring''' if timeout is None: lowerCAmelCase__ :Dict = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowerCAmelCase__ :Dict = id(self ) lowerCAmelCase__ :List[str] = self._lock_file lowerCAmelCase__ :str = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__UpperCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowerCAmelCase__ :str = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def snake_case ( self , __UpperCAmelCase=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowerCAmelCase__ :List[str] = id(self ) lowerCAmelCase__ :int = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() lowerCAmelCase__ :List[Any] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=__UpperCAmelCase ) return None def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = os.path.basename(__UpperCAmelCase ) if len(__UpperCAmelCase ) > max_length and max_length > 0: lowerCAmelCase__ :List[str] = os.path.dirname(__UpperCAmelCase ) lowerCAmelCase__ :int = str(hash(__UpperCAmelCase ) ) lowerCAmelCase__ :List[Any] = filename[: max_length - len(__UpperCAmelCase ) - 8] + '...' + hashed_filename + '.lock' return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) else: return path class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) lowerCAmelCase__ :Any = '\\\\?\\' + relative_to_absolute_path(self.lock_file ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowerCAmelCase__ :List[str] = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: try: msvcrt.locking(__UpperCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__UpperCAmelCase ) else: lowerCAmelCase__ :Any = fd return None def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self._lock_file_fd lowerCAmelCase__ :int = None msvcrt.locking(__UpperCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(__UpperCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = os.statvfs(os.path.dirname(__UpperCAmelCase ) ).f_namemax super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowerCAmelCase__ :Optional[Any] = os.open(self._lock_file , __UpperCAmelCase ) try: fcntl.flock(__UpperCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__UpperCAmelCase ) else: lowerCAmelCase__ :Optional[Any] = fd return None def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self._lock_file_fd lowerCAmelCase__ :Optional[Any] = None fcntl.flock(__UpperCAmelCase , fcntl.LOCK_UN ) os.close(__UpperCAmelCase ) return None class _lowerCAmelCase ( a ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowerCAmelCase__ :int = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: lowerCAmelCase__ :Optional[Any] = fd return None def snake_case ( self ): '''simple docstring''' os.close(self._lock_file_fd ) lowerCAmelCase__ :Union[str, Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None __A = None if msvcrt: __A = WindowsFileLock elif fcntl: __A = UnixFileLock else: __A = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
93
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
93
1
"""simple docstring""" from itertools import permutations def UpperCAmelCase__ ( A__ ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase__ = [7, 11, 13, 17] for i, test in enumerate(A__ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase__ ( A__ = 10 ) -> int: """simple docstring""" return sum( int("".join(map(A__ , A__ ) ) ) for num in permutations(range(A__ ) ) if is_substring_divisible(A__ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
274
"""simple docstring""" # flake8: noqa # Lint as: python3 SCREAMING_SNAKE_CASE_ : Dict = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
274
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart a = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } a = { 'facebook/bart-base': 1_024, 'facebook/bart-large': 1_024, 'facebook/bart-large-mnli': 1_024, 'facebook/bart-large-cnn': 1_024, 'facebook/bart-large-xsum': 1_024, 'yjernite/bart_eli5': 1_024, } @lru_cache() def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Optional[int] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _lowerCAmelCase :str = bs[:] _lowerCAmelCase :Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase :Tuple = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def UpperCamelCase_( __magic_name__ : List[Any] ): """simple docstring""" _lowerCAmelCase :int = set() _lowerCAmelCase :List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase :str = char return pairs class UpperCAmelCase_ (A__ ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self: Optional[int] , _UpperCAmelCase: Dict , _UpperCAmelCase: Tuple , _UpperCAmelCase: Any="replace" , _UpperCAmelCase: List[Any]="<s>" , _UpperCAmelCase: Union[str, Any]="</s>" , _UpperCAmelCase: Dict="</s>" , _UpperCAmelCase: Optional[Any]="<s>" , _UpperCAmelCase: str="<unk>" , _UpperCAmelCase: List[Any]="<pad>" , _UpperCAmelCase: Optional[Any]="<mask>" , _UpperCAmelCase: int=False , **_UpperCAmelCase: str , ): _lowerCAmelCase :Any = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else bos_token _lowerCAmelCase :int = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else eos_token _lowerCAmelCase :int = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else sep_token _lowerCAmelCase :List[Any] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else cls_token _lowerCAmelCase :Any = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else unk_token _lowerCAmelCase :Union[str, Any] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase :List[Any] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token super().__init__( errors=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , add_prefix_space=_snake_case , **_snake_case , ) with open(_snake_case , encoding='utf-8' ) as vocab_handle: _lowerCAmelCase :str = json.load(_snake_case ) _lowerCAmelCase :Optional[Any] = {v: k for k, v in self.encoder.items()} _lowerCAmelCase :Dict = errors # how to handle errors in decoding _lowerCAmelCase :Any = bytes_to_unicode() _lowerCAmelCase :Dict = {v: k for k, v in self.byte_encoder.items()} with open(_snake_case , encoding='utf-8' ) as merges_handle: _lowerCAmelCase :Optional[Any] = merges_handle.read().split('\n' )[1:-1] _lowerCAmelCase :Any = [tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase :List[Any] = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) _lowerCAmelCase :List[str] = {} _lowerCAmelCase :str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase :int = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self: int ): return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: List[Any] ): if token in self.cache: return self.cache[token] _lowerCAmelCase :Optional[int] = tuple(_snake_case ) _lowerCAmelCase :Tuple = get_pairs(_snake_case ) if not pairs: return token while True: _lowerCAmelCase :Union[str, Any] = min(_snake_case , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_snake_case , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase :Optional[int] = bigram _lowerCAmelCase :str = [] _lowerCAmelCase :str = 0 while i < len(_snake_case ): try: _lowerCAmelCase :Dict = word.index(_snake_case , _snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase :Optional[int] = j if word[i] == first and i < len(_snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase :int = tuple(_snake_case ) _lowerCAmelCase :Dict = new_word if len(_snake_case ) == 1: break else: _lowerCAmelCase :Dict = get_pairs(_snake_case ) _lowerCAmelCase :int = ' '.join(_snake_case ) _lowerCAmelCase :Optional[int] = word return word def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :str = [] for token in re.findall(self.pat , _snake_case ): _lowerCAmelCase :Optional[Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_snake_case ).split(' ' ) ) return bpe_tokens def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: List[Any] ): return self.encoder.get(_snake_case , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): return self.decoder.get(_snake_case ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[str] = ''.join(_snake_case ) _lowerCAmelCase :Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[Any] = None ): if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase :List[str] = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase :List[str] = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_snake_case , ensure_ascii=_snake_case ) + '\n' ) _lowerCAmelCase :Any = 0 with open(_snake_case , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase :int = token_index writer.write(' '.join(_snake_case ) + '\n' ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Any = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase :Dict = [self.cls_token_id] _lowerCAmelCase :Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: str = None , _UpperCAmelCase: Tuple = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: str = None ): _lowerCAmelCase :str = [self.sep_token_id] _lowerCAmelCase :int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: str , _UpperCAmelCase: int=False , **_UpperCAmelCase: Tuple ): _lowerCAmelCase :Dict = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_snake_case ) > 0 and not text[0].isspace()): _lowerCAmelCase :str = ' ' + text return (text, kwargs)
687
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _a ( A__ ): """simple docstring""" def __init__( self , _snake_case , _snake_case ): _UpperCAmelCase =params _UpperCAmelCase =np.array(_snake_case ) _UpperCAmelCase =np.array([len(_snake_case ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , _snake_case ): return (self.token_ids[index], self.lengths[index]) def __len__( self ): return len(self.lengths ) def SCREAMING_SNAKE_CASE ( self ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.params.max_model_input_size _UpperCAmelCase =self.lengths > max_len logger.info(F"Splitting {sum(_snake_case )} too long sequences." ) def divide_chunks(_snake_case , _snake_case ): return [l[i : i + n] for i in range(0 , len(_snake_case ) , _snake_case )] _UpperCAmelCase =[] _UpperCAmelCase =[] if self.params.mlm: _UpperCAmelCase , _UpperCAmelCase =self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: _UpperCAmelCase , _UpperCAmelCase =self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _UpperCAmelCase =[] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _UpperCAmelCase =np.insert(_snake_case , 0 , _snake_case ) if sub_s[-1] != sep_id: _UpperCAmelCase =np.insert(_snake_case , len(_snake_case ) , _snake_case ) assert len(_snake_case ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_snake_case ) new_tok_ids.extend(_snake_case ) new_lengths.extend([len(_snake_case ) for l in sub_seqs] ) _UpperCAmelCase =np.array(_snake_case ) _UpperCAmelCase =np.array(_snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =len(self ) _UpperCAmelCase =self.lengths > 11 _UpperCAmelCase =self.token_ids[indices] _UpperCAmelCase =self.lengths[indices] _UpperCAmelCase =len(self ) logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def SCREAMING_SNAKE_CASE ( self ): if "unk_token" not in self.params.special_tok_ids: return else: _UpperCAmelCase =self.params.special_tok_ids["unk_token"] _UpperCAmelCase =len(self ) _UpperCAmelCase =np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _UpperCAmelCase =(unk_occs / self.lengths) < 0.5 _UpperCAmelCase =self.token_ids[indices] _UpperCAmelCase =self.lengths[indices] _UpperCAmelCase =len(self ) logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def SCREAMING_SNAKE_CASE ( self ): if not self.params.is_master: return logger.info(F"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase =[t[0] for t in batch] _UpperCAmelCase =[t[1] for t in batch] assert len(_snake_case ) == len(_snake_case ) # Max for paddings _UpperCAmelCase =max(_snake_case ) # Pad token ids if self.params.mlm: _UpperCAmelCase =self.params.special_tok_ids["pad_token"] else: _UpperCAmelCase =self.params.special_tok_ids["unk_token"] _UpperCAmelCase =[list(t.astype(_snake_case ) ) + [pad_idx] * (max_seq_len_ - len(_snake_case )) for t in token_ids] assert len(tk_ ) == len(_snake_case ) assert all(len(_snake_case ) == max_seq_len_ for t in tk_ ) _UpperCAmelCase =torch.tensor(tk_ ) # (bs, max_seq_len_) _UpperCAmelCase =torch.tensor(_snake_case ) # (bs) return tk_t, lg_t
408
0
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["torch", "torchsde"] def __init__(self : List[str] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' requires_backends(self , ["torch", "torchsde"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Tuple , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[int]) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch", "torchsde"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any]) ->str: '''simple docstring''' requires_backends(cls , ["torch", "torchsde"])
708
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "xlm-roberta-xl" def __init__(self : Tuple , UpperCAmelCase_ : Union[str, Any]=250_880 , UpperCAmelCase_ : Optional[int]=2_560 , UpperCAmelCase_ : Union[str, Any]=36 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Dict=10_240 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : List[Any]=514 , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Dict=1E-0_5 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Union[str, Any]="absolute" , UpperCAmelCase_ : str=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : List[str] , ) ->int: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: List[str] =vocab_size lowerCamelCase__: List[Any] =hidden_size lowerCamelCase__: Any =num_hidden_layers lowerCamelCase__: Optional[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: List[Any] =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Union[str, Any] =max_position_embeddings lowerCamelCase__: Optional[int] =type_vocab_size lowerCamelCase__: Tuple =initializer_range lowerCamelCase__: Tuple =layer_norm_eps lowerCamelCase__: Dict =position_embedding_type lowerCamelCase__: Optional[int] =use_cache lowerCamelCase__: List[str] =classifier_dropout class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__: Union[str, Any] ={0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__: Optional[int] ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
437
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCAmelCase :List[Any] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ _lowerCAmelCase :Optional[Any] = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ _lowerCAmelCase :str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def _UpperCamelCase ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="auto" , lowercase__=-1 , lowercase__=0.9 , lowercase__=5 , lowercase__=500 , lowercase__="gpt2-large" , lowercase__=-1 , lowercase__=1_024 , lowercase__=25 , lowercase__=5 , lowercase__=True , lowercase__=25 , ) -> Dict: SCREAMING_SNAKE_CASE : Any = compute_mauve( p_text=_UpperCamelCase , q_text=_UpperCamelCase , p_features=_UpperCamelCase , q_features=_UpperCamelCase , p_tokens=_UpperCamelCase , q_tokens=_UpperCamelCase , num_buckets=_UpperCamelCase , pca_max_data=_UpperCamelCase , kmeans_explained_var=_UpperCamelCase , kmeans_num_redo=_UpperCamelCase , kmeans_max_iter=_UpperCamelCase , featurize_model_name=_UpperCamelCase , device_id=_UpperCamelCase , max_text_length=_UpperCamelCase , divergence_curve_discretization_size=_UpperCamelCase , mauve_scaling_factor=_UpperCamelCase , verbose=_UpperCamelCase , seed=_UpperCamelCase , ) return out
251
'''simple docstring''' import math import qiskit def lowerCamelCase_ ( __UpperCamelCase : int = 1 , __UpperCamelCase : int = 1 , __UpperCamelCase : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(__UpperCamelCase , __UpperCamelCase ) or isinstance(__UpperCamelCase , __UpperCamelCase ) or isinstance(__UpperCamelCase , __UpperCamelCase ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(__UpperCamelCase ) != input_a) or (math.floor(__UpperCamelCase ) != input_a) or (math.floor(__UpperCamelCase ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers _A = qiskit.QuantumRegister(4 , 'qr' ) _A = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries _A = [input_a, input_a, carry_in] _A = qiskit.QuantumCircuit(__UpperCamelCase , __UpperCamelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__UpperCamelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__UpperCamelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__UpperCamelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __UpperCamelCase ) # measure the last two qbits _A = qiskit.Aer.get_backend('aer_simulator' ) _A = qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=1_0_0_0 ) return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
292
0
'''simple docstring''' A__ : List[str] ='ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def A_ ( __SCREAMING_SNAKE_CASE : bytes ) -> bytes: """simple docstring""" if not isinstance(a_ , a_ ): __A : str = F"a bytes-like object is required, not '{data.__class__.__name__}'" raise TypeError(a_ ) __A : Any = ''''''.join(bin(a_ )[2:].zfill(8 ) for byte in data ) __A : List[str] = len(a_ ) % 6 != 0 if padding_needed: # The padding that will be added later __A : List[str] = b'''=''' * ((6 - len(a_ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(a_ ) % 6) else: __A : int = b'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(a_ ) , 6 ) ).encode() + padding ) def A_ ( __SCREAMING_SNAKE_CASE : str ) -> bytes: """simple docstring""" if not isinstance(a_ , a_ ) and not isinstance(a_ , a_ ): __A : Optional[int] = ( '''argument should be a bytes-like object or ASCII string, ''' F"not '{encoded_data.__class__.__name__}'" ) raise TypeError(a_ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(a_ , a_ ): try: __A : Any = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) __A : List[str] = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(a_ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __A : str = encoded_data[:-padding] __A : int = ''''''.join( bin(B64_CHARSET.index(a_ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __A : Dict = ''''''.join( bin(B64_CHARSET.index(a_ ) )[2:].zfill(6 ) for char in encoded_data ) __A : Any = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(a_ ) , 8 ) ] return bytes(a_ ) if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging A__ : Union[str, Any] =logging.get_logger(__name__) A__ : List[str] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED A__ : str ={ 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } A__ : List[Any] ={ 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def A_ ( ) -> Tuple: """simple docstring""" __A : Optional[int] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __A : List[Any] = bs[:] __A : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __A : int = [chr(__SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def A_ ( __SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" __A : str = set() __A : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __A : Optional[Any] = char return pairs class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase =VOCAB_FILES_NAMES lowerCamelCase =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase =['''input_ids''', '''attention_mask'''] def __init__( self : Any , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : Dict="replace" , lowerCamelCase : int="<s>" , lowerCamelCase : str="</s>" , lowerCamelCase : List[str]="</s>" , lowerCamelCase : Optional[Any]="<s>" , lowerCamelCase : Any="<unk>" , lowerCamelCase : str="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : Optional[int]=False , **lowerCamelCase : str , ): """simple docstring""" __A : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __A : Any = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __A : int = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __A : Any = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __A : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __A : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __A : List[str] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="""utf-8""" ) as vocab_handle: __A : Optional[Any] = json.load(lowerCamelCase ) __A : Dict = {v: k for k, v in self.encoder.items()} __A : List[Any] = errors # how to handle errors in decoding __A : Optional[int] = bytes_to_unicode() __A : str = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="""utf-8""" ) as merges_handle: __A : str = merges_handle.read().split("""\n""" )[1:-1] __A : Tuple = [tuple(merge.split() ) for merge in bpe_merges] __A : List[Any] = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __A : List[str] = {} __A : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __A : Any = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowercase_( self : Any ): """simple docstring""" return len(self.encoder ) def lowercase_( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_( self : str , lowerCamelCase : Optional[int] ): """simple docstring""" if token in self.cache: return self.cache[token] __A : Optional[Any] = tuple(lowerCamelCase ) __A : Dict = get_pairs(lowerCamelCase ) if not pairs: return token while True: __A : str = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __A , __A : Optional[Any] = bigram __A : List[Any] = [] __A : Union[str, Any] = 0 while i < len(lowerCamelCase ): try: __A : str = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __A : Union[str, Any] = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __A : Dict = tuple(lowerCamelCase ) __A : List[Any] = new_word if len(lowerCamelCase ) == 1: break else: __A : Optional[Any] = get_pairs(lowerCamelCase ) __A : Optional[int] = """ """.join(lowerCamelCase ) __A : str = word return word def lowercase_( self : str , lowerCamelCase : Optional[int] ): """simple docstring""" __A : List[str] = [] for token in re.findall(self.pat , lowerCamelCase ): __A : Optional[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(""" """ ) ) return bpe_tokens def lowercase_( self : Dict , lowerCamelCase : Tuple ): """simple docstring""" return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowercase_( self : str , lowerCamelCase : Optional[Any] ): """simple docstring""" return self.decoder.get(lowerCamelCase ) def lowercase_( self : Tuple , lowerCamelCase : int ): """simple docstring""" __A : Any = """""".join(lowerCamelCase ) __A : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowercase_( self : List[str] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __A : Any = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __A : Optional[Any] = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + """\n""" ) __A : str = 0 with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __A : Any = token_index writer.write(""" """.join(lowerCamelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def lowercase_( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Tuple = [self.cls_token_id] __A : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_( self : List[str] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def lowercase_( self : List[str] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" __A : int = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_( self : Dict , lowerCamelCase : int , lowerCamelCase : Dict=False , **lowerCamelCase : List[Any] ): """simple docstring""" __A : Union[str, Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __A : Dict = """ """ + text return (text, kwargs) def lowercase_( self : Optional[int] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): """simple docstring""" __A : str = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __A : List[Any] = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __A : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __A : List[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase ) if needs_to_be_padded: __A : str = len(lowerCamelCase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __A : List[Any] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": __A : Any = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
499
0
"""simple docstring""" import requests def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = {"""Content-Type""": """application/json"""} __lowerCAmelCase = requests.post(_lowerCAmelCase , json={"""text""": message_body} , headers=_lowerCAmelCase ) if response.status_code != 200: __lowerCAmelCase = ( """Request to slack returned an error """ f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(_lowerCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
465
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def lowercase (_lowerCAmelCase ): def decorator(_lowerCAmelCase ): __lowerCAmelCase = getattr(_lowerCAmelCase , """handle_key""" , [] ) handle += [key] setattr(_lowerCAmelCase , """handle_key""" , _lowerCAmelCase ) return func return decorator def lowercase (*_lowerCAmelCase ): def decorator(_lowerCAmelCase ): __lowerCAmelCase = getattr(_lowerCAmelCase , """handle_key""" , [] ) handle += keys setattr(_lowerCAmelCase , """handle_key""" , _lowerCAmelCase ) return func return decorator class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __new__( cls , snake_case_ , snake_case_ , snake_case_ ) -> Any: __lowerCAmelCase = super().__new__(cls , snake_case_ , snake_case_ , snake_case_ ) if not hasattr(snake_case_ , """key_handler""" ): setattr(snake_case_ , """key_handler""" , {} ) setattr(snake_case_ , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __lowerCAmelCase = getattr(snake_case_ , """handle_key""" , [] ) for key in handled_keys: __lowerCAmelCase = value return new_cls @staticmethod def A__ ( cls ) -> Tuple: __lowerCAmelCase = get_character() if char != KEYMAP["undefined"]: __lowerCAmelCase = ord(snake_case_ ) __lowerCAmelCase = cls.key_handler.get(snake_case_ ) if handler: __lowerCAmelCase = char return handler(cls ) else: return None def lowercase (cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
465
1
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase ( _lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a__ ( self : Optional[Any] , __lowerCamelCase : List[str]=0 ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = np.random.RandomState(__lowerCamelCase ) lowerCamelCase__ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def a__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = self.get_dummy_inputs() lowerCamelCase__ = pipe(**__lowerCamelCase ).images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase__ = np.array([0.6_5_0_7_2, 0.5_8_4_9_2, 0.4_8_2_1_9, 0.5_5_5_2_1, 0.5_3_1_8_0, 0.5_5_9_3_9, 0.5_0_6_9_7, 0.3_9_8_0_0, 0.4_6_4_5_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : str ) -> int: '''simple docstring''' lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = self.get_dummy_inputs() lowerCamelCase__ = pipe(**__lowerCamelCase ).images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase__ = np.array([0.6_5_8_6_3, 0.5_9_4_2_5, 0.4_9_3_2_6, 0.5_6_3_1_3, 0.5_3_8_7_5, 0.5_6_6_2_7, 0.5_1_0_6_5, 0.3_9_7_7_7, 0.4_6_3_3_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : Any ) -> Tuple: '''simple docstring''' lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = self.get_dummy_inputs() lowerCamelCase__ = pipe(**__lowerCamelCase ).images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase__ = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : List[str] ) -> str: '''simple docstring''' lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = self.get_dummy_inputs() lowerCamelCase__ = pipe(**__lowerCamelCase ).images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase__ = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : Optional[Any] ) -> str: '''simple docstring''' lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = self.get_dummy_inputs() lowerCamelCase__ = pipe(**__lowerCamelCase ).images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase__ = np.array([0.5_3_8_1_7, 0.6_0_8_1_2, 0.4_7_3_8_4, 0.4_9_5_3_0, 0.5_1_8_9_4, 0.4_9_8_1_4, 0.4_7_9_8_4, 0.3_8_9_5_8, 0.4_4_2_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : Dict ) -> str: '''simple docstring''' lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = self.get_dummy_inputs() lowerCamelCase__ = pipe(**__lowerCamelCase ).images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase__ = np.array([0.5_3_8_9_5, 0.6_0_8_0_8, 0.4_7_9_3_3, 0.4_9_6_0_8, 0.5_1_8_8_6, 0.4_9_9_5_0, 0.4_8_0_5_3, 0.3_8_9_5_7, 0.4_4_2_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : str ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = self.get_dummy_inputs() lowerCamelCase__ = 3 * [inputs["prompt"]] # forward lowerCamelCase__ = pipe(**__lowerCamelCase ) lowerCamelCase__ = output.images[0, -3:, -3:, -1] lowerCamelCase__ = self.get_dummy_inputs() lowerCamelCase__ = 3 * [inputs.pop("prompt" )] lowerCamelCase__ = pipe.tokenizer( __lowerCamelCase , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=__lowerCamelCase , return_tensors="np" , ) lowerCamelCase__ = text_inputs["input_ids"] lowerCamelCase__ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] lowerCamelCase__ = prompt_embeds # forward lowerCamelCase__ = pipe(**__lowerCamelCase ) lowerCamelCase__ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def a__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = self.get_dummy_inputs() lowerCamelCase__ = 3 * ["this is a negative prompt"] lowerCamelCase__ = negative_prompt lowerCamelCase__ = 3 * [inputs["prompt"]] # forward lowerCamelCase__ = pipe(**__lowerCamelCase ) lowerCamelCase__ = output.images[0, -3:, -3:, -1] lowerCamelCase__ = self.get_dummy_inputs() lowerCamelCase__ = 3 * [inputs.pop("prompt" )] lowerCamelCase__ = [] for p in [prompt, negative_prompt]: lowerCamelCase__ = pipe.tokenizer( __lowerCamelCase , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=__lowerCamelCase , return_tensors="np" , ) lowerCamelCase__ = text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) lowerCamelCase__ , lowerCamelCase__ = embeds # forward lowerCamelCase__ = pipe(**__lowerCamelCase ) lowerCamelCase__ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): '''simple docstring''' @property def a__ ( self : Any ) -> Tuple: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = ort.SessionOptions() lowerCamelCase__ = False return options def a__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = "A painting of a squirrel eating a burger" np.random.seed(0 ) lowerCamelCase__ = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) lowerCamelCase__ = output.images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ = np.array([0.0_4_5_2, 0.0_3_9_0, 0.0_0_8_7, 0.0_3_5_0, 0.0_6_1_7, 0.0_3_6_4, 0.0_5_4_4, 0.0_5_2_3, 0.0_7_2_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowerCamelCase__ = DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = "open neural network exchange" lowerCamelCase__ = np.random.RandomState(0 ) lowerCamelCase__ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__lowerCamelCase , output_type="np" ) lowerCamelCase__ = output.images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ = np.array([0.2_8_6_7, 0.1_9_7_4, 0.1_4_8_1, 0.7_2_9_4, 0.7_2_5_1, 0.6_6_6_7, 0.4_1_9_4, 0.5_6_4_2, 0.6_4_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a__ ( self : List[str] ) -> Any: '''simple docstring''' lowerCamelCase__ = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = "open neural network exchange" lowerCamelCase__ = np.random.RandomState(0 ) lowerCamelCase__ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__lowerCamelCase , output_type="np" ) lowerCamelCase__ = output.images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ = np.array([0.2_3_0_6, 0.1_9_5_9, 0.1_5_9_3, 0.6_5_4_9, 0.6_3_9_4, 0.5_4_0_8, 0.5_0_6_5, 0.6_0_1_0, 0.6_1_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a__ ( self : Optional[int] ) -> Any: '''simple docstring''' lowerCamelCase__ = 0 def test_callback_fn(__lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : np.ndarray ) -> None: lowerCamelCase__ = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) lowerCamelCase__ = latents[0, -3:, -3:, -1] lowerCamelCase__ = np.array( [-0.6_7_7_2, -0.3_8_3_5, -1.2_4_5_6, 0.1_9_0_5, -1.0_9_7_4, 0.6_9_6_7, -1.9_3_5_3, 0.0_1_7_8, 1.0_1_6_7] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) lowerCamelCase__ = latents[0, -3:, -3:, -1] lowerCamelCase__ = np.array( [-0.3_3_5_1, 0.2_2_4_1, -0.1_8_3_7, -0.2_3_2_5, -0.6_5_7_7, 0.3_3_9_3, -0.0_2_4_1, 0.5_8_9_9, 1.3_8_7_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 lowerCamelCase__ = False lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = "Andromeda galaxy in a bottle" lowerCamelCase__ = np.random.RandomState(0 ) pipe( prompt=__lowerCamelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def a__ ( self : int ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert pipe.safety_checker is None lowerCamelCase__ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(__lowerCamelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCamelCase__ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
187
'''simple docstring''' def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): def update_area_of_max_square(lowercase__ , lowercase__) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowerCamelCase__ = update_area_of_max_square(lowercase__ , col + 1) lowerCamelCase__ = update_area_of_max_square(row + 1 , col + 1) lowerCamelCase__ = update_area_of_max_square(row + 1 , lowercase__) if mat[row][col]: lowerCamelCase__ = 1 + min([right, diagonal, down]) lowerCamelCase__ = max(largest_square_area[0] , lowercase__) return sub_problem_sol else: return 0 lowerCamelCase__ = [0] update_area_of_max_square(0 , 0) return largest_square_area[0] def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): def update_area_of_max_square_using_dp_array( lowercase__ , lowercase__ , lowercase__) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowerCamelCase__ = update_area_of_max_square_using_dp_array(lowercase__ , col + 1 , lowercase__) lowerCamelCase__ = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase__) lowerCamelCase__ = update_area_of_max_square_using_dp_array(row + 1 , lowercase__ , lowercase__) if mat[row][col]: lowerCamelCase__ = 1 + min([right, diagonal, down]) lowerCamelCase__ = max(largest_square_area[0] , lowercase__) lowerCamelCase__ = sub_problem_sol return sub_problem_sol else: return 0 lowerCamelCase__ = [0] lowerCamelCase__ = [[-1] * cols for _ in range(lowercase__)] update_area_of_max_square_using_dp_array(0 , 0 , lowercase__) return largest_square_area[0] def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): lowerCamelCase__ = [[0] * (cols + 1) for _ in range(rows + 1)] lowerCamelCase__ = 0 for row in range(rows - 1 , -1 , -1): for col in range(cols - 1 , -1 , -1): lowerCamelCase__ = dp_array[row][col + 1] lowerCamelCase__ = dp_array[row + 1][col + 1] lowerCamelCase__ = dp_array[row + 1][col] if mat[row][col] == 1: lowerCamelCase__ = 1 + min(lowercase__ , lowercase__ , lowercase__) lowerCamelCase__ = max(dp_array[row][col] , lowercase__) else: lowerCamelCase__ = 0 return largest_square_area def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): lowerCamelCase__ = [0] * (cols + 1) lowerCamelCase__ = [0] * (cols + 1) lowerCamelCase__ = 0 for row in range(rows - 1 , -1 , -1): for col in range(cols - 1 , -1 , -1): lowerCamelCase__ = current_row[col + 1] lowerCamelCase__ = next_row[col + 1] lowerCamelCase__ = next_row[col] if mat[row][col] == 1: lowerCamelCase__ = 1 + min(lowercase__ , lowercase__ , lowercase__) lowerCamelCase__ = max(current_row[col] , lowercase__) else: lowerCamelCase__ = 0 lowerCamelCase__ = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
187
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if not numbers: return 0 if not isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) or not all( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) _A = _A = _A = numbers[0] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): # update the maximum and minimum subarray products _A = numbers[i] if number < 0: _A, _A = min_till_now, max_till_now _A = max(_SCREAMING_SNAKE_CASE , max_till_now * number ) _A = min(_SCREAMING_SNAKE_CASE , min_till_now * number ) # update the maximum product found till now _A = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return max_prod
27
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __lowerCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : int = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) snake_case__ : Union[str, Any] = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) snake_case__ : Dict = False snake_case__ : Optional[int] = False def a_ ( self , a__ , a__ , a__=False ): __SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(a__ , a__ , return_labels=a__ ) if return_labels: if model_class in get_values(a__ ): __SCREAMING_SNAKE_CASE : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.02 , a__=3 , a__=4 , a__=None , ): __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : str = batch_size __SCREAMING_SNAKE_CASE : int = seq_length __SCREAMING_SNAKE_CASE : Any = is_training __SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask __SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids __SCREAMING_SNAKE_CASE : Dict = use_labels __SCREAMING_SNAKE_CASE : List[Any] = vocab_size __SCREAMING_SNAKE_CASE : str = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings __SCREAMING_SNAKE_CASE : int = type_vocab_size __SCREAMING_SNAKE_CASE : Any = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : Any = num_choices __SCREAMING_SNAKE_CASE : List[str] = scope __SCREAMING_SNAKE_CASE : Optional[int] = embedding_size def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : Any = None if self.use_labels: __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[str] = TFMobileBertModel(config=a__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ ) __SCREAMING_SNAKE_CASE : Any = [input_ids, input_mask] __SCREAMING_SNAKE_CASE : str = model(a__ ) __SCREAMING_SNAKE_CASE : int = model(a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Tuple = TFMobileBertForMaskedLM(config=a__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : str = TFMobileBertForNextSentencePrediction(config=a__ ) __SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __SCREAMING_SNAKE_CASE : Tuple = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = TFMobileBertForPreTraining(config=a__ ) __SCREAMING_SNAKE_CASE : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __SCREAMING_SNAKE_CASE : Optional[int] = model(a__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Any = self.num_labels __SCREAMING_SNAKE_CASE : Optional[int] = TFMobileBertForSequenceClassification(config=a__ ) __SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __SCREAMING_SNAKE_CASE : Dict = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[Any] = self.num_choices __SCREAMING_SNAKE_CASE : int = TFMobileBertForMultipleChoice(config=a__ ) __SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE : Any = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE : List[str] = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : int = TFMobileBertForTokenClassification(config=a__ ) __SCREAMING_SNAKE_CASE : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __SCREAMING_SNAKE_CASE : Any = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Dict = TFMobileBertForQuestionAnswering(config=a__ ) __SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self ): __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : Union[str, Any] = config_and_inputs __SCREAMING_SNAKE_CASE : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def a_ ( self ): __SCREAMING_SNAKE_CASE : int = TFMobileBertModelTest.TFMobileBertModelTester(self ) __SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*a__ ) @slow def a_ ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __SCREAMING_SNAKE_CASE : Any = TFMobileBertModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) __SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE : str = model(a__ )[0] __SCREAMING_SNAKE_CASE : Dict = [1, 6, 30522] self.assertEqual(output.shape , a__ ) __SCREAMING_SNAKE_CASE : str = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-4 )
211
0
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path a : Optional[int] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) a : str = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} a : List[Any] = '''zero2''' a : Any = '''zero3''' a : List[str] = [ZEROa, ZEROa] def _UpperCamelCase ( _A , _A , _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = parameterized.to_safe_name("""_""".join(str(_A ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test a : List[str] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class a_ ( _UpperCAmelCase ): @parameterized.expand(__UpperCamelCase , name_func=__UpperCamelCase ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ) ->Optional[int]: '''simple docstring''' self.run_and_check( stage=__UpperCamelCase , model=__UpperCamelCase , distributed=__UpperCamelCase , fpaa=__UpperCamelCase , ) @require_torch_multi_gpu @parameterized.expand(__UpperCamelCase , name_func=__UpperCamelCase ) def _snake_case ( self : Dict , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] ) ->int: '''simple docstring''' self.run_and_check( stage=__UpperCamelCase , model=__UpperCamelCase , distributed=__UpperCamelCase , fpaa=__UpperCamelCase , ) @parameterized.expand(__UpperCamelCase , name_func=__UpperCamelCase ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) ->Dict: '''simple docstring''' self.run_and_check( stage=__UpperCamelCase , model=__UpperCamelCase , distributed=__UpperCamelCase , fpaa=__UpperCamelCase , ) @require_torch_multi_gpu @parameterized.expand(__UpperCamelCase , name_func=__UpperCamelCase ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] ) ->Any: '''simple docstring''' self.run_and_check( stage=__UpperCamelCase , model=__UpperCamelCase , distributed=__UpperCamelCase , fpaa=__UpperCamelCase , ) def _snake_case ( self : Tuple , __UpperCamelCase : Tuple ) ->Optional[Any]: '''simple docstring''' pass def _snake_case ( self : str , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : int = 10 , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = models[model] _UpperCAmelCase = self.run_trainer( stage=__UpperCamelCase , model_name=__UpperCamelCase , eval_steps=__UpperCamelCase , num_train_epochs=1 , distributed=__UpperCamelCase , fpaa=__UpperCamelCase , ) self.do_checks(__UpperCamelCase ) return output_dir def _snake_case ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : int = 10 , __UpperCamelCase : int = 1 , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , ) ->Any: '''simple docstring''' _UpperCAmelCase = self.get_auto_remove_tmp_dir("""./xxx""" , after=__UpperCamelCase ) _UpperCAmelCase = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__UpperCamelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _UpperCAmelCase = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() _UpperCAmelCase = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] _UpperCAmelCase = self.get_launcher(__UpperCamelCase ) _UpperCAmelCase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__UpperCamelCase , env=self.get_env() ) return output_dir def _snake_case ( self : Optional[int] , __UpperCamelCase : int=False ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = min(2 , get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
19
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} _UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" _UpperCAmelCase = requests.get(_A , headers=_A ).json() _UpperCAmelCase = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(_A ): _UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCamelCase ( _A , _A=None ) -> Dict: """simple docstring""" _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} _UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" _UpperCAmelCase = requests.get(_A , headers=_A ).json() _UpperCAmelCase = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(_A ): _UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCamelCase ( _A , _A , _A , _A ) -> List[str]: """simple docstring""" _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} _UpperCAmelCase = requests.get(_A , headers=_A , allow_redirects=_A ) _UpperCAmelCase = result.headers["""Location"""] _UpperCAmelCase = requests.get(_A , allow_redirects=_A ) _UpperCAmelCase = os.path.join(_A , F"""{artifact_name}.zip""" ) with open(_A , """wb""" ) as fp: fp.write(response.content ) def _UpperCamelCase ( _A , _A=None ) -> Dict: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = None with zipfile.ZipFile(_A ) as z: for filename in z.namelist(): if not os.path.isdir(_A ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_A ) as f: for line in f: _UpperCAmelCase = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _UpperCAmelCase = line[: line.index(""": """ )] _UpperCAmelCase = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _UpperCAmelCase = line[len("""FAILED """ ) :] failed_tests.append(_A ) elif filename == "job_name.txt": _UpperCAmelCase = line if len(_A ) != len(_A ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(_A )} for `errors` """ F"""and {len(_A )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) _UpperCAmelCase = None if job_name and job_links: _UpperCAmelCase = job_links.get(_A , _A ) # A list with elements of the form (line of error, error, failed test) _UpperCAmelCase = [x + [y] + [job_link] for x, y in zip(_A , _A )] return result def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [os.path.join(_A , _A ) for p in os.listdir(_A ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(_A , job_links=_A ) ) return errors def _UpperCamelCase ( _A , _A=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = Counter() counter.update([x[1] for x in logs] ) _UpperCAmelCase = counter.most_common() _UpperCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _UpperCAmelCase = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) ) return r def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" _UpperCAmelCase = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _UpperCAmelCase = test.split("""/""" )[2] else: _UpperCAmelCase = None return test def _UpperCamelCase ( _A , _A=None ) -> Any: """simple docstring""" _UpperCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _UpperCAmelCase = [x for x in logs if x[2] is not None] _UpperCAmelCase = {x[2] for x in logs} _UpperCAmelCase = {} for test in tests: _UpperCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _UpperCAmelCase = counter.most_common() _UpperCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _UpperCAmelCase = sum(error_counts.values() ) if n_errors > 0: _UpperCAmelCase = {"""count""": n_errors, """errors""": error_counts} _UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) ) return r def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = """| no. | error | status |""" _UpperCAmelCase = """|-:|:-|:-|""" _UpperCAmelCase = [header, sep] for error in reduced_by_error: _UpperCAmelCase = reduced_by_error[error]["""count"""] _UpperCAmelCase = F"""| {count} | {error[:1_0_0]} | |""" lines.append(_A ) return "\n".join(_A ) def _UpperCamelCase ( _A ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = """| model | no. of errors | major error | count |""" _UpperCAmelCase = """|-:|-:|-:|-:|""" _UpperCAmelCase = [header, sep] for model in reduced_by_model: _UpperCAmelCase = reduced_by_model[model]["""count"""] _UpperCAmelCase ,_UpperCAmelCase = list(reduced_by_model[model]["""errors"""].items() )[0] _UpperCAmelCase = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(_A ) return "\n".join(_A ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') a : Dict = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) a : Tuple = get_job_links(args.workflow_run_id, token=args.token) a : Tuple = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: a : List[Any] = k.find(''' / ''') a : Tuple = k[index + len(''' / ''') :] a : int = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) a : Tuple = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) a : Optional[int] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error a : Union[str, Any] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors a : Optional[int] = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) a : int = reduce_by_error(errors) a : str = reduce_by_model(errors) a : int = make_github_table(reduced_by_error) a : Optional[int] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
19
1
from collections.abc import Callable def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = a lowercase__ = b if function(_lowerCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_lowerCamelCase ) == 0: return b elif ( function(_lowerCamelCase ) * function(_lowerCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: lowercase__ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_lowerCamelCase ) == 0: return mid elif function(_lowerCamelCase ) * function(_lowerCamelCase ) < 0: lowercase__ = mid else: lowercase__ = mid lowercase__ = start + (end - start) / 2.0 return mid def _lowerCAmelCase ( A__ ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
622
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( _lowerCamelCase : list[int] ): # This function is recursive A__ = len(_lowerCamelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A__ = array[0] A__ = False A__ = 1 A__ = [] while not is_found and i < array_length: if array[i] < pivot: A__ = True A__ = [element for element in array[i:] if element >= array[i]] A__ = longest_subsequence(_lowerCamelCase ) if len(_lowerCamelCase ) > len(_lowerCamelCase ): A__ = temp_array else: i += 1 A__ = [element for element in array[1:] if element >= pivot] A__ = [pivot, *longest_subsequence(_lowerCamelCase )] if len(_lowerCamelCase ) > len(_lowerCamelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
440
0
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class a__ ( unittest.TestCase ): def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.0_2 , _a=4 , ): lowercase : Optional[Any] = parent lowercase : Tuple = batch_size lowercase : int = seq_length lowercase : List[Any] = is_training lowercase : Union[str, Any] = use_attention_mask lowercase : str = use_token_type_ids lowercase : Any = use_labels lowercase : int = vocab_size lowercase : str = hidden_size lowercase : Tuple = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : List[Any] = intermediate_size lowercase : List[Any] = hidden_act lowercase : Optional[int] = hidden_dropout_prob lowercase : str = attention_probs_dropout_prob lowercase : Optional[Any] = max_position_embeddings lowercase : Optional[Any] = type_vocab_size lowercase : Dict = type_sequence_label_size lowercase : Any = initializer_range lowercase : Optional[Any] = num_choices def __magic_name__ ( self ): lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Tuple = None if self.use_attention_mask: lowercase : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Dict = None if self.use_token_type_ids: lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Tuple = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self ): lowercase : Dict = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : Union[str, Any] = config_and_inputs lowercase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def __magic_name__ ( self ): lowercase : Dict = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : int = config_and_inputs lowercase : Dict = True lowercase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a__ ( UpperCAmelCase_, unittest.TestCase ): __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self ): lowercase : List[str] = FlaxBertModelTester(self ) @slow def __magic_name__ ( self ): lowercase : List[str] = FlaxBertModel.from_pretrained("bert-base-cased" ) lowercase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case )
708
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __magic_name__ ( ) -> int: lowercase : Any = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=__snake_case , default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs" , type=__snake_case , default=5 ) parser.add_argument("--batch_size" , type=__snake_case , default=6 ) parser.add_argument("--gradient_accumulation_steps" , type=__snake_case , default=1 ) parser.add_argument("--freeze" , type=__snake_case , default=__snake_case ) parser.add_argument("--learning_rate" , type=__snake_case , default=5E-4 ) parser.add_argument("--seed" , type=__snake_case , default=0 ) parser.add_argument("--lr_scheduler_type" , type=__snake_case , default="cosine" ) parser.add_argument("--num_warmup_steps" , type=__snake_case , default=10 ) parser.add_argument("--weight_decay" , type=__snake_case , default=0.01 ) parser.add_argument("--output_dir" , type=__snake_case , default="./results" ) return parser.parse_args() _A : Tuple = load("""accuracy""") def __magic_name__ ( __snake_case : List[str] ) -> Tuple: lowercase , lowercase : int = eval_pred lowercase : Optional[int] = np.argmax(__snake_case , axis=1 ) return metric.compute(predictions=__snake_case , references=__snake_case ) class a__ ( a_ ): def __init__( self , _a ): super().__init__() lowercase : List[Any] = trainer def __magic_name__ ( self , _a , _a , _a , **_a ): if control.should_evaluate: lowercase : List[str] = deepcopy(_a ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def __magic_name__ ( ) -> List[Any]: lowercase : List[str] = get_args() set_seed(args.seed ) lowercase : Union[str, Any] = load_dataset("codeparrot/codecomplex" , split="train" ) lowercase : str = dataset.train_test_split(test_size=0.2 ) lowercase : Union[str, Any] = train_test["test"].train_test_split(test_size=0.5 ) lowercase : Tuple = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) lowercase : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) lowercase : List[Any] = tokenizer.eos_token lowercase : Any = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) lowercase : Optional[Any] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): lowercase : Any = False lowercase : Optional[int] = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(__snake_case : str ): lowercase : int = tokenizer(example["src"] , truncation=__snake_case , max_length=1024 ) lowercase : Any = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } lowercase : Dict = train_test_validation.map( __snake_case , batched=__snake_case , remove_columns=train_test_validation["train"].column_names , ) lowercase : List[Any] = DataCollatorWithPadding(tokenizer=__snake_case ) lowercase : Optional[Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) lowercase : int = Trainer( model=__snake_case , args=__snake_case , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=__snake_case , data_collator=__snake_case , compute_metrics=__snake_case , ) print("Training..." ) trainer.add_callback(CustomCallback(__snake_case ) ) trainer.train() if __name__ == "__main__": main()
518
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=7 ,UpperCamelCase=3 ,UpperCamelCase=18 ,UpperCamelCase=30 ,UpperCamelCase=400 ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=True ,) -> Optional[int]: snake_case__ :List[str] = size if size is not None else {"height": 18, "width": 18} snake_case__ :List[str] = parent snake_case__ :Dict = batch_size snake_case__ :int = num_channels snake_case__ :Union[str, Any] = image_size snake_case__ :Optional[Any] = min_resolution snake_case__ :Union[str, Any] = max_resolution snake_case__ :Union[str, Any] = do_resize snake_case__ :Union[str, Any] = size snake_case__ :Tuple = apply_ocr def lowerCAmelCase_ ( self ) -> List[Any]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( _A , unittest.TestCase ): _A = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :List[str] = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ) -> str: snake_case__ :Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase ,"do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase ,"size" ) ) self.assertTrue(hasattr(UpperCamelCase ,"apply_ocr" ) ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 18, "width": 18} ) snake_case__ :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: pass def lowerCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing snake_case__ :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ :List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,Image.Image ) # Test not batched input snake_case__ :List[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) self.assertIsInstance(encoding.words ,UpperCamelCase ) self.assertIsInstance(encoding.boxes ,UpperCamelCase ) # Test batched snake_case__ :Optional[Any] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) def lowerCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing snake_case__ :Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ :Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,np.ndarray ) # Test not batched input snake_case__ :str = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched snake_case__ :str = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) def lowerCAmelCase_ ( self ) -> Dict: # Initialize image_processing snake_case__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ :Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case__ :List[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched snake_case__ :Optional[Any] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) def lowerCAmelCase_ ( self ) -> Optional[Any]: # with apply_OCR = True snake_case__ :Any = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case__ :Dict = load_dataset("hf-internal-testing/fixtures_docvqa" ,split="test" ) snake_case__ :Optional[int] = Image.open(ds[0]["file"] ).convert("RGB" ) snake_case__ :Union[str, Any] = image_processing(UpperCamelCase ,return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case__ :Union[str, Any] = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 snake_case__ :Dict = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,UpperCamelCase ) self.assertListEqual(encoding.boxes ,UpperCamelCase ) # with apply_OCR = False snake_case__ :str = LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase ) snake_case__ :List[str] = image_processing(UpperCamelCase ,return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
241
from __future__ import annotations def lowercase_ ( __snake_case : list[int] ) -> int: '''simple docstring''' if not nums: return 0 snake_case__ :Union[str, Any] = nums[0] snake_case__ :List[Any] = 0 for num in nums[1:]: snake_case__ , snake_case__ :Optional[Any] = ( max_excluding + num, max(__snake_case , __snake_case ), ) return max(__snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
241
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : List[Any] = PegasusTokenizer __a : List[str] = PegasusTokenizerFast __a : List[str] = True __a : List[Any] = True def snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_ : Union[str, Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def snake_case ( self ,**snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): return ("This is a test", "This is a test") def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = '</s>' SCREAMING_SNAKE_CASE_ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) ,snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<pad>' ) self.assertEqual(vocab_keys[1] ,'</s>' ) self.assertEqual(vocab_keys[-1] ,'v' ) self.assertEqual(len(snake_case__ ) ,1103 ) def snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,1103 ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : List[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) SCREAMING_SNAKE_CASE_ : Tuple = rust_tokenizer([raw_input_str] ,return_tensors=snake_case__ ,add_special_tokens=snake_case__ ).input_ids[0] SCREAMING_SNAKE_CASE_ : Any = py_tokenizer([raw_input_str] ,return_tensors=snake_case__ ,add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word SCREAMING_SNAKE_CASE_ : Tuple = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' SCREAMING_SNAKE_CASE_ : Dict = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] SCREAMING_SNAKE_CASE_ : List[str] = tokenizer([raw_input_str] ,return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 SCREAMING_SNAKE_CASE_ : List[str] = 'To ensure a smooth flow of bank resolutions.' SCREAMING_SNAKE_CASE_ : int = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] SCREAMING_SNAKE_CASE_ : str = tokenizer([raw_input_str] ,return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ ,snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ['This is going to be way too long.' * 150, 'short example'] SCREAMING_SNAKE_CASE_ : Dict = ['not super long but more than 5 tokens', 'tiny'] SCREAMING_SNAKE_CASE_ : Any = self._large_tokenizer(snake_case__ ,padding=snake_case__ ,truncation=snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : List[str] = self._large_tokenizer( text_target=snake_case__ ,max_length=5 ,padding=snake_case__ ,truncation=snake_case__ ,return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def snake_case ( self ): # fmt: off SCREAMING_SNAKE_CASE_ : Optional[Any] = {'input_ids': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ ,model_name='google/bigbird-pegasus-large-arxiv' ,revision='ba85d0851d708441f91440d509690f1ab6353415' ,) @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = PegasusTokenizer __a : List[str] = PegasusTokenizerFast __a : Dict = True __a : str = True def snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_ : List[str] = PegasusTokenizer(snake_case__ ,offset=0 ,mask_token_sent=snake_case__ ,mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def snake_case ( self ,**snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): return ("This is a test", "This is a test") def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Optional[int] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) SCREAMING_SNAKE_CASE_ : str = rust_tokenizer([raw_input_str] ,return_tensors=snake_case__ ,add_special_tokens=snake_case__ ).input_ids[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = py_tokenizer([raw_input_str] ,return_tensors=snake_case__ ,add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ ,snake_case__ ) @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = ['This is going to be way too long.' * 1000, 'short example'] SCREAMING_SNAKE_CASE_ : Optional[Any] = ['not super long but more than 5 tokens', 'tiny'] SCREAMING_SNAKE_CASE_ : str = self._large_tokenizer(snake_case__ ,padding=snake_case__ ,truncation=snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Any = self._large_tokenizer( text_target=snake_case__ ,max_length=5 ,padding=snake_case__ ,truncation=snake_case__ ,return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) SCREAMING_SNAKE_CASE_ : Any = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ ,[182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] ,)
700
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : Dict = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(request.urlopen(lowerCamelCase_ ).read() )['releases'].keys() return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : version.Version(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(lowerCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] ) -> Any: """simple docstring""" init_hf_modules() SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE_ : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase_ ) ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = [module_file] SCREAMING_SNAKE_CASE_ : Tuple = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ).parent SCREAMING_SNAKE_CASE_ : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE_ : Any = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCamelCase_ ) == 0 all_relative_imports.extend(lowerCamelCase_ ) return all_relative_imports def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE_ : List[str] = re.findall('^\s*import\s+(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE_ : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(set(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = [] for imp in imports: try: importlib.import_module(lowerCamelCase_ ) except ImportError: missing_packages.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(lowerCamelCase_ )}. Run `pip install {" ".join(lowerCamelCase_ )}`' ) return get_relative_imports(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE_ : Any = importlib.import_module(lowerCamelCase_ ) if class_name is None: return find_pipeline_class(lowerCamelCase_ ) return getattr(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE_ : List[Any] = dict(inspect.getmembers(lowerCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE_ : Any = cls return pipeline_class def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE_ : Dict = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE_ : List[str] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE_ : Dict = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE_ : List[Any] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE_ : int = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE_ : List[Any] = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase_ , pipeline=lowerCamelCase_ ) try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_download( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = 'git' SCREAMING_SNAKE_CASE_ : Dict = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_ : List[str] = hf_hub_download( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE_ : Dict = check_imports(lowerCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE_ : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE_ : int = HfFolder.get_token() else: SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = model_info(lowerCamelCase_ , revision=lowerCamelCase_ , token=lowerCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE_ : Any = submodule_path / commit_hash SCREAMING_SNAKE_CASE_ : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase_ , F'{module_needed}.py' , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Dict , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_cached_module_file( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return get_class_in_module(lowerCamelCase_ , final_module.replace('.py' , '' ) )
685
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( A__ ): """simple docstring""" _a = ['image_processor', 'tokenizer'] _a = 'FlavaImageProcessor' _a = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :str = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase_ , ) UpperCamelCase__ :Dict = kwargs.pop('''feature_extractor''' ) UpperCamelCase__ :Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :str = self.image_processor def __call__( self , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = 0 , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = True , UpperCamelCase_ = None , **UpperCamelCase_ , ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCamelCase__ :int = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) if images is not None: UpperCamelCase__ :Any = self.image_processor( UpperCamelCase_ , return_image_mask=UpperCamelCase_ , return_codebook_pixels=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) if text is not None and images is not None: encoding.update(UpperCamelCase_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase_ ) , tensor_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self , *UpperCamelCase_ , **UpperCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , *UpperCamelCase_ , **UpperCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.tokenizer.model_input_names UpperCamelCase__ :Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCamelCase_ , ) return self.image_processor_class @property def lowerCAmelCase__ ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCamelCase_ , ) return self.image_processor
189
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class lowercase ( A__ ): """simple docstring""" _a = None _a = None _a = None _a = None class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=512 , UpperCamelCase_="cls" , UpperCamelCase_=False , UpperCamelCase_=True , **UpperCamelCase_ , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = project_dim UpperCamelCase__ :List[str] = pooler_fn UpperCamelCase__ :Dict = learn_encoder UpperCamelCase__ :Any = use_attention_mask class lowercase ( A__ ): """simple docstring""" _a = [R'pooler', R'logit_scale'] _a = [R'position_ids', R'predictions.decoder.bias'] _a = 'roberta' _a = RobertaSeriesConfig def __init__( self , UpperCamelCase_ ): '''simple docstring''' super().__init__(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = XLMRobertaModel(UpperCamelCase_ ) UpperCamelCase__ :Tuple = nn.Linear(config.hidden_size , config.project_dim ) UpperCamelCase__ :Union[str, Any] = getattr(UpperCamelCase_ , '''has_pre_transformation''' , UpperCamelCase_ ) if self.has_pre_transformation: UpperCamelCase__ :Any = nn.Linear(config.hidden_size , config.project_dim ) UpperCamelCase__ :str = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def lowerCAmelCase__ ( self , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , ): '''simple docstring''' UpperCamelCase__ :Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ :str = self.base_model( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_attentions=UpperCamelCase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=UpperCamelCase_ , ) if self.has_pre_transformation: UpperCamelCase__ :Dict = outputs['''hidden_states'''][-2] UpperCamelCase__ :Optional[int] = self.pre_LN(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = self.transformation_pre(UpperCamelCase_ ) return TransformationModelOutput( projection_state=UpperCamelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: UpperCamelCase__ :List[Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=UpperCamelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
189
1
'''simple docstring''' def A (__lowerCamelCase :str , __lowerCamelCase :str ): assert x is not None assert y is not None _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = len(__lowerCamelCase ) # declaring the array for storing the dp values _lowerCAmelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 _lowerCAmelCase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _lowerCAmelCase = """""" _lowerCAmelCase , _lowerCAmelCase = m, n while i > 0 and j > 0: _lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _lowerCAmelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _lowercase = """AGGTAB""" _lowercase = """GXTXAYB""" _lowercase = 4 _lowercase = """GTAB""" _lowercase , _lowercase = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
719
'''simple docstring''' def A (__lowerCamelCase :list , __lowerCamelCase :list , __lowerCamelCase :int ): _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = [[0] * n for i in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): _lowerCAmelCase = y_points[i] for i in range(2 , __lowerCamelCase ): for j in range(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
162
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self : Optional[int] ): torch.manual_seed(0 ) __UpperCamelCase = UNetaDModel( sample_size=(3_2, 6_4) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def _lowerCamelCase ( self : Tuple ): torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=1_0 , ) return model @property def _lowerCamelCase ( self : Tuple ): torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( sample_size=(1_2_8, 6_4) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) __UpperCamelCase = UNetaDModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __UpperCamelCase = DDPMScheduler() __UpperCamelCase = AudioDiffusionPipeline(vqvae=__A , unet=self.dummy_unet , mel=__A , scheduler=__A ) __UpperCamelCase = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __UpperCamelCase = torch.Generator(device=__A ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=__A , steps=4 ) __UpperCamelCase = output.audios[0] __UpperCamelCase = output.images[0] __UpperCamelCase = torch.Generator(device=__A ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=__A , steps=4 , return_dict=__A ) __UpperCamelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __UpperCamelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] __UpperCamelCase = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:1_0] __UpperCamelCase = np.array([6_9, 2_5_5, 2_5_5, 2_5_5, 0, 0, 7_7, 1_8_1, 1_2, 1_2_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __UpperCamelCase = DDIMScheduler() __UpperCamelCase = self.dummy_vqvae_and_unet __UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__A , scheduler=__A ) __UpperCamelCase = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) np.random.seed(0 ) __UpperCamelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __UpperCamelCase = torch.Generator(device=__A ).manual_seed(4_2 ) __UpperCamelCase = pipe(raw_audio=__A , generator=__A , start_step=5 , steps=1_0 ) __UpperCamelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __UpperCamelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] __UpperCamelCase = np.array([1_2_0, 1_1_7, 1_1_0, 1_0_9, 1_3_8, 1_6_7, 1_3_8, 1_4_8, 1_3_2, 1_2_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase = self.dummy_unet_condition __UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__A , mel=__A , scheduler=__A ) __UpperCamelCase = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) np.random.seed(0 ) __UpperCamelCase = torch.rand((1, 1, 1_0) ) __UpperCamelCase = pipe(generator=__A , encoding=__A ) __UpperCamelCase = output.images[0] __UpperCamelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] __UpperCamelCase = np.array([1_0_7, 1_0_3, 1_2_0, 1_2_7, 1_4_2, 1_2_2, 1_1_3, 1_2_2, 9_7, 1_1_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = torch_device __UpperCamelCase = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) __UpperCamelCase = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __UpperCamelCase = torch.Generator(device=__A ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=__A ) __UpperCamelCase = output.audios[0] __UpperCamelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __UpperCamelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] __UpperCamelCase = np.array([1_5_1, 1_6_7, 1_5_4, 1_4_4, 1_2_2, 1_3_4, 1_2_1, 1_0_5, 7_0, 2_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
399
'''simple docstring''' import math def lowercase__ ( __lowercase : int ) -> int: """simple docstring""" if not isinstance(__lowercase , __lowercase ): __UpperCamelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(__lowercase ) if number < 1: __UpperCamelCase = F'''Input value of [number={number}] must be > 0''' raise ValueError(__lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , __lowercase ): for _ in range(__lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): a__ : int =0 try: a__ : str =proth(number) except ValueError: print(f'ValueError: there is no {number}th Proth number') continue print(f'The {number}th Proth number: {value}')
399
1
import pytest a_ :str = '__dummy_dataset1__' a_ :str = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def a ( ) -> Tuple: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def a ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def a ( A__ , A__ , A__ ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = dataset_loading_script_name SCREAMING_SNAKE_CASE__ : Union[str, Any] = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = script_dir / f"""{script_name}.py""" with open(_lowerCamelCase , '''w''' ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase )
716
def a ( A__ , A__ , A__ ) -> float: '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate SCREAMING_SNAKE_CASE__ : List[Any] = rate_per_annum / 1_2 # Years to repay is multiplied by 12 to get number of payments as payment is monthly SCREAMING_SNAKE_CASE__ : Union[str, Any] = years_to_repay * 1_2 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
250
0
import re def lowerCamelCase_ ( UpperCamelCase_ ): _a : Dict = re.compile( R'''^(?:0|94|\+94|0{2}94)''' R'''7(0|1|2|4|5|6|7|8)''' R'''(-| |)''' R'''\d{7}$''' ) return bool(re.search(UpperCamelCase_ , UpperCamelCase_ ) ) if __name__ == "__main__": __UpperCAmelCase : List[Any] = '0094702343221' print(is_sri_lankan_phone_number(phone))
471
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __UpperCAmelCase : List[str] = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' __UpperCAmelCase : List[str] = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' __UpperCAmelCase : Union[str, Any] = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): return float((preds == labels).mean() ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): _a : int = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) _a : List[Any] = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): _a : str = float(pearsonr(UpperCamelCase_ , UpperCamelCase_ )[0] ) _a : str = float(spearmanr(UpperCamelCase_ , UpperCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def snake_case_ ( self : Dict ) -> Union[str, Any]: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def snake_case_ ( self : Optional[int] , __snake_case : Any , __snake_case : Any ) -> Union[str, Any]: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__snake_case , __snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(__snake_case , __snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__snake_case , __snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__snake_case , __snake_case )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
471
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class A__ ( A__ ): """simple docstring""" _lowercase = 42 @flax_register_to_config class A__ ( nn.Module , A__ , A__ ): """simple docstring""" _lowercase = 3_2 _lowercase = 4 _lowercase = 4 _lowercase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _lowercase = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _lowercase = False _lowercase = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) _lowercase = 2 _lowercase = 8 _lowercase = None _lowercase = 1_2_8_0 _lowercase = 0.0 _lowercase = False _lowercase = jnp.floataa _lowercase = True _lowercase = 0 _lowercase = False def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : jax.random.KeyArray ): # init input tensors a__ : int = (1, self.in_channels, self.sample_size, self.sample_size) a__ : Optional[int] = jnp.zeros(lowerCamelCase__ , dtype=jnp.floataa ) a__ : List[Any] = jnp.ones((1,) , dtype=jnp.intaa ) a__ : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) a__, a__ : str = jax.random.split(lowerCamelCase__ ) a__ : Any = {"params": params_rng, "dropout": dropout_rng} return self.init(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )["params"] def _UpperCamelCase( self : List[Any] ): a__ : Tuple = self.block_out_channels a__ : Tuple = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a__ : List[Any] = self.num_attention_heads or self.attention_head_dim # input a__ : Optional[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a__ : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) a__ : Optional[Any] = FlaxTimestepEmbedding(lowerCamelCase__ , dtype=self.dtype ) a__ : Optional[Any] = self.only_cross_attention if isinstance(lowerCamelCase__ , lowerCamelCase__ ): a__ : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): a__ : Tuple = (num_attention_heads,) * len(self.down_block_types ) # down a__ : int = [] a__ : Any = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): a__ : str = output_channel a__ : Optional[Any] = block_out_channels[i] a__ : int = i == len(lowerCamelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": a__ : int = FlaxCrossAttnDownBlockaD( in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a__ : Optional[int] = FlaxDownBlockaD( in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCamelCase__ ) a__ : Optional[int] = down_blocks # mid a__ : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up a__ : Optional[int] = [] a__ : List[str] = list(reversed(lowerCamelCase__ ) ) a__ : Union[str, Any] = list(reversed(lowerCamelCase__ ) ) a__ : Any = list(reversed(lowerCamelCase__ ) ) a__ : List[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): a__ : Any = output_channel a__ : Tuple = reversed_block_out_channels[i] a__ : Tuple = reversed_block_out_channels[min(i + 1 , len(lowerCamelCase__ ) - 1 )] a__ : Optional[int] = i == len(lowerCamelCase__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": a__ : int = FlaxCrossAttnUpBlockaD( in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , prev_output_channel=lowerCamelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a__ : Optional[int] = FlaxUpBlockaD( in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , prev_output_channel=lowerCamelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowerCamelCase__ ) a__ : List[Any] = output_channel a__ : int = up_blocks # out a__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) a__ : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : int=None , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : bool = True , lowerCamelCase__ : bool = False , ): # 1. time if not isinstance(lowerCamelCase__ , jnp.ndarray ): a__ : Optional[int] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCamelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: a__ : Optional[Any] = timesteps.astype(dtype=jnp.floataa ) a__ : Optional[int] = jnp.expand_dims(lowerCamelCase__ , 0 ) a__ : List[Any] = self.time_proj(lowerCamelCase__ ) a__ : List[Any] = self.time_embedding(lowerCamelCase__ ) # 2. pre-process a__ : Optional[Any] = jnp.transpose(lowerCamelCase__ , (0, 2, 3, 1) ) a__ : int = self.conv_in(lowerCamelCase__ ) # 3. down a__ : List[Any] = (sample,) for down_block in self.down_blocks: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): a__, a__ : Optional[int] = down_block(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , deterministic=not train ) else: a__, a__ : Optional[Any] = down_block(lowerCamelCase__ , lowerCamelCase__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: a__ : Union[str, Any] = () for down_block_res_sample, down_block_additional_residual in zip( lowerCamelCase__ , lowerCamelCase__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) a__ : Any = new_down_block_res_samples # 4. mid a__ : Optional[int] = self.mid_block(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: a__ : str = down_block_res_samples[-(self.layers_per_block + 1) :] a__ : int = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowerCamelCase__ , lowerCamelCase__ ): a__ : Any = up_block( lowerCamelCase__ , temb=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , res_hidden_states_tuple=lowerCamelCase__ , deterministic=not train , ) else: a__ : Optional[Any] = up_block(lowerCamelCase__ , temb=lowerCamelCase__ , res_hidden_states_tuple=lowerCamelCase__ , deterministic=not train ) # 6. post-process a__ : Optional[Any] = self.conv_norm_out(lowerCamelCase__ ) a__ : List[str] = nn.silu(lowerCamelCase__ ) a__ : Tuple = self.conv_out(lowerCamelCase__ ) a__ : Tuple = jnp.transpose(lowerCamelCase__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowerCamelCase__ )
151
def UpperCamelCase_ ( __a ) -> bool: if num < 0: return False a__ : int = num a__ : int = 0 while num > 0: a__ : str = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
151
1
'''simple docstring''' from math import factorial def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : float ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(lowerCamelCase ,lowerCamelCase ) or not isinstance(lowerCamelCase ,lowerCamelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _A : str = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _A : Any = float(factorial(lowerCamelCase ) ) coefficient /= factorial(lowerCamelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
128
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : Tuple = '''▁''' A : Dict = {'''vocab_file''': '''sentencepiece.bpe.model'''} A : str = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } A : Any = { '''facebook/mbart-large-50-one-to-many-mmt''': 1024, } # fmt: off A : Dict = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class __lowerCamelCase ( a_ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_VOCAB_FILES_MAP a = ["input_ids", "attention_mask"] a = [] a = [] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE : Dict="<s>" , SCREAMING_SNAKE_CASE : int="<unk>" , SCREAMING_SNAKE_CASE : Tuple="<pad>" , SCREAMING_SNAKE_CASE : List[str]="<mask>" , SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE : str , ): # Mask token behave like a normal word, i.e. include the space before it _A : Tuple = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) else mask_token _A : Dict = {} if sp_model_kwargs is None else sp_model_kwargs _A : Optional[int] = kwargs.get('additional_special_tokens' , []) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=SCREAMING_SNAKE_CASE , tgt_lang=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) _A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(SCREAMING_SNAKE_CASE)) _A : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _A : Tuple = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _A : List[Any] = 1 _A : List[Any] = len(self.sp_model) _A : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(SCREAMING_SNAKE_CASE) } _A : Dict = {v: k for k, v in self.lang_code_to_id.items()} _A : List[str] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) _A : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _A : str = src_lang if src_lang is not None else 'en_XX' _A : Any = self.lang_code_to_id[self._src_lang] _A : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def A ( self : Optional[Any]): return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A ( self : Union[str, Any]): return self._src_lang @src_lang.setter def A ( self : List[str] , SCREAMING_SNAKE_CASE : str): _A : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self : Dict): _A : int = self.__dict__.copy() _A : Optional[Any] = None return state def __setstate__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict): _A : Tuple = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _A : Any = {} _A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A ( self : Any): _A : str = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A ( self : int , SCREAMING_SNAKE_CASE : str): return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE) def A ( self : List[str] , SCREAMING_SNAKE_CASE : str): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A : str = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A ( self : List[Any] , SCREAMING_SNAKE_CASE : List[Any]): _A : Tuple = [] _A : Any = '' _A : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE) + token _A : Any = True _A : Dict = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE) _A : Tuple = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE) return out_string.strip() def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None): if not os.path.isdir(SCREAMING_SNAKE_CASE): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return _A : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.vocab_file): with open(SCREAMING_SNAKE_CASE , 'wb') as fi: _A : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE) return (out_vocab_file,) def A ( self : int , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None , SCREAMING_SNAKE_CASE : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE) _A : str = [1] * len(self.prefix_tokens) _A : Optional[Any] = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE)) + suffix_ones return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE)) + ([0] * len(SCREAMING_SNAKE_CASE)) + suffix_ones def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] , SCREAMING_SNAKE_CASE : Optional[str] , **SCREAMING_SNAKE_CASE : str): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') _A : Optional[Any] = src_lang _A : Optional[int] = self(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _A : List[str] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE) _A : List[str] = tgt_lang_id return inputs def A ( self : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str = "en_XX" , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , SCREAMING_SNAKE_CASE : str = "ro_RO" , **SCREAMING_SNAKE_CASE : Optional[Any] , ): _A : Any = src_lang _A : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) def A ( self : List[Any]): return self.set_src_lang_special_tokens(self.src_lang) def A ( self : Any): return self.set_tgt_lang_special_tokens(self.tgt_lang) def A ( self : Tuple , SCREAMING_SNAKE_CASE : str): _A : Optional[int] = self.lang_code_to_id[src_lang] _A : Dict = [self.cur_lang_code_id] _A : List[str] = [self.eos_token_id] def A ( self : int , SCREAMING_SNAKE_CASE : str): _A : str = self.lang_code_to_id[tgt_lang] _A : int = [self.cur_lang_code_id] _A : str = [self.eos_token_id]
128
1
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=False ) -> List[Any]: try: SCREAMING_SNAKE_CASE__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. SCREAMING_SNAKE_CASE__ : List[Any] = default else: # KEY is set, convert it to True or False. try: SCREAMING_SNAKE_CASE__ : Tuple = strtobool(__lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value a :List[str] = parse_flag_from_env("RUN_SLOW", default=False) def _lowercase ( __lowerCAmelCase ) -> Any: return unittest.skip("""Test was skipped""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> str: return unittest.skipUnless(_run_slow_tests , """test is slow""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Optional[int]: return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Optional[int]: return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> List[Any]: return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Tuple: return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Optional[int]: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Any: return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> int: return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> List[Any]: return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> int: return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> List[Any]: return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Any: return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> int: return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Any: return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Optional[Any]: return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase=None , __lowerCAmelCase=None ) -> Dict: if test_case is None: return partial(__lowerCAmelCase , version=__lowerCAmelCase ) return unittest.skipUnless(is_torch_version(""">=""" , __lowerCAmelCase ) , F'''test requires torch version >= {version}''' )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Dict: return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> List[str]: return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> List[Any]: return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(__lowerCAmelCase ) a :Optional[Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]: return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(__lowerCAmelCase ) class __a (unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = True @classmethod def _a ( cls ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = tempfile.mkdtemp() @classmethod def _a ( cls ) -> Optional[int]: """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _a ( self ) -> Dict: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_a ) class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> Dict: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __a (unittest.TestCase): '''simple docstring''' def _a ( self , _a ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = mocks if isinstance(_a , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def _lowercase ( __lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[int] = AcceleratorState() SCREAMING_SNAKE_CASE__ : Union[str, Any] = tensor[None].clone().to(state.device ) SCREAMING_SNAKE_CASE__ : Optional[Any] = gather(__lowerCAmelCase ).cpu() SCREAMING_SNAKE_CASE__ : List[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __lowerCAmelCase ): return False return True class __a : '''simple docstring''' def __init__( self , _a , _a , _a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = returncode SCREAMING_SNAKE_CASE__ : List[Any] = stdout SCREAMING_SNAKE_CASE__ : Tuple = stderr async def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: while True: SCREAMING_SNAKE_CASE__ : Optional[int] = await stream.readline() if line: callback(__lowerCAmelCase ) else: break async def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=False ) -> _RunOutput: if echo: print("""\nRunning: """ , """ """.join(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Any = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] def tee(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="" ): SCREAMING_SNAKE_CASE__ : int = line.decode("""utf-8""" ).rstrip() sink.append(__lowerCAmelCase ) if not quiet: print(__lowerCAmelCase , __lowerCAmelCase , file=__lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=__lowerCAmelCase , ) return _RunOutput(await p.wait() , __lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=180 , __lowerCAmelCase=False , __lowerCAmelCase=True ) -> _RunOutput: SCREAMING_SNAKE_CASE__ : Optional[int] = asyncio.get_event_loop() SCREAMING_SNAKE_CASE__ : Union[str, Any] = loop.run_until_complete( _stream_subprocess(__lowerCAmelCase , env=__lowerCAmelCase , stdin=__lowerCAmelCase , timeout=__lowerCAmelCase , quiet=__lowerCAmelCase , echo=__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Any = """ """.join(__lowerCAmelCase ) if result.returncode > 0: SCREAMING_SNAKE_CASE__ : int = """\n""".join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class __a (UpperCamelCase_): '''simple docstring''' pass def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=False ) -> str: try: SCREAMING_SNAKE_CASE__ : Any = subprocess.check_output(__lowerCAmelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__lowerCAmelCase , """decode""" ): SCREAMING_SNAKE_CASE__ : Tuple = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{' '.join(__lowerCAmelCase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
12
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __a (UpperCamelCase_): '''simple docstring''' def _a ( self , _a ) -> Union[str, Any]: """simple docstring""" with open(_a , encoding="""utf-8""" ) as input_file: SCREAMING_SNAKE_CASE__ : str = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = input_file.read() SCREAMING_SNAKE_CASE__ : str = regexp.search(_a ) return match def _a ( self , _a ) -> Optional[Any]: """simple docstring""" with open(_a , encoding="""utf-8""" ) as input_file: SCREAMING_SNAKE_CASE__ : Tuple = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) SCREAMING_SNAKE_CASE__ : List[Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` SCREAMING_SNAKE_CASE__ : Dict = regexp.finditer(_a ) SCREAMING_SNAKE_CASE__ : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = Path("""./datasets""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_a ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path("""./datasets""" ) SCREAMING_SNAKE_CASE__ : List[str] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(_a ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
12
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
95
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : str , lowerCAmelCase : int = 16 , lowerCAmelCase : int = 88 , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : int = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 32 , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : str = "geglu" , lowerCAmelCase : Optional[int] = None , ): super().__init__() lowerCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowerCAmelCase , attention_head_dim=lowerCAmelCase , in_channels=lowerCAmelCase , num_layers=lowerCAmelCase , dropout=lowerCAmelCase , norm_num_groups=lowerCAmelCase , cross_attention_dim=lowerCAmelCase , attention_bias=lowerCAmelCase , sample_size=lowerCAmelCase , num_vector_embeds=lowerCAmelCase , activation_fn=lowerCAmelCase , num_embeds_ada_norm=lowerCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCAmelCase = [1, 0] def __lowercase ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Any=None , lowerCAmelCase : bool = True , ): lowerCAmelCase = hidden_states lowerCAmelCase = [] lowerCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCAmelCase = self.transformer_index_for_condition[i] lowerCAmelCase = self.transformers[transformer_index]( lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , timestep=lowerCAmelCase , cross_attention_kwargs=lowerCAmelCase , return_dict=lowerCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowerCAmelCase )
169
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) class a ( snake_case__ ): '''simple docstring''' def __init__( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
424
'''simple docstring''' from ...configuration_utils import PretrainedConfig UpperCAmelCase_ : List[Any] = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Tuple = """tapas""" def __init__( self , lowerCamelCase_=3_0_5_2_2 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0] , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=0 , lowerCamelCase_=10.0 , lowerCamelCase_=0 , lowerCamelCase_=1.0 , lowerCamelCase_=None , lowerCamelCase_=1.0 , lowerCamelCase_=False , lowerCamelCase_=None , lowerCamelCase_=1.0 , lowerCamelCase_=1.0 , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_="ratio" , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=6_4 , lowerCamelCase_=3_2 , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _a : Optional[Any] = vocab_size _a : List[str] = hidden_size _a : Union[str, Any] = num_hidden_layers _a : Tuple = num_attention_heads _a : Tuple = hidden_act _a : Optional[Any] = intermediate_size _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : int = max_position_embeddings _a : str = type_vocab_sizes _a : Tuple = initializer_range _a : int = layer_norm_eps # Fine-tuning task hyperparameters _a : Any = positive_label_weight _a : Optional[int] = num_aggregation_labels _a : Any = aggregation_loss_weight _a : str = use_answer_as_supervision _a : Optional[int] = answer_loss_importance _a : int = use_normalized_answer_loss _a : Optional[int] = huber_loss_delta _a : Optional[int] = temperature _a : Union[str, Any] = aggregation_temperature _a : List[str] = use_gumbel_for_cells _a : Optional[Any] = use_gumbel_for_aggregation _a : str = average_approximation_function _a : Tuple = cell_selection_preference _a : Tuple = answer_loss_cutoff _a : Optional[int] = max_num_rows _a : List[Any] = max_num_columns _a : Any = average_logits_per_cell _a : str = select_one_column _a : Any = allow_empty_column_selection _a : Dict = init_cell_selection_weights_to_zero _a : List[Any] = reset_position_index_per_cell _a : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters _a : Dict = aggregation_labels _a : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , lowerCamelCase_ ): _a : str = {int(lowerCamelCase_ ): v for k, v in aggregation_labels.items()}
424
1
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self , lowerCAmelCase__ = None ) -> None: # Stores actual heap items. a : list = [] # Stores indexes of each item for supporting updates and deletion. a : dict = {} # Stores current size of heap. a : List[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. a : str = key or (lambda lowerCAmelCase__ : x) def __a ( self , lowerCAmelCase__ ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def __a ( self , lowerCAmelCase__ ) -> int | None: a : List[Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __a ( self , lowerCAmelCase__ ) -> int | None: a : Dict = int(2 * i + 2 ) return right if 0 < right < self.size else None def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: a, a : Optional[int] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. a, a : Optional[int] = self.arr[j], self.arr[i] def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> bool: return self.arr[i][1] < self.arr[j][1] def __a ( self , lowerCAmelCase__ ) -> int: a : Any = self._left(lowerCAmelCase__ ) a : Tuple = self._right(lowerCAmelCase__ ) a : List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__ ): a : str = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__ ): a : Any = right return valid_parent def __a ( self , lowerCAmelCase__ ) -> None: a : Union[str, Any] = self._parent(lowerCAmelCase__ ) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__ ): self._swap(lowerCAmelCase__ , lowerCAmelCase__ ) a, a : Optional[int] = parent, self._parent(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ ) -> None: a : Any = self._get_valid_parent(lowerCAmelCase__ ) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__ ) a, a : int = valid_parent, self._get_valid_parent(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if item not in self.pos_map: return a : str = self.pos_map[item] a : Any = [item, self.key(lowerCAmelCase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__ ) self._heapify_down(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ ) -> None: if item not in self.pos_map: return a : Any = self.pos_map[item] del self.pos_map[item] a : Any = self.arr[self.size - 1] a : Any = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__ ) self._heapify_down(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: a : List[str] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__ )] ) else: a : Union[str, Any] = [item, self.key(lowerCAmelCase__ )] a : Tuple = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __a ( self ) -> tuple | None: return self.arr[0] if self.size else None def __a ( self ) -> tuple | None: a : Union[str, Any] = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
633
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() a : Optional[int] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : str ) ->int: '''simple docstring''' a : Optional[Any] = RobertaPreLayerNormConfig.from_pretrained( _lowercase , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict a : Any = torch.load(hf_hub_download(repo_id=_lowercase , filename="pytorch_model.bin" ) ) a : int = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): a : List[Any] = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue a : Dict = tensor_value a : Optional[Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_lowercase , config=_lowercase , state_dict=_lowercase ) model.save_pretrained(_lowercase ) # convert tokenizer a : List[Any] = AutoTokenizer.from_pretrained(_lowercase ) tokenizer.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a : Tuple = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
633
1
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCAmelCase : int = 10 def __a ( _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __a ( _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) lowerCamelCase__ : Optional[Any] = (left + right) // 3 + 1 lowerCamelCase__ : Optional[int] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowerCamelCase__ : Tuple = one_third - 1 elif array[two_third] < target: lowerCamelCase__ : List[Any] = two_third + 1 else: lowerCamelCase__ : str = one_third + 1 lowerCamelCase__ : Union[str, Any] = two_third - 1 else: return -1 def __a ( _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) lowerCamelCase__ : Optional[Any] = (left + right) // 3 + 1 lowerCamelCase__ : Tuple = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : Optional[int] = input("Enter numbers separated by comma:\n").strip() UpperCAmelCase : List[Any] = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." UpperCAmelCase : Optional[Any] = int(input("Enter the number to be found in the list:\n").strip()) UpperCAmelCase : Optional[int] = ite_ternary_search(collection, target) UpperCAmelCase : Optional[int] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("Not found")
121
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __a ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" with open(_lowercase ) as metadata_file: lowerCamelCase__ : List[Any] = json.load(_lowercase ) lowerCamelCase__ : List[Any] = LukeConfig(use_entity_aware_attention=_lowercase , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path lowerCamelCase__ : Dict = torch.load(_lowercase , map_location='''cpu''' )['''module'''] # Load the entity vocab file lowerCamelCase__ : Dict = load_original_entity_vocab(_lowercase ) # add an entry for [MASK2] lowerCamelCase__ : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowerCamelCase__ : int = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks lowerCamelCase__ : Any = AddedToken('''<ent>''' , lstrip=_lowercase , rstrip=_lowercase ) lowerCamelCase__ : int = AddedToken('''<ent2>''' , lstrip=_lowercase , rstrip=_lowercase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(_lowercase ) with open(os.path.join(_lowercase , '''tokenizer_config.json''' ) , '''r''' ) as f: lowerCamelCase__ : Optional[Any] = json.load(_lowercase ) lowerCamelCase__ : Optional[int] = '''MLukeTokenizer''' with open(os.path.join(_lowercase , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_lowercase , _lowercase ) with open(os.path.join(_lowercase , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_lowercase , _lowercase ) lowerCamelCase__ : Union[str, Any] = MLukeTokenizer.from_pretrained(_lowercase ) # Initialize the embeddings of the special tokens lowerCamelCase__ : int = tokenizer.convert_tokens_to_ids(['''@'''] )[0] lowerCamelCase__ : List[Any] = tokenizer.convert_tokens_to_ids(['''#'''] )[0] lowerCamelCase__ : Any = state_dict['''embeddings.word_embeddings.weight'''] lowerCamelCase__ : Dict = word_emb[ent_init_index].unsqueeze(0 ) lowerCamelCase__ : Any = word_emb[enta_init_index].unsqueeze(0 ) lowerCamelCase__ : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowerCamelCase__ : Optional[Any] = state_dict[bias_name] lowerCamelCase__ : Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) lowerCamelCase__ : List[str] = decoder_bias[enta_init_index].unsqueeze(0 ) lowerCamelCase__ : Tuple = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCamelCase__ : Optional[int] = f"""encoder.layer.{layer_index}.attention.self.""" lowerCamelCase__ : List[Any] = state_dict[prefix + matrix_name] lowerCamelCase__ : int = state_dict[prefix + matrix_name] lowerCamelCase__ : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCamelCase__ : Any = state_dict['''entity_embeddings.entity_embeddings.weight'''] lowerCamelCase__ : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) lowerCamelCase__ : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowerCamelCase__ : Tuple = state_dict['''entity_predictions.bias'''] lowerCamelCase__ : Dict = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) lowerCamelCase__ : Any = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowerCamelCase__ : Optional[Any] = LukeForMaskedLM(config=_lowercase ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) lowerCamelCase__ : str = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): lowerCamelCase__ : List[Any] = state_dict[key] else: lowerCamelCase__ : Dict = state_dict[key] lowerCamelCase__ , lowerCamelCase__ : Tuple = model.load_state_dict(_lowercase , strict=_lowercase ) if set(_lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(_lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowerCamelCase__ : Tuple = MLukeTokenizer.from_pretrained(_lowercase , task='''entity_classification''' ) lowerCamelCase__ : List[Any] = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' lowerCamelCase__ : Optional[int] = (0, 9) lowerCamelCase__ : str = tokenizer(_lowercase , entity_spans=[span] , return_tensors='''pt''' ) lowerCamelCase__ : int = model(**_lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowerCamelCase__ : List[Any] = torch.Size((1, 33, 768) ) lowerCamelCase__ : Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowerCamelCase__ : str = torch.Size((1, 1, 768) ) lowerCamelCase__ : Dict = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowercase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowerCamelCase__ : List[str] = MLukeTokenizer.from_pretrained(_lowercase ) lowerCamelCase__ : List[str] = '''Tokyo is the capital of <mask>.''' lowerCamelCase__ : int = (24, 30) lowerCamelCase__ : Dict = tokenizer(_lowercase , entity_spans=[span] , return_tensors='''pt''' ) lowerCamelCase__ : List[Any] = model(**_lowercase ) lowerCamelCase__ : List[str] = encoding['''input_ids'''][0].tolist() lowerCamelCase__ : str = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) lowerCamelCase__ : str = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_lowercase ) lowerCamelCase__ : List[str] = outputs.entity_logits[0][0].argmax().item() lowerCamelCase__ : str = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_lowercase ) ) model.save_pretrained(_lowercase ) def __a ( _lowercase ): """simple docstring""" lowerCamelCase__ : List[Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] lowerCamelCase__ : List[Any] = [json.loads(_lowercase ) for line in open(_lowercase )] lowerCamelCase__ : int = {} for entry in data: lowerCamelCase__ : Union[str, Any] = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowerCamelCase__ : Optional[int] = entity_id break lowerCamelCase__ : Optional[Any] = f"""{language}:{entity_name}""" lowerCamelCase__ : Optional[Any] = entity_id return new_mapping if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) UpperCAmelCase : Tuple = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
121
1
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : str , a__ : Optional[int] , a__ : List[Any]=13 , a__ : Optional[int]=7 , a__ : str=6 , a__ : Union[str, Any]=17 , a__ : List[Any]=23 , a__ : Tuple=11 , a__ : Optional[int]=True , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = act_dim UpperCAmelCase = state_dim UpperCAmelCase = hidden_size UpperCAmelCase = max_length UpperCAmelCase = is_training def __snake_case ( self : Optional[Any] ): UpperCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) UpperCAmelCase = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __snake_case ( self : List[Any] ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __snake_case ( self : Dict , a__ : Union[str, Any] , a__ : Dict , a__ : Dict , a__ : Dict , a__ : List[Any] , a__ : List[str] , a__ : Union[str, Any] , ): UpperCAmelCase = DecisionTransformerModel(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , a__ , a__ , a__ , a__ , a__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ) = config_and_inputs UpperCAmelCase = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =(DecisionTransformerModel,) if is_torch_available() else () _lowerCamelCase =() _lowerCamelCase ={"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids _lowerCamelCase =False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = DecisionTransformerModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __snake_case ( self : str ): self.config_tester.run_common_tests() def __snake_case ( self : str ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) @slow def __snake_case ( self : List[str] ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = DecisionTransformerModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def __snake_case ( self : List[str] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(a__ )] , a__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self : Optional[Any] ): UpperCAmelCase = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase = 10 # defined by the RL environment, may be normalized UpperCAmelCase = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) UpperCAmelCase = model.to(a__ ) UpperCAmelCase = model.config torch.manual_seed(0 ) UpperCAmelCase = torch.randn(1 , 1 , config.state_dim ).to(device=a__ , dtype=torch.floataa ) # env.reset() UpperCAmelCase = torch.tensor( [[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=a__ ) UpperCAmelCase = torch.tensor(a__ , device=a__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase = state UpperCAmelCase = torch.zeros(1 , 0 , config.act_dim , device=a__ , dtype=torch.floataa ) UpperCAmelCase = torch.zeros(1 , 0 , device=a__ , dtype=torch.floataa ) UpperCAmelCase = torch.tensor(0 , device=a__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(a__ ): UpperCAmelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=a__ )] , dim=1 ) UpperCAmelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=a__ )] , dim=1 ) UpperCAmelCase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = model( states=a__ , actions=a__ , rewards=a__ , returns_to_go=a__ , timesteps=a__ , attention_mask=a__ , return_dict=a__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=a__ , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase = action_pred[0, -1] UpperCAmelCase = torch.cat([states, state] , dim=1 ) UpperCAmelCase = returns_to_go[0, -1] - reward UpperCAmelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=a__ , dtype=torch.long ) * (step + 1)] , dim=1 )
51
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowerCamelCase_ = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def snake_case ( A__ ,A__ ,A__ ,A__ ,A__ ,A__ ): if got_ver is None or want_ver is None: raise ValueError( F"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" F""" reinstalling {pkg}.""" ) if not ops[op](version.parse(A__ ) ,version.parse(A__ ) ): raise ImportError( F"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def snake_case ( A__ ,A__ = None ): UpperCAmelCase_ : int = F"""\n{hint}""" if hint is not None else "" # non-versioned check if re.match(r"^[\w_\-\d]+$" ,A__ ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = requirement, None, None else: UpperCAmelCase_ : Optional[int] = re.findall(r"^([^!=<>\s]+)([\s!=<>]{1,2}.+)" ,A__ ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but" F""" got {requirement}""" ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = match[0] UpperCAmelCase_ : Optional[Any] = want_full.split("," ) # there could be multiple requirements UpperCAmelCase_ : int = {} for w in want_range: UpperCAmelCase_ : str = re.findall(r"^([\s!=<>]{1,2})(.+)" ,A__ ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23," F""" but got {requirement}""" ) UpperCAmelCase_ , UpperCAmelCase_ : Any = match[0] UpperCAmelCase_ : Union[str, Any] = want_ver if op not in ops: raise ValueError(F"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": UpperCAmelCase_ : List[Any] = ".".join([str(A__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(A__ ,A__ ,A__ ,A__ ,A__ ,A__ ) return # check if any version is installed try: UpperCAmelCase_ : str = importlib.metadata.version(A__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(A__ ,A__ ,A__ ,A__ ,A__ ,A__ ) def snake_case ( A__ ): UpperCAmelCase_ : Any = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main" return require_version(A__ ,A__ )
95
0
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __a: Optional[int] = logging.get_logger(__name__) __a: List[str] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __a: List[str] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __a: Dict = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __UpperCamelCase ( ): lowercase__ : Tuple = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase__ : List[Any] = bs[:] lowercase__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase ) cs.append(2**8 + n ) n += 1 lowercase__ : Union[str, Any] = [chr(UpperCAmelCase ) for n in cs] return dict(zip(UpperCAmelCase , UpperCAmelCase ) ) def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Tuple = set() lowercase__ : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : Tuple = char return pairs class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="replace" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=False , **__lowerCAmelCase , ) -> Tuple: lowercase__ : Optional[Any] = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else bos_token lowercase__ : List[Any] = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else eos_token lowercase__ : str = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else sep_token lowercase__ : Any = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else cls_token lowercase__ : Optional[Any] = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else unk_token lowercase__ : Union[str, Any] = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ : Any = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token super().__init__( errors=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , **__lowerCAmelCase , ) with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase__ : Optional[Any] = json.load(__lowerCAmelCase ) lowercase__ : Any = {v: k for k, v in self.encoder.items()} lowercase__ : List[str] = errors # how to handle errors in decoding lowercase__ : List[str] = bytes_to_unicode() lowercase__ : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase__ : Optional[Any] = merges_handle.read().split('''\n''' )[1:-1] lowercase__ : List[str] = [tuple(merge.split() ) for merge in bpe_merges] lowercase__ : Any = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase__ : Tuple = {} lowercase__ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__ : int = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowerCAmelCase( self ) -> List[str]: return len(self.encoder ) def _lowerCAmelCase( self ) -> Any: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[Any]: if token in self.cache: return self.cache[token] lowercase__ : int = tuple(__lowerCAmelCase ) lowercase__ : int = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: lowercase__ : int = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : Any = bigram lowercase__ : str = [] lowercase__ : str = 0 while i < len(__lowerCAmelCase ): try: lowercase__ : int = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ : Tuple = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : List[str] = tuple(__lowerCAmelCase ) lowercase__ : str = new_word if len(__lowerCAmelCase ) == 1: break else: lowercase__ : List[str] = get_pairs(__lowerCAmelCase ) lowercase__ : str = ''' '''.join(__lowerCAmelCase ) lowercase__ : Optional[Any] = word return word def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: lowercase__ : Optional[Any] = [] for token in re.findall(self.pat , __lowerCAmelCase ): lowercase__ : Union[str, Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCAmelCase ).split(''' ''' ) ) return bpe_tokens def _lowerCAmelCase( self , __lowerCAmelCase ) -> str: return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Tuple: return self.decoder.get(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: lowercase__ : Optional[int] = ''''''.join(__lowerCAmelCase ) lowercase__ : List[str] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : str = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Union[str, Any] = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) lowercase__ : Union[str, Any] = 0 with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowercase__ : Dict = token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] lowercase__ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : str = [self.sep_token_id] lowercase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=False , **__lowerCAmelCase ) -> str: lowercase__ : Any = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCAmelCase ) > 0 and not text[0].isspace()): lowercase__ : List[Any] = ''' ''' + text return (text, kwargs) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = PaddingStrategy.DO_NOT_PAD , __lowerCAmelCase = None , __lowerCAmelCase = None , ) -> dict: lowercase__ : Tuple = super()._pad( encoded_inputs=__lowerCAmelCase , max_length=__lowerCAmelCase , padding_strategy=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase__ : Tuple = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase__ : Optional[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase__ : Dict = len(encoded_inputs['''global_attention_mask'''] ) != len(__lowerCAmelCase ) if needs_to_be_padded: lowercase__ : Dict = len(__lowerCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase__ : Union[str, Any] = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase__ : int = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
428
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __a: Optional[int] = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Union[str, Any] = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: int = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: str = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __a: List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
428
1
from math import isqrt, loga def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : Dict = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCamelCase_ , UpperCamelCase_ ): _lowerCAmelCase : str = False return [i for i in range(2 , UpperCamelCase_ ) if is_prime[i]] def _UpperCAmelCase (UpperCamelCase_ : int = 800800 , UpperCamelCase_ : int = 800800 ): '''simple docstring''' _lowerCAmelCase : str = degree * loga(UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = int(UpperCamelCase_ ) _lowerCAmelCase : int = calculate_prime_numbers(UpperCamelCase_ ) _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : Tuple = len(UpperCamelCase_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
429
from __future__ import annotations from collections import deque class __snake_case : def __init__( self : str , _UpperCAmelCase : list[str] ) -> Any: '''simple docstring''' _lowerCAmelCase : list[dict] = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(_UpperCAmelCase ) self.set_fail_transitions() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : str ) -> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : str ) -> None: '''simple docstring''' _lowerCAmelCase : List[Any] = 0 for character in keyword: _lowerCAmelCase : Tuple = self.find_next_state(_UpperCAmelCase , _UpperCAmelCase ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) _lowerCAmelCase : int = len(self.adlist ) - 1 else: _lowerCAmelCase : Union[str, Any] = next_state self.adlist[current_state]["output"].append(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> None: '''simple docstring''' _lowerCAmelCase : deque = deque() for node in self.adlist[0]["next_states"]: q.append(_UpperCAmelCase ) _lowerCAmelCase : Any = 0 while q: _lowerCAmelCase : Optional[int] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_UpperCAmelCase ) _lowerCAmelCase : Tuple = self.adlist[r]["""fail_state"""] while ( self.find_next_state(_UpperCAmelCase , self.adlist[child]["""value"""] ) is None and state != 0 ): _lowerCAmelCase : List[Any] = self.adlist[state]["""fail_state"""] _lowerCAmelCase : Optional[int] = self.find_next_state( _UpperCAmelCase , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[int] = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : str ) -> dict[str, list[int]]: '''simple docstring''' _lowerCAmelCase : dict = {} # returns a dict with keywords and list of its occurrences _lowerCAmelCase : str = 0 for i in range(len(_UpperCAmelCase ) ): while ( self.find_next_state(_UpperCAmelCase , string[i] ) is None and current_state != 0 ): _lowerCAmelCase : Union[str, Any] = self.adlist[current_state]["""fail_state"""] _lowerCAmelCase : Any = self.find_next_state(_UpperCAmelCase , string[i] ) if next_state is None: _lowerCAmelCase : Union[str, Any] = 0 else: _lowerCAmelCase : Tuple = next_state for key in self.adlist[current_state]["output"]: if key not in result: _lowerCAmelCase : str = [] result[key].append(i - len(_UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
429
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __init__( self, A_, A_=13, A_=3, A_=224, A_=30, A_=400, A_=True, A_=None, A_=True, A_=[0.5, 0.5, 0.5], A_=[0.5, 0.5, 0.5], ) -> Union[str, Any]: UpperCAmelCase__ =size if size is not None else {"height": 18, "width": 18} UpperCAmelCase__ =parent UpperCAmelCase__ =batch_size UpperCAmelCase__ =num_channels UpperCAmelCase__ =image_size UpperCAmelCase__ =min_resolution UpperCAmelCase__ =max_resolution UpperCAmelCase__ =do_resize UpperCAmelCase__ =size UpperCAmelCase__ =do_normalize UpperCAmelCase__ =image_mean UpperCAmelCase__ =image_std def __UpperCAmelCase ( self ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case_ ( a, unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ViTImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase__ =EfficientFormerImageProcessorTester(self ) @property def __UpperCAmelCase ( self ) -> List[Any]: return self.image_proc_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_, "image_mean" ) ) self.assertTrue(hasattr(A_, "image_std" ) ) self.assertTrue(hasattr(A_, "do_normalize" ) ) self.assertTrue(hasattr(A_, "do_resize" ) ) self.assertTrue(hasattr(A_, "size" ) ) def __UpperCAmelCase ( self ) -> Optional[int]: pass def __UpperCAmelCase ( self ) -> Any: # Initialize image_processor UpperCAmelCase__ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ =prepare_image_inputs(self.image_proc_tester, equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_, Image.Image ) # Test not batched input UpperCAmelCase__ =image_processor(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ), ) # Test batched UpperCAmelCase__ =image_processor(A_, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ), ) def __UpperCAmelCase ( self ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase__ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ =prepare_image_inputs(self.image_proc_tester, equal_resolution=A_, numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_, np.ndarray ) # Test not batched input UpperCAmelCase__ =image_processor(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ), ) # Test batched UpperCAmelCase__ =image_processor(A_, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ), ) def __UpperCAmelCase ( self ) -> Dict: # Initialize image_processor UpperCAmelCase__ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ =prepare_image_inputs(self.image_proc_tester, equal_resolution=A_, torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_, torch.Tensor ) # Test not batched input UpperCAmelCase__ =image_processor(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ), ) # Test batched UpperCAmelCase__ =image_processor(A_, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ), )
510
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _UpperCAmelCase ( A ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) UpperCamelCase_ = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class snake_case_ ( a ): '''simple docstring''' @staticmethod def __UpperCAmelCase ( A_ ) -> Union[str, Any]: UpperCAmelCase__ =parser.add_parser( "convert", help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.", ) train_parser.add_argument("--model_type", type=A_, required=A_, help="Model's type." ) train_parser.add_argument( "--tf_checkpoint", type=A_, required=A_, help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output", type=A_, required=A_, help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config", type=A_, default="", help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name", type=A_, default=A_, help="Optional fine-tuning task name if the TF model was a finetuned model.", ) train_parser.set_defaults(func=A_ ) def __init__( self, A_, A_, A_, A_, A_, *A_, ) -> List[str]: UpperCAmelCase__ =logging.get_logger("transformers-cli/converting" ) self._logger.info(f"""Loading model {model_type}""" ) UpperCAmelCase__ =model_type UpperCAmelCase__ =tf_checkpoint UpperCAmelCase__ =pytorch_dump_output UpperCAmelCase__ =config UpperCAmelCase__ =finetuning_task_name def __UpperCAmelCase ( self ) -> Tuple: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase__ =self._tf_checkpoint UpperCAmelCase__ ="" else: UpperCAmelCase__ =self._tf_checkpoint UpperCAmelCase__ ="" convert_transfo_xl_checkpoint_to_pytorch( A_, self._config, self._pytorch_dump_output, A_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
510
1
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : List[Any] = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase__ : Dict = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowerCAmelCase__ ): os.makedirs(lowerCAmelCase__ ) UpperCAmelCase__ : int = model.state_dict() def to_tf_var_name(lowerCAmelCase__ ): for patt, repl in iter(lowerCAmelCase__ ): UpperCAmelCase__ : str = name.replace(lowerCAmelCase__ , lowerCAmelCase__ ) return F"""bert/{name}""" def create_tf_var(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Union[str, Any] = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase__ : Optional[int] = tf.get_variable(dtype=lowerCAmelCase__ , shape=tensor.shape , name=lowerCAmelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCAmelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase__ : Union[str, Any] = to_tf_var_name(lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase__ : List[Any] = torch_tensor.T UpperCAmelCase__ : Optional[Any] = create_tf_var(tensor=lowerCAmelCase__ , name=lowerCAmelCase__ , session=lowerCAmelCase__ ) tf.keras.backend.set_value(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Dict = session.run(lowerCAmelCase__ ) print(F"""Successfully created {tf_name}: {np.allclose(lowerCAmelCase__ , lowerCAmelCase__ )}""" ) UpperCAmelCase__ : Optional[int] = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def a__ ( lowerCAmelCase__=None ) -> str: UpperCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase__ : str = parser.parse_args(lowerCAmelCase__ ) UpperCAmelCase__ : int = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCAmelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
75
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": UpperCamelCase__ = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') UpperCamelCase__ = F"""https://www.google.com/search?q={query}&num=100""" UpperCamelCase__ = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: UpperCamelCase__ = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: UpperCamelCase__ = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
75
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Any =logging.get_logger(__name__) _UpperCamelCase : List[str] ={ 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class UpperCAmelCase__ ( __snake_case ): __snake_case : Optional[int] = "vit_msn" def __init__( self ,A__=768 ,A__=12 ,A__=12 ,A__=3072 ,A__="gelu" ,A__=0.0 ,A__=0.0 ,A__=0.02 ,A__=1E-06 ,A__=224 ,A__=16 ,A__=3 ,A__=True ,**A__ ,): super().__init__(**A__ ) _A : Dict = hidden_size _A : Optional[Any] = num_hidden_layers _A : Tuple = num_attention_heads _A : Any = intermediate_size _A : Tuple = hidden_act _A : int = hidden_dropout_prob _A : Dict = attention_probs_dropout_prob _A : Optional[int] = initializer_range _A : str = layer_norm_eps _A : int = image_size _A : Union[str, Any] = patch_size _A : Optional[Any] = num_channels _A : List[str] = qkv_bias
704
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _UpperCamelCase : List[str] ='\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _UpperCamelCase : Tuple ='\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' _UpperCamelCase : Any ='\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def a__ (__lowercase :Any ) -> Any: def remove_articles(__lowercase :Optional[Any] ): _A : List[Any] = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(__lowercase , ''' ''' , __lowercase ) def white_space_fix(__lowercase :Optional[int] ): return " ".join(text.split() ) def remove_punc(__lowercase :Optional[Any] ): _A : List[str] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowercase :List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowercase ) ) ) ) def a__ (__lowercase :List[str] , __lowercase :str ) -> int: return int(normalize_answer(__lowercase ) == normalize_answer(__lowercase ) ) def a__ (__lowercase :Union[str, Any] , __lowercase :str ) -> Optional[int]: _A : Any = [any(compute_exact(__lowercase , __lowercase ) for ref in refs ) for pred, refs in zip(__lowercase , __lowercase )] return (sum(__lowercase ) / len(__lowercase )) * 100 def a__ (__lowercase :Tuple , __lowercase :int , __lowercase :Union[str, Any] , __lowercase :List[Any] ) -> List[str]: _A : Union[str, Any] = [rgram for rgrams in rgramslist for rgram in rgrams] _A : List[Any] = Counter(__lowercase ) _A : Optional[int] = Counter(__lowercase ) _A : Any = Counter() for sgram, scount in sgramcounter.items(): _A : Optional[int] = scount * numref _A : Tuple = Counter(__lowercase ) _A : str = Counter() for cgram, ccount in cgramcounter.items(): _A : int = ccount * numref # KEEP _A : List[str] = sgramcounter_rep & cgramcounter_rep _A : List[str] = keepgramcounter_rep & rgramcounter _A : Any = sgramcounter_rep & rgramcounter _A : Optional[int] = 0 _A : Any = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _A : List[str] = 1 _A : Union[str, Any] = 1 if len(__lowercase ) > 0: _A : int = keeptmpscorea / len(__lowercase ) if len(__lowercase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _A : int = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _A : Optional[int] = 0 if keepscore_precision > 0 or keepscore_recall > 0: _A : Tuple = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _A : Dict = sgramcounter_rep - cgramcounter_rep _A : Union[str, Any] = delgramcounter_rep - rgramcounter _A : Optional[Any] = sgramcounter_rep - rgramcounter _A : str = 0 _A : int = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _A : int = 1 if len(__lowercase ) > 0: _A : Optional[Any] = deltmpscorea / len(__lowercase ) # ADDITION _A : Tuple = set(__lowercase ) - set(__lowercase ) _A : Optional[Any] = set(__lowercase ) & set(__lowercase ) _A : Union[str, Any] = set(__lowercase ) - set(__lowercase ) _A : Any = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _A : Optional[int] = 1 _A : Union[str, Any] = 1 if len(__lowercase ) > 0: _A : List[str] = addtmpscore / len(__lowercase ) if len(__lowercase ) > 0: _A : int = addtmpscore / len(__lowercase ) _A : str = 0 if addscore_precision > 0 or addscore_recall > 0: _A : List[Any] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def a__ (__lowercase :List[str] , __lowercase :Tuple , __lowercase :Tuple ) -> str: _A : Any = len(__lowercase ) _A : int = ssent.split(''' ''' ) _A : List[Any] = csent.split(''' ''' ) _A : Optional[int] = [] _A : str = [] _A : Tuple = [] _A : Optional[int] = [] _A : str = [] _A : Tuple = [] _A : Dict = [] _A : Union[str, Any] = [] _A : int = [] _A : str = [] for rsent in rsents: _A : Optional[int] = rsent.split(''' ''' ) _A : Optional[int] = [] _A : Dict = [] _A : Dict = [] ragramslist.append(__lowercase ) for i in range(0 , len(__lowercase ) - 1 ): if i < len(__lowercase ) - 1: _A : Tuple = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(__lowercase ) if i < len(__lowercase ) - 2: _A : List[Any] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(__lowercase ) if i < len(__lowercase ) - 3: _A : int = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(__lowercase ) ragramslist.append(__lowercase ) ragramslist.append(__lowercase ) ragramslist.append(__lowercase ) for i in range(0 , len(__lowercase ) - 1 ): if i < len(__lowercase ) - 1: _A : List[str] = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(__lowercase ) if i < len(__lowercase ) - 2: _A : Optional[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(__lowercase ) if i < len(__lowercase ) - 3: _A : List[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(__lowercase ) for i in range(0 , len(__lowercase ) - 1 ): if i < len(__lowercase ) - 1: _A : Union[str, Any] = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(__lowercase ) if i < len(__lowercase ) - 2: _A : Optional[Any] = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(__lowercase ) if i < len(__lowercase ) - 3: _A : Tuple = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(__lowercase ) ((_A) , (_A) , (_A)) : Any = SARIngram(__lowercase , __lowercase , __lowercase , __lowercase ) ((_A) , (_A) , (_A)) : List[Any] = SARIngram(__lowercase , __lowercase , __lowercase , __lowercase ) ((_A) , (_A) , (_A)) : Union[str, Any] = SARIngram(__lowercase , __lowercase , __lowercase , __lowercase ) ((_A) , (_A) , (_A)) : int = SARIngram(__lowercase , __lowercase , __lowercase , __lowercase ) _A : Tuple = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _A : Union[str, Any] = sum([delascore, delascore, delascore, delascore] ) / 4 _A : List[Any] = sum([addascore, addascore, addascore, addascore] ) / 4 _A : Optional[int] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def a__ (__lowercase :Optional[int] , __lowercase :bool = True , __lowercase :str = "13a" , __lowercase :bool = True ) -> Any: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _A : Optional[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _A : List[str] = sacrebleu.metrics.bleu._get_tokenizer(__lowercase )()(__lowercase ) else: _A : Any = sacrebleu.TOKENIZERS[tokenizer]()(__lowercase ) elif tokenizer == "moses": _A : List[Any] = sacremoses.MosesTokenizer().tokenize(__lowercase , return_str=__lowercase , escape=__lowercase ) elif tokenizer == "penn": _A : Tuple = sacremoses.MosesTokenizer().penn_tokenize(__lowercase , return_str=__lowercase ) else: _A : Optional[Any] = sentence if not return_str: _A : List[Any] = normalized_sent.split() return normalized_sent def a__ (__lowercase :Optional[int] , __lowercase :Optional[Any] , __lowercase :Union[str, Any] ) -> Any: if not (len(__lowercase ) == len(__lowercase ) == len(__lowercase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _A : int = 0 for src, pred, refs in zip(__lowercase , __lowercase , __lowercase ): sari_score += SARIsent(normalize(__lowercase ) , normalize(__lowercase ) , [normalize(__lowercase ) for sent in refs] ) _A : Dict = sari_score / len(__lowercase ) return 100 * sari_score def a__ (__lowercase :Union[str, Any] , __lowercase :Any , __lowercase :List[Any]="exp" , __lowercase :Optional[int]=None , __lowercase :Tuple=False , __lowercase :Tuple=False , __lowercase :Any=False , ) -> Union[str, Any]: _A : int = len(references[0] ) if any(len(__lowercase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _A : Optional[Any] = [[refs[i] for refs in references] for i in range(__lowercase )] _A : str = sacrebleu.corpus_bleu( __lowercase , __lowercase , smooth_method=__lowercase , smooth_value=__lowercase , force=__lowercase , lowercase=__lowercase , use_effective_order=__lowercase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def A__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' ,id='''sequence''' ) ,id='''references''' ), } ) ,codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] ,reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] ,) def A__ ( self ,A__ ,A__ ,A__ ): _A : Union[str, Any] = {} result.update({'''sari''': compute_sari(sources=A__ ,predictions=A__ ,references=A__ )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=A__ ,references=A__ )} ) result.update({'''exact''': compute_em(predictions=A__ ,references=A__ )} ) return result
332
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
101
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any: """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =field( metadata={"help": "The csv file to plot."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) _lowerCamelCase =list_field( default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: """simple docstring""" try: int(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str: """simple docstring""" try: float(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Dict , a__ : Optional[int] ): UpperCAmelCase = args UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: UpperCAmelCase = csv.DictReader(a__ ) for row in reader: UpperCAmelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None UpperCAmelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None UpperCAmelCase = float(row['''result'''] ) def __snake_case ( self : Dict ): UpperCAmelCase, UpperCAmelCase = plt.subplots() UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) UpperCAmelCase = self.result_dict[model_name]['''result'''] ((UpperCAmelCase), (UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , ) else: UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCAmelCase), (UpperCAmelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )] plt.scatter( a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(a__ , a__ , '''--''' ) title_str += f" {label_model_name} vs." UpperCAmelCase = title_str[:-4] UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(a__ ) plt.xlabel(a__ ) plt.ylabel(a__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __snake_case ( ) -> Tuple: """simple docstring""" UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = parser.parse_args_into_dataclasses()[0] UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ ) plot.plot() if __name__ == "__main__": main()
51
0
'''simple docstring''' def lowercase ( lowerCAmelCase : int): """simple docstring""" return str(lowerCAmelCase) == str(lowerCAmelCase)[::-1] def lowercase ( lowerCAmelCase : int): """simple docstring""" return int(lowerCAmelCase) + int(str(lowerCAmelCase)[::-1]) def lowercase ( lowerCAmelCase : int = 1_0000): """simple docstring""" _A : Any = [] for num in range(1 , lowerCAmelCase): _A : Optional[Any] = 0 _A : Any = num while iterations < 50: _A : Union[str, Any] = sum_reverse(lowerCAmelCase) iterations += 1 if is_palindrome(lowerCAmelCase): break else: lychrel_nums.append(lowerCAmelCase) return len(lowerCAmelCase) if __name__ == "__main__": print(f'{solution() = }')
417
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowercase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str]=1024): """simple docstring""" _A , _A : str = [], [] _A : Optional[Any] = list(zip(lowerCAmelCase , lowerCAmelCase)) _A , _A : Dict = sorted_examples[0] def is_too_big(lowerCAmelCase : Optional[Any]): return tok(lowerCAmelCase , return_tensors='''pt''').input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:]): _A : Optional[int] = new_src + ''' ''' + src _A : List[str] = new_tgt + ''' ''' + tgt if is_too_big(lowerCAmelCase) or is_too_big(lowerCAmelCase): # cant fit, finalize example finished_src.append(lowerCAmelCase) finished_tgt.append(lowerCAmelCase) _A , _A : Dict = src, tgt else: # can fit, keep adding _A , _A : Optional[int] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowerCAmelCase) finished_tgt.append(lowerCAmelCase) return finished_src, finished_tgt def lowercase ( lowerCAmelCase : Any , lowerCAmelCase : Path , lowerCAmelCase : Tuple , lowerCAmelCase : Any): """simple docstring""" _A : Dict = Path(lowerCAmelCase) save_path.mkdir(exist_ok=lowerCAmelCase) for split in ["train"]: _A , _A : List[str] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" _A : Optional[Any] = [x.rstrip() for x in Path(lowerCAmelCase).open().readlines()] _A : Optional[Any] = [x.rstrip() for x in Path(lowerCAmelCase).open().readlines()] _A , _A : Optional[Any] = pack_examples(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) print(f"""packed {split} split from {len(lowerCAmelCase)} examples -> {len(lowerCAmelCase)}.""") Path(save_path / f"""{split}.source""").open('''w''').write('''\n'''.join(lowerCAmelCase)) Path(save_path / f"""{split}.target""").open('''w''').write('''\n'''.join(lowerCAmelCase)) for split in ["val", "test"]: _A , _A : List[str] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(lowerCAmelCase , save_path / f"""{split}.source""") shutil.copyfile(lowerCAmelCase , save_path / f"""{split}.target""") def lowercase ( ): """simple docstring""" _A : Any = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=lowerCAmelCase , help='''like facebook/bart-large-cnn,t5-base, etc.''') parser.add_argument('''--max_seq_len''' , type=lowerCAmelCase , default=128) parser.add_argument('''--data_dir''' , type=lowerCAmelCase) parser.add_argument('''--save_path''' , type=lowerCAmelCase) _A : List[str] = parser.parse_args() _A : List[Any] = AutoTokenizer.from_pretrained(args.tok_name) return pack_data_dir(lowerCAmelCase , Path(args.data_dir) , args.max_seq_len , args.save_path) if __name__ == "__main__": packer_cli()
417
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class snake_case : '''simple docstring''' snake_case_ : Union[str, Any] = None def UpperCamelCase_ ( self : str) -> Any: """simple docstring""" _snake_case : Dict = self.feature_extraction_class(**self.feat_extract_dict) _snake_case : Dict = json.loads(feat_extract.to_json_string()) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowerCAmelCase) def UpperCamelCase_ ( self : Optional[Any]) -> str: """simple docstring""" _snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : List[Any] = os.path.join(lowerCAmelCase , """feat_extract.json""") feat_extract_first.to_json_file(lowerCAmelCase) _snake_case : Optional[int] = self.feature_extraction_class.from_json_file(lowerCAmelCase) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def UpperCamelCase_ ( self : Optional[int]) -> Dict: """simple docstring""" _snake_case : Any = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : Optional[int] = feat_extract_first.save_pretrained(lowerCAmelCase)[0] check_json_file_has_correct_format(lowerCAmelCase) _snake_case : str = self.feature_extraction_class.from_pretrained(lowerCAmelCase) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def UpperCamelCase_ ( self : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = self.feature_extraction_class() self.assertIsNotNone(lowerCAmelCase)
477
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) a__ = """hf-internal-testing/tiny-random-bert""" a__ = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") a__ = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[int]) -> Dict: """simple docstring""" _snake_case : Optional[Any] = cached_file(lowerCAmelCase , lowerCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowerCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowerCAmelCase , lowerCAmelCase))) with open(os.path.join(lowerCAmelCase , """refs""" , """main""")) as f: _snake_case : List[str] = f.read() self.assertEqual(lowerCAmelCase , os.path.join(lowerCAmelCase , """snapshots""" , lowerCAmelCase , lowerCAmelCase)) self.assertTrue(os.path.isfile(lowerCAmelCase)) # File is cached at the same place the second time. _snake_case : List[Any] = cached_file(lowerCAmelCase , lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) # Using a specific revision to test the full commit hash. _snake_case : Tuple = cached_file(lowerCAmelCase , lowerCAmelCase , revision="""9b8c223""") self.assertEqual(lowerCAmelCase , os.path.join(lowerCAmelCase , """snapshots""" , lowerCAmelCase , lowerCAmelCase)) def UpperCamelCase_ ( self : Tuple) -> Tuple: """simple docstring""" with self.assertRaisesRegex(lowerCAmelCase , """is not a valid model identifier"""): _snake_case : Dict = cached_file("""tiny-random-bert""" , lowerCAmelCase) with self.assertRaisesRegex(lowerCAmelCase , """is not a valid git identifier"""): _snake_case : str = cached_file(lowerCAmelCase , lowerCAmelCase , revision="""aaaa""") with self.assertRaisesRegex(lowerCAmelCase , """does not appear to have a file named"""): _snake_case : Optional[Any] = cached_file(lowerCAmelCase , """conf""") def UpperCamelCase_ ( self : Optional[Any]) -> Any: """simple docstring""" with self.assertRaisesRegex(lowerCAmelCase , """does not appear to have a file named"""): _snake_case : Optional[int] = cached_file(lowerCAmelCase , """conf""") with open(os.path.join(lowerCAmelCase , """refs""" , """main""")) as f: _snake_case : List[Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase , """.no_exist""" , lowerCAmelCase , """conf"""))) _snake_case : Any = cached_file(lowerCAmelCase , """conf""" , _raise_exceptions_for_missing_entries=lowerCAmelCase) self.assertIsNone(lowerCAmelCase) _snake_case : Optional[int] = cached_file(lowerCAmelCase , """conf""" , local_files_only=lowerCAmelCase , _raise_exceptions_for_missing_entries=lowerCAmelCase) self.assertIsNone(lowerCAmelCase) _snake_case : Union[str, Any] = mock.Mock() _snake_case : Any = 500 _snake_case : List[str] = {} _snake_case : Union[str, Any] = HTTPError _snake_case : Dict = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=lowerCAmelCase) as mock_head: _snake_case : Optional[Any] = cached_file(lowerCAmelCase , """conf""" , _raise_exceptions_for_connection_errors=lowerCAmelCase) self.assertIsNone(lowerCAmelCase) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase_ ( self : Dict) -> Dict: """simple docstring""" self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , lowerCAmelCase)) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , lowerCAmelCase)) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , lowerCAmelCase)) def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""")) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowerCAmelCase , """is not a valid model identifier"""): get_file_from_repo("""bert-base-case""" , lowerCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowerCAmelCase , """is not a valid git identifier"""): get_file_from_repo("""bert-base-cased""" , lowerCAmelCase , revision="""ahaha""") _snake_case : Optional[int] = get_file_from_repo("""bert-base-cased""" , lowerCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. _snake_case : Any = json.loads(open(lowerCAmelCase , """r""").read()) self.assertEqual(config["""hidden_size"""] , 768) def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _snake_case : List[str] = Path(lowerCAmelCase) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(lowerCAmelCase , """a.txt""") , str(lowerCAmelCase)) self.assertIsNone(get_file_from_repo(lowerCAmelCase , """b.txt"""))
477
1
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case): os.makedirs(__snake_case , exist_ok=__snake_case) _UpperCamelCase : Dict = {'source': 'What is love ?', 'target': 'life'} _UpperCamelCase : List[str] = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _UpperCamelCase : str = '\n'.join([contents[field]] * n_lines[split]) with open(os.path.join(__snake_case , f'''{split}.{field}''') , 'w') as f: f.write(__snake_case) def A__ ( self , __snake_case , __snake_case = "pytorch"): _UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() _UpperCamelCase : int = os.path.join(__snake_case , 'output') _UpperCamelCase : Optional[Any] = os.path.join(__snake_case , 'data') self._create_dummy_data(data_dir=__snake_case) _UpperCamelCase : Optional[Any] = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''') if is_apex_available(): testargs.append('--fp16') else: testargs.append('--gpus=0') testargs.append('--distributed_backend=ddp_cpu') testargs.append('--num_processes=2') _UpperCamelCase : List[str] = [sys.executable, str(Path(finetune_rag.__file__).resolve())] + testargs execute_subprocess_async(__snake_case , env=self.get_env()) _UpperCamelCase : Dict = os.path.join(__snake_case , 'metrics.json') with open(__snake_case) as f: _UpperCamelCase : Optional[Any] = json.load(__snake_case) return result @require_torch_gpu def A__ ( self): _UpperCamelCase : Dict = self._run_finetune(gpus=1) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2) @require_torch_multi_gpu def A__ ( self): _UpperCamelCase : str = self._run_finetune(gpus=2) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2) @require_torch_gpu @require_ray def A__ ( self): _UpperCamelCase : List[str] = self._run_finetune(gpus=1 , distributed_retriever='ray') self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2) @require_torch_multi_gpu @require_ray def A__ ( self): _UpperCamelCase : Any = self._run_finetune(gpus=1 , distributed_retriever='ray') self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2)
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
from __future__ import annotations def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: print(f'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(__SCREAMING_SNAKE_CASE ): print(f'''{i}\t\t{d}''' ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: for j in range(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list[float]: UpperCAmelCase_ = [float("inf" )] * vertex_count UpperCAmelCase_ = 0.0 for _ in range(vertex_count - 1 ): for j in range(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: UpperCAmelCase_ = distance[u] + w UpperCAmelCase_ = check_negative_cycle(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE = int(input("Enter number of vertices: ").strip()) SCREAMING_SNAKE_CASE = int(input("Enter number of edges: ").strip()) SCREAMING_SNAKE_CASE = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) SCREAMING_SNAKE_CASE = {"src": src, "dst": dest, "weight": weight} SCREAMING_SNAKE_CASE = int(input("\nEnter shortest path source:").strip()) SCREAMING_SNAKE_CASE = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
579
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) SCREAMING_SNAKE_CASE = spec.loader.load_module() SCREAMING_SNAKE_CASE = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` SCREAMING_SNAKE_CASE = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") SCREAMING_SNAKE_CASE = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def snake_case__ ( ) -> Any: UpperCAmelCase_ = [] for config_class in list(CONFIG_MAPPING.values() ): UpperCAmelCase_ = False # source code of `config_class` UpperCAmelCase_ = inspect.getsource(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = _re_checkpoint.findall(__SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` UpperCAmelCase_ , UpperCAmelCase_ = checkpoint # verify the checkpoint name corresponds to the checkpoint link UpperCAmelCase_ = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: UpperCAmelCase_ = True break UpperCAmelCase_ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: UpperCAmelCase_ = "\n".join(sorted(__SCREAMING_SNAKE_CASE ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
579
1
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowerCamelCase__ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def lowercase_ ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: snake_case__ : Optional[int] =k.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return k def lowercase_ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" snake_case__ : Any =DEFAULTS.copy() cfg_kwargs.update(SCREAMING_SNAKE_CASE ) snake_case__ : Tuple =PegasusConfig(**SCREAMING_SNAKE_CASE ) snake_case__ : Any =PegasusForConditionalGeneration(SCREAMING_SNAKE_CASE ) snake_case__ : Any =torch_model.model.state_dict() snake_case__ : int ={} for k, v in tf_weights.items(): snake_case__ : Any =rename_state_dict_key(SCREAMING_SNAKE_CASE ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: snake_case__ : Optional[int] =v.T snake_case__ : Union[str, Any] =torch.tensor(SCREAMING_SNAKE_CASE , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected snake_case__ : str =torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) snake_case__ : Optional[int] =mapping["""shared.weight"""] snake_case__ : Dict =mapping["""shared.weight"""] snake_case__ : Union[str, Any] ={k: torch.zeros_like(SCREAMING_SNAKE_CASE ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**SCREAMING_SNAKE_CASE ) snake_case__ : Tuple =torch_model.model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =[ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def lowercase_ ( SCREAMING_SNAKE_CASE : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" snake_case__ : Optional[int] =tf.train.list_variables(SCREAMING_SNAKE_CASE ) snake_case__ : Any ={} snake_case__ : Optional[Any] =["""Adafactor""", """global_step"""] for name, shape in tqdm(SCREAMING_SNAKE_CASE , desc='''converting tf checkpoint to dict''' ): snake_case__ : Union[str, Any] =any(pat in name for pat in ignore_name ) if skip_key: continue snake_case__ : List[str] =tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =array return tf_weights def lowercase_ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" # save tokenizer first snake_case__ : List[Any] =Path(SCREAMING_SNAKE_CASE ).parent.name snake_case__ : Optional[int] =task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] snake_case__ : List[str] =PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=SCREAMING_SNAKE_CASE ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(SCREAMING_SNAKE_CASE ) # convert model snake_case__ : Optional[Any] =get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": snake_case__ : Any =task_specific_params snake_case__ : List[str] =convert_pegasus(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE ) snake_case__ : int =torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(SCREAMING_SNAKE_CASE , Path(SCREAMING_SNAKE_CASE ) / '''pytorch_model.bin''' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCamelCase__ = parser.parse_args() if args.save_dir is None: lowerCamelCase__ = Path(args.tf_ckpt_path).parent.name lowerCamelCase__ = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
714
def lowercase_ ( SCREAMING_SNAKE_CASE : int = 60_08_51_47_51_43 ): """simple docstring""" try: snake_case__ : Any =int(SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) snake_case__ : Any =1 snake_case__ : List[str] =2 while i * i <= n: while n % i == 0: snake_case__ : Union[str, Any] =i n //= i i += 1 if n > 1: snake_case__ : Any =n return int(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
408
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __lowercase ( _UpperCAmelCase = "laptop" ) -> DataFrame: '''simple docstring''' __lowercase = f'''https://www.amazon.in/laptop/s?k={product}''' __lowercase = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } __lowercase = BeautifulSoup(requests.get(_UpperCAmelCase , headers=_UpperCAmelCase ).text ) # Initialize a Pandas dataframe with the column titles __lowercase = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: __lowercase = item.ha.text __lowercase = "https://www.amazon.in/" + item.ha.a["href"] __lowercase = item.find("span" , attrs={"class": "a-offscreen"} ).text try: __lowercase = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: __lowercase = "Not available" try: __lowercase = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: __lowercase = "" try: __lowercase = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: __lowercase = float("nan" ) except AttributeError: pass __lowercase = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __lowercase = " " __lowercase = " " data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCAmelCase__ = 'headphones' get_amazon_product_data(product).to_csv(F"Amazon Product Data for {product}.csv")
321
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """bridgetower_vision_model""" def __init__( self , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=3 , lowerCAmelCase_=16 , lowerCAmelCase_=288 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-0_5 , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=False , **lowerCAmelCase_ , ): super().__init__(**lowerCAmelCase_ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_channels __lowercase = patch_size __lowercase = image_size __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = stop_gradient __lowercase = share_layernorm __lowercase = remove_last_layer @classmethod def snake_case__ ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ): __lowercase , __lowercase = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("model_type" ) == "bridgetower": __lowercase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """bridgetower_text_model""" def __init__( self , lowerCAmelCase_=5_0265 , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=1 , lowerCAmelCase_=3072 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=514 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-0_5 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , **lowerCAmelCase_ , ): super().__init__(**lowerCAmelCase_ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = initializer_factor __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = eos_token_id @classmethod def snake_case__ ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ): __lowercase , __lowercase = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("model_type" ) == "bridgetower": __lowercase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """bridgetower""" def __init__( self , lowerCAmelCase_=True , lowerCAmelCase_="gelu" , lowerCAmelCase_=768 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-0_5 , lowerCAmelCase_=False , lowerCAmelCase_="add" , lowerCAmelCase_=12 , lowerCAmelCase_=6 , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): # TODO: remove this once the Hub files are updated. __lowercase = kwargs.pop("text_config_dict" , lowerCAmelCase_ ) __lowercase = kwargs.pop("vision_config_dict" , lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) __lowercase = share_cross_modal_transformer_layers __lowercase = hidden_act __lowercase = hidden_size __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = share_link_tower_layers __lowercase = link_tower_type __lowercase = num_attention_heads __lowercase = num_hidden_layers __lowercase = tie_word_embeddings __lowercase = init_layernorm_from_vision_encoder if text_config is None: __lowercase = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: __lowercase = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) __lowercase = BridgeTowerTextConfig(**lowerCAmelCase_ ) __lowercase = BridgeTowerVisionConfig(**lowerCAmelCase_ ) @classmethod def snake_case__ ( cls , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.text_config.to_dict() __lowercase = self.vision_config.to_dict() __lowercase = self.__class__.model_type return output
321
1
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __a: str = logging.get_logger(__name__) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : str = nn.functional.normalize(_snake_case ) lowercase__ : Any = nn.functional.normalize(_snake_case ) return torch.mm(_snake_case , normalized_text_embeds.t() ) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = CLIPConfig SCREAMING_SNAKE_CASE = ["CLIPEncoderLayer"] def __init__( self , __lowerCAmelCase ) -> List[Any]: super().__init__(__lowerCAmelCase ) lowercase__ : Optional[int] = CLIPVisionModel(config.vision_config ) lowercase__ : Any = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__lowerCAmelCase ) lowercase__ : Tuple = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__lowerCAmelCase ) lowercase__ : Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__lowerCAmelCase ) lowercase__ : int = nn.Parameter(torch.ones(17 ) , requires_grad=__lowerCAmelCase ) lowercase__ : str = nn.Parameter(torch.ones(3 ) , requires_grad=__lowerCAmelCase ) @torch.no_grad() def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> Any: lowercase__ : Union[str, Any] = self.vision_model(__lowerCAmelCase )[1] # pooled_output lowercase__ : Union[str, Any] = self.visual_projection(__lowerCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ : Optional[Any] = cosine_distance(__lowerCAmelCase , self.special_care_embeds ).cpu().float().numpy() lowercase__ : Optional[int] = cosine_distance(__lowerCAmelCase , self.concept_embeds ).cpu().float().numpy() lowercase__ : str = [] lowercase__ : Tuple = image_embeds.shape[0] for i in range(__lowerCAmelCase ): lowercase__ : List[Any] = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowercase__ : List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowercase__ : str = special_cos_dist[i][concept_idx] lowercase__ : List[Any] = self.special_care_embeds_weights[concept_idx].item() lowercase__ : str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) lowercase__ : Dict = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): lowercase__ : Dict = cos_dist[i][concept_idx] lowercase__ : Optional[Any] = self.concept_embeds_weights[concept_idx].item() lowercase__ : Optional[int] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__lowerCAmelCase ) result.append(__lowerCAmelCase ) lowercase__ : Dict = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: lowercase__ : Optional[int] = self.vision_model(__lowerCAmelCase )[1] # pooled_output lowercase__ : int = self.visual_projection(__lowerCAmelCase ) lowercase__ : int = cosine_distance(__lowerCAmelCase , self.special_care_embeds ) lowercase__ : Optional[int] = cosine_distance(__lowerCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowercase__ : List[Any] = 0.0 lowercase__ : Optional[int] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowercase__ : Tuple = torch.any(special_scores > 0 , dim=1 ) lowercase__ : Any = special_care * 0.0_1 lowercase__ : List[str] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) lowercase__ : List[str] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowercase__ : Optional[Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
708
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __a: Optional[int] = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Union[str, Any] = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: int = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: str = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __a: List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
428
0
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"vocab_file": "vocab.txt"} __magic_name__ = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } __magic_name__ = { "facebook/esm2_t6_8M_UR50D": 1024, "facebook/esm2_t12_35M_UR50D": 1024, } def _lowerCAmelCase ( A__: Union[str, Any] ): '''simple docstring''' with open(A__ , '''r''' ) as f: UpperCAmelCase = f.read().splitlines() return [l.strip() for l in lines] class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case="<unk>" , _snake_case="<cls>" , _snake_case="<pad>" , _snake_case="<mask>" , _snake_case="<eos>" , **_snake_case , ) -> List[str]: """simple docstring""" super().__init__(**_snake_case ) UpperCAmelCase = load_vocab_file(_snake_case ) UpperCAmelCase = dict(enumerate(self.all_tokens ) ) UpperCAmelCase = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase = unk_token UpperCAmelCase = cls_token UpperCAmelCase = pad_token UpperCAmelCase = mask_token UpperCAmelCase = eos_token UpperCAmelCase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def snake_case_ ( self , _snake_case ) -> str: """simple docstring""" return self._id_to_token.get(_snake_case , self.unk_token ) def snake_case_ ( self , _snake_case ) -> int: """simple docstring""" return self._token_to_id.get(_snake_case , self._token_to_id.get(self.unk_token ) ) def snake_case_ ( self , _snake_case , **_snake_case ) -> Tuple: """simple docstring""" return text.split() def snake_case_ ( self , _snake_case=False ) -> int: """simple docstring""" return len(self._id_to_token ) def snake_case_ ( self ) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def snake_case_ ( self , _snake_case ) -> int: """simple docstring""" return self._token_to_id.get(_snake_case , self._token_to_id.get(self.unk_token ) ) def snake_case_ ( self , _snake_case ) -> str: """simple docstring""" return self._id_to_token.get(_snake_case , self.unk_token ) def snake_case_ ( self , _snake_case , _snake_case = None ) -> List[int]: """simple docstring""" UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def snake_case_ ( self , _snake_case , _snake_case = None , _snake_case = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase = [1] + ([0] * len(_snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(_snake_case ) + [1] return mask def snake_case_ ( self , _snake_case , _snake_case ) -> List[Any]: """simple docstring""" UpperCAmelCase = os.path.join(_snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(_snake_case , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def snake_case_ ( self ) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=_snake_case ) def snake_case_ ( self , _snake_case , _snake_case = False ) -> int: """simple docstring""" return super()._add_tokens(_snake_case , special_tokens=_snake_case )
254
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = BlenderbotConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = """gelu""" def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=False , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=20 , _snake_case=2 , _snake_case=1 , _snake_case=0 , ) -> Dict: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase = prepare_blenderbot_inputs_dict(_snake_case , _snake_case , _snake_case ) return config, inputs_dict def snake_case_ ( self , _snake_case , _snake_case ) -> Any: """simple docstring""" UpperCAmelCase = TFBlenderbotModel(config=_snake_case ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = inputs_dict['''head_mask'''] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(_snake_case , attention_mask=_snake_case , head_mask=_snake_case , use_cache=_snake_case ) UpperCAmelCase , UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase = model(_snake_case , attention_mask=_snake_case )[0] UpperCAmelCase = model(_snake_case , attention_mask=_snake_case , past_key_values=_snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_snake_case , _snake_case , rtol=1e-3 ) def _lowerCAmelCase ( A__: int , A__: Tuple , A__: Union[str, Any] , A__: Optional[int]=None , A__: Any=None , A__: int=None , A__: str=None , A__: int=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(A__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = TFBlenderbotModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_snake_case ) def snake_case_ ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case ) @require_tokenizers @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""My friends are cool but they eat too many carbs."""] __SCREAMING_SNAKE_CASE = """facebook/blenderbot-400M-distill""" @cached_property def snake_case_ ( self ) -> List[str]: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_snake_case )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
254
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''BlipImageProcessor''' SCREAMING_SNAKE_CASE_ : Any = '''AutoTokenizer''' def __init__( self : Tuple ,__A : Tuple ,__A : Union[str, Any] ,__A : Optional[Any] ) -> Tuple: super().__init__(__A ,__A ) # add QFormer tokenizer _lowercase = qformer_tokenizer def __call__( self : List[Any] ,__A : ImageInput = None ,__A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,__A : bool = True ,__A : Union[bool, str, PaddingStrategy] = False ,__A : Union[bool, str, TruncationStrategy] = None ,__A : Optional[int] = None ,__A : int = 0 ,__A : Optional[int] = None ,__A : Optional[bool] = None ,__A : bool = False ,__A : bool = False ,__A : bool = False ,__A : bool = False ,__A : bool = False ,__A : bool = True ,__A : Optional[Union[str, TensorType]] = None ,**__A : Union[str, Any] ,) -> BatchFeature: if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) _lowercase = BatchFeature() if text is not None: _lowercase = self.tokenizer( text=__A ,add_special_tokens=__A ,padding=__A ,truncation=__A ,max_length=__A ,stride=__A ,pad_to_multiple_of=__A ,return_attention_mask=__A ,return_overflowing_tokens=__A ,return_special_tokens_mask=__A ,return_offsets_mapping=__A ,return_token_type_ids=__A ,return_length=__A ,verbose=__A ,return_tensors=__A ,**__A ,) encoding.update(__A ) _lowercase = self.qformer_tokenizer( text=__A ,add_special_tokens=__A ,padding=__A ,truncation=__A ,max_length=__A ,stride=__A ,pad_to_multiple_of=__A ,return_attention_mask=__A ,return_overflowing_tokens=__A ,return_special_tokens_mask=__A ,return_offsets_mapping=__A ,return_token_type_ids=__A ,return_length=__A ,verbose=__A ,return_tensors=__A ,**__A ,) _lowercase = qformer_text_encoding.pop('input_ids' ) _lowercase = qformer_text_encoding.pop('attention_mask' ) if images is not None: _lowercase = self.image_processor(__A ,return_tensors=__A ) encoding.update(__A ) return encoding def __UpperCAmelCase ( self : Optional[Any] ,*__A : str ,**__A : int ) -> List[Any]: return self.tokenizer.batch_decode(*__A ,**__A ) def __UpperCAmelCase ( self : Any ,*__A : Tuple ,**__A : Union[str, Any] ) -> Dict: return self.tokenizer.decode(*__A ,**__A ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __UpperCAmelCase ( self : Dict ) -> str: _lowercase = self.tokenizer.model_input_names _lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __UpperCAmelCase ( self : int ,__A : Optional[int] ,**__A : Any ) -> List[Any]: if os.path.isfile(__A ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__A ,exist_ok=__A ) _lowercase = os.path.join(__A ,'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(__A ) return super().save_pretrained(__A ,**__A ) @classmethod def __UpperCAmelCase ( cls : List[str] ,__A : List[Any] ,**__A : Optional[int] ) -> Union[str, Any]: _lowercase = AutoTokenizer.from_pretrained(__A ,subfolder='qformer_tokenizer' ) _lowercase = cls._get_arguments_from_pretrained(__A ,**__A ) args.append(__A ) return cls(*__A )
535
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging snake_case = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class A_ ( UpperCAmelCase ): """simple docstring""" def __init__( self : str ,__A : int = 101 ) -> Optional[int]: _lowercase = length def __len__( self : List[Any] ) -> Any: return self.length def __getitem__( self : List[Any] ,__A : Optional[int] ) -> int: return i class A_ : """simple docstring""" def __call__( self : str ,__A : Union[str, Any] ) -> Any: return {"input_ids": torch.tensor(__A ), "labels": torch.tensor(__A )} class A_ ( nn.Module ): """simple docstring""" def __init__( self : Dict ) -> Any: super().__init__() # Add some (unused) params otherwise DDP will complain. _lowercase = nn.Linear(120 ,80 ) def __UpperCAmelCase ( self : Dict ,__A : Dict ,__A : Any=None ) -> Tuple: if labels is not None: return torch.tensor(0.0 ,device=input_ids.device ), input_ids else: return input_ids class A_ ( UpperCAmelCase ): """simple docstring""" @require_torch_neuroncore def __UpperCAmelCase ( self : int ) -> Any: _lowercase = F"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() _lowercase = self.get_auto_remove_tmp_dir() _lowercase = F"""--output_dir {output_dir}""".split() _lowercase = ['torchrun'] + distributed_args + args execute_subprocess_async(__A ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class A_ ( UpperCAmelCase ): """simple docstring""" @require_torch_multi_gpu def __UpperCAmelCase ( self : Dict ) -> List[Any]: _lowercase = F"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() _lowercase = self.get_auto_remove_tmp_dir() _lowercase = F"""--output_dir {output_dir}""".split() _lowercase = ['torchrun'] + distributed_args + args execute_subprocess_async(__A ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py snake_case = HfArgumentParser((TrainingArguments,)) snake_case = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: snake_case = DummyDataset(dataset_length) def SCREAMING_SNAKE_CASE__ ( snake_case__ :EvalPrediction ) -> Dict: _lowercase = list(range(len(snake_case__ ) ) ) _lowercase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' F"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} snake_case = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) snake_case = 2 snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) snake_case = None
535
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ = logging.get_logger(__name__) A__ = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class a ( __lowerCamelCase ): __lowerCAmelCase : Any = """conditional_detr""" __lowerCAmelCase : Union[str, Any] = ["""past_key_values"""] __lowerCAmelCase : Dict = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self :Optional[int] ,__lowercase :Union[str, Any]=True ,__lowercase :int=None ,__lowercase :Optional[int]=3 ,__lowercase :Optional[int]=3_0_0 ,__lowercase :int=6 ,__lowercase :List[str]=2_0_4_8 ,__lowercase :Union[str, Any]=8 ,__lowercase :Dict=6 ,__lowercase :List[str]=2_0_4_8 ,__lowercase :int=8 ,__lowercase :List[Any]=0.0 ,__lowercase :Tuple=0.0 ,__lowercase :Optional[Any]=True ,__lowercase :List[Any]="relu" ,__lowercase :Any=2_5_6 ,__lowercase :Any=0.1 ,__lowercase :List[str]=0.0 ,__lowercase :Optional[int]=0.0 ,__lowercase :Tuple=0.02 ,__lowercase :List[Any]=1.0 ,__lowercase :List[Any]=False ,__lowercase :List[Any]="sine" ,__lowercase :Union[str, Any]="resnet50" ,__lowercase :Tuple=True ,__lowercase :List[Any]=False ,__lowercase :Optional[int]=2 ,__lowercase :List[Any]=5 ,__lowercase :int=2 ,__lowercase :Union[str, Any]=1 ,__lowercase :List[str]=1 ,__lowercase :Union[str, Any]=2 ,__lowercase :List[Any]=5 ,__lowercase :List[Any]=2 ,__lowercase :List[str]=0.25 ,**__lowercase :Dict ,): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) snake_case__ : Any = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__lowercase ,__lowercase ): snake_case__ : Union[str, Any] = backbone_config.get('''model_type''' ) snake_case__ : Dict = CONFIG_MAPPING[backbone_model_type] snake_case__ : Dict = config_class.from_dict(__lowercase ) snake_case__ : List[str] = use_timm_backbone snake_case__ : List[str] = backbone_config snake_case__ : Optional[Any] = num_channels snake_case__ : int = num_queries snake_case__ : int = d_model snake_case__ : Optional[Any] = encoder_ffn_dim snake_case__ : Optional[Any] = encoder_layers snake_case__ : List[str] = encoder_attention_heads snake_case__ : Optional[Any] = decoder_ffn_dim snake_case__ : Tuple = decoder_layers snake_case__ : Dict = decoder_attention_heads snake_case__ : Dict = dropout snake_case__ : Dict = attention_dropout snake_case__ : str = activation_dropout snake_case__ : Tuple = activation_function snake_case__ : Any = init_std snake_case__ : str = init_xavier_std snake_case__ : List[str] = encoder_layerdrop snake_case__ : int = decoder_layerdrop snake_case__ : Any = encoder_layers snake_case__ : str = auxiliary_loss snake_case__ : str = position_embedding_type snake_case__ : Optional[Any] = backbone snake_case__ : Union[str, Any] = use_pretrained_backbone snake_case__ : int = dilation # Hungarian matcher snake_case__ : Tuple = class_cost snake_case__ : List[str] = bbox_cost snake_case__ : Union[str, Any] = giou_cost # Loss coefficients snake_case__ : Optional[Any] = mask_loss_coefficient snake_case__ : Union[str, Any] = dice_loss_coefficient snake_case__ : Tuple = cls_loss_coefficient snake_case__ : Tuple = bbox_loss_coefficient snake_case__ : List[Any] = giou_loss_coefficient snake_case__ : int = focal_alpha super().__init__(is_encoder_decoder=__lowercase ,**__lowercase ) @property def __lowerCamelCase ( self :List[str] ): return self.encoder_attention_heads @property def __lowerCamelCase ( self :Any ): return self.d_model def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: snake_case__ : Optional[int] = self.backbone_config.to_dict() snake_case__ : Tuple = self.__class__.model_type return output class a ( __lowerCamelCase ): __lowerCAmelCase : Optional[Any] = version.parse("""1.11""" ) @property def __lowerCamelCase ( self :List[Any] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __lowerCamelCase ( self :str ): return 1e-5 @property def __lowerCamelCase ( self :Dict ): return 1_2
252
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": A__ = argparse.ArgumentParser( description=( '''Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''roberta''', choices=['''roberta''', '''gpt2''']) parser.add_argument('''--model_name''', default='''roberta-large''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_roberta_048131723.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') A__ = parser.parse_args() if args.model_type == "roberta": A__ = RobertaForMaskedLM.from_pretrained(args.model_name) A__ = '''roberta''' elif args.model_type == "gpt2": A__ = GPTaLMHeadModel.from_pretrained(args.model_name) A__ = '''transformer''' A__ = model.state_dict() A__ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: A__ = state_dict[f"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: A__ = f"""{prefix}.embeddings.{w}.weight""" A__ = state_dict[param_name] for w in ["weight", "bias"]: A__ = f"""{prefix}.embeddings.LayerNorm.{w}""" A__ = state_dict[param_name] # Transformer Blocks # A__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: A__ = state_dict[ f"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] A__ = state_dict[f"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: A__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: A__ = state_dict[f"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: A__ = state_dict[f"""lm_head.dense.{w}"""] A__ = state_dict[f"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: A__ = state_dict[f"""{prefix}.ln_f.{w}"""] A__ = state_dict['''lm_head.weight'''] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
252
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): '''simple docstring''' snake_case_ = ['pixel_values'] def __init__( self : Union[str, Any] , UpperCamelCase_ : bool = True , UpperCamelCase_ : int = 32 , UpperCamelCase_ : List[str]=PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , **UpperCamelCase_ : List[str] , ) -> None: '''simple docstring''' _lowercase : Any = do_resize _lowercase : Any = do_rescale _lowercase : Optional[Any] = size_divisor _lowercase : Any = resample super().__init__(**UpperCamelCase_ ) def __lowercase ( self : Dict , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[ChannelDimension] = None , **UpperCamelCase_ : List[str] ) -> np.ndarray: '''simple docstring''' _lowercase , _lowercase : Dict = get_image_size(UpperCamelCase_ ) # Rounds the height and width down to the closest multiple of size_divisor _lowercase : int = height // size_divisor * size_divisor _lowercase : List[Any] = width // size_divisor * size_divisor _lowercase : Dict = resize(UpperCamelCase_ , (new_h, new_w) , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) return image def __lowercase ( self : Union[str, Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : float , UpperCamelCase_ : Optional[ChannelDimension] = None , **UpperCamelCase_ : Dict ) -> np.ndarray: '''simple docstring''' return rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __lowercase ( self : Optional[int] , UpperCamelCase_ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[Union[TensorType, str]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : int , ) -> BatchFeature: '''simple docstring''' _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : List[str] = size_divisor if size_divisor is not None else self.size_divisor _lowercase : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) _lowercase : Tuple = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. _lowercase : List[str] = [to_numpy_array(UpperCamelCase_ ) for img in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(UpperCamelCase_ , size_divisor=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_rescale: _lowercase : Optional[int] = [self.rescale(UpperCamelCase_ , scale=1 / 255 ) for image in images] _lowercase : List[Any] = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] _lowercase : List[Any] = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
411
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = """convnextv2""" def __init__( self , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.02 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=0.0 , lowerCAmelCase__=224 , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> int: super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_stages SCREAMING_SNAKE_CASE = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes SCREAMING_SNAKE_CASE = [3, 3, 9, 3] if depths is None else depths SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = ['stem'] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
247
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowercase__ , lowercase__ , lowercase__ = False, False, False @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = None lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = None # Automatically constructed lowerCamelCase__ = "dict" lowerCamelCase__ = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) lowerCamelCase__ = field(default="""Audio""", init=lowercase, repr=lowercase ) def __call__( self ): return self.pa_type def A_ ( self , lowercase ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err if isinstance(lowercase , lowercase ): return {"bytes": None, "path": value} elif isinstance(lowercase , lowercase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase : int = BytesIO() sf.write(lowercase , value['array'] , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm' ): # "PCM" only has raw audio bytes if value.get('sampling_rate' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' ) if value.get('bytes' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase : List[str] = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: _lowerCamelCase : Any = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 32767 _lowerCamelCase : Dict = BytesIO(bytes() ) sf.write(lowercase , lowercase , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def A_ ( self , lowercase , lowercase = None ): if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' ) _lowerCamelCase, _lowerCamelCase : Any = (value['path'], BytesIO(value['bytes'] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err _lowerCamelCase : str = xsplitext(lowercase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) if file is None: _lowerCamelCase : List[str] = token_per_repo_id or {} _lowerCamelCase : List[str] = path.split('::' )[-1] try: _lowerCamelCase : Optional[int] = string_to_dict(lowercase , config.HUB_DATASETS_URL )['repo_id'] _lowerCamelCase : List[Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase : int = None with xopen(lowercase , 'rb' , use_auth_token=lowercase ) as f: _lowerCamelCase, _lowerCamelCase : Optional[Any] = sf.read(lowercase ) else: _lowerCamelCase, _lowerCamelCase : List[str] = sf.read(lowercase ) _lowerCamelCase : Dict = array.T if self.mono: _lowerCamelCase : List[str] = librosa.to_mono(lowercase ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase : List[str] = librosa.resample(lowercase , orig_sr=lowercase , target_sr=self.sampling_rate ) _lowerCamelCase : Any = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def A_ ( self ): from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.' ) return { "bytes": Value('binary' ), "path": Value('string' ), } def A_ ( self , lowercase ): if pa.types.is_string(storage.type ): _lowerCamelCase : List[Any] = pa.array([None] * len(lowercase ) , type=pa.binary() ) _lowerCamelCase : Optional[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase : str = pa.array([None] * len(lowercase ) , type=pa.string() ) _lowerCamelCase : List[Any] = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ): _lowerCamelCase : Tuple = pa.array([Audio().encode_example(lowercase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: _lowerCamelCase : Dict = storage.field('bytes' ) else: _lowerCamelCase : Optional[Any] = pa.array([None] * len(lowercase ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: _lowerCamelCase : Tuple = storage.field('path' ) else: _lowerCamelCase : Tuple = pa.array([None] * len(lowercase ) , type=pa.string() ) _lowerCamelCase : int = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) return array_cast(lowercase , self.pa_type ) def A_ ( self , lowercase ): @no_op_if_value_is_null def path_to_bytes(lowercase ): with xopen(lowercase , 'rb' ) as f: _lowerCamelCase : Dict = f.read() return bytes_ _lowerCamelCase : str = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _lowerCamelCase : Union[str, Any] = pa.array( [os.path.basename(lowercase ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) _lowerCamelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(lowercase , self.pa_type )
492
"""simple docstring""" from __future__ import annotations lowercase__ = 10 def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = 1 _lowerCamelCase : Optional[int] = max(lowercase__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCamelCase : list[list] = [[] for _ in range(lowercase__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCamelCase : Dict = int((i / placement) % RADIX ) buckets[tmp].append(lowercase__ ) # put each buckets' contents into list_of_ints _lowerCamelCase : str = 0 for b in range(lowercase__ ): for i in buckets[b]: _lowerCamelCase : str = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
492
1
'''simple docstring''' import json import sys def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int ) -> Tuple: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: UpperCAmelCase_ : Dict = json.load(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Optional[Any] = results[benchmark_name] UpperCAmelCase_ : Any = benchmark_name.split("/" )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) UpperCAmelCase_ : Any = "| metric |" UpperCAmelCase_ : Any = "|--------|" UpperCAmelCase_ : Union[str, Any] = "| new / old (diff) |" for metric_name in sorted(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = benchmark_res[metric_name] UpperCAmelCase_ : Union[str, Any] = metric_vals["new"] UpperCAmelCase_ : Optional[Any] = metric_vals.get("old" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = metric_vals.get("diff" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = F''' {new_val:f}''' if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>" ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.writelines("\n".join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": _lowerCamelCase = sys.argv[1] _lowerCamelCase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
71
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=2, lowerCAmelCase=99, lowerCAmelCase=0, lowerCAmelCase=32, lowerCAmelCase=5, lowerCAmelCase=4, lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=12, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase="last", lowerCAmelCase=None, lowerCAmelCase=None, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_lengths lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =gelu_activation lowerCamelCase_ =sinusoidal_embeddings lowerCamelCase_ =causal lowerCamelCase_ =asm lowerCamelCase_ =n_langs lowerCamelCase_ =vocab_size lowerCamelCase_ =n_special lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =summary_type lowerCamelCase_ =use_proj lowerCamelCase_ =scope def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_input_lengths: lowerCamelCase_ =( ids_tensor([self.batch_size], vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.n_langs ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size], 2 ).float() lowerCamelCase_ =ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase_ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self ): """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase, lengths=lowerCAmelCase, langs=lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase, langs=lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model( lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase, cls_index=lowerCAmelCase, is_impossible=lowerCAmelCase, p_mask=lowerCAmelCase, ) lowerCamelCase_ =model( lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase, cls_index=lowerCAmelCase, is_impossible=lowerCAmelCase, ) ((lowerCamelCase_), ) =result_with_labels.to_tuple() lowerCamelCase_ =model(lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase ) ((lowerCamelCase_), ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, () ) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =FlaubertForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase, attention_mask=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.num_choices lowerCamelCase_ =FlaubertForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase_ =token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase_ =input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase_ =model( lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =config_and_inputs lowerCamelCase_ ={ '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : List[Any] =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowercase : Tuple =( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=False ): """simple docstring""" lowerCamelCase_ =super()._prepare_for_class(lowerCAmelCase, lowerCAmelCase, return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCamelCase_ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase ) lowerCamelCase_ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase ) return inputs_dict def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =FlaubertModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, emb_dim=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =FlaubertModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @slow @require_torch_gpu def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCamelCase_ =True lowerCamelCase_ =model_class(config=lowerCAmelCase ) lowerCamelCase_ =self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =torch.jit.trace( lowerCAmelCase, (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase, os.path.join(lowerCAmelCase, '''traced_model.pt''' ) ) lowerCamelCase_ =torch.jit.load(os.path.join(lowerCAmelCase, '''traced_model.pt''' ), map_location=lowerCAmelCase ) loaded(inputs_dict['''input_ids'''].to(lowerCAmelCase ), inputs_dict['''attention_mask'''].to(lowerCAmelCase ) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) lowerCamelCase_ =torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase )[0] lowerCamelCase_ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape, lowerCAmelCase ) lowerCamelCase_ =torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowerCAmelCase, atol=1e-4 ) )
676
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _A( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : str = PhobertTokenizer UpperCamelCase : Any = False def UpperCAmelCase_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A : Dict = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] __A : int = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) __A : Any = ['''#version: 0.2''', '''l à</w>'''] __A : List[Any] = {'''unk_token''': '''<unk>'''} __A : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __A : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase__ ) ) def UpperCAmelCase_ ( self , **_A ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self , _A ): __A : Union[str, Any] = '''Tôi là VinAI Research''' __A : Optional[int] = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def UpperCAmelCase_ ( self ): __A : Any = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __A : str = '''Tôi là VinAI Research''' __A : Optional[Any] = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() __A : int = tokenizer.tokenize(UpperCamelCase__ ) print(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) __A : Any = tokens + [tokenizer.unk_token] __A : List[str] = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ )
712
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : Tuple = tempfile.mkdtemp() # fmt: off __A : Union[str, Any] = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __A : Dict = dict(zip(_A , range(len(_A ) ) ) ) __A : int = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __A : Optional[Any] = {'unk_token': '<unk>'} __A : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) __A : Union[str, Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __A : List[str] = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_A , _A ) def UpperCAmelCase_ ( self , **_A ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def UpperCAmelCase_ ( self , **_A ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def UpperCAmelCase_ ( self , **_A ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ): __A : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __A : Optional[int] = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self ): __A : List[str] = self.get_tokenizer() __A : Dict = self.get_rust_tokenizer() __A : Optional[Any] = self.get_image_processor() __A : Dict = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) __A : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) __A : Any = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) __A : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def UpperCAmelCase_ ( self ): __A : Tuple = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A : str = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __A : int = self.get_image_processor(do_normalize=_A ) __A : int = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCAmelCase_ ( self ): __A : List[str] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Union[str, Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : List[Any] = self.prepare_image_inputs() __A : Any = image_processor(_A , return_tensors='np' ) __A : Tuple = processor(images=_A , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self ): __A : Tuple = self.get_image_processor() __A : int = self.get_tokenizer() __A : Optional[int] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Union[str, Any] = 'lower newer' __A : Any = processor(text=_A , return_tensors='np' ) __A : Dict = tokenizer(_A , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase_ ( self ): __A : Optional[int] = self.get_image_processor() __A : List[str] = self.get_tokenizer() __A : Tuple = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Tuple = 'lower newer' __A : Union[str, Any] = self.prepare_image_inputs() __A : List[Any] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Optional[int] = 'google/owlvit-base-patch32' __A : str = OwlViTProcessor.from_pretrained(_A ) __A : Any = ['cat', 'nasa badge'] __A : List[Any] = processor(text=_A ) __A : Dict = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Tuple = 'google/owlvit-base-patch32' __A : Any = OwlViTProcessor.from_pretrained(_A ) __A : int = [['cat', 'nasa badge'], ['person']] __A : str = processor(text=_A ) __A : int = 16 __A : Optional[int] = len(_A ) __A : int = max([len(_A ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : int = 'google/owlvit-base-patch32' __A : List[str] = OwlViTProcessor.from_pretrained(_A ) __A : Tuple = ['cat', 'nasa badge'] __A : Dict = processor(text=_A ) __A : Tuple = 16 __A : str = inputs['input_ids'] __A : str = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase_ ( self ): __A : Dict = self.get_image_processor() __A : Optional[int] = self.get_tokenizer() __A : Dict = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Any = self.prepare_image_inputs() __A : Tuple = self.prepare_image_inputs() __A : Any = processor(images=_A , query_images=_A ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : Optional[int] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : Any = processor.batch_decode(_A ) __A : Union[str, Any] = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A )
77
0
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowercase_ = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } lowercase_ = {'allegro/herbert-base-cased': 5_14} lowercase_ = {} class __a ( __snake_case ): lowerCamelCase : Dict =VOCAB_FILES_NAMES lowerCamelCase : int =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any =PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Any =HerbertTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="</s>" , **UpperCAmelCase , ): '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase_ = [self.cls_token_id] lowerCAmelCase_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
552
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 16 lowercase_ = 32 def UpperCAmelCase ( _lowercase : Accelerator , _lowercase : int = 1_6 , _lowercase : str = "bert-base-cased" ) -> Dict: """simple docstring""" lowerCAmelCase_ = AutoTokenizer.from_pretrained(_lowercase ) lowerCAmelCase_ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_lowercase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase_ = datasets.map( _lowercase , batched=_lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=_lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_lowercase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(_lowercase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowerCAmelCase_ = DataLoader( tokenized_datasets['''train'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) lowerCAmelCase_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader def UpperCAmelCase ( _lowercase : int , _lowercase : Any , _lowercase : Any , _lowercase : str ) -> List[Any]: """simple docstring""" model.eval() lowerCAmelCase_ = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ = model(**_lowercase ) lowerCAmelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCAmelCase_ , lowerCAmelCase_ = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowercase ) - 1: lowerCAmelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowercase , references=_lowercase , ) lowerCAmelCase_ = metric.compute() return eval_metric["accuracy"] def UpperCAmelCase ( _lowercase : Dict , _lowercase : Optional[Any] ) -> Dict: """simple docstring""" lowerCAmelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ = config['''lr'''] lowerCAmelCase_ = int(config['''num_epochs'''] ) lowerCAmelCase_ = int(config['''seed'''] ) lowerCAmelCase_ = int(config['''batch_size'''] ) lowerCAmelCase_ = args.model_name_or_path set_seed(_lowercase ) lowerCAmelCase_ , lowerCAmelCase_ = get_dataloaders(_lowercase , _lowercase , _lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase ) # Instantiate optimizer lowerCAmelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase_ = optimizer_cls(params=model.parameters() , lr=_lowercase ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowerCAmelCase_ = 1 lowerCAmelCase_ = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase_ = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: lowerCAmelCase_ = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase_ = 0 lowerCAmelCase_ = evaluate.load('''glue''' , '''mrpc''' ) lowerCAmelCase_ = num_epochs if args.partial_train_epoch is not None: lowerCAmelCase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCAmelCase_ = args.resume_from_checkpoint.split('''epoch_''' )[1] lowerCAmelCase_ = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCAmelCase_ = int(_lowercase ) + 1 lowerCAmelCase_ = evaluation_loop(_lowercase , _lowercase , _lowercase , _lowercase ) accelerator.print('''resumed checkpoint performance:''' , _lowercase ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , F"""state_{starting_epoch-1}.json""" ) , '''r''' ) as f: lowerCAmelCase_ = json.load(_lowercase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCAmelCase_ = {} for epoch in range(_lowercase , _lowercase ): model.train() for step, batch in enumerate(_lowercase ): lowerCAmelCase_ = model(**_lowercase ) lowerCAmelCase_ = outputs.loss lowerCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCAmelCase_ = F"""epoch_{epoch}""" lowerCAmelCase_ = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) lowerCAmelCase_ = evaluation_loop(_lowercase , _lowercase , _lowercase , _lowercase ) lowerCAmelCase_ = accuracy lowerCAmelCase_ = lr_scheduler.get_lr()[0] lowerCAmelCase_ = optimizer.param_groups[0]['''lr'''] lowerCAmelCase_ = epoch lowerCAmelCase_ = overall_step accelerator.print(F"""epoch {epoch}:""" , _lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"""state_{epoch}.json""" ) , '''w''' ) as f: json.dump(_lowercase , _lowercase ) def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=_lowercase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_lowercase , ) parser.add_argument( '''--output_dir''' , type=_lowercase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=_lowercase , default=_lowercase , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=_lowercase , default=_lowercase , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=_lowercase , default=2 , help='''Number of train epochs.''' , ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 4_2, '''batch_size''': 1_6} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
552
1
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class a__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): UpperCAmelCase_ : int = AutoencoderKL UpperCAmelCase_ : Optional[Any] = 'sample' UpperCAmelCase_ : Dict = 1E-2 @property def _lowerCamelCase ( self ) -> List[str]: __A = 4 __A = 3 __A = (32, 32) __A = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase__ ) return {"sample": image} @property def _lowerCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _lowerCamelCase ( self ) -> int: return (3, 32, 32) def _lowerCamelCase ( self ) -> List[Any]: __A = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } __A = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self ) -> Optional[int]: pass def _lowerCamelCase ( self ) -> List[Any]: pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def _lowerCamelCase ( self ) -> int: # enable deterministic behavior for gradient checkpointing __A , __A = self.prepare_init_args_and_inputs_for_common() __A = self.model_class(**lowercase__ ) model.to(lowercase__ ) assert not model.is_gradient_checkpointing and model.training __A = model(**lowercase__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __A = torch.randn_like(lowercase__ ) __A = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __A = self.model_class(**lowercase__ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowercase__ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __A = model_a(**lowercase__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __A = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __A = dict(model.named_parameters() ) __A = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def _lowerCamelCase ( self ) -> Tuple: __A , __A = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(lowercase__ ) __A = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _lowerCamelCase ( self ) -> Optional[int]: __A = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) __A = model.to(lowercase__ ) model.eval() if torch_device == "mps": __A = torch.manual_seed(0 ) else: __A = torch.Generator(device=lowercase__ ).manual_seed(0 ) __A = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __A = image.to(lowercase__ ) with torch.no_grad(): __A = model(lowercase__ , sample_posterior=lowercase__ , generator=lowercase__ ).sample __A = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __A = torch.tensor( [ -4.00_78e-01, -3.83_23e-04, -1.26_81e-01, -1.14_62e-01, 2.00_95e-01, 1.08_93e-01, -8.82_47e-02, -3.03_61e-01, -9.86_44e-03, ] ) elif torch_device == "cpu": __A = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __A = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(lowercase__ , lowercase__ , rtol=1e-2 ) ) @slow class a__ ( unittest.TestCase ): def _lowerCamelCase ( self , lowercase__ , lowercase__ ) -> Tuple: return F"""gaussian_noise_s={seed}_shape={'_'.join([str(lowercase__ ) for s in shape] )}.npy""" def _lowerCamelCase ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self , lowercase__=0 , lowercase__=(4, 3, 512, 512) , lowercase__=False ) -> Optional[int]: __A = torch.floataa if fpaa else torch.floataa __A = torch.from_numpy(load_hf_numpy(self.get_file_format(lowercase__ , lowercase__ ) ) ).to(lowercase__ ).to(lowercase__ ) return image def _lowerCamelCase ( self , lowercase__="CompVis/stable-diffusion-v1-4" , lowercase__=False ) -> List[Any]: __A = "fp16" if fpaa else None __A = torch.floataa if fpaa else torch.floataa __A = AutoencoderKL.from_pretrained( lowercase__ , subfolder="vae" , torch_dtype=lowercase__ , revision=lowercase__ , ) model.to(lowercase__ ).eval() return model def _lowerCamelCase ( self , lowercase__=0 ) -> int: if torch_device == "mps": return torch.manual_seed(lowercase__ ) return torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> str: __A = self.get_sd_vae_model() __A = self.get_sd_image(lowercase__ ) __A = self.get_generator(lowercase__ ) with torch.no_grad(): __A = model(lowercase__ , generator=lowercase__ , sample_posterior=lowercase__ ).sample assert sample.shape == image.shape __A = sample[-1, -2:, -2:, :2].flatten().float().cpu() __A = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(lowercase__ , lowercase__ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def _lowerCamelCase ( self , lowercase__ , lowercase__ ) -> int: __A = self.get_sd_vae_model(fpaa=lowercase__ ) __A = self.get_sd_image(lowercase__ , fpaa=lowercase__ ) __A = self.get_generator(lowercase__ ) with torch.no_grad(): __A = model(lowercase__ , generator=lowercase__ , sample_posterior=lowercase__ ).sample assert sample.shape == image.shape __A = sample[-1, -2:, :2, -2:].flatten().float().cpu() __A = torch.tensor(lowercase__ ) assert torch_all_close(lowercase__ , lowercase__ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> int: __A = self.get_sd_vae_model() __A = self.get_sd_image(lowercase__ ) with torch.no_grad(): __A = model(lowercase__ ).sample assert sample.shape == image.shape __A = sample[-1, -2:, -2:, :2].flatten().float().cpu() __A = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(lowercase__ , lowercase__ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def _lowerCamelCase ( self , lowercase__ , lowercase__ ) -> Optional[int]: __A = self.get_sd_vae_model() __A = self.get_sd_image(lowercase__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __A = model.decode(lowercase__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __A = sample[-1, -2:, :2, -2:].flatten().cpu() __A = torch.tensor(lowercase__ ) assert torch_all_close(lowercase__ , lowercase__ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def _lowerCamelCase ( self , lowercase__ , lowercase__ ) -> Dict: __A = self.get_sd_vae_model(fpaa=lowercase__ ) __A = self.get_sd_image(lowercase__ , shape=(3, 4, 64, 64) , fpaa=lowercase__ ) with torch.no_grad(): __A = model.decode(lowercase__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __A = sample[-1, -2:, :2, -2:].flatten().float().cpu() __A = torch.tensor(lowercase__ ) assert torch_all_close(lowercase__ , lowercase__ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _lowerCamelCase ( self , lowercase__ ) -> str: __A = self.get_sd_vae_model(fpaa=lowercase__ ) __A = self.get_sd_image(lowercase__ , shape=(3, 4, 64, 64) , fpaa=lowercase__ ) with torch.no_grad(): __A = model.decode(lowercase__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __A = model.decode(lowercase__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowercase__ , lowercase__ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _lowerCamelCase ( self , lowercase__ ) -> int: __A = self.get_sd_vae_model() __A = self.get_sd_image(lowercase__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __A = model.decode(lowercase__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __A = model.decode(lowercase__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowercase__ , lowercase__ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def _lowerCamelCase ( self , lowercase__ , lowercase__ ) -> Optional[Any]: __A = self.get_sd_vae_model() __A = self.get_sd_image(lowercase__ ) __A = self.get_generator(lowercase__ ) with torch.no_grad(): __A = model.encode(lowercase__ ).latent_dist __A = dist.sample(generator=lowercase__ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __A = sample[0, -1, -3:, -3:].flatten().cpu() __A = torch.tensor(lowercase__ ) __A = 3e-3 if torch_device != "mps" else 1e-2 assert torch_all_close(lowercase__ , lowercase__ , atol=lowercase__ )
205
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , ): '''simple docstring''' __A = {} if train_file is not None: __A = [train_file] if eval_file is not None: __A = [eval_file] if test_file is not None: __A = [test_file] __A = datasets.load_dataset("csv" , data_files=lowerCAmelCase__ ) __A = list(ds[list(files.keys() )[0]].features.keys() ) __A = features_name.pop(lowerCAmelCase__ ) __A = list(set(ds[list(files.keys() )[0]][label_name] ) ) __A = {label: i for i, label in enumerate(lowerCAmelCase__ )} __A = tokenizer.model_input_names __A = {} if len(lowerCAmelCase__ ) == 1: for k in files.keys(): __A = ds[k].map( lambda lowerCAmelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" ) , batched=lowerCAmelCase__ , ) elif len(lowerCAmelCase__ ) == 2: for k in files.keys(): __A = ds[k].map( lambda lowerCAmelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" , ) , batched=lowerCAmelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __A = {k: v for k, v in ex.items() if k in input_names} __A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __A = {k: v for k, v in ex.items() if k in input_names} __A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __A = {k: v for k, v in ex.items() if k in input_names} __A = labelaid[ex[label_name]] yield (d, label) __A = ( tf.data.Dataset.from_generator( lowerCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __A = ( tf.data.Dataset.from_generator( lowerCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __A = ( tf.data.Dataset.from_generator( lowerCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid snake_case_ : str =logging.getLogger(__name__) @dataclass class a__ : UpperCAmelCase_ : int = field(metadata={'help': 'Which column contains the label'} ) UpperCAmelCase_ : str = field(default=lowerCAmelCase__ , metadata={'help': 'The path of the training file'} ) UpperCAmelCase_ : Optional[str] = field(default=lowerCAmelCase__ , metadata={'help': 'The path of the development file'} ) UpperCAmelCase_ : Optional[str] = field(default=lowerCAmelCase__ , metadata={'help': 'The path of the test file'} ) UpperCAmelCase_ : int = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) UpperCAmelCase_ : bool = field( default=lowerCAmelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class a__ : UpperCAmelCase_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) UpperCAmelCase_ : bool = field(default=lowerCAmelCase__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCAmelCase ( ): '''simple docstring''' __A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __A , __A , __A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __A , __A , __A , __A = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCAmelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCAmelCase__ ) , labelaid=lowerCAmelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCAmelCase__ ) -> Dict: __A = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __A = TFTrainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __A = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __A = trainer.evaluate() __A = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(lowerCAmelCase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(lowerCAmelCase__ ) return results if __name__ == "__main__": main()
205
1
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A : Dict = random.Random() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ): '''simple docstring''' if rng is None: __lowerCAmelCase = global_rng __lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __a , __a=7 , __a=4_00 , __a=20_00 , __a=20_48 , __a=1_28 , __a=1 , __a=5_12 , __a=30 , __a=4_41_00 , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = min_seq_length __lowerCAmelCase = max_seq_length __lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowerCAmelCase = spectrogram_length __lowerCAmelCase = feature_size __lowerCAmelCase = num_audio_channels __lowerCAmelCase = hop_length __lowerCAmelCase = chunk_length __lowerCAmelCase = sampling_rate def snake_case ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case ( self , __a=False , __a=False ): def _flatten(__a ): return list(itertools.chain(*__a ) ) if equal_length: __lowerCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowerCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowerCAmelCase = [np.asarray(__a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCamelCase ( lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =TvltFeatureExtractor def snake_case ( self ): __lowerCAmelCase = TvltFeatureExtractionTester(self ) def snake_case ( self ): __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__a , "spectrogram_length" ) ) self.assertTrue(hasattr(__a , "feature_size" ) ) self.assertTrue(hasattr(__a , "num_audio_channels" ) ) self.assertTrue(hasattr(__a , "hop_length" ) ) self.assertTrue(hasattr(__a , "chunk_length" ) ) self.assertTrue(hasattr(__a , "sampling_rate" ) ) def snake_case ( self ): __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = feat_extract_first.save_pretrained(__a )[0] check_json_file_has_correct_format(__a ) __lowerCAmelCase = self.feature_extraction_class.from_pretrained(__a ) __lowerCAmelCase = feat_extract_first.to_dict() __lowerCAmelCase = feat_extract_second.to_dict() __lowerCAmelCase = dict_first.pop("mel_filters" ) __lowerCAmelCase = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(__a , __a ) ) self.assertEqual(__a , __a ) def snake_case ( self ): __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(__a , "feat_extract.json" ) feat_extract_first.to_json_file(__a ) __lowerCAmelCase = self.feature_extraction_class.from_json_file(__a ) __lowerCAmelCase = feat_extract_first.to_dict() __lowerCAmelCase = feat_extract_second.to_dict() __lowerCAmelCase = dict_first.pop("mel_filters" ) __lowerCAmelCase = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(__a , __a ) ) self.assertEqual(__a , __a ) def snake_case ( self ): # Initialize feature_extractor __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowerCAmelCase = [np.asarray(__a ) for speech_input in speech_inputs] # Test not batched input __lowerCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __lowerCAmelCase = feature_extractor(__a , return_tensors="np" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __lowerCAmelCase = feature_extractor( __a , return_tensors="np" , sampling_rate=4_41_00 , mask_audio=__a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __lowerCAmelCase = np.asarray(__a ) __lowerCAmelCase = feature_extractor(__a , return_tensors="np" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case ( self , __a ): __lowerCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __lowerCAmelCase = ds.sort("id" ).select(range(__a ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def snake_case ( self ): __lowerCAmelCase = self._load_datasamples(1 ) __lowerCAmelCase = TvltFeatureExtractor() __lowerCAmelCase = feature_extractor(__a , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_92, 1_28) ) __lowerCAmelCase = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __a , atol=1e-4 ) )
636
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger A : Dict = get_logger(__name__) A : Dict = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class _UpperCamelCase : '''simple docstring''' @add_start_docstrings(__a ) def __call__( self , __a , __a ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _UpperCamelCase : '''simple docstring''' @add_start_docstrings(__a ) def __call__( self , __a , __a ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @add_start_docstrings(__a ) def __call__( self , __a , __a , __a , **__a ): for processor in self: __lowerCAmelCase = inspect.signature(processor.__call__ ).parameters if len(__a ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f"Make sure that all the required parameters: {list(function_args.keys() )} for " f"{processor.__class__} are passed to the logits processor." ) __lowerCAmelCase = processor(__a , __a , __a , **__a ) else: __lowerCAmelCase = processor(__a , __a , __a ) return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a ): if not isinstance(__a , __a ) or not (temperature > 0): raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}" ) __lowerCAmelCase = temperature def __call__( self , __a , __a , __a ): __lowerCAmelCase = scores / self.temperature return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a = -float("Inf" ) , __a = 1 ): if not isinstance(__a , __a ) or (top_p < 0 or top_p > 1.0): raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}" ) if not isinstance(__a , __a ) or (min_tokens_to_keep < 1): raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}" ) __lowerCAmelCase = top_p __lowerCAmelCase = filter_value __lowerCAmelCase = min_tokens_to_keep def __call__( self , __a , __a , __a ): __lowerCAmelCase , __lowerCAmelCase = lax.top_k(__a , scores.shape[-1] ) __lowerCAmelCase = jnp.full_like(__a , self.filter_value ) __lowerCAmelCase = jax.nn.softmax(__a , axis=-1 ).cumsum(axis=-1 ) __lowerCAmelCase = cumulative_probs < self.top_p # include the token that is higher than top_p as well __lowerCAmelCase = jnp.roll(__a , 1 ) score_mask |= score_mask.at[:, 0].set(__a ) # min tokens to keep __lowerCAmelCase = score_mask.at[:, : self.min_tokens_to_keep].set(__a ) __lowerCAmelCase = jnp.where(__a , __a , __a ) __lowerCAmelCase = jax.lax.sort_key_val(__a , __a )[-1] return next_scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a = -float("Inf" ) , __a = 1 ): if not isinstance(__a , __a ) or top_k <= 0: raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}" ) __lowerCAmelCase = max(__a , __a ) __lowerCAmelCase = filter_value def __call__( self , __a , __a , __a ): __lowerCAmelCase , __lowerCAmelCase = scores.shape __lowerCAmelCase = jnp.full(batch_size * vocab_size , self.filter_value ) __lowerCAmelCase = min(self.top_k , scores.shape[-1] ) # Safety check __lowerCAmelCase , __lowerCAmelCase = lax.top_k(__a , __a ) __lowerCAmelCase = jnp.broadcast_to((jnp.arange(__a ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __lowerCAmelCase = topk_scores.flatten() __lowerCAmelCase = topk_indices.flatten() + shift __lowerCAmelCase = next_scores_flat.at[topk_indices_flat].set(__a ) __lowerCAmelCase = next_scores_flat.reshape(__a , __a ) return next_scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a ): __lowerCAmelCase = bos_token_id def __call__( self , __a , __a , __a ): __lowerCAmelCase = jnp.full(scores.shape , -float("inf" ) ) __lowerCAmelCase = 1 - jnp.bool_(cur_len - 1 ) __lowerCAmelCase = jnp.where(__a , new_scores.at[:, self.bos_token_id].set(0 ) , __a ) return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a ): __lowerCAmelCase = max_length __lowerCAmelCase = eos_token_id def __call__( self , __a , __a , __a ): __lowerCAmelCase = jnp.full(scores.shape , -float("inf" ) ) __lowerCAmelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __lowerCAmelCase = jnp.where(__a , new_scores.at[:, self.eos_token_id].set(0 ) , __a ) return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a ): if not isinstance(__a , __a ) or min_length < 0: raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}" ) if not isinstance(__a , __a ) or eos_token_id < 0: raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}" ) __lowerCAmelCase = min_length __lowerCAmelCase = eos_token_id def __call__( self , __a , __a , __a ): # create boolean flag to decide if min length penalty should be applied __lowerCAmelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __lowerCAmelCase = jnp.where(__a , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , __a ) return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a ): __lowerCAmelCase = list(__a ) __lowerCAmelCase = begin_index def __call__( self , __a , __a , __a ): __lowerCAmelCase = 1 - jnp.bool_(cur_len - self.begin_index ) __lowerCAmelCase = jnp.where(__a , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , __a ) return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a ): __lowerCAmelCase = list(__a ) def __call__( self , __a , __a , __a ): __lowerCAmelCase = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a ): __lowerCAmelCase = dict(__a ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __lowerCAmelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __lowerCAmelCase = force_token_array.at[index].set(__a ) __lowerCAmelCase = jnp.intaa(__a ) def __call__( self , __a , __a , __a ): def _force_token(__a ): __lowerCAmelCase = scores.shape[0] __lowerCAmelCase = self.force_token_array[generation_idx] __lowerCAmelCase = jnp.ones_like(__a , dtype=scores.dtype ) * -float("inf" ) __lowerCAmelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __lowerCAmelCase = lax.dynamic_update_slice(__a , __a , (0, current_token) ) return new_scores __lowerCAmelCase = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__a ) , lambda: scores , ) , ) return scores class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a , __a ): __lowerCAmelCase = generate_config.eos_token_id __lowerCAmelCase = generate_config.no_timestamps_token_id __lowerCAmelCase = generate_config.no_timestamps_token_id + 1 __lowerCAmelCase = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__a , "max_initial_timestamp_index" ): __lowerCAmelCase = generate_config.max_initial_timestamp_index else: __lowerCAmelCase = model_config.vocab_size if self.max_initial_timestamp_index is None: __lowerCAmelCase = model_config.vocab_size def __call__( self , __a , __a , __a ): # suppress <|notimestamps|> which is handled by without_timestamps __lowerCAmelCase = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(__a , __a ): __lowerCAmelCase = jnp.where((cur_len - self.begin_index) >= 1 , __a , __a ) __lowerCAmelCase = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __a , ) __lowerCAmelCase = jnp.where((cur_len - self.begin_index) < 2 , __a , __a ) __lowerCAmelCase = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __a , __a , ) return jnp.where( __a , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , __a , ) __lowerCAmelCase = jax.vmap(__a )(__a , __a ) __lowerCAmelCase = jnp.where(cur_len == self.begin_index , __a , __a ) __lowerCAmelCase = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __a , ) __lowerCAmelCase = self.timestamp_begin + self.max_initial_timestamp_index __lowerCAmelCase = jnp.where( __a , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , __a , ) # if sum of probability over timestamps is above any other token, sample timestamp __lowerCAmelCase = jax.nn.log_softmax(__a , axis=-1 ) def handle_cumulative_probs(__a , __a ): __lowerCAmelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __lowerCAmelCase = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , __a , ) __lowerCAmelCase = jax.vmap(__a )(__a , __a ) return scores
636
1
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated A_ = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ A_ = "https://storage.googleapis.com/cvdf-datasets/mnist/" def A ( _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' __lowerCAmelCase : Tuple = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) ,dtype=_UpperCAmelCase )[0] @deprecated(_UpperCAmelCase ,'Please use tf.data to implement this functionality.' ) def A ( _UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' print('Extracting' ,f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: __lowerCAmelCase : List[str] = _readaa(_UpperCAmelCase ) if magic != 2_0_5_1: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) __lowerCAmelCase : Optional[Any] = _readaa(_UpperCAmelCase ) __lowerCAmelCase : int = _readaa(_UpperCAmelCase ) __lowerCAmelCase : List[Any] = _readaa(_UpperCAmelCase ) __lowerCAmelCase : Optional[int] = bytestream.read(rows * cols * num_images ) __lowerCAmelCase : Optional[Any] = numpy.frombuffer(_UpperCAmelCase ,dtype=numpy.uinta ) __lowerCAmelCase : Optional[Any] = data.reshape(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,1 ) return data @deprecated(_UpperCAmelCase ,'Please use tf.one_hot on tensors.' ) def A ( _UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = labels_dense.shape[0] __lowerCAmelCase : List[str] = numpy.arange(_UpperCAmelCase ) * num_classes __lowerCAmelCase : Union[str, Any] = numpy.zeros((num_labels, num_classes) ) __lowerCAmelCase : Optional[Any] = 1 return labels_one_hot @deprecated(_UpperCAmelCase ,'Please use tf.data to implement this functionality.' ) def A ( _UpperCAmelCase : Any ,_UpperCAmelCase : Dict=False ,_UpperCAmelCase : Any=1_0 ) -> Optional[int]: '''simple docstring''' print('Extracting' ,f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: __lowerCAmelCase : Dict = _readaa(_UpperCAmelCase ) if magic != 2_0_4_9: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) __lowerCAmelCase : int = _readaa(_UpperCAmelCase ) __lowerCAmelCase : Dict = bytestream.read(_UpperCAmelCase ) __lowerCAmelCase : Union[str, Any] = numpy.frombuffer(_UpperCAmelCase ,dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_UpperCAmelCase ,_UpperCAmelCase ) return labels class UpperCamelCase__ : '''simple docstring''' @deprecated( SCREAMING_SNAKE_CASE , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=dtypes.floataa , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase : int = random_seed.get_seed(SCREAMING_SNAKE_CASE ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowerCAmelCase : Optional[int] = dtypes.as_dtype(SCREAMING_SNAKE_CASE ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: __lowerCAmelCase : Tuple = 1_00_00 __lowerCAmelCase : Tuple = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"""images.shape: {images.shape} labels.shape: {labels.shape}""" __lowerCAmelCase : Optional[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCAmelCase : Union[str, Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCAmelCase : Tuple = images.astype(numpy.floataa ) __lowerCAmelCase : Tuple = numpy.multiply(SCREAMING_SNAKE_CASE , 1.0 / 2_5_5.0 ) __lowerCAmelCase : Any = images __lowerCAmelCase : Any = labels __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : Tuple = 0 @property def snake_case ( self ) -> Optional[Any]: return self._images @property def snake_case ( self ) -> Any: return self._labels @property def snake_case ( self ) -> Any: return self._num_examples @property def snake_case ( self ) -> Tuple: return self._epochs_completed def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True ) -> str: if fake_data: __lowerCAmelCase : Dict = [1] * 7_84 __lowerCAmelCase : Optional[Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE )], [fake_label for _ in range(SCREAMING_SNAKE_CASE )], ) __lowerCAmelCase : Union[str, Any] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCAmelCase : Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = self.images[perma] __lowerCAmelCase : str = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCAmelCase : Tuple = self._num_examples - start __lowerCAmelCase : Any = self._images[start : self._num_examples] __lowerCAmelCase : Any = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCAmelCase : int = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = self.images[perm] __lowerCAmelCase : int = self.labels[perm] # Start next epoch __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : int = batch_size - rest_num_examples __lowerCAmelCase : Dict = self._index_in_epoch __lowerCAmelCase : int = self._images[start:end] __lowerCAmelCase : Optional[int] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowerCAmelCase : Dict = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_UpperCAmelCase ,'Please write your own downloading logic.' ) def A ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ) -> str: '''simple docstring''' if not gfile.Exists(_UpperCAmelCase ): gfile.MakeDirs(_UpperCAmelCase ) __lowerCAmelCase : List[Any] = os.path.join(_UpperCAmelCase ,_UpperCAmelCase ) if not gfile.Exists(_UpperCAmelCase ): urllib.request.urlretrieve(_UpperCAmelCase ,_UpperCAmelCase ) # noqa: S310 with gfile.GFile(_UpperCAmelCase ) as f: __lowerCAmelCase : Optional[int] = f.size() print('Successfully downloaded' ,_UpperCAmelCase ,_UpperCAmelCase ,'bytes.' ) return filepath @deprecated( _UpperCAmelCase ,'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def A ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : int=False ,_UpperCAmelCase : Union[str, Any]=False ,_UpperCAmelCase : Optional[Any]=dtypes.floataa ,_UpperCAmelCase : int=True ,_UpperCAmelCase : Dict=5_0_0_0 ,_UpperCAmelCase : Any=None ,_UpperCAmelCase : Optional[Any]=DEFAULT_SOURCE_URL ,) -> str: '''simple docstring''' if fake_data: def fake(): return _DataSet( [] ,[] ,fake_data=_UpperCAmelCase ,one_hot=_UpperCAmelCase ,dtype=_UpperCAmelCase ,seed=_UpperCAmelCase ) __lowerCAmelCase : List[str] = fake() __lowerCAmelCase : Tuple = fake() __lowerCAmelCase : Dict = fake() return _Datasets(train=_UpperCAmelCase ,validation=_UpperCAmelCase ,test=_UpperCAmelCase ) if not source_url: # empty string check __lowerCAmelCase : Optional[int] = DEFAULT_SOURCE_URL __lowerCAmelCase : Optional[int] = 'train-images-idx3-ubyte.gz' __lowerCAmelCase : List[Any] = 'train-labels-idx1-ubyte.gz' __lowerCAmelCase : Any = 't10k-images-idx3-ubyte.gz' __lowerCAmelCase : Optional[int] = 't10k-labels-idx1-ubyte.gz' __lowerCAmelCase : Union[str, Any] = _maybe_download( _UpperCAmelCase ,_UpperCAmelCase ,source_url + train_images_file ) with gfile.Open(_UpperCAmelCase ,'rb' ) as f: __lowerCAmelCase : Optional[Any] = _extract_images(_UpperCAmelCase ) __lowerCAmelCase : List[str] = _maybe_download( _UpperCAmelCase ,_UpperCAmelCase ,source_url + train_labels_file ) with gfile.Open(_UpperCAmelCase ,'rb' ) as f: __lowerCAmelCase : List[Any] = _extract_labels(_UpperCAmelCase ,one_hot=_UpperCAmelCase ) __lowerCAmelCase : List[Any] = _maybe_download( _UpperCAmelCase ,_UpperCAmelCase ,source_url + test_images_file ) with gfile.Open(_UpperCAmelCase ,'rb' ) as f: __lowerCAmelCase : Tuple = _extract_images(_UpperCAmelCase ) __lowerCAmelCase : List[Any] = _maybe_download( _UpperCAmelCase ,_UpperCAmelCase ,source_url + test_labels_file ) with gfile.Open(_UpperCAmelCase ,'rb' ) as f: __lowerCAmelCase : Any = _extract_labels(_UpperCAmelCase ,one_hot=_UpperCAmelCase ) if not 0 <= validation_size <= len(_UpperCAmelCase ): __lowerCAmelCase : Dict = ( 'Validation size should be between 0 and ' F"""{len(_UpperCAmelCase )}. Received: {validation_size}.""" ) raise ValueError(_UpperCAmelCase ) __lowerCAmelCase : Union[str, Any] = train_images[:validation_size] __lowerCAmelCase : Optional[Any] = train_labels[:validation_size] __lowerCAmelCase : Tuple = train_images[validation_size:] __lowerCAmelCase : List[Any] = train_labels[validation_size:] __lowerCAmelCase : Any = {'dtype': dtype, 'reshape': reshape, 'seed': seed} __lowerCAmelCase : str = _DataSet(_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) __lowerCAmelCase : Union[str, Any] = _DataSet(_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) __lowerCAmelCase : Optional[int] = _DataSet(_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) return _Datasets(train=_UpperCAmelCase ,validation=_UpperCAmelCase ,test=_UpperCAmelCase )
123
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" A_ = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" A_ = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def A ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[str]=False ,_UpperCAmelCase : Any=False ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Any=False ,_UpperCAmelCase : int="dummy_doc" ) -> List[Any]: '''simple docstring''' __lowerCAmelCase : int = {doc: key_lines} __lowerCAmelCase : Tuple = {doc: sys_lines} __lowerCAmelCase : Dict = {} __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : int = 0 __lowerCAmelCase : Dict = 0 __lowerCAmelCase : str = 0 __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase , __lowerCAmelCase : List[Any] = reader.get_doc_mentions(_UpperCAmelCase ,key_doc_lines[doc] ,_UpperCAmelCase ) key_singletons_num += singletons_num if NP_only or min_span: __lowerCAmelCase : List[Any] = reader.set_annotated_parse_trees(_UpperCAmelCase ,key_doc_lines[doc] ,_UpperCAmelCase ,_UpperCAmelCase ) __lowerCAmelCase , __lowerCAmelCase : Tuple = reader.get_doc_mentions(_UpperCAmelCase ,sys_doc_lines[doc] ,_UpperCAmelCase ) sys_singletons_num += singletons_num if NP_only or min_span: __lowerCAmelCase : str = reader.set_annotated_parse_trees(_UpperCAmelCase ,key_doc_lines[doc] ,_UpperCAmelCase ,_UpperCAmelCase ) if remove_nested: __lowerCAmelCase , __lowerCAmelCase : Optional[int] = reader.remove_nested_coref_mentions(_UpperCAmelCase ,_UpperCAmelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters __lowerCAmelCase , __lowerCAmelCase : int = reader.remove_nested_coref_mentions(_UpperCAmelCase ,_UpperCAmelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters __lowerCAmelCase : int = reader.get_mention_assignments(_UpperCAmelCase ,_UpperCAmelCase ) __lowerCAmelCase : int = reader.get_mention_assignments(_UpperCAmelCase ,_UpperCAmelCase ) __lowerCAmelCase : List[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def A ( _UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : str ) -> Any: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = get_coref_infos(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) __lowerCAmelCase : Dict = {} __lowerCAmelCase : int = 0 __lowerCAmelCase : Union[str, Any] = 0 for name, metric in metrics: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = evaluator.evaluate_documents(_UpperCAmelCase ,_UpperCAmelCase ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(1_0 ) ,F"""Recall: {recall * 1_0_0:.2f}""" ,F""" Precision: {precision * 1_0_0:.2f}""" ,F""" F1: {fa * 1_0_0:.2f}""" ,) if conll_subparts_num == 3: __lowerCAmelCase : Tuple = (conll / 3) * 1_0_0 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def A ( _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: __lowerCAmelCase : Union[str, Any] = line.split()[5] if not parse_col == "-": __lowerCAmelCase : Optional[Any] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def snake_case ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> Tuple: __lowerCAmelCase : Optional[Any] = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: __lowerCAmelCase : List[Any] = util.check_gold_parse_annotation(SCREAMING_SNAKE_CASE ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" __lowerCAmelCase : List[Any] = evaluate( key_lines=SCREAMING_SNAKE_CASE , sys_lines=SCREAMING_SNAKE_CASE , metrics=SCREAMING_SNAKE_CASE , NP_only=SCREAMING_SNAKE_CASE , remove_nested=SCREAMING_SNAKE_CASE , keep_singletons=SCREAMING_SNAKE_CASE , min_span=SCREAMING_SNAKE_CASE , ) return score
123
1
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __SCREAMING_SNAKE_CASE (__A ): """simple docstring""" _a : List[Any] = '''M-CLIP''' def __init__( self , UpperCamelCase__=1_024 , UpperCamelCase__=768 , **UpperCamelCase__ ): """simple docstring""" a_ = transformerDimSize a_ = imageDimSize super().__init__(**UpperCamelCase__ ) class __SCREAMING_SNAKE_CASE (__A ): """simple docstring""" _a : str = MCLIPConfig def __init__( self , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" super().__init__(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) a_ = XLMRobertaModel(UpperCamelCase__ ) a_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _a ( self , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" a_ = self.transformer(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] a_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCamelCase__ ), embs
536
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __SCREAMING_SNAKE_CASE (enum.Enum ): """simple docstring""" _a : Tuple = 0 _a : List[str] = 1 _a : int = 2 @add_end_docstrings(__A ) class __SCREAMING_SNAKE_CASE (__A ): """simple docstring""" _a : str = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. a_ = None if self.model.config.prefix is not None: a_ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. a_ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. a_ , a_ , a_ = self._sanitize_parameters(prefix=UpperCamelCase__ , **self._forward_params ) a_ = {**self._preprocess_params, **preprocess_params} a_ = {**self._forward_params, **forward_params} def _a ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): """simple docstring""" a_ = {} if prefix is not None: a_ = prefix if prefix: a_ = self.tokenizer( UpperCamelCase__ , padding=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=self.framework ) a_ = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected' ' [None, \'hole\']' ) a_ = handle_long_generation preprocess_params.update(UpperCamelCase__ ) a_ = generate_kwargs a_ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) a_ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) a_ = ReturnType.TENSORS if return_type is not None: a_ = return_type if clean_up_tokenization_spaces is not None: a_ = clean_up_tokenization_spaces if stop_sequence is not None: a_ = self.tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) a_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*UpperCamelCase__ , **UpperCamelCase__ ) def __call__( self , UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" return super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) def _a ( self , UpperCamelCase__ , UpperCamelCase__="" , UpperCamelCase__=None , **UpperCamelCase__ ): """simple docstring""" a_ = self.tokenizer( prefix + prompt_text , padding=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=self.framework ) a_ = prompt_text if handle_long_generation == "hole": a_ = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: a_ = generate_kwargs['max_new_tokens'] else: a_ = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: a_ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) a_ = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: a_ = inputs['attention_mask'][:, -keep_length:] return inputs def _a ( self , UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" a_ = model_inputs['input_ids'] a_ = model_inputs.get('attention_mask' , UpperCamelCase__ ) # Allow empty prompts if input_ids.shape[1] == 0: a_ = None a_ = None a_ = 1 else: a_ = input_ids.shape[0] a_ = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. a_ = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: a_ = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: a_ = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length a_ = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL a_ = self.model.generate(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ ) a_ = generated_sequence.shape[0] if self.framework == "pt": a_ = generated_sequence.reshape(UpperCamelCase__ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": a_ = tf.reshape(UpperCamelCase__ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _a ( self , UpperCamelCase__ , UpperCamelCase__=ReturnType.FULL_TEXT , UpperCamelCase__=True ): """simple docstring""" a_ = model_outputs['generated_sequence'][0] a_ = model_outputs['input_ids'] a_ = model_outputs['prompt_text'] a_ = generated_sequence.numpy().tolist() a_ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: a_ = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text a_ = self.tokenizer.decode( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: a_ = 0 else: a_ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ , ) ) if return_type == ReturnType.FULL_TEXT: a_ = prompt_text + text[prompt_length:] else: a_ = text[prompt_length:] a_ = {'generated_text': all_text} records.append(UpperCamelCase__ ) return records
536
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str]=False ): try: a__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. a__ = default else: # KEY is set, convert it to True or False. try: a__ = strtobool(__lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value snake_case : Dict = parse_flag_from_env('''RUN_SLOW''', default=False) snake_case : str = parse_flag_from_env('''RUN_REMOTE''', default=False) snake_case : int = parse_flag_from_env('''RUN_LOCAL''', default=True) snake_case : Dict = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression snake_case : List[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') snake_case : Union[str, Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') snake_case : List[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio snake_case : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam snake_case : List[str] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility snake_case : Dict = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows snake_case : Tuple = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def __lowercase ( __lowerCAmelCase : List[Any] ): try: import faiss # noqa except ImportError: a__ = unittest.skip('test requires faiss' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Optional[int] ): try: import regex # noqa except ImportError: a__ = unittest.skip('test requires regex' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : int ): try: import elasticsearch # noqa except ImportError: a__ = unittest.skip('test requires elasticsearch' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : int ): try: import sqlalchemy # noqa except ImportError: a__ = unittest.skip('test requires sqlalchemy' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Optional[Any] ): if not config.TORCH_AVAILABLE: a__ = unittest.skip('test requires PyTorch' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Tuple ): if not config.TF_AVAILABLE: a__ = unittest.skip('test requires TensorFlow' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Tuple ): if not config.JAX_AVAILABLE: a__ = unittest.skip('test requires JAX' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Union[str, Any] ): if not config.PIL_AVAILABLE: a__ = unittest.skip('test requires Pillow' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Union[str, Any] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__lowerCAmelCase ) else: return test_case def __lowercase ( __lowerCAmelCase : List[Any] ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__lowerCAmelCase ) else: return test_case def __lowercase ( __lowerCAmelCase : Dict ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__lowerCAmelCase ) else: return test_case def __lowercase ( __lowerCAmelCase : Any ): def _require_spacy_model(__lowerCAmelCase : Any ): try: import spacy # noqa F401 spacy.load(__lowerCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__lowerCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__lowerCAmelCase ) )(__lowerCAmelCase ) else: return test_case return _require_spacy_model def __lowercase ( __lowerCAmelCase : Dict ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__lowerCAmelCase ) else: return test_case def __lowercase ( __lowerCAmelCase : Tuple ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__lowerCAmelCase ) else: return test_case def __lowercase ( __lowerCAmelCase : Dict ): if not _run_slow_tests or _run_slow_tests == 0: a__ = unittest.skip('test is slow' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Any ): if not _run_local_tests or _run_local_tests == 0: a__ = unittest.skip('test is local' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : str ): if not _run_packaged_tests or _run_packaged_tests == 0: a__ = unittest.skip('test is packaged' )(__lowerCAmelCase ) return test_case def __lowercase ( __lowerCAmelCase : Tuple ): if not _run_remote_tests or _run_remote_tests == 0: a__ = unittest.skip('test requires remote' )(__lowerCAmelCase ) return test_case def __lowercase ( *__lowerCAmelCase : int ): def decorate(cls : Tuple ): for name, fn in cls.__dict__.items(): if callable(__lowerCAmelCase ) and name.startswith('test' ): for decorator in decorators: a__ = decorator(__lowerCAmelCase ) setattr(cls , __lowerCAmelCase , __lowerCAmelCase ) return cls return decorate class snake_case_ (lowerCamelCase_ ): pass class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : str = 1 UpperCAmelCase__ : List[Any] = 2 @contextmanager def __lowercase ( __lowerCAmelCase : Optional[int]=OfflineSimulationMode.CONNECTION_FAILS , __lowerCAmelCase : str=1E-1_6 ): a__ = requests.Session().request def timeout_request(__lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , **__lowerCAmelCase : List[str] ): # Change the url to an invalid url so that the connection hangs a__ = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) a__ = timeout try: return online_request(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier a__ = url a__ = e.args[0] a__ = (max_retry_error.args[0].replace('10.255.255.1' , F'OfflineMock[{url}]' ),) a__ = (max_retry_error,) raise def raise_connection_error(__lowerCAmelCase : Any , __lowerCAmelCase : str , **__lowerCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__lowerCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __lowerCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __lowerCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __lowerCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def __lowercase ( *__lowerCAmelCase : str , **__lowerCAmelCase : Dict ): a__ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__lowerCAmelCase , **__lowerCAmelCase ) as tmp_dir: try: os.chdir(__lowerCAmelCase ) yield finally: os.chdir(__lowerCAmelCase ) @contextmanager def __lowercase ( ): import gc gc.collect() a__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __lowercase ( ): import gc gc.collect() a__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ): return deepcopy(__lowerCAmelCase ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(__lowerCAmelCase ).integers(0 , 1_0_0 , 1_0 ).tolist() def __lowercase ( __lowerCAmelCase : Any ): import decorator from requests.exceptions import HTTPError def _wrapper(__lowerCAmelCase : Any , *__lowerCAmelCase : str , **__lowerCAmelCase : int ): try: return func(*__lowerCAmelCase , **__lowerCAmelCase ) except HTTPError as err: if str(__lowerCAmelCase ).startswith('500' ) or str(__lowerCAmelCase ).startswith('502' ): pytest.xfail(str(__lowerCAmelCase ) ) raise err return decorator.decorator(_wrapper , __lowerCAmelCase ) class snake_case_ : def __init__( self :Tuple ,__snake_case :Dict ,__snake_case :int ,__snake_case :Union[str, Any] ) -> Dict: a__ = returncode a__ = stdout a__ = stderr async def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): while True: a__ = await stream.readline() if line: callback(__lowerCAmelCase ) else: break async def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : int=False , __lowerCAmelCase : Dict=False ): if echo: print('\nRunning: ' , ' '.join(__lowerCAmelCase ) ) a__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) a__ = [] a__ = [] def tee(__lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any]="" ): a__ = line.decode('utf-8' ).rstrip() sink.append(__lowerCAmelCase ) if not quiet: print(__lowerCAmelCase , __lowerCAmelCase , file=__lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__lowerCAmelCase , ) return _RunOutput(await p.wait() , __lowerCAmelCase , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Optional[Any]=1_8_0 , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Tuple=True ): a__ = asyncio.get_event_loop() a__ = loop.run_until_complete( _stream_subprocess(__lowerCAmelCase , env=__lowerCAmelCase , stdin=__lowerCAmelCase , timeout=__lowerCAmelCase , quiet=__lowerCAmelCase , echo=__lowerCAmelCase ) ) a__ = ' '.join(__lowerCAmelCase ) if result.returncode > 0: a__ = '\n'.join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'\'{cmd_str}\' produced no output.' ) return result def __lowercase ( ): a__ = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) a__ = re.sub(R'^gw' , '' , __lowerCAmelCase , 0 , re.M ) return int(__lowerCAmelCase ) def __lowercase ( ): a__ = 2_9_5_0_0 a__ = pytest_xdist_worker_id() return port + uniq_delta
720
def __lowercase ( __lowerCAmelCase : int ): a__ = generate_pascal_triangle(__lowerCAmelCase ) for row_idx in range(__lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(__lowerCAmelCase ): a__ = populate_current_row(__lowerCAmelCase , __lowerCAmelCase ) triangle.append(__lowerCAmelCase ) return triangle def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , __lowerCAmelCase ): calculate_current_element( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return current_row def __lowercase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , __lowerCAmelCase ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(__lowerCAmelCase , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(__lowerCAmelCase ) return result def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: a__ = F'{func.__name__}({value})' a__ = timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
657
0
import string def A ( snake_case__ : List[str] ) -> int: '''simple docstring''' __snake_case = '' for i in sequence: __snake_case = ord(_A ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def A ( snake_case__ : str ) -> Any: '''simple docstring''' __snake_case = string.ascii_letters __snake_case = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_A )] if c in letters else c for c in sequence ) def A ( ) -> Tuple: '''simple docstring''' from timeit import timeit print('Running performance benchmarks...' ) __snake_case = 'from string import printable ; from __main__ import atbash, atbash_slow' print(f"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_A )} seconds" ) print(f"> atbash(): {timeit('atbash(printable)' , setup=_A )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
313
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_: Optional[Any] = logging.get_logger(__name__) A_: Union[str, Any] = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'deformable_detr' lowerCAmelCase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=3 , UpperCAmelCase=300 , UpperCAmelCase=1024 , UpperCAmelCase=6 , UpperCAmelCase=1024 , UpperCAmelCase=8 , UpperCAmelCase=6 , UpperCAmelCase=1024 , UpperCAmelCase=8 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=256 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1.0 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase="sine" , UpperCAmelCase="resnet50" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase=False , UpperCAmelCase=300 , UpperCAmelCase=False , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.25 , UpperCAmelCase=False , **UpperCAmelCase , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _lowercase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase = backbone_config.get("""model_type""" ) _lowercase = CONFIG_MAPPING[backbone_model_type] _lowercase = config_class.from_dict(UpperCAmelCase ) _lowercase = use_timm_backbone _lowercase = backbone_config _lowercase = num_channels _lowercase = num_queries _lowercase = max_position_embeddings _lowercase = d_model _lowercase = encoder_ffn_dim _lowercase = encoder_layers _lowercase = encoder_attention_heads _lowercase = decoder_ffn_dim _lowercase = decoder_layers _lowercase = decoder_attention_heads _lowercase = dropout _lowercase = attention_dropout _lowercase = activation_dropout _lowercase = activation_function _lowercase = init_std _lowercase = init_xavier_std _lowercase = encoder_layerdrop _lowercase = auxiliary_loss _lowercase = position_embedding_type _lowercase = backbone _lowercase = use_pretrained_backbone _lowercase = dilation # deformable attributes _lowercase = num_feature_levels _lowercase = encoder_n_points _lowercase = decoder_n_points _lowercase = two_stage _lowercase = two_stage_num_proposals _lowercase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher _lowercase = class_cost _lowercase = bbox_cost _lowercase = giou_cost # Loss coefficients _lowercase = mask_loss_coefficient _lowercase = dice_loss_coefficient _lowercase = bbox_loss_coefficient _lowercase = giou_loss_coefficient _lowercase = eos_coefficient _lowercase = focal_alpha _lowercase = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.encoder_attention_heads @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.d_model def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _lowercase = self.backbone_config.to_dict() _lowercase = self.__class__.model_type return output
398
0
"""simple docstring""" import re from ..utils import cached_file # docstyle-ignore UpperCAmelCase__ ="\nHuman: <<task>>\n\nAssistant: " UpperCAmelCase__ ="huggingface-tools/default-prompts" UpperCAmelCase__ ={"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def lowerCAmelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any]="run" ): """simple docstring""" if prompt_or_repo_id is None: __lowercase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , UpperCamelCase__ ) is not None: return prompt_or_repo_id __lowercase = cached_file( UpperCamelCase__ , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(UpperCamelCase__ , """r""" , encoding="""utf-8""" ) as f: return f.read()
714
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" def get_matched_characters(UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: __lowercase = [] __lowercase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __lowercase = int(max(0 , i - limit ) ) __lowercase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(UpperCamelCase__ ) __lowercase = f'''{_stra[0:_stra.index(UpperCamelCase__ )]} {_stra[_stra.index(UpperCamelCase__ ) + 1:]}''' return "".join(UpperCamelCase__ ) # matching characters __lowercase = get_matched_characters(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = get_matched_characters(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = len(UpperCamelCase__ ) # transposition __lowercase = ( len([(ca, ca) for ca, ca in zip(UpperCamelCase__ , UpperCamelCase__ ) if ca != ca] ) // 2 ) if not match_count: __lowercase = 0.0 else: __lowercase = ( 1 / 3 * ( match_count / len(UpperCamelCase__ ) + match_count / len(UpperCamelCase__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __lowercase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
442
0
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCAmelCase_ = re.compile(R'\s+') def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: return {"hash": hashlib.mda(re.sub(__lowerCamelCase , '''''' , example['''content'''] ).encode('''utf-8''' ) ).hexdigest()} def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : Any = [len(__lowerCamelCase ) for line in example['''content'''].splitlines()] return {"line_mean": np.mean(__lowerCamelCase ), "line_max": max(__lowerCamelCase )} def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : Union[str, Any] = np.mean([c.isalnum() for c in example['''content''']] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: if example["hash"] in uniques: uniques.remove(example['''hash'''] ) return True else: return False def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=5 ) -> Dict: lowercase__ : Dict = ['''auto-generated''', '''autogenerated''', '''automatically generated'''] lowercase__ : List[str] = example['''content'''].splitlines() for _, line in zip(range(__lowerCamelCase ) , __lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=5 , __lowerCamelCase=0.0_5 ) -> Any: lowercase__ : Any = ['''unit tests''', '''test file''', '''configuration file'''] lowercase__ : Optional[Any] = example['''content'''].splitlines() lowercase__ : Tuple = 0 lowercase__ : str = 0 # first test for _, line in zip(range(__lowerCamelCase ) , __lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowercase__ : Union[str, Any] = example['''content'''].count('''\n''' ) lowercase__ : Optional[int] = int(coeff * nlines ) for line in lines: count_config += line.lower().count('''config''' ) count_test += line.lower().count('''test''' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = ['''def ''', '''class ''', '''for ''', '''while '''] lowercase__ : Union[str, Any] = example['''content'''].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=4 ) -> Dict: lowercase__ : int = example['''content'''].splitlines() lowercase__ : List[str] = 0 for line in lines: counter += line.lower().count('''=''' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: lowercase__ : Dict = tokenizer(example['''content'''] , truncation=__lowerCamelCase )['''input_ids'''] lowercase__ : Dict = len(example['''content'''] ) / len(__lowerCamelCase ) return {"ratio": ratio} def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : Union[str, Any] = {} results.update(get_hash(__lowerCamelCase ) ) results.update(line_stats(__lowerCamelCase ) ) results.update(alpha_stats(__lowerCamelCase ) ) results.update(char_token_ratio(__lowerCamelCase ) ) results.update(is_autogenerated(__lowerCamelCase ) ) results.update(is_config_or_test(__lowerCamelCase ) ) results.update(has_no_keywords(__lowerCamelCase ) ) results.update(has_few_assignments(__lowerCamelCase ) ) return results def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: if not check_uniques(__lowerCamelCase , __lowerCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: with open(__lowerCamelCase , '''rb''' ) as f_in: with gzip.open(str(__lowerCamelCase ) + '''.gz''' , '''wb''' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowerCamelCase , __lowerCamelCase ) os.unlink(__lowerCamelCase ) # Settings lowerCAmelCase_ = HfArgumentParser(PreprocessingArguments) lowerCAmelCase_ = parser.parse_args() if args.num_workers is None: lowerCAmelCase_ = multiprocessing.cpu_count() lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCAmelCase_ = time.time() lowerCAmelCase_ = load_dataset(args.dataset_name, split='train') print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing lowerCAmelCase_ = time.time() lowerCAmelCase_ = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes lowerCAmelCase_ = set(ds.unique('hash')) lowerCAmelCase_ = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics lowerCAmelCase_ = time.time() lowerCAmelCase_ = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCAmelCase_ = time.time() lowerCAmelCase_ ,lowerCAmelCase_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file lowerCAmelCase_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) lowerCAmelCase_ = output_dir / 'data' data_dir.mkdir(exist_ok=True) lowerCAmelCase_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCAmelCase_ = str(data_dir / F'''file-{file_number+1:012}.json''') lowerCAmelCase_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
560
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Tuple = "poolformer" def __init__( self : Dict ,_snake_case : Optional[Any]=3 ,_snake_case : Optional[int]=16 ,_snake_case : List[Any]=16 ,_snake_case : List[str]=3 ,_snake_case : List[str]=4.0 ,_snake_case : int=[2, 2, 6, 2] ,_snake_case : Union[str, Any]=[64, 128, 320, 512] ,_snake_case : Any=[7, 3, 3, 3] ,_snake_case : Optional[int]=[4, 2, 2, 2] ,_snake_case : Dict=[2, 1, 1, 1] ,_snake_case : int=4 ,_snake_case : Any=0.0 ,_snake_case : str="gelu" ,_snake_case : int=True ,_snake_case : List[Any]=1e-5 ,_snake_case : str=0.02 ,**_snake_case : Tuple ,) -> List[str]: """simple docstring""" lowercase__ : List[str] = num_channels lowercase__ : Optional[Any] = patch_size lowercase__ : Optional[Any] = stride lowercase__ : Optional[Any] = padding lowercase__ : Optional[Any] = pool_size lowercase__ : List[Any] = hidden_sizes lowercase__ : Dict = mlp_ratio lowercase__ : Any = depths lowercase__ : Tuple = patch_sizes lowercase__ : Dict = strides lowercase__ : Optional[Any] = num_encoder_blocks lowercase__ : str = drop_path_rate lowercase__ : Optional[Any] = hidden_act lowercase__ : Optional[int] = use_layer_scale lowercase__ : Dict = layer_scale_init_value lowercase__ : Dict = initializer_range super().__init__(**_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = version.parse("1.11" ) @property def UpperCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase ( self : List[str] ) -> float: """simple docstring""" return 2e-3
560
1
'''simple docstring''' import sys SCREAMING_SNAKE_CASE_: Optional[int] =( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCAmelCase_ ( snake_case_ : str = N ) -> int: '''simple docstring''' UpperCAmelCase_ = -sys.maxsize - 1 for i in range(len(snake_case_ ) - 12 ): UpperCAmelCase_ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: UpperCAmelCase_ = product return largest_product if __name__ == "__main__": print(f"{solution() = }")
705
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_: Tuple ={'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[str] =[ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure)
415
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''vocab.json'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } SCREAMING_SNAKE_CASE__ = {'''mgp-str''': 2_7} class a_ ( __a ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="[GO]" , _SCREAMING_SNAKE_CASE="[GO]" , _SCREAMING_SNAKE_CASE="[s]" , _SCREAMING_SNAKE_CASE="[GO]" , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" super().__init__( unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase = json.load(lowerCAmelCase__ ) UpperCamelCase = {v: k for k, v in self.vocab.items()} @property def A__ ( self ) -> int: """simple docstring""" return len(self.vocab ) def A__ ( self ) -> str: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = [] for s in text: char_tokens.extend(lowerCAmelCase__ ) return char_tokens def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(lowerCAmelCase__ ) ) return UpperCamelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) return (vocab_file,)
301
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ ( __a ): '''simple docstring''' UpperCamelCase__ : Dict = '''char''' UpperCamelCase__ : List[Any] = '''bpe''' UpperCamelCase__ : Any = '''wp''' lowerCAmelCase : Tuple = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class SCREAMING_SNAKE_CASE__ ( __a ): '''simple docstring''' UpperCamelCase__ : List[Any] = ['''image_processor''', '''char_tokenizer'''] UpperCamelCase__ : int = '''ViTImageProcessor''' UpperCamelCase__ : Optional[int] = '''MgpstrTokenizer''' def __init__( self : int , lowerCAmelCase__ : str=None , lowerCAmelCase__ : int=None , **lowerCAmelCase__ : List[str] ) -> Tuple: snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase__ , ) snake_case__ = kwargs.pop("""feature_extractor""" ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) snake_case__ = tokenizer snake_case__ = AutoTokenizer.from_pretrained("""gpt2""" ) snake_case__ = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self : str , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Union[str, Any]=None , **lowerCAmelCase__ : str ) -> List[str]: if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: snake_case__ = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None: snake_case__ = self.char_tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings["""input_ids"""] return inputs def UpperCAmelCase_ ( self : Optional[Any] , lowerCAmelCase__ : Optional[Any] ) -> List[str]: snake_case__ , snake_case__ , snake_case__ = sequences snake_case__ = char_preds.size(0 ) snake_case__ , snake_case__ = self._decode_helper(lowerCAmelCase__ , """char""" ) snake_case__ , snake_case__ = self._decode_helper(lowerCAmelCase__ , """bpe""" ) snake_case__ , snake_case__ = self._decode_helper(lowerCAmelCase__ , """wp""" ) snake_case__ = [] snake_case__ = [] for i in range(lowerCAmelCase__ ): snake_case__ = [char_scores[i], bpe_scores[i], wp_scores[i]] snake_case__ = [char_strs[i], bpe_strs[i], wp_strs[i]] snake_case__ = scores.index(max(lowerCAmelCase__ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) snake_case__ = {} snake_case__ = final_strs snake_case__ = final_scores snake_case__ = char_strs snake_case__ = bpe_strs snake_case__ = wp_strs return out def UpperCAmelCase_ ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> Dict: if format == DecodeType.CHARACTER: snake_case__ = self.char_decode snake_case__ = 1 snake_case__ = """[s]""" elif format == DecodeType.BPE: snake_case__ = self.bpe_decode snake_case__ = 2 snake_case__ = """#""" elif format == DecodeType.WORDPIECE: snake_case__ = self.wp_decode snake_case__ = 102 snake_case__ = """[SEP]""" else: raise ValueError(f'''Format {format} is not supported.''' ) snake_case__ , snake_case__ = [], [] snake_case__ = pred_logits.size(0 ) snake_case__ = pred_logits.size(1 ) snake_case__ , snake_case__ = pred_logits.topk(1 , dim=-1 , largest=lowerCAmelCase__ , sorted=lowerCAmelCase__ ) snake_case__ = preds_index.view(-1 , lowerCAmelCase__ )[:, 1:] snake_case__ = decoder(lowerCAmelCase__ ) snake_case__ , snake_case__ = torch.nn.functional.softmax(lowerCAmelCase__ , dim=2 ).max(dim=2 ) snake_case__ = preds_max_prob[:, 1:] for index in range(lowerCAmelCase__ ): snake_case__ = preds_str[index].find(lowerCAmelCase__ ) snake_case__ = preds_str[index][:pred_eos] snake_case__ = preds_index[index].cpu().tolist() snake_case__ = pred_index.index(lowerCAmelCase__ ) if eos_token in pred_index else -1 snake_case__ = preds_max_prob[index][: pred_eos_index + 1] snake_case__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCAmelCase__ ) conf_scores.append(lowerCAmelCase__ ) return dec_strs, conf_scores def UpperCAmelCase_ ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> Optional[Any]: snake_case__ = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(lowerCAmelCase__ )] return decode_strs def UpperCAmelCase_ ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: return self.bpe_tokenizer.batch_decode(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] , lowerCAmelCase__ : Tuple ) -> str: snake_case__ = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(lowerCAmelCase__ )] return decode_strs
214
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A : List[str] = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
713
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' return " ".join( """""".join(word[::-1] ) if len(lowerCamelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
267
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowercase_ = ["gpt2"] lowercase_ = "gpt2" if is_tf_available(): class __A ( tf.Module ): '''simple docstring''' def __init__(self , A ) -> List[Any]: """simple docstring""" super().__init__() _a = tokenizer _a = AutoConfig.from_pretrained(A ) _a = TFGPTaLMHeadModel.from_config(A ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def a__ (self , A ) -> Optional[Any]: """simple docstring""" _a = self.tokenizer(A ) _a = tokenized['''input_ids'''].to_tensor() _a = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _a = self.model(input_ids=A , attention_mask=A )['''logits'''] return outputs @require_tf @require_keras_nlp class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Any: """simple docstring""" super().setUp() _a = [GPTaTokenizer.from_pretrained(A ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _a = [TFGPTaTokenizer.from_pretrained(A ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _a = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] _a = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def a__ (self ) -> Any: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _a = tokenizer([test_inputs] , return_tensors='''tf''' ) _a = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _a = python_outputs[key].numpy() _a = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(A , tf.intaa ) == tf_outputs_values ) ) @slow def a__ (self ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _a = tf.function(A ) for test_inputs in self.test_sentences: _a = tf.constant(A ) _a = compiled_tokenizer(A ) _a = tf_tokenizer(A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def a__ (self ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _a = ModelToSave(tokenizer=A ) _a = tf.convert_to_tensor([self.test_sentences[0]] ) _a = model.serving(A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _a = Path(A ) / '''saved.model''' tf.saved_model.save(A , A , signatures={'''serving_default''': model.serving} ) _a = tf.saved_model.load(A ) _a = loaded_model.signatures['''serving_default'''](A )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def a__ (self ) -> List[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _a = tf.convert_to_tensor([self.test_sentences[0]] ) _a = tf_tokenizer(A ) # Build model with some sample inputs _a = tf_tokenizer.get_config() _a = TFGPTaTokenizer.from_config(A ) _a = model_from_config(A ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def a__ (self ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run _a = 123_123 for max_length in [3, 5, 1_024]: _a = tf.convert_to_tensor([self.test_sentences[0]] ) _a = tf_tokenizer(A , max_length=A ) _a = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
11
import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, **snake_case_ ) -> Union[str, Any]: A__ : Optional[Any] =[x.strip() for x in open(snake_case_ ).readlines()] A__ : List[Any] =[x.strip() for x in open(snake_case_ ).readlines()][: len(snake_case_ )] A__ : Tuple =calculate_rouge(snake_case_, snake_case_, **snake_case_ ) if save_path is not None: save_json(snake_case_, snake_case_, indent=snake_case_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
416
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE__ : Any =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any ={ 'shi-labs/dinat-mini-in1k-224': 'https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json', # See all Dinat models at https://huggingface.co/models?filter=dinat } class _UpperCAmelCase ( a_ , a_ ): """simple docstring""" __snake_case = """dinat""" __snake_case = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=64 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 16] , _lowercase=7 , _lowercase=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Any: super().__init__(**_lowercase ) _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : Tuple = len(_lowercase ) _lowerCamelCase : Any = num_heads _lowerCamelCase : Optional[int] = kernel_size _lowerCamelCase : List[str] = dilations _lowerCamelCase : Optional[int] = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = drop_path_rate _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : List[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : Optional[int] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) _lowerCamelCase : Optional[Any] = layer_scale_init_value _lowerCamelCase : Optional[int] = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(_lowercase ) + 1 )] _lowerCamelCase, _lowerCamelCase : int = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
558
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : Optional[Any] = '''laion/clap-htsat-unfused''' _lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() def a__ ( self , **_lowercase ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **_lowercase ) def a__ ( self , **_lowercase ) -> str: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_lowercase ) def a__ ( self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> str: _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_feature_extractor() _lowerCamelCase : Optional[int] = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowercase ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : List[Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : str = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _lowerCamelCase : Dict = self.get_feature_extractor(do_normalize=_lowercase , padding_value=1.0 ) _lowerCamelCase : Optional[int] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowercase ) def a__ ( self ) -> int: _lowerCamelCase : Any = self.get_feature_extractor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) _lowerCamelCase : List[Any] = floats_list((3, 1000) ) _lowerCamelCase : Optional[int] = feature_extractor(_lowercase , return_tensors='''np''' ) _lowerCamelCase : Optional[Any] = processor(audios=_lowercase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a__ ( self ) -> Optional[Any]: _lowerCamelCase : Dict = self.get_feature_extractor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[Any] = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) _lowerCamelCase : Dict = '''This is a test string''' _lowerCamelCase : Dict = processor(text=_lowercase ) _lowerCamelCase : Any = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a__ ( self ) -> List[str]: _lowerCamelCase : List[Any] = self.get_feature_extractor() _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : Tuple = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) _lowerCamelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Dict = processor.batch_decode(_lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def a__ ( self ) -> List[Any]: _lowerCamelCase : str = self.get_feature_extractor() _lowerCamelCase : Any = self.get_tokenizer() _lowerCamelCase : Optional[Any] = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
558
1
'''simple docstring''' class snake_case__ : """simple docstring""" def __init__( self : List[str] , UpperCamelCase__ : Optional[int] ) -> List[str]: """simple docstring""" snake_case : Union[str, Any] = arr.split(''',''' ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" snake_case : Tuple = [int(self.array[0] )] * len(self.array ) snake_case : List[Any] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): snake_case : Union[str, Any] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) snake_case : Dict = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowercase__ = input("please input some numbers:") lowercase__ = SubArray(whole_array) lowercase__ = array.solve_sub_array() print(("the results is:", re))
638
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowercase__ = logging.get_logger(__name__) enable_full_determinism() class snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = UNetaDModel lowerCamelCase = """sample""" @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" snake_case : Any = 4 snake_case : List[Any] = 3 snake_case : str = (32, 32) snake_case : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) snake_case : Tuple = torch.tensor([10] ).to(UpperCamelCase__ ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" return (3, 32, 32) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" snake_case : Any = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } snake_case : Dict = self.dummy_input return init_dict, inputs_dict class snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = UNetaDModel lowerCamelCase = """sample""" @property def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" snake_case : str = 4 snake_case : Tuple = 4 snake_case : str = (32, 32) snake_case : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) snake_case : str = torch.tensor([10] ).to(UpperCamelCase__ ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return (4, 32, 32) @property def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return (4, 32, 32) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" snake_case : List[Any] = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } snake_case : str = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self : int ) -> str: """simple docstring""" snake_case ,snake_case : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(UpperCamelCase__ ) snake_case : List[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" snake_case ,snake_case : str = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=UpperCamelCase__ ) model.to(UpperCamelCase__ ) snake_case : Any = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" snake_case ,snake_case : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=UpperCamelCase__ ) model_accelerate.to(UpperCamelCase__ ) model_accelerate.eval() snake_case : Optional[Any] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case : int = noise.to(UpperCamelCase__ ) snake_case : List[str] = torch.tensor([10] * noise.shape[0] ).to(UpperCamelCase__ ) snake_case : Union[str, Any] = model_accelerate(UpperCamelCase__ , UpperCamelCase__ )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() snake_case ,snake_case : List[Any] = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=UpperCamelCase__ , low_cpu_mem_usage=UpperCamelCase__ ) model_normal_load.to(UpperCamelCase__ ) model_normal_load.eval() snake_case : Union[str, Any] = model_normal_load(UpperCamelCase__ , UpperCamelCase__ )['''sample'''] assert torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-3 ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" snake_case : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(UpperCamelCase__ ) snake_case : Any = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case : Dict = noise.to(UpperCamelCase__ ) snake_case : Any = torch.tensor([10] * noise.shape[0] ).to(UpperCamelCase__ ) with torch.no_grad(): snake_case : Union[str, Any] = model(UpperCamelCase__ , UpperCamelCase__ ).sample snake_case : int = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case : Tuple = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-3 ) ) class snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = UNetaDModel lowerCamelCase = """sample""" @property def lowerCAmelCase ( self : List[str] , UpperCamelCase__ : List[Any]=(32, 32) ) -> Any: """simple docstring""" snake_case : Optional[Any] = 4 snake_case : Tuple = 3 snake_case : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) snake_case : str = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=UpperCamelCase__ ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" return (3, 32, 32) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" snake_case : Dict = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } snake_case : Dict = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" snake_case ,snake_case : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(UpperCamelCase__ ) snake_case : str = self.dummy_input snake_case : Dict = floats_tensor((4, 3) + (256, 256) ).to(UpperCamelCase__ ) snake_case : Union[str, Any] = noise snake_case : List[Any] = model(**UpperCamelCase__ ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" snake_case : int = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(UpperCamelCase__ ) snake_case : Dict = 4 snake_case : Optional[int] = 3 snake_case : Tuple = (256, 256) snake_case : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) snake_case : List[str] = torch.tensor(batch_size * [1e-4] ).to(UpperCamelCase__ ) with torch.no_grad(): snake_case : List[str] = model(UpperCamelCase__ , UpperCamelCase__ ).sample snake_case : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case : Optional[int] = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-2 ) ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" snake_case : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(UpperCamelCase__ ) snake_case : Optional[Any] = 4 snake_case : List[Any] = 3 snake_case : Union[str, Any] = (32, 32) snake_case : Any = torch.ones((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) snake_case : Any = torch.tensor(batch_size * [1e-4] ).to(UpperCamelCase__ ) with torch.no_grad(): snake_case : Dict = model(UpperCamelCase__ , UpperCamelCase__ ).sample snake_case : Optional[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case : int = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-2 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass
638
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Any = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : Dict = direct_transformers_import(PATH_TO_TRANSFORMERS) A_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING A_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> List[str]: """simple docstring""" lowercase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): lowercase = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"', snake_case__, ) is not None ): lowercase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowercase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowercase = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] lowercase = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed lowercase = True if not attribute_used: lowercase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowercase = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowercase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowercase = True elif attribute.endswith('''_token_id''' ): lowercase = True # configuration class specific cases if not case_allowed: lowercase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [] ) lowercase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def __UpperCAmelCase ( UpperCAmelCase )-> List[str]: """simple docstring""" lowercase = dict(inspect.signature(config_class.__init__ ).parameters ) lowercase = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] lowercase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowercase = {} if len(config_class.attribute_map ) > 0: lowercase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowercase = inspect.getsourcefile(snake_case__ ) lowercase = os.path.dirname(snake_case__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowercase = [os.path.join(snake_case__, snake_case__ ) for fn in os.listdir(snake_case__ ) if fn.startswith('''modeling_''' )] # Get the source code strings lowercase = [] for path in modeling_paths: if os.path.isfile(snake_case__ ): with open(snake_case__ ) as fp: modeling_sources.append(fp.read() ) lowercase = [] for config_param, default_value in zip(snake_case__, snake_case__ ): # `attributes` here is all the variant names for `config_param` lowercase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(snake_case__, snake_case__, snake_case__, snake_case__ ): unused_attributes.append(attributes[0] ) return sorted(snake_case__ ) def __UpperCAmelCase ( )-> Union[str, Any]: """simple docstring""" lowercase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowercase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ), lambda UpperCAmelCase : inspect.isclass(snake_case__ ) and issubclass(snake_case__, snake_case__ ) and inspect.getmodule(snake_case__ ) == inspect.getmodule(_config_class ), ) ] for config_class in config_classes_in_module: lowercase = check_config_attributes_being_used(snake_case__ ) if len(snake_case__ ) > 0: lowercase = unused_attributes if len(snake_case__ ) > 0: lowercase = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(snake_case__ ) if __name__ == "__main__": check_config_attributes()
717
from __future__ import annotations from math import pi def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if inductance < 0: raise ValueError('''Inductance cannot be negative''' ) if frequency < 0: raise ValueError('''Frequency cannot be negative''' ) if reactance < 0: raise ValueError('''Inductive reactance cannot be negative''' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
479
0
from collections import defaultdict from math import ceil, sqrt def _UpperCAmelCase ( a__ = 1_0_0_0_0_0_0 , a__ = 1_0): '''simple docstring''' a_ : defaultdict = defaultdict(a__) for outer_width in range(3 , (t_limit // 4) + 2): if outer_width * outer_width > t_limit: a_ : Dict = max( ceil(sqrt(outer_width * outer_width - t_limit)) , 1) else: a_ : str = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(a__ , outer_width - 1 , 2): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0) if __name__ == "__main__": print(F"""{solution() = }""")
540
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class A__(a_ ): """simple docstring""" def UpperCamelCase__ ( self ) -> List[str]: a_ : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowercase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(_lowercase , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(_lowercase , """num_encoder_blocks""" ) ) class A__: """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=64 , _lowercase=3 , _lowercase=4 , _lowercase=[2, 2, 2, 2] , _lowercase=[8, 4, 2, 1] , _lowercase=[16, 32, 64, 128] , _lowercase=[1, 4, 8, 16] , _lowercase=[1, 2, 4, 8] , _lowercase=True , _lowercase=True , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0_2 , _lowercase=3 , _lowercase=None , ) -> Any: a_ : List[str] = parent a_ : int = batch_size a_ : Dict = image_size a_ : Any = num_channels a_ : Optional[int] = num_encoder_blocks a_ : Optional[Any] = sr_ratios a_ : List[str] = depths a_ : int = hidden_sizes a_ : List[Any] = downsampling_rates a_ : List[Any] = num_attention_heads a_ : Any = is_training a_ : List[Any] = use_labels a_ : List[Any] = hidden_act a_ : Dict = hidden_dropout_prob a_ : Any = attention_probs_dropout_prob a_ : List[str] = initializer_range a_ : Dict = num_labels a_ : Union[str, Any] = scope def UpperCamelCase__ ( self ) -> List[str]: a_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : int = None if self.use_labels: a_ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a_ : Dict = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) -> Any: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[Any]: a_ : Optional[Any] = SegformerModel(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : List[str] = model(_lowercase ) a_ : int = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[int]: a_ : Any = self.num_labels a_ : Union[str, Any] = SegformerForSemanticSegmentation(_lowercase ) model.to(_lowercase ) model.eval() a_ : str = model(_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) a_ : Optional[Any] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[Any]: a_ : int = 1 a_ : Union[str, Any] = SegformerForSemanticSegmentation(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : int = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_lowercase ) a_ : Optional[int] = model(_lowercase , labels=_lowercase ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase__ ( self ) -> Optional[int]: a_ : Union[str, Any] = self.prepare_config_and_inputs() a_ , a_ , a_ : Optional[int] = config_and_inputs a_ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A__(a_, a_, unittest.TestCase ): """simple docstring""" _A : Dict = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _A : List[Any] = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _A : Optional[int] = True _A : Optional[Any] = False _A : int = False _A : Optional[int] = False def UpperCamelCase__ ( self ) -> Dict: a_ : str = SegformerModelTester(self ) a_ : Optional[int] = SegformerConfigTester(self , config_class=_lowercase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> List[Any]: a_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCamelCase__ ( self ) -> int: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_lowercase ) def UpperCamelCase__ ( self ) -> Optional[int]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_lowercase ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def UpperCamelCase__ ( self ) -> Optional[int]: pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def UpperCamelCase__ ( self ) -> List[Any]: pass def UpperCamelCase__ ( self ) -> Dict: a_ , a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : int = model_class(_lowercase ) a_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Dict = [*signature.parameters.keys()] a_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def UpperCamelCase__ ( self ) -> Optional[int]: a_ , a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() a_ : Optional[int] = True for model_class in self.all_model_classes: a_ : List[Any] = True a_ : Optional[Any] = False a_ : Tuple = True a_ : Any = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): a_ : Dict = model(**self._prepare_for_class(_lowercase , _lowercase ) ) a_ : Union[str, Any] = outputs.attentions a_ : Optional[int] = sum(self.model_tester.depths ) self.assertEqual(len(_lowercase ) , _lowercase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a_ : Dict = True a_ : List[str] = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): a_ : int = model(**self._prepare_for_class(_lowercase , _lowercase ) ) a_ : Optional[Any] = outputs.attentions self.assertEqual(len(_lowercase ) , _lowercase ) # verify the first attentions (first block, first layer) a_ : List[str] = (self.model_tester.image_size // 4) ** 2 a_ : int = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a_ : int = (self.model_tester.image_size // 32) ** 2 a_ : Optional[int] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a_ : Dict = len(_lowercase ) # Check attention is always last and order is fine a_ : List[str] = True a_ : List[Any] = True a_ : int = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): a_ : int = model(**self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + 1 , len(_lowercase ) ) a_ : Optional[int] = outputs.attentions self.assertEqual(len(_lowercase ) , _lowercase ) # verify the first attentions (first block, first layer) a_ : int = (self.model_tester.image_size // 4) ** 2 a_ : Union[str, Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCamelCase__ ( self ) -> Optional[int]: def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): a_ : Tuple = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): a_ : Tuple = model(**self._prepare_for_class(_lowercase , _lowercase ) ) a_ : Optional[Any] = outputs.hidden_states a_ : Optional[Any] = self.model_tester.num_encoder_blocks self.assertEqual(len(_lowercase ) , _lowercase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a_ , a_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : List[Any] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : Dict = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def UpperCamelCase__ ( self ) -> Optional[Any]: if not self.model_tester.is_training: return a_ , a_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() a_ : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowercase ): continue a_ : Union[str, Any] = model_class(_lowercase ) model.to(_lowercase ) model.train() a_ : List[str] = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) a_ : List[Any] = model(**_lowercase ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass @slow def UpperCamelCase__ ( self ) -> Optional[Any]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Union[str, Any] = SegformerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch class A__(unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> List[str]: # only resize + normalize a_ : Tuple = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowercase , align=_lowercase , do_random_crop=_lowercase ) a_ : Dict = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( _lowercase ) a_ : str = prepare_img() a_ : str = image_processor(images=_lowercase , return_tensors="""pt""" ) a_ : List[str] = encoded_inputs.pixel_values.to(_lowercase ) with torch.no_grad(): a_ : Union[str, Any] = model(_lowercase ) a_ : Tuple = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , _lowercase ) a_ : Any = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _lowercase , atol=1e-4 ) ) @slow def UpperCamelCase__ ( self ) -> Optional[Any]: # only resize + normalize a_ : Optional[Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowercase , align=_lowercase , do_random_crop=_lowercase ) a_ : int = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(_lowercase ) a_ : Any = prepare_img() a_ : List[Any] = image_processor(images=_lowercase , return_tensors="""pt""" ) a_ : Optional[int] = encoded_inputs.pixel_values.to(_lowercase ) with torch.no_grad(): a_ : List[str] = model(_lowercase ) a_ : Tuple = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , _lowercase ) a_ : Any = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _lowercase , atol=1e-1 ) ) @slow def UpperCamelCase__ ( self ) -> List[str]: # only resize + normalize a_ : Tuple = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowercase , align=_lowercase , do_random_crop=_lowercase ) a_ : str = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( _lowercase ) a_ : int = prepare_img() a_ : Any = image_processor(images=_lowercase , return_tensors="""pt""" ) a_ : Optional[int] = encoded_inputs.pixel_values.to(_lowercase ) with torch.no_grad(): a_ : Any = model(_lowercase ) a_ : str = outputs.logits.detach().cpu() a_ : int = image_processor.post_process_semantic_segmentation(outputs=_lowercase , target_sizes=[(500, 300)] ) a_ : Any = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _lowercase ) a_ : Tuple = image_processor.post_process_semantic_segmentation(outputs=_lowercase ) a_ : Optional[Any] = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , _lowercase )
540
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class a ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Optional[int]: _a : List[str] = parent _a : Any = batch_size _a : Dict = seq_length _a : Union[str, Any] = is_training _a : Tuple = use_attention_mask _a : Union[str, Any] = use_token_type_ids _a : Optional[int] = use_labels _a : List[Any] = vocab_size _a : str = hidden_size _a : Union[str, Any] = num_hidden_layers _a : Tuple = num_attention_heads _a : Optional[Any] = intermediate_size _a : str = hidden_act _a : Optional[int] = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : List[str] = max_position_embeddings _a : Dict = type_vocab_size _a : int = type_sequence_label_size _a : Tuple = initializer_range _a : str = num_choices def __UpperCamelCase ( self ) -> Optional[int]: _a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Dict = None if self.use_attention_mask: _a : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _a : Optional[int] = None if self.use_token_type_ids: _a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : str = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCamelCase ( self ) -> Union[str, Any]: _a : int = self.prepare_config_and_inputs() _a , _a , _a , _a : int = config_and_inputs _a : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __UpperCamelCase ( self ) -> List[Any]: _a : Union[str, Any] = self.prepare_config_and_inputs() _a , _a , _a , _a : Union[str, Any] = config_and_inputs _a : Optional[Any] = True _a : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class a ( snake_case__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : int = True __lowerCAmelCase : Any = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCamelCase ( self ) -> Tuple: _a : Optional[Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def __UpperCamelCase ( self ) -> Any: for model_class_name in self.all_model_classes: _a : Tuple = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase_ ) _a : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ ) @require_flax class a ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self ) -> Tuple: _a : int = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase_ ) _a : int = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) _a : List[str] = model(lowerCamelCase_ )[0] _a : Tuple = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , lowerCamelCase_ ) # compare the actual values for a slice. _a : Dict = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) -> int: _a : Tuple = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase_ ) _a : int = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) _a : Union[str, Any] = model(lowerCamelCase_ )[0] # compare the actual values for a slice. _a : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=1e-4 ) )
424
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : int = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
424
1
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected", [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 1_0, "max_num_jobs": 1}, [range(1_0 )]), ({"num_shards": 1_0, "max_num_jobs": 1_0}, [range(a, i + 1 ) for i in range(1_0 )]), ({"num_shards": 1, "max_num_jobs": 1_0}, [range(1 )]), ({"num_shards": 1_0, "max_num_jobs": 3}, [range(0, 4 ), range(4, 7 ), range(7, 1_0 )]), ({"num_shards": 3, "max_num_jobs": 1_0}, [range(0, 1 ), range(1, 2 ), range(2, 3 )]), ], ) def __a ( a, a ): """simple docstring""" _a = _distribute_shards(**a ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected", [ ({"foo": 0}, 1_0, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ], ) def __a ( a, a, a ): """simple docstring""" _a = _split_gen_kwargs(a, a ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected", [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ], ) def __a ( a, a ): """simple docstring""" if expected is RuntimeError: with pytest.raises(a ): _number_of_shards_in_gen_kwargs(a ) else: _a = _number_of_shards_in_gen_kwargs(a ) assert out == expected
388
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __snake_case ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self :List[str] , UpperCamelCase__ :Dict=0.01 , UpperCamelCase__ :Union[str, Any]=1_000 ): _a = p_stop _a = max_length def __iter__( self :Dict ): _a = 0 _a = False while not stop and count < self.max_length: yield count count += 1 _a = random.random() < self.p_stop class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :Tuple , UpperCamelCase__ :Tuple , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :str=False , UpperCamelCase__ :int=True ): _a = [ BatchSamplerShard(UpperCamelCase__ , 2 , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) for i in range(2 ) ] _a = [list(UpperCamelCase__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(UpperCamelCase__ ) for shard in batch_sampler_shards] , [len(UpperCamelCase__ ) for e in expected] ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): # Check the shards when the dataset is a round multiple of total batch size. _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [[], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Dict ): # Check the shards when the dataset is a round multiple of batch size. _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [[], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): # Check the shards when the dataset is a round multiple of total batch size. _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [[], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): # Check the shards when the dataset is a round multiple of batch size. _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [[], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :int ): _a = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _a = [BatchSamplerShard(UpperCamelCase__ , 2 , UpperCamelCase__ , even_batches=UpperCamelCase__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def SCREAMING_SNAKE_CASE_ ( self :List[str] , UpperCamelCase__ :int , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :Any , UpperCamelCase__ :str=False , UpperCamelCase__ :Optional[Any]=2 , UpperCamelCase__ :int=False ): random.seed(UpperCamelCase__ ) _a = list(UpperCamelCase__ ) _a = [ IterableDatasetShard( UpperCamelCase__ , batch_size=UpperCamelCase__ , drop_last=UpperCamelCase__ , num_processes=UpperCamelCase__ , process_index=UpperCamelCase__ , split_batches=UpperCamelCase__ , ) for i in range(UpperCamelCase__ ) ] _a = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(UpperCamelCase__ ) iterable_dataset_lists.append(list(UpperCamelCase__ ) ) _a = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _a = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) self.assertTrue(len(UpperCamelCase__ ) % shard_batch_size == 0 ) _a = [] for idx in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(UpperCamelCase__ ) < len(UpperCamelCase__ ): reference += reference self.assertListEqual(UpperCamelCase__ , reference[: len(UpperCamelCase__ )] ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): _a = 42 _a = RandomIterableDataset() self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) # Edge case with a very small dataset _a = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): _a = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = SkipBatchSampler(UpperCamelCase__ , 2 ) self.assertListEqual(list(UpperCamelCase__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = DataLoader(list(range(16 ) ) , batch_size=4 ) _a = skip_first_batches(UpperCamelCase__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): _a = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(UpperCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): Accelerator() _a = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(UpperCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
388
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a =logging.get_logger(__name__) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False ) -> List[Any]: '''simple docstring''' lowerCamelCase__ ="backbone." if is_semantic else "" lowerCamelCase__ =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', "beit.embeddings.cls_token"), (F'''{prefix}patch_embed.proj.weight''', "beit.embeddings.patch_embeddings.projection.weight"), (F'''{prefix}patch_embed.proj.bias''', "beit.embeddings.patch_embeddings.projection.bias"), (F'''{prefix}pos_embed''', "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): lowerCamelCase__ ="backbone." if is_semantic else "" # queries, keys and values lowerCamelCase__ =state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) lowerCamelCase__ =state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) lowerCamelCase__ =state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) lowerCamelCase__ =in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__ =q_bias lowerCamelCase__ =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ =in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ =v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCamelCase__ =state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) lowerCamelCase__ =state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) lowerCamelCase__ =gamma_a lowerCamelCase__ =gamma_a def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' lowerCamelCase__ =dct.pop(__lowerCAmelCase ) lowerCamelCase__ =val def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' lowerCamelCase__ ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__ =Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: '''simple docstring''' lowerCamelCase__ =False if "rvlcdip" in checkpoint_url else True lowerCamelCase__ =BeitConfig(use_absolute_position_embeddings=__lowerCAmelCase , use_mask_token=__lowerCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCamelCase__ =1024 lowerCamelCase__ =4096 lowerCamelCase__ =24 lowerCamelCase__ =16 # labels if "rvlcdip" in checkpoint_url: lowerCamelCase__ =16 lowerCamelCase__ ="huggingface/label-files" lowerCamelCase__ ="rvlcdip-id2label.json" lowerCamelCase__ =json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) ) lowerCamelCase__ ={int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ =idalabel lowerCamelCase__ ={v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCamelCase__ =torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="cpu" )["model"] lowerCamelCase__ =create_rename_keys(__lowerCAmelCase , has_lm_head=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , has_lm_head=__lowerCAmelCase ) # load HuggingFace model lowerCamelCase__ =BeitForMaskedImageModeling(__lowerCAmelCase ) if has_lm_head else BeitForImageClassification(__lowerCAmelCase ) model.eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image lowerCamelCase__ =BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCAmelCase ) lowerCamelCase__ =prepare_img() lowerCamelCase__ =image_processor(images=__lowerCAmelCase , return_tensors="pt" ) lowerCamelCase__ =encoding["pixel_values"] lowerCamelCase__ =model(__lowerCAmelCase ) lowerCamelCase__ =outputs.logits # verify logits lowerCamelCase__ =[1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(__lowerCAmelCase ), "Shape of logits not as expected" Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: if has_lm_head: lowerCamelCase__ ="dit-base" if "base" in checkpoint_url else "dit-large" else: lowerCamelCase__ ="dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=__lowerCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=__lowerCAmelCase , ) if __name__ == "__main__": a =argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) a =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
707
"""simple docstring""" def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase = False ) -> str: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ =F'''Expected string as input, found {type(__lowerCAmelCase )}''' raise ValueError(__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ =F'''Expected boolean as use_pascal parameter, found {type(__lowerCAmelCase )}''' raise ValueError(__lowerCAmelCase ) lowerCamelCase__ =input_str.split("_" ) lowerCamelCase__ =0 if use_pascal else 1 lowerCamelCase__ =words[start_index:] lowerCamelCase__ =[word[0].upper() + word[1:] for word in words_to_capitalize] lowerCamelCase__ ="" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
132
0
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Any = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _snake_case : List[str] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names _snake_case : int = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _snake_case : Optional[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _snake_case : Optional[Any] = "allenai" def lowerCAmelCase_ ( __lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __snake_case : List[Any] = dict((re.sub(R"@@$" , "" , __lowerCamelCase ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , __lowerCamelCase ), v) for k, v in d.items() ) __snake_case : Tuple = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __snake_case : Optional[int] = d[k] # restore return da def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): # prep assert os.path.exists(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __snake_case : Any = basename(__lowerCamelCase ) __snake_case : Union[str, Any] = dirname(__lowerCamelCase ) __snake_case : int = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel __snake_case : Optional[Any] = cls.hub_models() __snake_case : Union[str, Any] = {"bpe": "fastbpe", "tokenizer": "moses"} __snake_case : Any = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'using checkpoint {checkpoint_file}' ) __snake_case : Dict = hub_utils.from_pretrained( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , archive_map=__lowerCamelCase , **__lowerCamelCase ) __snake_case : List[Any] = vars(chkpt["args"]["model"] ) __snake_case : int = args["source_lang"] __snake_case : str = args["target_lang"] __snake_case : List[str] = dirname(__lowerCamelCase ) __snake_case : str = basename(__lowerCamelCase ) # dicts __snake_case : str = os.path.join(__lowerCamelCase , F'dict.{src_lang}.txt' ) __snake_case : List[str] = os.path.join(__lowerCamelCase , F'dict.{tgt_lang}.txt' ) __snake_case : List[str] = Dictionary.load(__lowerCamelCase ) __snake_case : Any = rewrite_dict_keys(src_dict.indices ) __snake_case : str = len(__lowerCamelCase ) __snake_case : List[str] = os.path.join(__lowerCamelCase , "vocab-src.json" ) print(F'Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records' ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab __snake_case : Tuple = True for k in src_vocab.keys(): if not k.islower(): __snake_case : Tuple = False break __snake_case : Dict = Dictionary.load(__lowerCamelCase ) __snake_case : List[Any] = rewrite_dict_keys(tgt_dict.indices ) __snake_case : Any = len(__lowerCamelCase ) __snake_case : List[str] = os.path.join(__lowerCamelCase , "vocab-tgt.json" ) print(F'Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records' ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # merges_file (bpecodes) __snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" __snake_case : Any = os.path.join(__lowerCamelCase , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): break with open(__lowerCamelCase , encoding="utf-8" ) as fin: __snake_case : int = fin.read() __snake_case : Any = re.sub(R" \d+$" , "" , __lowerCamelCase , 0 , re.M ) # remove frequency number print(F'Generating {merges_file}' ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as fout: fout.write(__lowerCamelCase ) # model config __snake_case : str = os.path.join(__lowerCamelCase , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'need to extend tokenizer to support bpe={args["bpe"]}' assert args["tokenizer"] == "moses", F'need to extend tokenizer to support bpe={args["tokenizer"]}' __snake_case : List[Any] = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.0_2, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with __snake_case : Optional[Any] = 5 __snake_case : List[Any] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: __snake_case : List[str] = best_score_hparams[model_dir]["length_penalty"] else: __snake_case : Tuple = 1.0 print(F'Generating {fsmt_model_config_file}' ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # tokenizer config __snake_case : List[str] = os.path.join(__lowerCamelCase , __lowerCamelCase ) __snake_case : Tuple = { "langs": [src_lang, tgt_lang], "model_max_length": 1_0_2_4, "do_lower_case": do_lower_case, } print(F'Generating {fsmt_tokenizer_config_file}' ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # model __snake_case : List[Any] = chkpt["models"][0] __snake_case : Tuple = model.state_dict() # rename keys to start with 'model.' __snake_case : Union[str, Any] = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys __snake_case : Any = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) __snake_case : Union[str, Any] = FSMTConfig.from_pretrained(__lowerCamelCase ) __snake_case : Union[str, Any] = FSMTForConditionalGeneration(__lowerCamelCase ) # check that it loads ok model_new.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) # save __snake_case : int = os.path.join(__lowerCamelCase , __lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(__lowerCamelCase , __lowerCamelCase ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(F'cd {data_root}' ) print(F'transformers-cli upload {model_dir}' ) if __name__ == "__main__": _snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case : Any = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
81
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : List[str] = "sew-d" def __init__( self , lowercase_=3_2 , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_=2 , lowercase_=5_1_2 , lowercase_=2_5_6 , lowercase_=True , lowercase_=True , lowercase_=("p2c", "c2p") , lowercase_="layer_norm" , lowercase_="gelu_python" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=0.0_2 , lowercase_=1E-7 , lowercase_=1E-5 , lowercase_="group" , lowercase_="gelu" , lowercase_=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase_=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase_=False , lowercase_=1_2_8 , lowercase_=1_6 , lowercase_=True , lowercase_=0.0_5 , lowercase_=1_0 , lowercase_=2 , lowercase_=0.0 , lowercase_=1_0 , lowercase_=0 , lowercase_="mean" , lowercase_=False , lowercase_=False , lowercase_=2_5_6 , lowercase_=0 , lowercase_=1 , lowercase_=2 , **lowercase_ , ) -> Dict: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) UpperCAmelCase = hidden_size UpperCAmelCase = feat_extract_norm UpperCAmelCase = feat_extract_activation UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = conv_bias UpperCAmelCase = num_conv_pos_embeddings UpperCAmelCase = num_conv_pos_embedding_groups UpperCAmelCase = len(self.conv_dim ) UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = squeeze_factor UpperCAmelCase = max_position_embeddings UpperCAmelCase = position_buckets UpperCAmelCase = share_att_key UpperCAmelCase = relative_attention UpperCAmelCase = norm_rel_ebd UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = hidden_act UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = feat_proj_dropout UpperCAmelCase = final_dropout UpperCAmelCase = layer_norm_eps UpperCAmelCase = feature_layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks # ctc loss UpperCAmelCase = ctc_loss_reduction UpperCAmelCase = ctc_zero_infinity # sequence classification UpperCAmelCase = use_weighted_layer_sum UpperCAmelCase = classifier_proj_size @property def a_ ( self ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
373
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _lowerCamelCase( lowerCAmelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] SCREAMING_SNAKE_CASE_ : Dict = True if 'large' in model_name or 'huge' in model_name else False SCREAMING_SNAKE_CASE_ : Any = True if 'large' in model_name or 'huge' in model_name else False SCREAMING_SNAKE_CASE_ : Union[str, Any] = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: SCREAMING_SNAKE_CASE_ : Optional[int] = [3, 3, 3, 3] SCREAMING_SNAKE_CASE_ : int = [5, 5, 5, 5] elif "fl4" in model_name: SCREAMING_SNAKE_CASE_ : Any = [4, 4, 4, 4] SCREAMING_SNAKE_CASE_ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: SCREAMING_SNAKE_CASE_ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: SCREAMING_SNAKE_CASE_ : Optional[int] = [3, 3, 3, 3] else: SCREAMING_SNAKE_CASE_ : Any = [2, 2, 2, 2] if "tiny" in model_name: SCREAMING_SNAKE_CASE_ : Tuple = 96 elif "small" in model_name: SCREAMING_SNAKE_CASE_ : Tuple = 96 elif "base" in model_name: SCREAMING_SNAKE_CASE_ : List[str] = 128 elif "large" in model_name: SCREAMING_SNAKE_CASE_ : Dict = 192 elif "xlarge" in model_name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 256 elif "huge" in model_name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 352 # set label information SCREAMING_SNAKE_CASE_ : int = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'imagenet-22k-id2label.json' else: SCREAMING_SNAKE_CASE_ : List[str] = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE_ : Union[str, Any] = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : int = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Tuple = FocalNetConfig( embed_dim=lowerCAmelCase__ , depths=lowerCAmelCase__ , focal_levels=lowerCAmelCase__ , focal_windows=lowerCAmelCase__ , use_conv_embed=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , use_post_layernorm=lowerCAmelCase__ , use_layerscale=lowerCAmelCase__ , ) return config def _lowerCamelCase( lowerCAmelCase__ : Optional[Any] ): '''simple docstring''' if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = 'encoder.' + name if "encoder.layers" in name: SCREAMING_SNAKE_CASE_ : List[Any] = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: SCREAMING_SNAKE_CASE_ : int = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": SCREAMING_SNAKE_CASE_ : List[str] = 'layernorm.weight' if name == "norm.bias": SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'layernorm.bias' if "head" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('head' , 'classifier' ) else: SCREAMING_SNAKE_CASE_ : Tuple = 'focalnet.' + name return name def _lowerCamelCase( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=False ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on SCREAMING_SNAKE_CASE_ : Tuple = model_name_to_url[model_name] print('Checkpoint URL: ' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ : Dict = state_dict.pop(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = val SCREAMING_SNAKE_CASE_ : List[Any] = get_focalnet_config(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion SCREAMING_SNAKE_CASE_ : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE_ : Union[str, Any] = BitImageProcessor( do_resize=lowerCAmelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase__ , crop_size=224 , do_normalize=lowerCAmelCase__ , image_mean=lowerCAmelCase__ , image_std=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) SCREAMING_SNAKE_CASE_ : List[str] = processor(images=lowerCAmelCase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Dict = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) SCREAMING_SNAKE_CASE_ : str = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , lowerCAmelCase__ , atol=1E-4 ) SCREAMING_SNAKE_CASE_ : Any = model(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": SCREAMING_SNAKE_CASE_ : Any = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": SCREAMING_SNAKE_CASE_ : Any = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
97
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) A = {'vocab_file': 'spm_char.model'} A = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } A = { 'microsoft/speecht5_asr': 1024, 'microsoft/speecht5_tts': 1024, 'microsoft/speecht5_vc': 1024, } class __a ( __A ): '''simple docstring''' UpperCAmelCase__ : str = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase__ , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__ = None , **UpperCamelCase__ , ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_file SCREAMING_SNAKE_CASE_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def __snake_case ( self ): return self.sp_model.get_piece_size() def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): SCREAMING_SNAKE_CASE_ : str = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : List[str] = None return state def __setstate__( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case ( self , UpperCamelCase__ ): return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): return self.sp_model.piece_to_id(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.sp_model.IdToPiece(UpperCamelCase__ ) return token def __snake_case ( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : int = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token SCREAMING_SNAKE_CASE_ : Any = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1] if token_ids_a is None: return ([0] * len(UpperCamelCase__ )) + suffix_ones return ([0] * len(UpperCamelCase__ )) + ([0] * len(UpperCamelCase__ )) + suffix_ones def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : Tuple = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
97
1