code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations def __UpperCAmelCase ( lowerCamelCase_ : list[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCamelCase_ ) // 2 # choose the middle 3 elements SCREAMING_SNAKE_CASE_ : Union[str, Any] = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
105
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class A_ : """simple docstring""" def __init__( self : Dict ,__A : Any ,__A : Tuple=None ,__A : Optional[int]=None ,__A : Optional[int]=None ,__A : int="resnet50" ,__A : int=3 ,__A : List[Any]=32 ,__A : Tuple=3 ,__A : List[Any]=True ,__A : Tuple=True ,) -> Any: _lowercase = parent _lowercase = out_indices if out_indices is not None else [4] _lowercase = stage_names _lowercase = out_features _lowercase = backbone _lowercase = batch_size _lowercase = image_size _lowercase = num_channels _lowercase = use_pretrained_backbone _lowercase = is_training def __UpperCAmelCase ( self : List[Any] ) -> Tuple: _lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase = self.get_config() return config, pixel_values def __UpperCAmelCase ( self : Tuple ) -> Tuple: return TimmBackboneConfig( image_size=self.image_size ,num_channels=self.num_channels ,out_features=self.out_features ,out_indices=self.out_indices ,stage_names=self.stage_names ,use_pretrained_backbone=self.use_pretrained_backbone ,backbone=self.backbone ,) def __UpperCAmelCase ( self : Any ,__A : Any ,__A : Dict ) -> Union[str, Any]: _lowercase = TimmBackbone(config=__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowercase = model(__A ) self.parent.assertEqual( result.feature_map[-1].shape ,(self.batch_size, model.channels[-1], 14, 14) ,) def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: _lowercase = self.prepare_config_and_inputs() _lowercase , _lowercase = config_and_inputs _lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class A_ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[str] = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Any = False def __UpperCAmelCase ( self : str ) -> Optional[int]: _lowercase = TimmBackboneModelTester(self ) _lowercase = ConfigTester(self ,config_class=__A ,has_text_modality=__A ) def __UpperCAmelCase ( self : int ) -> Tuple: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self : List[Any] ) -> List[str]: _lowercase = 'resnet18' _lowercase = 'microsoft/resnet-18' _lowercase = AutoBackbone.from_pretrained(__A ,use_timm_backbone=__A ) _lowercase = AutoBackbone.from_pretrained(__A ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) ,len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices ,(-1,) ) self.assertEqual(transformers_model.out_indices ,[len(timm_model.stage_names ) - 1] ) _lowercase = AutoBackbone.from_pretrained(__A ,use_timm_backbone=__A ,out_indices=[1, 2, 3] ) _lowercase = AutoBackbone.from_pretrained(__A ,out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices ,transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __UpperCAmelCase ( self : Optional[int] ) -> Any: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __UpperCAmelCase ( self : Optional[int] ) -> Any: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __UpperCAmelCase ( self : Dict ) -> List[str]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __UpperCAmelCase ( self : Optional[int] ) -> Dict: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __UpperCAmelCase ( self : Dict ) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __UpperCAmelCase ( self : Any ) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __UpperCAmelCase ( self : int ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __UpperCAmelCase ( self : Any ) -> Optional[Any]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __UpperCAmelCase ( self : Any ) -> Any: pass @unittest.skip('Safetensors is not supported by timm.' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self : int ) -> Optional[Any]: pass def __UpperCAmelCase ( self : Dict ) -> int: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(__A ) _lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase = [*signature.parameters.keys()] _lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__A ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = True _lowercase = self.has_attentions # no need to test all models as different heads yield the same functionality _lowercase = self.all_model_classes[0] _lowercase = model_class(__A ) model.to(__A ) _lowercase = self._prepare_for_class(__A ,__A ) _lowercase = model(**__A ) _lowercase = outputs[0][-1] # Encoder-/Decoder-only models _lowercase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _lowercase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__A ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __UpperCAmelCase ( self : List[str] ) -> int: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(__A ) model.to(__A ) model.eval() _lowercase = model(**__A ) self.assertEqual(len(result.feature_maps ) ,len(config.out_indices ) ) self.assertEqual(len(model.channels ) ,len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _lowercase = copy.deepcopy(__A ) _lowercase = None _lowercase = model_class(__A ) model.to(__A ) model.eval() _lowercase = model(**__A ) self.assertEqual(len(result.feature_maps ) ,1 ) self.assertEqual(len(model.channels ) ,1 ) # Check backbone can be initialized with fresh weights _lowercase = copy.deepcopy(__A ) _lowercase = False _lowercase = model_class(__A ) model.to(__A ) model.eval() _lowercase = model(**__A )
67
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : str ={"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowerCAmelCase : Union[str, Any] =subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __lowerCAmelCase : List[str] =subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode("""utf-8""").split() __lowerCAmelCase : List[str] ="""|""".join(sys.argv[1:]) __lowerCAmelCase : Dict =re.compile(RF"""^({joined_dirs}).*?\.py$""") __lowerCAmelCase : int =[x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
197
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class UpperCAmelCase ( lowercase_ , lowercase_ ): a__: int = "pixel_values" a__: int = False a__: Dict = TimmBackboneConfig def __init__( self : List[Any] , lowerCAmelCase : Tuple , **lowerCAmelCase : Any ): requires_backends(self , '''timm''' ) super().__init__(a__ ) lowercase : List[str] = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(a__ , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) lowercase : int = getattr(a__ , '''use_pretrained_backbone''' , a__ ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. lowercase : Any = config.out_indices if getattr(a__ , '''out_indices''' , a__ ) is not None else (-1,) lowercase : Optional[Any] = timm.create_model( config.backbone , pretrained=a__ , features_only=config.features_only , in_chans=config.num_channels , out_indices=a__ , **a__ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowercase : Tuple = self._backbone.return_layers lowercase : List[Any] = {layer['''module''']: str(a__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(a__ ) @classmethod def _lowerCAmelCase ( cls : List[Any] , lowerCAmelCase : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig lowercase : Tuple = kwargs.pop('''config''' , TimmBackboneConfig() ) lowercase : Optional[int] = kwargs.pop('''use_timm_backbone''' , a__ ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) lowercase : Union[str, Any] = kwargs.pop('''num_channels''' , config.num_channels ) lowercase : Any = kwargs.pop('''features_only''' , config.features_only ) lowercase : Tuple = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) lowercase : Dict = kwargs.pop('''out_indices''' , config.out_indices ) lowercase : Optional[Any] = TimmBackboneConfig( backbone=a__ , num_channels=a__ , features_only=a__ , use_pretrained_backbone=a__ , out_indices=a__ , ) return super()._from_config(a__ , **a__ ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase : Any ): pass def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : Optional[int] ): lowercase : str = return_dict if return_dict is not None else self.config.use_return_dict lowercase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase : Optional[int] = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowercase : Tuple = self._all_layers lowercase : List[str] = self._backbone(a__ , **a__ ) lowercase : Any = self._return_layers lowercase : Optional[Any] = tuple(hidden_states[i] for i in self.out_indices ) else: lowercase : Dict = self._backbone(a__ , **a__ ) lowercase : str = None lowercase : Tuple = tuple(a__ ) lowercase : Optional[Any] = tuple(a__ ) if hidden_states is not None else None if not return_dict: lowercase : List[Any] = (feature_maps,) if output_hidden_states: lowercase : Optional[Any] = output + (hidden_states,) return output return BackboneOutput(feature_maps=a__ , hidden_states=a__ , attentions=a__ )
583
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : int ): '''simple docstring''' assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCamelCase_( snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Any ): '''simple docstring''' snake_case_ = tmp_path / "cache" snake_case_ = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ = TextDatasetReader(snake_case , cache_dir=snake_case , keep_in_memory=snake_case ).read() _check_text_dataset(snake_case , snake_case ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Dict ): '''simple docstring''' snake_case_ = tmp_path / "cache" snake_case_ = {"text": "string"} snake_case_ = features.copy() if features else default_expected_features snake_case_ = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ = TextDatasetReader(snake_case , features=snake_case , cache_dir=snake_case ).read() _check_text_dataset(snake_case , snake_case ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : str , snake_case : Optional[Any] ): '''simple docstring''' snake_case_ = tmp_path / "cache" snake_case_ = {"text": "string"} snake_case_ = TextDatasetReader(snake_case , cache_dir=snake_case , split=snake_case ).read() _check_text_dataset(snake_case , snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def UpperCamelCase_( snake_case : str , snake_case : Union[str, Any] , snake_case : Dict ): '''simple docstring''' if issubclass(snake_case , snake_case ): snake_case_ = text_path elif issubclass(snake_case , snake_case ): snake_case_ = [text_path] snake_case_ = tmp_path / "cache" snake_case_ = {"text": "string"} snake_case_ = TextDatasetReader(snake_case , cache_dir=snake_case ).read() _check_text_dataset(snake_case , snake_case ) def UpperCamelCase_( snake_case : str , snake_case : int , snake_case : Dict=("train",) ): '''simple docstring''' assert isinstance(snake_case , snake_case ) for split in splits: snake_case_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCamelCase_( snake_case : List[str] , snake_case : Dict , snake_case : Tuple ): '''simple docstring''' snake_case_ = tmp_path / "cache" snake_case_ = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ = TextDatasetReader({"train": text_path} , cache_dir=snake_case , keep_in_memory=snake_case ).read() _check_text_datasetdict(snake_case , snake_case ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[str] , snake_case : int ): '''simple docstring''' snake_case_ = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ = {"text": "string"} snake_case_ = features.copy() if features else default_expected_features snake_case_ = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ = TextDatasetReader({"train": text_path} , features=snake_case , cache_dir=snake_case ).read() _check_text_datasetdict(snake_case , snake_case ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCamelCase_( snake_case : str , snake_case : Any , snake_case : Any ): '''simple docstring''' if split: snake_case_ = {split: text_path} else: snake_case_ = "train" snake_case_ = {"train": text_path, "test": text_path} snake_case_ = tmp_path / "cache" snake_case_ = {"text": "string"} snake_case_ = TextDatasetReader(snake_case , cache_dir=snake_case ).read() _check_text_datasetdict(snake_case , snake_case , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
400
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : int = { """configuration_bridgetower""": [ """BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BridgeTowerConfig""", """BridgeTowerTextConfig""", """BridgeTowerVisionConfig""", ], """processing_bridgetower""": ["""BridgeTowerProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = ["""BridgeTowerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ """BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""", """BridgeTowerForContrastiveLearning""", """BridgeTowerForImageAndTextRetrieval""", """BridgeTowerForMaskedLM""", """BridgeTowerModel""", """BridgeTowerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
177
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : str = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = state_dict.pop(lowercase_ ) A__ = val def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A__ = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A__ = value else: A__ = value return new_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) A__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:256, :] A__ = in_proj_bias[:256] A__ = in_proj_weight[256:512, :] A__ = in_proj_bias[256:512] A__ = in_proj_weight[-256:, :] A__ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A__ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) A__ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:256, :] A__ = in_proj_bias[:256] A__ = in_proj_weight[256:512, :] A__ = in_proj_bias[256:512] A__ = in_proj_weight[-256:, :] A__ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention A__ = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) A__ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict A__ = in_proj_weight_cross_attn[:256, :] A__ = in_proj_bias_cross_attn[:256] A__ = in_proj_weight_cross_attn[256:512, :] A__ = in_proj_bias_cross_attn[256:512] A__ = in_proj_weight_cross_attn[-256:, :] A__ = in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: """simple docstring""" A__ , A__ = image.size A__ = max(lowercase_ , lowercase_ ) A__ = 800 if '''detection''' in checkpoint_url else 1_000 A__ = target_max_size / current_max_size A__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: """simple docstring""" A__ = F.to_tensor(lowercase_ ) A__ = F.normalize(lowercase_ , mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: """simple docstring""" logger.info('''Converting model...''' ) # load original state dict A__ = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) A__ = rename_backbone_keys(lowercase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A__ = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A__ = state_dict.pop(lowercase_ ) A__ = val # create HuggingFace model and load state dict A__ = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A__ = 15 A__ = 2 A__ = {0: '''table''', 1: '''table rotated'''} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} else: A__ = 125 A__ = 6 A__ = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = DetrImageProcessor( format='''coco_detection''' , max_size=800 if '''detection''' in checkpoint_url else 1_000 ) A__ = TableTransformerForObjectDetection(lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() # verify our conversion A__ = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A__ = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowercase_ ) A__ = Image.open(lowercase_ ).convert('''RGB''' ) A__ = normalize(resize(lowercase_ , lowercase_ ) ).unsqueeze(0 ) A__ = model(lowercase_ ) if "detection" in checkpoint_url: A__ = (1, 15, 3) A__ = torch.tensor( [[-6.78_97, -16.99_85, 6.79_37], [-8.01_86, -22.21_92, 6.96_77], [-7.31_17, -21.07_08, 7.40_55]] ) A__ = torch.tensor([[0.48_67, 0.17_67, 0.67_32], [0.67_18, 0.44_79, 0.38_30], [0.47_16, 0.17_60, 0.63_64]] ) else: A__ = (1, 125, 7) A__ = torch.tensor( [[-18.14_30, -8.32_14, 4.82_74], [-18.46_85, -7.13_61, -4.26_67], [-26.36_93, -9.34_29, -4.99_62]] ) A__ = torch.tensor([[0.49_83, 0.55_95, 0.94_40], [0.49_16, 0.63_15, 0.59_54], [0.61_08, 0.86_37, 0.11_35]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowercase_ , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowercase_ , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A__ = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowercase_ ) image_processor.push_to_hub(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCamelCase : str = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
177
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowerCAmelCase__ : __a = PegasusConfig __a = {} __a = """gelu""" def __init__( self : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any]=13 , _lowerCamelCase : Any=7 , _lowerCamelCase : List[str]=True , _lowerCamelCase : int=False , _lowerCamelCase : List[Any]=99 , _lowerCamelCase : Tuple=32 , _lowerCamelCase : Optional[Any]=2 , _lowerCamelCase : int=4 , _lowerCamelCase : List[str]=37 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : Union[str, Any]=0.1 , _lowerCamelCase : List[str]=40 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Any=1 , _lowerCamelCase : Union[str, Any]=0 , ): _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id def lowercase ( self : Any ): _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _snake_case = prepare_pegasus_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def lowercase ( self : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str ): _snake_case = TFPegasusModel(config=_lowerCamelCase ).get_decoder() _snake_case = inputs_dict['''input_ids'''] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['''attention_mask'''][:1, :] _snake_case = inputs_dict['''head_mask'''] _snake_case = 1 # first forward pass _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 ) def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : int=None , ) -> Dict: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __a = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __a = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __a = True __a = False __a = False def lowercase ( self : Optional[int] ): _snake_case = TFPegasusModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase ) def lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def lowercase ( self : List[str] ): _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class lowerCAmelCase__ ( unittest.TestCase ): __a = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __a = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers __a = """google/pegasus-xsum""" @cached_property def lowercase ( self : Optional[int] ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowercase ( self : Optional[int] ): _snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowercase ( self : Union[str, Any] , **_lowerCamelCase : List[Any] ): _snake_case = self.translate_src_text(**_lowerCamelCase ) assert self.expected_text == generated_words def lowercase ( self : Union[str, Any] , **_lowerCamelCase : Optional[int] ): _snake_case = self.tokenizer(self.src_text , **_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''tf''' ) _snake_case = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCamelCase , ) _snake_case = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase ) return generated_words @slow def lowercase ( self : Dict ): self._assert_generated_batch_equal_expected()
224
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _UpperCAmelCase ( __lowerCamelCase : str = "isbn/0140328726" ) -> dict: _snake_case = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: _snake_case = f'''{olid} is not a valid Open Library olid''' raise ValueError(__lowerCamelCase ) return requests.get(f'''https://openlibrary.org/{new_olid}.json''' ).json() def _UpperCAmelCase ( __lowerCamelCase : dict ) -> dict: _snake_case = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } _snake_case = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _snake_case = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] _snake_case = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = ''', '''.join(__lowerCamelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: UpperCAmelCase__ = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.") continue print(F"\nSearching Open Library for ISBN: {isbn}...\n") try: UpperCAmelCase__ = summarize_book(get_openlibrary_data(F"isbn/{isbn}")) print('\n'.join(F"{key}: {value}" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"Sorry, there are no results for ISBN: {isbn}.")
224
1
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = multiprocessing.Manager() UpperCAmelCase__ = manager.list() UpperCAmelCase__ = multiprocessing.Process(target=lowerCamelCase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase__ = shutil.rmtree UpperCAmelCase__ = os.rmdir UpperCAmelCase__ = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase__ = {} with swallow_io(): with time_limit(lowerCamelCase ): exec(lowerCamelCase , lowerCamelCase ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(f'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase__ = rmtree UpperCAmelCase__ = rmdir UpperCAmelCase__ = chdir @contextlib.contextmanager def a_ ( lowerCamelCase ): def signal_handler(lowerCamelCase , lowerCamelCase ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , lowerCamelCase ) signal.signal(signal.SIGALRM , lowerCamelCase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def a_ ( ): UpperCAmelCase__ = WriteOnlyStringIO() with contextlib.redirect_stdout(lowerCamelCase ): with contextlib.redirect_stderr(lowerCamelCase ): with redirect_stdin(lowerCamelCase ): yield @contextlib.contextmanager def a_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(lowerCamelCase ): yield dirname class snake_case ( __UpperCAmelCase ): """simple docstring""" pass class snake_case ( io.StringIO ): """simple docstring""" def __lowerCAmelCase ( self : Union[str, Any] ,*lowerCamelCase__ : int ,**lowerCamelCase__ : Optional[int] ): raise OSError def __lowerCAmelCase ( self : Any ,*lowerCamelCase__ : Optional[int] ,**lowerCamelCase__ : Any ): raise OSError def __lowerCAmelCase ( self : Dict ,*lowerCamelCase__ : Optional[Any] ,**lowerCamelCase__ : List[Any] ): raise OSError def __lowerCAmelCase ( self : List[Any] ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : List[str] ): return False class snake_case ( contextlib._RedirectStream ): # type: ignore """simple docstring""" snake_case__ = "stdin" @contextlib.contextmanager def a_ ( lowerCamelCase ): if root == ".": yield return UpperCAmelCase__ = os.getcwd() os.chdir(lowerCamelCase ) try: yield except BaseException as exc: raise exc finally: os.chdir(lowerCamelCase ) def a_ ( lowerCamelCase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase__ = None UpperCAmelCase__ = None import os UpperCAmelCase__ = '1' UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None import shutil UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None import subprocess UpperCAmelCase__ = None # type: ignore UpperCAmelCase__ = None import sys UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None
632
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class snake_case ( ctypes.Structure ): """simple docstring""" snake_case__ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def a_ ( ): if os.name == "nt": UpperCAmelCase__ = CursorInfo() UpperCAmelCase__ = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) UpperCAmelCase__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def a_ ( ): if os.name == "nt": UpperCAmelCase__ = CursorInfo() UpperCAmelCase__ = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) UpperCAmelCase__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def a_ ( ): try: hide_cursor() yield finally: show_cursor()
632
1
'''simple docstring''' import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowerCAmelCase_ = logging.get_logger(__name__) def _A ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' A__ = set() A__ = [] def parse_line(UpperCAmelCase ): for line in fp: if isinstance(UpperCAmelCase ,UpperCAmelCase ): A__ = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(UpperCAmelCase ) > 0: A__ = '\n'.join(UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(UpperCAmelCase ) buffer.clear() continue else: A__ = line.strip() buffer.append(UpperCAmelCase ) if from_gh: for filename in os.listdir(UpperCAmelCase ): A__ = os.path.join(UpperCAmelCase ,UpperCAmelCase ) if not os.path.isdir(UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(UpperCAmelCase ) as fp: parse_line(UpperCAmelCase ) else: try: with zipfile.ZipFile(UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(UpperCAmelCase ) as fp: parse_line(UpperCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def _A ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' A__ = set() A__ = [os.path.join(UpperCAmelCase ,UpperCAmelCase ) for p in os.listdir(UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(UpperCAmelCase ,UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def _A ( UpperCAmelCase ): '''simple docstring''' return values.split(',' ) lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowerCAmelCase_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowerCAmelCase_ = extract_warnings(args.output_dir, args.targets) lowerCAmelCase_ = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
531
'''simple docstring''' def _A ( ): '''simple docstring''' A__ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] A__ = 6 A__ = 1 A__ = 1901 A__ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 A__ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 A__ = day - 29 else: if day > days_per_month[month - 1]: month += 1 A__ = day - days_per_month[month - 2] if month > 12: year += 1 A__ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
531
1
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class UpperCamelCase( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(SCREAMING_SNAKE_CASE ): __snake_case = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __snake_case = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(SCREAMING_SNAKE_CASE ): __snake_case = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __snake_case = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> int: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: __snake_case = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) __snake_case = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE ) __snake_case = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**SCREAMING_SNAKE_CASE : Dict ): return model(**SCREAMING_SNAKE_CASE ) eval(**SCREAMING_SNAKE_CASE ).block_until_ready() @slow def SCREAMING_SNAKE_CASE_ ( self : int ) -> Union[str, Any]: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: __snake_case = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) __snake_case = FlaxRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE ) __snake_case = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**SCREAMING_SNAKE_CASE : List[Any] ): return model(**SCREAMING_SNAKE_CASE ) eval(**SCREAMING_SNAKE_CASE ).block_until_ready() def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , "bert-base is not a local folder and is not a valid model identifier" ): __snake_case = FlaxAutoModel.from_pretrained("bert-base" ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any: '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __snake_case = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE , revision="aaaaaa" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ): __snake_case = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: '''simple docstring''' with self.assertRaisesRegex(SCREAMING_SNAKE_CASE , "Use `from_pt=True` to load this model" ): __snake_case = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
473
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase: def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any]=1_3 , SCREAMING_SNAKE_CASE : Optional[Any]=6_4 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : Union[str, Any]=3 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Any=3_2 , SCREAMING_SNAKE_CASE : Any=5 , SCREAMING_SNAKE_CASE : List[Any]=4 , SCREAMING_SNAKE_CASE : Optional[int]=3_7 , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=1_0 , SCREAMING_SNAKE_CASE : int=0.02 , SCREAMING_SNAKE_CASE : Dict=[1, 1_6, 4, 4] , SCREAMING_SNAKE_CASE : List[str]=None , ) -> int: '''simple docstring''' __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = scope __snake_case = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __snake_case = (self.image_size // 3_2) ** 2 __snake_case = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 1_6, 3_2], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ) -> int: '''simple docstring''' __snake_case = ViTHybridModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: '''simple docstring''' __snake_case = self.type_sequence_label_size __snake_case = ViTHybridForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase( _a , _a , unittest.TestCase ): snake_case_ : Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () snake_case_ : str = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) snake_case_ : Tuple = False snake_case_ : Optional[Any] = False snake_case_ : Dict = False def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int: '''simple docstring''' __snake_case = ViTHybridModelTester(self ) __snake_case = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __snake_case = model_class(config=SCREAMING_SNAKE_CASE ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ) -> Tuple: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ViTHybridModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( ) -> List[str]: '''simple docstring''' __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ) -> str: '''simple docstring''' __snake_case = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( SCREAMING_SNAKE_CASE ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE ) # verify the logits __snake_case = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) __snake_case = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow @require_accelerate def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' __snake_case = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) __snake_case = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) __snake_case = prepare_img() __snake_case = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ) __snake_case = model(**SCREAMING_SNAKE_CASE ) __snake_case = outputs.logits # model predicts one of the 1000 ImageNet classes __snake_case = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
473
1
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCAmelCase__ = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> str: if args.student_type == "roberta": UpperCamelCase__ : str = False elif args.student_type == "gpt2": UpperCamelCase__ : int = False def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: if args.student_type == "roberta": UpperCamelCase__ : Dict = False def __UpperCAmelCase ( ) -> List[Any]: UpperCamelCase__ : Any = argparse.ArgumentParser(description='Training') parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.') parser.add_argument( '--dump_path' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The output directory (log, checkpoints, parameters, etc.)') parser.add_argument( '--data_file' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=lowerCamelCase_ , choices=['distilbert', 'roberta', 'gpt2'] , required=lowerCamelCase_ , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to the student configuration.') parser.add_argument( '--student_pretrained_weights' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='Load student initialization checkpoint.') parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=lowerCamelCase_ , help='Teacher type (BERT, RoBERTa).') parser.add_argument('--teacher_name' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The teacher model.') parser.add_argument('--temperature' , default=2.0 , type=lowerCamelCase_ , help='Temperature for the softmax temperature.') parser.add_argument( '--alpha_ce' , default=0.5 , type=lowerCamelCase_ , help='Linear weight for the distillation loss. Must be >=0.') parser.add_argument( '--alpha_mlm' , default=0.0 , type=lowerCamelCase_ , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=lowerCamelCase_ , help='Linear weight for the CLM loss. Must be >=0.') parser.add_argument('--alpha_mse' , default=0.0 , type=lowerCamelCase_ , help='Linear weight of the MSE loss. Must be >=0.') parser.add_argument( '--alpha_cos' , default=0.0 , type=lowerCamelCase_ , help='Linear weight of the cosine embedding loss. Must be >=0.') parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.') parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=lowerCamelCase_ , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=lowerCamelCase_ , help='Proportion of tokens to mask out.') parser.add_argument('--word_keep' , default=0.1 , type=lowerCamelCase_ , help='Proportion of tokens to keep.') parser.add_argument('--word_rand' , default=0.1 , type=lowerCamelCase_ , help='Proportion of tokens to randomly replace.') parser.add_argument( '--mlm_smoothing' , default=0.7 , type=lowerCamelCase_ , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=lowerCamelCase_ , help='The token counts in the data_file for MLM.') parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=lowerCamelCase_ , default=3 , help='Number of pass on the whole dataset.') parser.add_argument('--batch_size' , type=lowerCamelCase_ , default=5 , help='Batch size (for each process).') parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=lowerCamelCase_ , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=lowerCamelCase_ , help='Linear warmup proportion.') parser.add_argument('--weight_decay' , default=0.0 , type=lowerCamelCase_ , help='Weight decay if we apply some.') parser.add_argument('--learning_rate' , default=5e-4 , type=lowerCamelCase_ , help='The initial learning rate for Adam.') parser.add_argument('--adam_epsilon' , default=1e-6 , type=lowerCamelCase_ , help='Epsilon for Adam optimizer.') parser.add_argument('--max_grad_norm' , default=5.0 , type=lowerCamelCase_ , help='Max gradient norm.') parser.add_argument('--initializer_range' , default=0.02 , type=lowerCamelCase_ , help='Random initialization range.') parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCamelCase_ , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=lowerCamelCase_ , default=1 , help='Number of GPUs in the node.') parser.add_argument('--local_rank' , type=lowerCamelCase_ , default=-1 , help='Distributed training - Local rank') parser.add_argument('--seed' , type=lowerCamelCase_ , default=56 , help='Random seed') parser.add_argument('--log_interval' , type=lowerCamelCase_ , default=500 , help='Tensorboard logging interval.') parser.add_argument('--checkpoint_interval' , type=lowerCamelCase_ , default=4_000 , help='Checkpoint interval.') UpperCamelCase__ : Optional[int] = parser.parse_args() sanity_checks(lowerCamelCase_) # ARGS # init_gpu_params(lowerCamelCase_) set_seed(lowerCamelCase_) if args.is_master: if os.path.exists(args.dump_path): if not args.force: raise ValueError( f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' ' itUse `--force` if you want to overwrite it') else: shutil.rmtree(args.dump_path) if not os.path.exists(args.dump_path): os.makedirs(args.dump_path) logger.info(f'Experiment will be dumped and logged in {args.dump_path}') # SAVE PARAMS # logger.info(f'Param: {args}') with open(os.path.join(args.dump_path , 'parameters.json') , 'w') as f: json.dump(vars(lowerCamelCase_) , lowerCamelCase_ , indent=4) git_log(args.dump_path) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = MODEL_CLASSES[args.student_type] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCamelCase__ : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name) UpperCamelCase__ : Tuple = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCamelCase__ : Dict = tokenizer.all_special_tokens.index(lowerCamelCase_) UpperCamelCase__ : Optional[int] = tokenizer.all_special_ids[idx] logger.info(f'Special tokens {special_tok_ids}') UpperCamelCase__ : str = special_tok_ids UpperCamelCase__ : List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'Loading data from {args.data_file}') with open(args.data_file , 'rb') as fp: UpperCamelCase__ : int = pickle.load(lowerCamelCase_) if args.mlm: logger.info(f'Loading token counts from {args.token_counts} (already pre-computed)') with open(args.token_counts , 'rb') as fp: UpperCamelCase__ : List[Any] = pickle.load(lowerCamelCase_) UpperCamelCase__ : int = np.maximum(lowerCamelCase_ , 1) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCamelCase__ : List[str] = 0.0 # do not predict special tokens UpperCamelCase__ : Dict = torch.from_numpy(lowerCamelCase_) else: UpperCamelCase__ : Union[str, Any] = None UpperCamelCase__ : Optional[int] = LmSeqsDataset(params=lowerCamelCase_ , data=lowerCamelCase_) logger.info('Data loader created.') # STUDENT # logger.info(f'Loading student config from {args.student_config}') UpperCamelCase__ : Optional[Any] = student_config_class.from_pretrained(args.student_config) UpperCamelCase__ : str = True if args.student_pretrained_weights is not None: logger.info(f'Loading pretrained weights from {args.student_pretrained_weights}') UpperCamelCase__ : Dict = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowerCamelCase_) else: UpperCamelCase__ : Optional[Any] = student_model_class(lowerCamelCase_) if args.n_gpu > 0: student.to(f'cuda:{args.local_rank}') logger.info('Student loaded.') # TEACHER # UpperCamelCase__ : Union[str, Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowerCamelCase_) if args.n_gpu > 0: teacher.to(f'cuda:{args.local_rank}') logger.info(f'Teacher loaded from {args.teacher_name}.') # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowerCamelCase_ , lowerCamelCase_) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowerCamelCase_ , lowerCamelCase_) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCamelCase__ : List[Any] = Distiller( params=lowerCamelCase_ , dataset=lowerCamelCase_ , token_probs=lowerCamelCase_ , student=lowerCamelCase_ , teacher=lowerCamelCase_) distiller.train() logger.info('Let\'s go get some drinks.') if __name__ == "__main__": main()
596
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowercase (__lowerCamelCase ): _lowerCamelCase = (DDIMParallelScheduler,) _lowerCamelCase = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def __UpperCamelCase ( self : str , **UpperCAmelCase_ : Union[str, Any]): UpperCamelCase__ : Optional[int] = { 'num_train_timesteps': 1_000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**UpperCAmelCase_) return config def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : List[Any] = self.scheduler_classes[0] UpperCamelCase__ : Optional[Any] = self.get_scheduler_config(**UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = scheduler_class(**UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : Dict = 10, 0.0 UpperCamelCase__ : Any = self.dummy_model() UpperCamelCase__ : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase_) for t in scheduler.timesteps: UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Tuple = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_).prev_sample return sample def __UpperCamelCase ( self : Any): for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def __UpperCamelCase ( self : str): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCAmelCase_) UpperCamelCase__ : Any = self.scheduler_classes[0] UpperCamelCase__ : List[Any] = self.get_scheduler_config(steps_offset=1) UpperCamelCase__ : Any = scheduler_class(**UpperCAmelCase_) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1])) def __UpperCamelCase ( self : Any): for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def __UpperCamelCase ( self : Any): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def __UpperCamelCase ( self : Tuple): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCAmelCase_) def __UpperCamelCase ( self : Dict): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCAmelCase_) def __UpperCamelCase ( self : int): self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def __UpperCamelCase ( self : Tuple): for t in [1, 10, 49]: self.check_over_forward(time_step=UpperCAmelCase_) def __UpperCamelCase ( self : int): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500]): self.check_over_forward(time_step=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any]): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=UpperCAmelCase_ , eta=UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Any = self.scheduler_classes[0] UpperCamelCase__ : Optional[int] = self.get_scheduler_config() UpperCamelCase__ : Tuple = scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400) - 0.1_47_71)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960) - 0.3_24_60)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486) - 0.0_09_79)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998) - 0.02)) < 1e-5 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Union[str, Any] = self.scheduler_classes[0] UpperCamelCase__ : Optional[Any] = self.get_scheduler_config() UpperCamelCase__ : Optional[Any] = scheduler_class(**UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : str = 10, 0.0 scheduler.set_timesteps(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.dummy_model() UpperCamelCase__ : Optional[Any] = self.dummy_sample_deter UpperCamelCase__ : Optional[Any] = self.dummy_sample_deter + 0.1 UpperCamelCase__ : str = self.dummy_sample_deter - 0.1 UpperCamelCase__ : List[Any] = samplea.shape[0] UpperCamelCase__ : List[str] = torch.stack([samplea, samplea, samplea] , dim=0) UpperCamelCase__ : Optional[Any] = torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) UpperCamelCase__ : List[str] = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) UpperCamelCase__ : List[str] = scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , UpperCAmelCase_) UpperCamelCase__ : Any = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : Union[str, Any] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 11_47.79_04) < 1e-2 assert abs(result_mean.item() - 0.49_82) < 1e-3 def __UpperCamelCase ( self : str): UpperCamelCase__ : int = self.full_loop() UpperCamelCase__ : Any = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : List[Any] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_72.00_67) < 1e-2 assert abs(result_mean.item() - 0.22_39_67) < 1e-3 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Tuple = self.full_loop(prediction_type='v_prediction') UpperCamelCase__ : Union[str, Any] = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : Optional[int] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 52.53_02) < 1e-2 assert abs(result_mean.item() - 0.06_84) < 1e-3 def __UpperCamelCase ( self : Tuple): # We specify different beta, so that the first alpha is 0.99 UpperCamelCase__ : int = self.full_loop(set_alpha_to_one=UpperCAmelCase_ , beta_start=0.01) UpperCamelCase__ : Optional[int] = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : List[Any] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_49.82_95) < 1e-2 assert abs(result_mean.item() - 0.19_51) < 1e-3 def __UpperCamelCase ( self : str): # We specify different beta, so that the first alpha is 0.99 UpperCamelCase__ : Dict = self.full_loop(set_alpha_to_one=UpperCAmelCase_ , beta_start=0.01) UpperCamelCase__ : Union[str, Any] = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : str = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_49.07_84) < 1e-2 assert abs(result_mean.item() - 0.19_41) < 1e-3
596
1
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def A ( self : List[Any] , _A : Optional[Any]=0 ) -> Union[str, Any]: UpperCAmelCase_ : str = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(_A ) ) UpperCAmelCase_ : Optional[Any] = np.random.RandomState(_A ) UpperCAmelCase_ : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def A ( self : Any ) -> List[str]: UpperCAmelCase_ : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs() UpperCAmelCase_ : str = pipe(**_A ).images UpperCAmelCase_ : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) UpperCAmelCase_ : Optional[int] = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Tuple = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs() UpperCAmelCase_ : Optional[int] = pipe(**_A ).images UpperCAmelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) UpperCAmelCase_ : List[Any] = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def A ( self : int ) -> Optional[Any]: UpperCAmelCase_ : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) # warmup pass to apply optimizations UpperCAmelCase_ : Dict = pipe(**self.get_dummy_inputs() ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs() UpperCAmelCase_ : Any = pipe(**_A ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) UpperCAmelCase_ : Tuple = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs() UpperCAmelCase_ : Dict = pipe(**_A ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) UpperCAmelCase_ : List[str] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def A ( self : str ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inputs() UpperCAmelCase_ : Any = pipe(**_A ).images UpperCAmelCase_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) UpperCAmelCase_ : Tuple = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def A ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[int] = self.get_dummy_inputs() UpperCAmelCase_ : Dict = pipe(**_A ).images UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) UpperCAmelCase_ : List[Any] = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class snake_case__ ( unittest.TestCase): @property def A ( self : int ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = ort.SessionOptions() UpperCAmelCase_ : Tuple = False return options def A ( self : List[Any] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) UpperCAmelCase_ : Tuple = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default UpperCAmelCase_ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_A , feature_extractor=_A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[Any] = '''A fantasy landscape, trending on artstation''' UpperCAmelCase_ : Optional[int] = np.random.RandomState(0 ) UpperCAmelCase_ : Optional[int] = pipe( prompt=_A , image=_A , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_A , output_type='''np''' , ) UpperCAmelCase_ : Optional[Any] = output.images UpperCAmelCase_ : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) UpperCAmelCase_ : str = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def A ( self : Any ) -> Optional[int]: UpperCAmelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) UpperCAmelCase_ : Any = init_image.resize((7_68, 5_12) ) UpperCAmelCase_ : Tuple = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCAmelCase_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_A , safety_checker=_A , feature_extractor=_A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Optional[int] = '''A fantasy landscape, trending on artstation''' UpperCAmelCase_ : Optional[Any] = np.random.RandomState(0 ) UpperCAmelCase_ : Optional[int] = pipe( prompt=_A , image=_A , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_A , output_type='''np''' , ) UpperCAmelCase_ : int = output.images UpperCAmelCase_ : Optional[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) UpperCAmelCase_ : Optional[int] = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
719
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( A : str , A : List[Any] , A : Tuple ) -> str: return params[F"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def __UpperCAmelCase ( A : int , A : Any , A : Dict , A : Any="attention" ) -> Union[str, Any]: UpperCAmelCase_ : Dict = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) UpperCAmelCase_ : int = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCAmelCase_ : Dict = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) UpperCAmelCase_ : Optional[int] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCAmelCase_ : List[Any] = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) UpperCAmelCase_ : int = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCAmelCase_ : Tuple = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) UpperCAmelCase_ : List[Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( A : Optional[Any] , A : Tuple , A : Optional[int] , A : str=False ) -> Dict: if split_mlp_wi: UpperCAmelCase_ : List[Any] = params[F"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] UpperCAmelCase_ : str = params[F"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] UpperCAmelCase_ : Tuple = (wi_a, wi_a) else: UpperCAmelCase_ : List[str] = params[F"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] UpperCAmelCase_ : Dict = params[F"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def __UpperCAmelCase ( A : Tuple , A : int , A : Optional[Any] , A : int ) -> Dict: return params[F"{prefix}/{prefix}/{layer_name}/scale"][:, i] def __UpperCAmelCase ( A : dict , *, A : int , A : bool , A : bool = False ) -> Any: UpperCAmelCase_ : int = traverse_util.flatten_dict(variables['''target'''] ) UpperCAmelCase_ : Optional[int] = {'''/'''.join(A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCAmelCase_ : int = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' , A ) UpperCAmelCase_ : Any = collections.OrderedDict() # Shared embeddings. UpperCAmelCase_ : int = old['''token_embedder/embedding'''] # Encoder. for i in range(A ): # Block i, layer 0 (Self Attention). UpperCAmelCase_ : List[str] = tax_layer_norm_lookup(A , A , '''encoder''' , '''pre_attention_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = tax_attention_lookup(A , A , '''encoder''' , '''attention''' ) UpperCAmelCase_ : int = layer_norm UpperCAmelCase_ : Union[str, Any] = k.T UpperCAmelCase_ : str = o.T UpperCAmelCase_ : List[Any] = q.T UpperCAmelCase_ : Dict = v.T # Block i, layer 1 (MLP). UpperCAmelCase_ : str = tax_layer_norm_lookup(A , A , '''encoder''' , '''pre_mlp_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = tax_mlp_lookup(A , A , '''encoder''' , A ) UpperCAmelCase_ : List[Any] = layer_norm if split_mlp_wi: UpperCAmelCase_ : Dict = wi[0].T UpperCAmelCase_ : Dict = wi[1].T else: UpperCAmelCase_ : Tuple = wi.T UpperCAmelCase_ : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase_ : Optional[Any] = tax_relpos_bias_lookup( A , A , '''encoder''' ).T UpperCAmelCase_ : Any = old['''encoder/encoder_norm/scale'''] if not scalable_attention: UpperCAmelCase_ : Optional[Any] = tax_relpos_bias_lookup( A , 0 , '''encoder''' ).T UpperCAmelCase_ : List[str] = tax_relpos_bias_lookup( A , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(A ): # Block i, layer 0 (Self Attention). UpperCAmelCase_ : Optional[int] = tax_layer_norm_lookup(A , A , '''decoder''' , '''pre_self_attention_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = tax_attention_lookup(A , A , '''decoder''' , '''self_attention''' ) UpperCAmelCase_ : int = layer_norm UpperCAmelCase_ : Any = k.T UpperCAmelCase_ : Optional[int] = o.T UpperCAmelCase_ : List[Any] = q.T UpperCAmelCase_ : str = v.T # Block i, layer 1 (Cross Attention). UpperCAmelCase_ : str = tax_layer_norm_lookup(A , A , '''decoder''' , '''pre_cross_attention_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = tax_attention_lookup(A , A , '''decoder''' , '''encoder_decoder_attention''' ) UpperCAmelCase_ : Any = layer_norm UpperCAmelCase_ : Optional[Any] = k.T UpperCAmelCase_ : Union[str, Any] = o.T UpperCAmelCase_ : List[str] = q.T UpperCAmelCase_ : Any = v.T # Block i, layer 2 (MLP). UpperCAmelCase_ : Dict = tax_layer_norm_lookup(A , A , '''decoder''' , '''pre_mlp_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = tax_mlp_lookup(A , A , '''decoder''' , A ) UpperCAmelCase_ : Optional[int] = layer_norm if split_mlp_wi: UpperCAmelCase_ : Optional[int] = wi[0].T UpperCAmelCase_ : int = wi[1].T else: UpperCAmelCase_ : Any = wi.T UpperCAmelCase_ : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase_ : List[str] = tax_relpos_bias_lookup(A , A , '''decoder''' ).T UpperCAmelCase_ : Optional[Any] = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCAmelCase_ : int = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( A : Tuple , A : bool ) -> List[str]: UpperCAmelCase_ : str = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCAmelCase_ : Optional[Any] = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCAmelCase_ : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) UpperCAmelCase_ : int = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( A : Any , A : Optional[Any] , A : Optional[Any] , A : str , A : Optional[int] ) -> Dict: UpperCAmelCase_ : List[str] = checkpoints.load_tax_checkpoint(A ) UpperCAmelCase_ : str = convert_tax_to_pytorch( A , num_layers=config.num_layers , is_encoder_only=A , scalable_attention=A ) UpperCAmelCase_ : Union[str, Any] = make_state_dict(A , A ) model.load_state_dict(A , strict=A ) def __UpperCAmelCase ( A : str , A : int , A : List[str] , A : bool = False , A : bool = False , ) -> Any: UpperCAmelCase_ : Union[str, Any] = MTaConfig.from_json_file(A ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCAmelCase_ : Dict = UMTaEncoderModel(A ) else: UpperCAmelCase_ : Dict = UMTaForConditionalGeneration(A ) # Load weights from tf checkpoint load_tax_weights_in_ta(A , A , A , A , A ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(A ) # Verify that we can load the checkpoint. model.from_pretrained(A ) print('''Done''' ) if __name__ == "__main__": _UpperCamelCase : Optional[Any] = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) _UpperCamelCase : Optional[int] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
216
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def lowerCAmelCase__(__snake_case ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = 384 if "tiny" in model_name: lowerCamelCase__ = [3, 3, 9, 3] lowerCamelCase__ = [96, 192, 384, 768] if "small" in model_name: lowerCamelCase__ = [3, 3, 27, 3] lowerCamelCase__ = [96, 192, 384, 768] if "base" in model_name: lowerCamelCase__ = [3, 3, 27, 3] lowerCamelCase__ = [128, 256, 512, 1024] lowerCamelCase__ = 512 if "large" in model_name: lowerCamelCase__ = [3, 3, 27, 3] lowerCamelCase__ = [192, 384, 768, 1536] lowerCamelCase__ = 768 if "xlarge" in model_name: lowerCamelCase__ = [3, 3, 27, 3] lowerCamelCase__ = [256, 512, 1024, 2048] lowerCamelCase__ = 1024 # set label information lowerCamelCase__ = 150 lowerCamelCase__ = '''huggingface/label-files''' lowerCamelCase__ = '''ade20k-id2label.json''' lowerCamelCase__ = json.load(open(hf_hub_download(__snake_case ,__snake_case ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase__ = {int(__snake_case ): v for k, v in idalabel.items()} lowerCamelCase__ = {v: k for k, v in idalabel.items()} lowerCamelCase__ = ConvNextConfig( depths=__snake_case ,hidden_sizes=__snake_case ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) lowerCamelCase__ = UperNetConfig( backbone_config=__snake_case ,auxiliary_in_channels=__snake_case ,num_labels=__snake_case ,idalabel=__snake_case ,labelaid=__snake_case ,) return config def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' lowerCamelCase__ = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ = dct.pop(__snake_case ) lowerCamelCase__ = val def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } lowerCamelCase__ = model_name_to_url[model_name] lowerCamelCase__ = torch.hub.load_state_dict_from_url(__snake_case ,map_location='''cpu''' )['''state_dict'''] lowerCamelCase__ = get_upernet_config(__snake_case ) lowerCamelCase__ = UperNetForSemanticSegmentation(__snake_case ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase__ = state_dict.pop(__snake_case ) if "bn" in key: lowerCamelCase__ = key.replace('''bn''' ,'''batch_norm''' ) lowerCamelCase__ = val # rename keys lowerCamelCase__ = create_rename_keys(__snake_case ) for src, dest in rename_keys: rename_key(__snake_case ,__snake_case ,__snake_case ) model.load_state_dict(__snake_case ) # verify on image lowerCamelCase__ = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' lowerCamelCase__ = Image.open(requests.get(__snake_case ,stream=__snake_case ).raw ).convert('''RGB''' ) lowerCamelCase__ = SegformerImageProcessor() lowerCamelCase__ = processor(__snake_case ,return_tensors='''pt''' ).pixel_values with torch.no_grad(): lowerCamelCase__ = model(__snake_case ) if model_name == "upernet-convnext-tiny": lowerCamelCase__ = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": lowerCamelCase__ = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": lowerCamelCase__ = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": lowerCamelCase__ = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": lowerCamelCase__ = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print('''Logits:''' ,outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] ,__snake_case ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__snake_case ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__snake_case ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f"""upernet-convnext-{size}""" for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _a = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
481
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = '''hf-internal-testing/tiny-random-t5''' lowerCamelCase__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) lowerCamelCase__ = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ) lowerCamelCase__ = tokenizer('''This is me''' , return_tensors='''pt''' ) lowerCamelCase__ = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowerCamelCase__ = model.generate(**__lowerCAmelCase ) lowerCamelCase__ = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) lowerCamelCase__ = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowerCamelCase__ = model_reloaded.generate(**__lowerCAmelCase ) self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = '''hf-internal-testing/tiny-random-t5''' lowerCamelCase__ = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ) lowerCamelCase__ = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCAmelCase ): model.save_pretrained(__lowerCAmelCase ) lowerCamelCase__ = model.reverse_bettertransformer() model.save_pretrained(__lowerCAmelCase )
481
1
import os import string import sys _lowerCamelCase : Optional[Any] = 1 << 8 _lowerCamelCase : List[Any] = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } _lowerCamelCase : Union[str, Any] = KEYMAP['''up'''] _lowerCamelCase : List[Any] = KEYMAP['''left'''] if sys.platform == "win32": _lowerCamelCase : Optional[int] = [] _lowerCamelCase : List[str] = { b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): _lowerCamelCase : Optional[int] = ord(str(i)) def __lowerCamelCase (): '''simple docstring''' if os.name == "nt": import msvcrt SCREAMING_SNAKE_CASE = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke SCREAMING_SNAKE_CASE = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): SCREAMING_SNAKE_CASE = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: SCREAMING_SNAKE_CASE = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) SCREAMING_SNAKE_CASE = chr(KEYMAP["esc"] ) except KeyError: SCREAMING_SNAKE_CASE = cha[1] else: SCREAMING_SNAKE_CASE = ch.decode(lowercase__ ) else: SCREAMING_SNAKE_CASE = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty SCREAMING_SNAKE_CASE = sys.stdin.fileno() SCREAMING_SNAKE_CASE = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) SCREAMING_SNAKE_CASE = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def __lowerCamelCase (): '''simple docstring''' SCREAMING_SNAKE_CASE = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: SCREAMING_SNAKE_CASE = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: SCREAMING_SNAKE_CASE = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
719
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any]=7 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=18 , _UpperCamelCase : Tuple=30 , _UpperCamelCase : Optional[int]=400 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : int=True , _UpperCamelCase : Optional[int]=[0.5, 0.5, 0.5] , _UpperCamelCase : List[str]=[0.5, 0.5, 0.5] , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = size if size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std def __snake_case( self : List[Any] ) -> Any: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( a , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __snake_case( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = DPTImageProcessingTester(self ) @property def __snake_case( self : List[Any] ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __snake_case( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "size" ) ) def __snake_case( self : Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def __snake_case( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case( self : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
647
0
from __future__ import annotations def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Tuple = get_failure_array(lowercase__ ) # 2) Step through text searching for pattern __lowerCAmelCase, __lowerCAmelCase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowercase__ ): if pattern[j] == text[i]: if j == (len(lowercase__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowerCAmelCase : Optional[Any] = failure[j - 1] continue i += 1 return False def _lowercase ( lowercase__ ): __lowerCAmelCase : Dict = [0] __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : str = 1 while j < len(lowercase__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowerCAmelCase : Optional[Any] = failure[i - 1] continue j += 1 failure.append(lowercase__ ) return failure if __name__ == "__main__": # Test 1) _UpperCamelCase = "abc1abc12" _UpperCamelCase = "alskfjaldsabc1abc1abc12k23adsfabcabc" _UpperCamelCase = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) _UpperCamelCase = "ABABX" _UpperCamelCase = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) _UpperCamelCase = "AAAB" _UpperCamelCase = "ABAAAAAB" assert kmp(pattern, text) # Test 4) _UpperCamelCase = "abcdabcy" _UpperCamelCase = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) _UpperCamelCase = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
492
from __future__ import annotations import math def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(lowercase__ ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , lowercase__ , lowercase__ , lowercase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowercase__ , lowercase__ , lowercase__ ) , ) return min( minimax(depth + 1 , node_index * 2 , lowercase__ , lowercase__ , lowercase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowercase__ , lowercase__ , lowercase__ ) , ) def _lowercase ( ): __lowerCAmelCase : Any = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] __lowerCAmelCase : int = math.log(len(lowercase__ ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , lowercase__ , lowercase__ , lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
492
1
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase (_UpperCamelCase , unittest.TestCase ): '''simple docstring''' a = CTRLTokenizer a = False a = False def lowerCAmelCase_ ( self : List[str] ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] SCREAMING_SNAKE_CASE__ = dict(zip(__a , range(len(__a ) ) ) ) SCREAMING_SNAKE_CASE__ = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] SCREAMING_SNAKE_CASE__ = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def lowerCAmelCase_ ( self : Optional[int] , **_snake_case : List[Any] ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase_ ( self : str , _snake_case : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ = "adapt react readapt apt" SCREAMING_SNAKE_CASE__ = "adapt react readapt apt" return input_text, output_text def lowerCAmelCase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ = "adapt react readapt apt" SCREAMING_SNAKE_CASE__ = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) SCREAMING_SNAKE_CASE__ = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
707
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _A = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
538
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) _lowerCAmelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def UpperCamelCase_( _snake_case : str ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __a =model_type_to_module_name(_snake_case ) __a =importlib.import_module(F'.{module_name}' , 'transformers.models' ) try: return getattr(_snake_case , _snake_case ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_snake_case , '__name__' , _snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __a =importlib.import_module('transformers' ) if hasattr(_snake_case , _snake_case ): return getattr(_snake_case , _snake_case ) return None def UpperCamelCase_( _snake_case : Union[str, os.PathLike] , _snake_case : Optional[Union[str, os.PathLike]] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : Optional[Dict[str, str]] = None , _snake_case : Optional[Union[bool, str]] = None , _snake_case : Optional[str] = None , _snake_case : bool = False , **_snake_case : Any , ): """simple docstring""" __a =get_file_from_repo( _snake_case , _snake_case , cache_dir=_snake_case , force_download=_snake_case , resume_download=_snake_case , proxies=_snake_case , use_auth_token=_snake_case , revision=_snake_case , local_files_only=_snake_case , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(_snake_case , encoding='utf-8' ) as reader: return json.load(_snake_case ) class __magic_name__ : def __init__( self ) -> Dict: '''simple docstring''' raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(__snake_case ) def __magic_name__ ( cls , __snake_case , **__snake_case ) -> int: '''simple docstring''' __a =kwargs.pop('config' , __snake_case ) __a =kwargs.pop('trust_remote_code' , __snake_case ) __a =True __a , __a =ImageProcessingMixin.get_image_processor_dict(__snake_case , **__snake_case ) __a =config_dict.get('image_processor_type' , __snake_case ) __a =None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): __a =config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __a =config_dict.pop('feature_extractor_type' , __snake_case ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) __a =feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): __a =config_dict['auto_map']['AutoFeatureExtractor'] __a =feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__snake_case , __snake_case ): __a =AutoConfig.from_pretrained(__snake_case , **__snake_case ) # It could be in `config.image_processor_type`` __a =getattr(__snake_case , 'image_processor_type' , __snake_case ) if hasattr(__snake_case , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: __a =config.auto_map['AutoImageProcessor'] if image_processor_class is not None: __a =image_processor_class_from_name(__snake_case ) __a =image_processor_auto_map is not None __a =image_processor_class is not None or type(__snake_case ) in IMAGE_PROCESSOR_MAPPING __a =resolve_trust_remote_code( __snake_case , __snake_case , __snake_case , __snake_case ) if has_remote_code and trust_remote_code: __a =get_class_from_dynamic_module( __snake_case , __snake_case , **__snake_case ) __a =kwargs.pop('code_revision' , __snake_case ) if os.path.isdir(__snake_case ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__snake_case , **__snake_case ) elif image_processor_class is not None: return image_processor_class.from_dict(__snake_case , **__snake_case ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__snake_case ) in IMAGE_PROCESSOR_MAPPING: __a =IMAGE_PROCESSOR_MAPPING[type(__snake_case )] return image_processor_class.from_dict(__snake_case , **__snake_case ) raise ValueError( f'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' f'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' f'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def __magic_name__ ( __snake_case , __snake_case ) -> str: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(__snake_case , __snake_case )
242
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules( vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , safety_checker=__snake_case , feature_extractor=__snake_case , ) def __magic_name__ ( self , __snake_case = "auto" ) -> int: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.enable_attention_slicing(__snake_case ) @torch.no_grad() def __call__( self , __snake_case , __snake_case = 512 , __snake_case = 512 , __snake_case = 50 , __snake_case = 7.5 , __snake_case = None , __snake_case = 1 , __snake_case = 0.0 , __snake_case = None , __snake_case = None , __snake_case = "pil" , __snake_case = True , __snake_case = None , __snake_case = 1 , __snake_case = None , **__snake_case , ) -> Tuple: '''simple docstring''' if isinstance(__snake_case , __snake_case ): __a =1 elif isinstance(__snake_case , __snake_case ): __a =len(__snake_case ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(__snake_case )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(__snake_case )}.' ) # get prompt text embeddings __a =self.tokenizer( __snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __a =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __a =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __a =text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __a =self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __a , __a , __a =text_embeddings.shape __a =text_embeddings.repeat(1 , __snake_case , 1 ) __a =text_embeddings.view(bs_embed * num_images_per_prompt , __snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __a =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __a =42 if negative_prompt is None: __a =[''] elif type(__snake_case ) is not type(__snake_case ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(__snake_case )} !=' f' {type(__snake_case )}.' ) elif isinstance(__snake_case , __snake_case ): __a =[negative_prompt] elif batch_size != len(__snake_case ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(__snake_case )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: __a =negative_prompt __a =text_input_ids.shape[-1] __a =self.tokenizer( __snake_case , padding='max_length' , max_length=__snake_case , truncation=__snake_case , return_tensors='pt' , ) __a =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __a =uncond_embeddings.shape[1] __a =uncond_embeddings.repeat(__snake_case , __snake_case , 1 ) __a =uncond_embeddings.view(batch_size * num_images_per_prompt , __snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a =torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __a =(batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __a =(batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __a =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __a =torch.randn( __snake_case , generator=__snake_case , device='cpu' , dtype=__snake_case ).to(self.device ) __a =torch.randn(__snake_case , generator=__snake_case , device='cpu' , dtype=__snake_case ).to( self.device ) else: __a =torch.randn( __snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) __a =torch.randn(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __a =latents_reference.to(self.device ) __a =latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __a =(latents_shape[3] - latents_shape_reference[3]) // 2 __a =(latents_shape[2] - latents_shape_reference[2]) // 2 __a =latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __a =latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __a =0 if dx < 0 else dx __a =0 if dy < 0 else dy __a =max(-dx , 0 ) __a =max(-dy , 0 ) # import pdb # pdb.set_trace() __a =latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __a =self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __a =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a ='eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a ={} if accepts_eta: __a =eta for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance __a =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __a =self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual __a =self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample # perform guidance if do_classifier_free_guidance: __a , __a =noise_pred.chunk(2 ) __a =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __a =self.scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case , __snake_case ) __a =1 / 0.1_8215 * latents __a =self.vae.decode(__snake_case ).sample __a =(image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __a =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __a =self.feature_extractor(self.numpy_to_pil(__snake_case ) , return_tensors='pt' ).to( self.device ) __a , __a =self.safety_checker( images=__snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __a =None if output_type == "pil": __a =self.numpy_to_pil(__snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__snake_case , nsfw_content_detected=__snake_case )
242
1
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _UpperCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def __magic_name__( lowerCamelCase): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''', lowerCamelCase, ) if isinstance(lowerCamelCase, torch.Tensor): return image elif isinstance(lowerCamelCase, PIL.Image.Image): __lowerCAmelCase = [image] if isinstance(image[0], PIL.Image.Image): __lowerCAmelCase , __lowerCAmelCase = image[0].size __lowerCAmelCase , __lowerCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __lowerCAmelCase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] __lowerCAmelCase = np.concatenate(lowerCamelCase, axis=0) __lowerCAmelCase = np.array(lowerCamelCase).astype(np.floataa) / 2_55.0 __lowerCAmelCase = image.transpose(0, 3, 1, 2) __lowerCAmelCase = 2.0 * image - 1.0 __lowerCAmelCase = torch.from_numpy(lowerCamelCase) elif isinstance(image[0], torch.Tensor): __lowerCAmelCase = torch.cat(lowerCamelCase, dim=0) return image def __magic_name__( lowerCamelCase): if isinstance(lowerCamelCase, torch.Tensor): return mask elif isinstance(lowerCamelCase, PIL.Image.Image): __lowerCAmelCase = [mask] if isinstance(mask[0], PIL.Image.Image): __lowerCAmelCase , __lowerCAmelCase = mask[0].size __lowerCAmelCase , __lowerCAmelCase = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 __lowerCAmelCase = [np.array(m.convert('''L''').resize((w, h), resample=PIL_INTERPOLATION['''nearest''']))[None, :] for m in mask] __lowerCAmelCase = np.concatenate(lowerCamelCase, axis=0) __lowerCAmelCase = mask.astype(np.floataa) / 2_55.0 __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = torch.from_numpy(lowerCamelCase) elif isinstance(mask[0], torch.Tensor): __lowerCAmelCase = torch.cat(lowerCamelCase, dim=0) return mask class a__ ( __A ): """simple docstring""" __UpperCamelCase : UNetaDModel __UpperCamelCase : RePaintScheduler def __init__(self , __lowercase , __lowercase ): super().__init__() self.register_modules(unet=__lowercase , scheduler=__lowercase ) @torch.no_grad() def __call__(self , __lowercase , __lowercase , __lowercase = 2_50 , __lowercase = 0.0 , __lowercase = 10 , __lowercase = 10 , __lowercase = None , __lowercase = "pil" , __lowercase = True , ): __lowerCAmelCase = image __lowerCAmelCase = _preprocess_image(__lowercase ) __lowerCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCAmelCase = _preprocess_mask(__lowercase ) __lowerCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCAmelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowercase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __lowerCAmelCase = original_image.shape __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowercase , __lowercase , __lowercase , self.device ) __lowerCAmelCase = eta __lowerCAmelCase = self.scheduler.timesteps[0] + 1 __lowerCAmelCase = generator[0] if isinstance(__lowercase , __lowercase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __lowerCAmelCase = self.unet(__lowercase , __lowercase ).sample # compute previous image: x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ).prev_sample else: # compute the reverse: x_t-1 -> x_t __lowerCAmelCase = self.scheduler.undo_step(__lowercase , __lowercase , __lowercase ) __lowerCAmelCase = t __lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(__lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowercase )
474
'''simple docstring''' from PIL import Image def __magic_name__( lowerCamelCase, lowerCamelCase): def brightness(lowerCamelCase) -> float: return 1_2_8 + level + (c - 1_2_8) if not -2_55.0 <= level <= 2_55.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''') return img.point(lowerCamelCase) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 _UpperCAmelCase : str = change_brightness(img, 1_0_0) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
474
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __A ( UpperCamelCase__ ): UpperCamelCase = (PNDMScheduler,) UpperCamelCase = (("""num_inference_steps""", 50),) def A__ ( self :str , **__snake_case :Tuple ): '''simple docstring''' __magic_name__ : int ={ """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**__snake_case ) return config def A__ ( self :List[Any] , __snake_case :Union[str, Any]=0 , **__snake_case :Optional[int] ): '''simple docstring''' __magic_name__ : Any =dict(self.forward_default_kwargs ) __magic_name__ : str =kwargs.pop("""num_inference_steps""" , __snake_case ) __magic_name__ : int =self.dummy_sample __magic_name__ : Dict =0.1 * sample __magic_name__ : Tuple =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __magic_name__ : Optional[int] =self.get_scheduler_config(**__snake_case ) __magic_name__ : Dict =scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals __magic_name__ : Tuple =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) __magic_name__ : int =scheduler_class.from_pretrained(__snake_case ) new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals __magic_name__ : Union[str, Any] =dummy_past_residuals[:] __magic_name__ : int =scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample __magic_name__ : Tuple =new_scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __magic_name__ : Tuple =scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample __magic_name__ : str =new_scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A__ ( self :Tuple ): '''simple docstring''' pass def A__ ( self :Dict , __snake_case :Optional[int]=0 , **__snake_case :List[Any] ): '''simple docstring''' __magic_name__ : List[str] =dict(self.forward_default_kwargs ) __magic_name__ : Optional[int] =kwargs.pop("""num_inference_steps""" , __snake_case ) __magic_name__ : List[Any] =self.dummy_sample __magic_name__ : Optional[Any] =0.1 * sample __magic_name__ : Optional[int] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __magic_name__ : List[str] =self.get_scheduler_config() __magic_name__ : int =scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals (must be after setting timesteps) __magic_name__ : Union[str, Any] =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) __magic_name__ : Optional[int] =scheduler_class.from_pretrained(__snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residual (must be after setting timesteps) __magic_name__ : Any =dummy_past_residuals[:] __magic_name__ : List[str] =scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample __magic_name__ : Tuple =new_scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __magic_name__ : Any =scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample __magic_name__ : List[Any] =new_scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A__ ( self :Any , **__snake_case :int ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.scheduler_classes[0] __magic_name__ : Dict =self.get_scheduler_config(**__snake_case ) __magic_name__ : Tuple =scheduler_class(**__snake_case ) __magic_name__ : int =10 __magic_name__ : Tuple =self.dummy_model() __magic_name__ : Dict =self.dummy_sample_deter scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.prk_timesteps ): __magic_name__ : Optional[int] =model(__snake_case , __snake_case ) __magic_name__ : List[str] =scheduler.step_prk(__snake_case , __snake_case , __snake_case ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __magic_name__ : Optional[Any] =model(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =scheduler.step_plms(__snake_case , __snake_case , __snake_case ).prev_sample return sample def A__ ( self :str ): '''simple docstring''' __magic_name__ : Optional[Any] =dict(self.forward_default_kwargs ) __magic_name__ : Tuple =kwargs.pop("""num_inference_steps""" , __snake_case ) for scheduler_class in self.scheduler_classes: __magic_name__ : str =self.get_scheduler_config() __magic_name__ : Dict =scheduler_class(**__snake_case ) __magic_name__ : Optional[int] =self.dummy_sample __magic_name__ : int =0.1 * sample if num_inference_steps is not None and hasattr(__snake_case , """set_timesteps""" ): scheduler.set_timesteps(__snake_case ) elif num_inference_steps is not None and not hasattr(__snake_case , """set_timesteps""" ): __magic_name__ : List[str] =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __magic_name__ : List[str] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __magic_name__ : int =dummy_past_residuals[:] __magic_name__ : Union[str, Any] =scheduler.step_prk(__snake_case , 0 , __snake_case , **__snake_case ).prev_sample __magic_name__ : int =scheduler.step_prk(__snake_case , 1 , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __magic_name__ : List[Any] =scheduler.step_plms(__snake_case , 0 , __snake_case , **__snake_case ).prev_sample __magic_name__ : str =scheduler.step_plms(__snake_case , 1 , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A__ ( self :Tuple ): '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=__snake_case ) def A__ ( self :int ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__snake_case ) __magic_name__ : str =self.scheduler_classes[0] __magic_name__ : Tuple =self.get_scheduler_config(steps_offset=1 ) __magic_name__ : Tuple =scheduler_class(**__snake_case ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def A__ ( self :Optional[int] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__snake_case ) def A__ ( self :str ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=__snake_case ) def A__ ( self :Optional[Any] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=__snake_case ) def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : str =27 for scheduler_class in self.scheduler_classes: __magic_name__ : Union[str, Any] =self.dummy_sample __magic_name__ : str =0.1 * sample __magic_name__ : List[str] =self.get_scheduler_config() __magic_name__ : Optional[int] =scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __magic_name__ : Dict =scheduler.step_prk(__snake_case , __snake_case , __snake_case ).prev_sample def A__ ( self :List[Any] ): '''simple docstring''' with self.assertRaises(__snake_case ): __magic_name__ : List[Any] =self.scheduler_classes[0] __magic_name__ : Optional[Any] =self.get_scheduler_config() __magic_name__ : List[str] =scheduler_class(**__snake_case ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Any =self.full_loop() __magic_name__ : int =torch.sum(torch.abs(__snake_case ) ) __magic_name__ : Optional[Any] =torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : List[Any] =self.full_loop(prediction_type="""v_prediction""" ) __magic_name__ : List[str] =torch.sum(torch.abs(__snake_case ) ) __magic_name__ : List[str] =torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple =self.full_loop(set_alpha_to_one=__snake_case , beta_start=0.01 ) __magic_name__ : Tuple =torch.sum(torch.abs(__snake_case ) ) __magic_name__ : List[Any] =torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Any =self.full_loop(set_alpha_to_one=__snake_case , beta_start=0.01 ) __magic_name__ : Union[str, Any] =torch.sum(torch.abs(__snake_case ) ) __magic_name__ : Any =torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
21
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __a: str = logging.get_logger(__name__) __a: str = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = '''focalnet''' def __init__( self : Any , lowerCamelCase : List[str]=224 , lowerCamelCase : Optional[int]=4 , lowerCamelCase : str=3 , lowerCamelCase : Any=96 , lowerCamelCase : Dict=False , lowerCamelCase : Tuple=[192, 384, 768, 768] , lowerCamelCase : Dict=[2, 2, 6, 2] , lowerCamelCase : str=[2, 2, 2, 2] , lowerCamelCase : str=[3, 3, 3, 3] , lowerCamelCase : str="gelu" , lowerCamelCase : int=4.0 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : Any=0.1 , lowerCamelCase : List[str]=False , lowerCamelCase : Dict=1E-4 , lowerCamelCase : Optional[int]=False , lowerCamelCase : Optional[int]=False , lowerCamelCase : int=False , lowerCamelCase : Dict=0.02 , lowerCamelCase : Tuple=1E-5 , lowerCamelCase : List[Any]=32 , lowerCamelCase : Tuple=None , lowerCamelCase : str=None , **lowerCamelCase : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = use_conv_embed _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = focal_levels _UpperCAmelCase = focal_windows _UpperCAmelCase = hidden_act _UpperCAmelCase = mlp_ratio _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_layerscale _UpperCAmelCase = layerscale_value _UpperCAmelCase = use_post_layernorm _UpperCAmelCase = use_post_layernorm_in_modulation _UpperCAmelCase = normalize_modulator _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = encoder_stride _UpperCAmelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
402
__a: List[Any] = tuple[float, float, float] __a: Optional[int] = tuple[float, float, float] def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Vectorad: _UpperCAmelCase = end_pointa[0] - end_pointa[0] _UpperCAmelCase = end_pointa[1] - end_pointa[1] _UpperCAmelCase = end_pointa[2] - end_pointa[2] return (x, y, z) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Vectorad: _UpperCAmelCase = ab[1] * ac[2] - ab[2] * ac[1] # *i _UpperCAmelCase = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _UpperCAmelCase = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> bool: return tuple(round(__snake_case , __snake_case ) for x in vector ) == (0, 0, 0) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case = 1_0 ) -> bool: _UpperCAmelCase = create_vector(__snake_case , __snake_case ) _UpperCAmelCase = create_vector(__snake_case , __snake_case ) return is_zero_vector(get_ad_vectors_cross(__snake_case , __snake_case ) , __snake_case )
402
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=30 , _UpperCamelCase=4_00 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=True , _UpperCamelCase=1 / 2_55 , _UpperCamelCase=True , ) -> Optional[Any]: """simple docstring""" __snake_case = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = do_normalize __snake_case = image_mean __snake_case = image_std __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_pad def a ( self ) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def a ( self , _UpperCamelCase , _UpperCamelCase=False ) -> List[Any]: """simple docstring""" if not batched: __snake_case = image_inputs[0] if isinstance(_UpperCamelCase , Image.Image ): __snake_case , __snake_case = image.size else: __snake_case , __snake_case = image.shape[1], image.shape[2] if w < h: __snake_case = int(self.size["""shortest_edge"""] * h / w ) __snake_case = self.size["""shortest_edge"""] elif w > h: __snake_case = self.size["""shortest_edge"""] __snake_case = int(self.size["""shortest_edge"""] * w / h ) else: __snake_case = self.size["""shortest_edge"""] __snake_case = self.size["""shortest_edge"""] else: __snake_case = [] for image in image_inputs: __snake_case , __snake_case = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __snake_case = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[0] )[0] __snake_case = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = DeformableDetrImageProcessor if is_vision_available() else None def a ( self ) -> Optional[int]: """simple docstring""" __snake_case = DeformableDetrImageProcessingTester(self ) @property def a ( self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a ( self ) -> Optional[int]: """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(_UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_UpperCamelCase , """do_rescale""" ) ) self.assertTrue(hasattr(_UpperCamelCase , """do_pad""" ) ) self.assertTrue(hasattr(_UpperCamelCase , """size""" ) ) def a ( self ) -> Optional[Any]: """simple docstring""" __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) __snake_case = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) def a ( self ) -> Optional[Any]: """simple docstring""" pass def a ( self ) -> Union[str, Any]: """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case , __snake_case = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) __snake_case = image_processing(_UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self ) -> Dict: """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case = image_processing(_UpperCamelCase , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self ) -> int: """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case = image_processing(_UpperCamelCase , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a ( self ) -> List[str]: """simple docstring""" __snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __snake_case = json.loads(f.read() ) __snake_case = {"""image_id""": 3_97_69, """annotations""": target} # encode them __snake_case = DeformableDetrImageProcessor() __snake_case = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , return_tensors="""pt""" ) # verify pixel values __snake_case = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , _UpperCamelCase ) __snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _UpperCamelCase , atol=1E-4 ) ) # verify area __snake_case = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _UpperCamelCase ) ) # verify boxes __snake_case = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _UpperCamelCase ) __snake_case = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _UpperCamelCase , atol=1E-3 ) ) # verify image_id __snake_case = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _UpperCamelCase ) ) # verify is_crowd __snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _UpperCamelCase ) ) # verify class_labels __snake_case = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _UpperCamelCase ) ) # verify orig_size __snake_case = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _UpperCamelCase ) ) # verify size __snake_case = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _UpperCamelCase ) ) @slow def a ( self ) -> List[str]: """simple docstring""" __snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __snake_case = json.loads(f.read() ) __snake_case = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} __snake_case = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __snake_case = DeformableDetrImageProcessor(format="""coco_panoptic""" ) __snake_case = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , masks_path=_UpperCamelCase , return_tensors="""pt""" ) # verify pixel values __snake_case = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , _UpperCamelCase ) __snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _UpperCamelCase , atol=1E-4 ) ) # verify area __snake_case = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _UpperCamelCase ) ) # verify boxes __snake_case = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _UpperCamelCase ) __snake_case = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _UpperCamelCase , atol=1E-3 ) ) # verify image_id __snake_case = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _UpperCamelCase ) ) # verify is_crowd __snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _UpperCamelCase ) ) # verify class_labels __snake_case = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _UpperCamelCase ) ) # verify masks __snake_case = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _UpperCamelCase ) # verify orig_size __snake_case = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _UpperCamelCase ) ) # verify size __snake_case = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _UpperCamelCase ) )
268
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCamelCase__ = re.compile(r'''\s+''') def lowerCamelCase__ ( __A :int ): """simple docstring""" return {"hash": hashlib.mda(re.sub(__A ,"""""" ,example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def lowerCamelCase__ ( __A :Any ): """simple docstring""" __snake_case = [len(__A ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(__A ), "line_max": max(__A )} def lowerCamelCase__ ( __A :Any ): """simple docstring""" __snake_case = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def lowerCamelCase__ ( __A :str ,__A :int ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def lowerCamelCase__ ( __A :Optional[int] ,__A :int=5 ): """simple docstring""" __snake_case = ["""auto-generated""", """autogenerated""", """automatically generated"""] __snake_case = example["""content"""].splitlines() for _, line in zip(range(__A ) ,__A ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase__ ( __A :int ,__A :int=5 ,__A :str=0.05 ): """simple docstring""" __snake_case = ["""unit tests""", """test file""", """configuration file"""] __snake_case = example["""content"""].splitlines() __snake_case = 0 __snake_case = 0 # first test for _, line in zip(range(__A ) ,__A ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __snake_case = example["""content"""].count("""\n""" ) __snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase__ ( __A :Dict ): """simple docstring""" __snake_case = ["""def """, """class """, """for """, """while """] __snake_case = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase__ ( __A :Dict ,__A :List[str]=4 ): """simple docstring""" __snake_case = example["""content"""].splitlines() __snake_case = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase__ ( __A :str ): """simple docstring""" __snake_case = tokenizer(example["""content"""] ,truncation=__A )["""input_ids"""] __snake_case = len(example["""content"""] ) / len(__A ) return {"ratio": ratio} def lowerCamelCase__ ( __A :Optional[Any] ): """simple docstring""" __snake_case = {} results.update(get_hash(__A ) ) results.update(line_stats(__A ) ) results.update(alpha_stats(__A ) ) results.update(char_token_ratio(__A ) ) results.update(is_autogenerated(__A ) ) results.update(is_config_or_test(__A ) ) results.update(has_no_keywords(__A ) ) results.update(has_few_assignments(__A ) ) return results def lowerCamelCase__ ( __A :int ,__A :str ,__A :Dict ): """simple docstring""" if not check_uniques(__A ,__A ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase__ ( __A :str ): """simple docstring""" with open(__A ,"""rb""" ) as f_in: with gzip.open(str(__A ) + """.gz""" ,"""wb""" ,compresslevel=6 ) as f_out: shutil.copyfileobj(__A ,__A ) os.unlink(__A ) # Settings UpperCamelCase__ = HfArgumentParser(PreprocessingArguments) UpperCamelCase__ = parser.parse_args() if args.num_workers is None: UpperCamelCase__ = multiprocessing.cpu_count() UpperCamelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCamelCase__ = time.time() UpperCamelCase__ = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing UpperCamelCase__ = time.time() UpperCamelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes UpperCamelCase__ = set(ds.unique('''hash''')) UpperCamelCase__ = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics UpperCamelCase__ = time.time() UpperCamelCase__ = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCamelCase__ = time.time() UpperCamelCase__ ,UpperCamelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file UpperCamelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) UpperCamelCase__ = output_dir / '''data''' data_dir.mkdir(exist_ok=True) UpperCamelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCamelCase__ = str(data_dir / F'file-{file_number+1:012}.json') UpperCamelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
268
1
class UpperCamelCase__ : '''simple docstring''' def __init__( self ) -> str: """simple docstring""" lowercase_ : List[Any] = {} def snake_case__ ( self ) -> Any: """simple docstring""" print(self.vertex ) for i in self.vertex: print(lowercase__, """ -> """, """ -> """.join([str(lowercase__ ) for j in self.vertex[i]] ) ) def snake_case__ ( self, snake_case__, snake_case__ ) -> Union[str, Any]: """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(lowercase__ ) else: # else make a new vertex lowercase_ : Tuple = [to_vertex] def snake_case__ ( self ) -> Tuple: """simple docstring""" lowercase_ : Optional[Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowercase__, lowercase__ ) def snake_case__ ( self, snake_case__, snake_case__ ) -> Any: """simple docstring""" lowercase_ : Tuple = True print(lowercase__, end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowercase__, lowercase__ ) if __name__ == "__main__": UpperCAmelCase_ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
702
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' __a : torch.FloatTensor class UpperCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' @register_to_config def __init__( self, snake_case__ = 6_55_36, snake_case__ = None, snake_case__ = 2, snake_case__ = 2, snake_case__ = 0, snake_case__ = "fourier", snake_case__ = True, snake_case__ = False, snake_case__ = 0.0, snake_case__ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"), snake_case__ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"), snake_case__ = "UNetMidBlock1D", snake_case__ = None, snake_case__ = (32, 32, 64), snake_case__ = None, snake_case__ = 8, snake_case__ = 1, snake_case__ = False, ) -> int: """simple docstring""" super().__init__() lowercase_ : str = sample_size # time if time_embedding_type == "fourier": lowercase_ : Optional[int] = GaussianFourierProjection( embedding_size=8, set_W_to_weight=snake_case__, log=snake_case__, flip_sin_to_cos=snake_case__ ) lowercase_ : Union[str, Any] = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowercase_ : int = Timesteps( block_out_channels[0], flip_sin_to_cos=snake_case__, downscale_freq_shift=snake_case__ ) lowercase_ : Union[str, Any] = block_out_channels[0] if use_timestep_embedding: lowercase_ : Any = block_out_channels[0] * 4 lowercase_ : Any = TimestepEmbedding( in_channels=snake_case__, time_embed_dim=snake_case__, act_fn=snake_case__, out_dim=block_out_channels[0], ) lowercase_ : Optional[int] = nn.ModuleList([] ) lowercase_ : List[Any] = None lowercase_ : str = nn.ModuleList([] ) lowercase_ : List[Any] = None # down lowercase_ : Any = in_channels for i, down_block_type in enumerate(snake_case__ ): lowercase_ : Dict = output_channel lowercase_ : List[str] = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowercase_ : List[Any] = i == len(snake_case__ ) - 1 lowercase_ : List[Any] = get_down_block( snake_case__, num_layers=snake_case__, in_channels=snake_case__, out_channels=snake_case__, temb_channels=block_out_channels[0], add_downsample=not is_final_block or downsample_each_block, ) self.down_blocks.append(snake_case__ ) # mid lowercase_ : Tuple = get_mid_block( snake_case__, in_channels=block_out_channels[-1], mid_channels=block_out_channels[-1], out_channels=block_out_channels[-1], embed_dim=block_out_channels[0], num_layers=snake_case__, add_downsample=snake_case__, ) # up lowercase_ : int = list(reversed(snake_case__ ) ) lowercase_ : Dict = reversed_block_out_channels[0] if out_block_type is None: lowercase_ : str = out_channels else: lowercase_ : Dict = block_out_channels[0] for i, up_block_type in enumerate(snake_case__ ): lowercase_ : List[str] = output_channel lowercase_ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(snake_case__ ) - 1 else final_upsample_channels ) lowercase_ : List[Any] = i == len(snake_case__ ) - 1 lowercase_ : Optional[int] = get_up_block( snake_case__, num_layers=snake_case__, in_channels=snake_case__, out_channels=snake_case__, temb_channels=block_out_channels[0], add_upsample=not is_final_block, ) self.up_blocks.append(snake_case__ ) lowercase_ : Tuple = output_channel # out lowercase_ : Optional[int] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32 ) lowercase_ : List[str] = get_out_block( out_block_type=snake_case__, num_groups_out=snake_case__, embed_dim=block_out_channels[0], out_channels=snake_case__, act_fn=snake_case__, fc_dim=block_out_channels[-1] // 4, ) def snake_case__ ( self, snake_case__, snake_case__, snake_case__ = True, ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" lowercase_ : List[Any] = timestep if not torch.is_tensor(snake_case__ ): lowercase_ : Any = torch.tensor([timesteps], dtype=torch.long, device=sample.device ) elif torch.is_tensor(snake_case__ ) and len(timesteps.shape ) == 0: lowercase_ : Any = timesteps[None].to(sample.device ) lowercase_ : Tuple = self.time_proj(snake_case__ ) if self.config.use_timestep_embedding: lowercase_ : Union[str, Any] = self.time_mlp(snake_case__ ) else: lowercase_ : Dict = timestep_embed[..., None] lowercase_ : List[Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowercase_ : Union[str, Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowercase_ : List[Any] = () for downsample_block in self.down_blocks: lowercase_ , lowercase_ : Union[str, Any] = downsample_block(hidden_states=snake_case__, temb=snake_case__ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowercase_ : List[Any] = self.mid_block(snake_case__, snake_case__ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowercase_ : List[str] = down_block_res_samples[-1:] lowercase_ : str = down_block_res_samples[:-1] lowercase_ : Dict = upsample_block(snake_case__, res_hidden_states_tuple=snake_case__, temb=snake_case__ ) # 5. post-process if self.out_block: lowercase_ : str = self.out_block(snake_case__, snake_case__ ) if not return_dict: return (sample,) return UNetaDOutput(sample=snake_case__ )
436
0
"""simple docstring""" from datetime import datetime as dt import os from github import Github _lowercase = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def _snake_case ( ): A = Github(os.environ['GITHUB_TOKEN'] ) A = g.get_repo('huggingface/transformers' ) A = repo.get_issues(state='open' ) for issue in open_issues: A = sorted([comment for comment in issue.get_comments()] , key=lambda snake_case__ : i.created_at , reverse=snake_case__ ) A = comments[0] if len(snake_case__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
91
"""simple docstring""" from __future__ import annotations def _snake_case ( snake_case__ : tuple[int, int] , snake_case__ : int ): A , A = position A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] A = [] for position in positions: A , A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(snake_case__ ) return permissible_positions def _snake_case ( snake_case__ : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _snake_case ( snake_case__ : list[list[int]] , snake_case__ : tuple[int, int] , snake_case__ : int ): if is_complete(snake_case__ ): return True for position in get_valid_pos(snake_case__ , len(snake_case__ ) ): A , A = position if board[y][x] == 0: A = curr + 1 if open_knight_tour_helper(snake_case__ , snake_case__ , curr + 1 ): return True A = 0 return False def _snake_case ( snake_case__ : int ): A = [[0 for i in range(snake_case__ )] for j in range(snake_case__ )] for i in range(snake_case__ ): for j in range(snake_case__ ): A = 1 if open_knight_tour_helper(snake_case__ , (i, j) , 1 ): return board A = 0 A = F'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
91
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : List[str] = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = sum(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowerCAmelCase : List[Any] = True for i in range(1 , s + 1 ): lowerCAmelCase : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowerCAmelCase : Dict = dp[i][j - 1] if arr[i - 1] <= j: lowerCAmelCase : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowerCAmelCase : int = s - 2 * j break return diff
681
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
1
"""simple docstring""" from __future__ import annotations def A_ ( snake_case__ ) -> bool: _UpperCamelCase :Tuple = str(snake_case__ ) return n == n[::-1] def A_ ( snake_case__ = 1_00_00_00 ) -> int: _UpperCamelCase :List[Any] = 0 for i in range(1 , snake_case__ ): if is_palindrome(snake_case__ ) and is_palindrome(bin(snake_case__ ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
355
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase__ :Dict = """true""" def A_ ( snake_case__ , snake_case__=82 , snake_case__=16 ) -> List[Any]: set_seed(42 ) _UpperCamelCase :Dict = RegressionModel() _UpperCamelCase :Dict = deepcopy(snake_case__ ) _UpperCamelCase :List[Any] = RegressionDataset(length=snake_case__ ) _UpperCamelCase :Optional[int] = DataLoader(snake_case__ , batch_size=snake_case__ ) model.to(accelerator.device ) _UpperCamelCase , _UpperCamelCase :List[str] = accelerator.prepare(snake_case__ , snake_case__ ) return model, ddp_model, dataloader def A_ ( snake_case__ , snake_case__=False ) -> Optional[int]: _UpperCamelCase :Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) _UpperCamelCase :int = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(snake_case__ ): _UpperCamelCase :Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case__ , max_length=snake_case__ ) return outputs with accelerator.main_process_first(): _UpperCamelCase :Optional[int] = dataset.map( snake_case__ , batched=snake_case__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) _UpperCamelCase :Tuple = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case__ ): if use_longest: return tokenizer.pad(snake_case__ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(snake_case__ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return DataLoader(snake_case__ , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=16 ) def A_ ( snake_case__ , snake_case__ ) -> Tuple: _UpperCamelCase :Union[str, Any] = Accelerator(dispatch_batches=snake_case__ , split_batches=snake_case__ ) _UpperCamelCase :Any = get_dataloader(snake_case__ , not dispatch_batches ) _UpperCamelCase :Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=snake_case__ ) _UpperCamelCase , _UpperCamelCase :int = accelerator.prepare(snake_case__ , snake_case__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def A_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: _UpperCamelCase :Any = [] for batch in dataloader: _UpperCamelCase , _UpperCamelCase :List[Any] = batch.values() with torch.no_grad(): _UpperCamelCase :List[Any] = model(snake_case__ ) _UpperCamelCase , _UpperCamelCase :Optional[int] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _UpperCamelCase , _UpperCamelCase :Optional[Any] = [], [] for logit, targ in logits_and_targets: logits.append(snake_case__ ) targs.append(snake_case__ ) _UpperCamelCase , _UpperCamelCase :List[str] = torch.cat(snake_case__ ), torch.cat(snake_case__ ) return logits, targs def A_ ( snake_case__ , snake_case__=82 , snake_case__=False , snake_case__=False , snake_case__=16 ) -> Dict: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase :List[str] = get_basic_setup(snake_case__ , snake_case__ , snake_case__ ) _UpperCamelCase , _UpperCamelCase :Tuple = generate_predictions(snake_case__ , snake_case__ , snake_case__ ) assert ( len(snake_case__ ) == num_samples ), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case__ )}" def A_ ( snake_case__ = False , snake_case__ = False ) -> Optional[Any]: _UpperCamelCase :Any = evaluate.load('''glue''' , '''mrpc''' ) _UpperCamelCase , _UpperCamelCase :Optional[int] = get_mrpc_setup(snake_case__ , snake_case__ ) # First do baseline _UpperCamelCase , _UpperCamelCase , _UpperCamelCase :Tuple = setup['''no'''] model.to(snake_case__ ) model.eval() for batch in dataloader: batch.to(snake_case__ ) with torch.inference_mode(): _UpperCamelCase :str = model(**snake_case__ ) _UpperCamelCase :Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=snake_case__ , references=batch['''labels'''] ) _UpperCamelCase :int = metric.compute() # Then do distributed _UpperCamelCase , _UpperCamelCase , _UpperCamelCase :Optional[int] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): _UpperCamelCase :Dict = model(**snake_case__ ) _UpperCamelCase :str = outputs.logits.argmax(dim=-1 ) _UpperCamelCase :Union[str, Any] = batch['''labels'''] _UpperCamelCase , _UpperCamelCase :Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=snake_case__ , references=snake_case__ ) _UpperCamelCase :Optional[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def A_ ( ) -> Optional[Any]: _UpperCamelCase :int = Accelerator(split_batches=snake_case__ , dispatch_batches=snake_case__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(snake_case__ , snake_case__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _UpperCamelCase :Tuple = Accelerator(split_batches=snake_case__ , dispatch_batches=snake_case__ ) if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(snake_case__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) _UpperCamelCase :Any = Accelerator() test_torch_metrics(snake_case__ , 5_12 ) accelerator.state._reset_state() def A_ ( snake_case__ ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
355
1
import baseaa def lowerCAmelCase__ ( a__ ) ->bytes: '''simple docstring''' return baseaa.baaencode(string.encode("utf-8" ) ) def lowerCAmelCase__ ( a__ ) ->str: '''simple docstring''' return baseaa.baadecode(a__ ).decode("utf-8" ) if __name__ == "__main__": lowerCamelCase__ = '''Hello World!''' lowerCamelCase__ = baseaa_encode(test) print(encoded) lowerCamelCase__ = baseaa_decode(encoded) print(decoded)
82
lowerCamelCase__ = '''Alexander Joslin''' import operator as op from .stack import Stack def lowerCAmelCase__ ( a__ ) ->int: '''simple docstring''' _UpperCamelCase = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} _UpperCamelCase = Stack() _UpperCamelCase = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(a__ ) ) elif i in operators: # RULE 2 operator_stack.push(a__ ) elif i == ")": # RULE 4 _UpperCamelCase = operator_stack.peek() operator_stack.pop() _UpperCamelCase = operand_stack.peek() operand_stack.pop() _UpperCamelCase = operand_stack.peek() operand_stack.pop() _UpperCamelCase = operators[opr](a__ , a__ ) operand_stack.push(a__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase__ = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(F"{equation} = {dijkstras_two_stack_algorithm(equation)}")
82
1
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = k_size // 2 lowerCamelCase_ = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCamelCase_ = 1 / (2 * pi * sigma) * exp(-(square(lowercase ) + square(lowercase )) / (2 * square(lowercase )) ) return g def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : List[str] , lowercase : int ): '''simple docstring''' lowerCamelCase_ = image.shape[0], image.shape[1] # dst image height and width lowerCamelCase_ = height - k_size + 1 lowerCamelCase_ = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCamelCase_ = zeros((dst_height * dst_width, k_size * k_size) ) lowerCamelCase_ = 0 for i, j in product(range(lowercase ) , range(lowercase ) ): lowerCamelCase_ = ravel(image[i : i + k_size, j : j + k_size] ) lowerCamelCase_ = window row += 1 # turn the kernel into shape(k*k, 1) lowerCamelCase_ = gen_gaussian_kernel(lowercase , lowercase ) lowerCamelCase_ = ravel(lowercase ) # reshape and get the dst image lowerCamelCase_ = dot(lowercase , lowercase ).reshape(lowercase , lowercase ).astype(lowercase ) return dst if __name__ == "__main__": # read original image lowerCamelCase : str = imread(r"../image_data/lena.jpg") # turn image in gray scale value lowerCamelCase : Dict = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size lowerCamelCase : Optional[Any] = gaussian_filter(gray, 3, sigma=1) lowerCamelCase : Tuple = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
70
"""simple docstring""" import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel _lowerCAmelCase : Tuple = { """gwf-440k""": { """url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""", """sample_rate""": 48_000, """sample_size""": 65_536, }, """jmann-small-190k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""", """sample_rate""": 48_000, """sample_size""": 65_536, }, """jmann-large-580k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""", """sample_rate""": 48_000, """sample_size""": 131_072, }, """maestro-uncond-150k""": { """url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""", """sample_rate""": 16_000, """sample_size""": 65_536, }, """unlocked-uncond-250k""": { """url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""", """sample_rate""": 16_000, """sample_size""": 65_536, }, """honk-140k""": { """url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""", """sample_rate""": 16_000, """sample_size""": 65_536, }, } def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : List[str] )-> Optional[int]: '''simple docstring''' return torch.atana(snake_case , snake_case ) / math.pi * 2 def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : Dict = torch.sin(t * math.pi / 2 ) ** 2 UpperCAmelCase__ : Optional[int] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(snake_case , snake_case ) class lowerCAmelCase__ ( __magic_name__ ): pass class lowerCAmelCase__ ( nn.Module ): def __init__( self : Any , snake_case__ : str ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Any = DiffusionAttnUnetaD(snake_case__ , n_attn_layers=4 ) UpperCAmelCase__ : Any = deepcopy(self.diffusion ) UpperCAmelCase__ : Optional[Any] = torch.quasirandom.SobolEngine(1 , scramble=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> str: '''simple docstring''' UpperCAmelCase__ : Any = MODELS_MAP[model_name]["url"] os.system(f'wget {url} ./' ) return f'./{model_name}.ckpt' _lowerCAmelCase : List[Any] = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", } _lowerCAmelCase : Optional[Any] = { """8""": """resnets.0""", """9""": """attentions.0""", """10""": """resnets.1""", """11""": """attentions.1""", """12""": """resnets.2""", """13""": """attentions.2""", } _lowerCAmelCase : List[str] = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", """8""": """resnets.3""", """9""": """attentions.3""", """10""": """resnets.4""", """11""": """attentions.4""", """12""": """resnets.5""", """13""": """attentions.5""", } _lowerCAmelCase : List[str] = { """0""": """resnets.0""", """1""": """resnets.1""", """2""": """resnets.2""", """4""": """resnets.0""", """5""": """resnets.1""", """6""": """resnets.2""", } _lowerCAmelCase : Dict = { """skip""": """conv_skip""", """main.0""": """conv_1""", """main.1""": """group_norm_1""", """main.3""": """conv_2""", """main.4""": """group_norm_2""", } _lowerCAmelCase : List[Any] = { """norm""": """group_norm""", """qkv_proj""": ["""query""", """key""", """value"""], """out_proj""": ["""proj_attn"""], } def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple )-> Dict: '''simple docstring''' if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(f'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] )-> int: '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(snake_case ) and not isinstance(snake_case , snake_case ): return name.replace(snake_case , snake_case ) elif name.startswith(snake_case ): return [name.replace(snake_case , snake_case ) for v in value] raise ValueError(f'Attn error with {name}' ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Optional[Any]=13 )-> str: '''simple docstring''' UpperCAmelCase__ : Any = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) UpperCAmelCase__ : Tuple = 0 if string.startswith("net.3." ): depth += 1 UpperCAmelCase__ : Dict = string[6:] elif string.startswith("net." ): UpperCAmelCase__ : Tuple = string[4:] while string.startswith("main.7." ): depth += 1 UpperCAmelCase__ : Any = string[7:] if string.startswith("main." ): UpperCAmelCase__ : Union[str, Any] = string[5:] # mid block if string[:2].isdigit(): UpperCAmelCase__ : Optional[Any] = string[:2] UpperCAmelCase__ : int = string[2:] else: UpperCAmelCase__ : Optional[int] = string[0] UpperCAmelCase__ : Any = string[1:] if depth == max_depth: UpperCAmelCase__ : Any = MID_NUM_TO_LAYER[layer_num] UpperCAmelCase__ : int = "mid_block" elif depth > 0 and int(snake_case ) < 7: UpperCAmelCase__ : Optional[Any] = DOWN_NUM_TO_LAYER[layer_num] UpperCAmelCase__ : int = f'down_blocks.{depth}' elif depth > 0 and int(snake_case ) > 7: UpperCAmelCase__ : Optional[int] = UP_NUM_TO_LAYER[layer_num] UpperCAmelCase__ : Tuple = f'up_blocks.{max_depth - depth - 1}' elif depth == 0: UpperCAmelCase__ : Tuple = DEPTH_0_TO_LAYER[layer_num] UpperCAmelCase__ : Optional[Any] = f'up_blocks.{max_depth - 1}' if int(snake_case ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(f'Naming error with {input_string} and string_left: {string_left}.' ) UpperCAmelCase__ : List[Any] = string_left[1:] if "resnets" in new_layer: UpperCAmelCase__ : Optional[int] = convert_resconv_naming(snake_case ) elif "attentions" in new_layer: UpperCAmelCase__ : Optional[int] = convert_attn_naming(snake_case ) UpperCAmelCase__ : Any = new_string_left if not isinstance(snake_case , snake_case ): UpperCAmelCase__ : Tuple = prefix + "." + new_layer + "." + string_left else: UpperCAmelCase__ : str = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> Tuple: '''simple docstring''' UpperCAmelCase__ : str = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue UpperCAmelCase__ : Optional[int] = rename(snake_case ) # check if we need to transform from Conv => Linear for attention if isinstance(snake_case , snake_case ): UpperCAmelCase__ : Optional[Any] = transform_conv_attns(snake_case , snake_case , snake_case ) else: UpperCAmelCase__ : List[Any] = v return new_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : int )-> Union[str, Any]: '''simple docstring''' if len(snake_case ) == 1: if len(v.shape ) == 3: # weight UpperCAmelCase__ : Optional[int] = v[:, :, 0] else: # bias UpperCAmelCase__ : Any = v else: # qkv matrices UpperCAmelCase__ : Any = v.shape[0] UpperCAmelCase__ : Optional[Any] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: UpperCAmelCase__ : List[Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: UpperCAmelCase__ : Any = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] )-> Tuple: '''simple docstring''' UpperCAmelCase__ : Tuple = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) UpperCAmelCase__ : List[str] = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'Make sure to provide one of the official model names {MODELS_MAP.keys()}' UpperCAmelCase__ : Optional[int] = download(snake_case ) UpperCAmelCase__ : List[str] = MODELS_MAP[model_name]["sample_rate"] UpperCAmelCase__ : Dict = MODELS_MAP[model_name]["sample_size"] UpperCAmelCase__ : Optional[int] = Object() UpperCAmelCase__ : int = sample_size UpperCAmelCase__ : List[Any] = sample_rate UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = UNetaDModel(sample_size=snake_case , sample_rate=snake_case ) UpperCAmelCase__ : int = diffusers_model.state_dict() UpperCAmelCase__ : Optional[Any] = DiffusionUncond(snake_case ) orig_model.load_state_dict(torch.load(args.model_path , map_location=snake_case )["state_dict"] ) UpperCAmelCase__ : List[str] = orig_model.diffusion_ema.eval() UpperCAmelCase__ : Optional[int] = orig_model.state_dict() UpperCAmelCase__ : Any = rename_orig_weights(snake_case ) UpperCAmelCase__ : List[Any] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) UpperCAmelCase__ : Optional[int] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(snake_case ) == 0, f'Problem with {renamed_minus_diffusers}' assert all(k.endswith("kernel" ) for k in list(snake_case ) ), f'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": UpperCAmelCase__ : Union[str, Any] = value.squeeze() UpperCAmelCase__ : List[str] = value diffusers_model.load_state_dict(snake_case ) UpperCAmelCase__ : Any = 100 UpperCAmelCase__ : str = 33 UpperCAmelCase__ : Optional[int] = IPNDMScheduler(num_train_timesteps=snake_case ) UpperCAmelCase__ : Any = torch.manual_seed(snake_case ) UpperCAmelCase__ : List[str] = torch.randn([1, 2, config.sample_size] , generator=snake_case ).to(snake_case ) UpperCAmelCase__ : Dict = torch.linspace(1 , 0 , steps + 1 , device=snake_case )[:-1] UpperCAmelCase__ : List[str] = get_crash_schedule(snake_case ) UpperCAmelCase__ : List[str] = DanceDiffusionPipeline(unet=snake_case , scheduler=snake_case ) UpperCAmelCase__ : Optional[Any] = torch.manual_seed(33 ) UpperCAmelCase__ : int = pipe(num_inference_steps=snake_case , generator=snake_case ).audios UpperCAmelCase__ : Optional[Any] = sampling.iplms_sample(snake_case , snake_case , snake_case , {} ) UpperCAmelCase__ : Tuple = generated.clamp(-1 , 1 ) UpperCAmelCase__ : Optional[int] = (generated - audio).abs().sum() UpperCAmelCase__ : List[Any] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , snake_case ) print("Diff max" , snake_case ) assert diff_max < 1E-3, f'Diff max: {diff_max} is too much :-/' print(f'Conversion for {model_name} successful!' ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowerCAmelCase : Tuple = parser.parse_args() main(args)
438
0
from collections.abc import Sequence def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Sequence[float] , _SCREAMING_SNAKE_CASE : float ): return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Sequence[float] , _SCREAMING_SNAKE_CASE : float ): SCREAMING_SNAKE_CASE_ = 0.0 for coeff in reversed(_UpperCamelCase ): SCREAMING_SNAKE_CASE_ = result * x + coeff return result if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase__ : List[Any] = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
721
import pytest import datasets # Import fixture modules as plugins UpperCamelCase__ : Union[str, Any] = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = tmp_path_factory.getbasetemp() / 'cache' SCREAMING_SNAKE_CASE_ = test_hf_cache_home / 'datasets' SCREAMING_SNAKE_CASE_ = test_hf_cache_home / 'metrics' SCREAMING_SNAKE_CASE_ = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_SCREAMING_SNAKE_CASE ) ) @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE , scope='session' ) def _UpperCAmelCase ( ): """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _SCREAMING_SNAKE_CASE ) @pytest.fixture def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _SCREAMING_SNAKE_CASE )
620
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase : Tuple = "\\n\n" lowerCamelCase : int = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" lowerCamelCase : Any = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def a__ ( self : str , A_ : Union[str, Any] , A_ : Tuple , A_ : int = 16 , A_ : bool = True , A_ : Optional[int]=None ) -> Tuple: """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": lowerCamelCase_ = "cuda" else: lowerCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" lowerCamelCase_ = AutoModelForCausalLM.from_pretrained(a_ ) lowerCamelCase_ = model.to(a_ ) lowerCamelCase_ = AutoTokenizer.from_pretrained(a_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: lowerCamelCase_ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(a_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" lowerCamelCase_ = model.config.max_length - 1 else: lowerCamelCase_ = model.config.max_length lowerCamelCase_ = tokenizer( a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , return_tensors='pt' , return_attention_mask=a_ , ).to(a_ ) lowerCamelCase_ = encodings["input_ids"] lowerCamelCase_ = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." lowerCamelCase_ = [] lowerCamelCase_ = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(a_ ) , a_ ) ): lowerCamelCase_ = min(start_index + batch_size , len(a_ ) ) lowerCamelCase_ = encoded_texts[start_index:end_index] lowerCamelCase_ = attn_masks[start_index:end_index] if add_start_token: lowerCamelCase_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(a_ ) lowerCamelCase_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) lowerCamelCase_ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(a_ ), attn_mask] , dim=1 ) lowerCamelCase_ = encoded_batch with torch.no_grad(): lowerCamelCase_ = model(a_ , attention_mask=a_ ).logits lowerCamelCase_ = out_logits[..., :-1, :].contiguous() lowerCamelCase_ = labels[..., 1:].contiguous() lowerCamelCase_ = attn_mask[..., 1:].contiguous() lowerCamelCase_ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , a_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(a_ )}
70
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins __UpperCAmelCase = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def lowercase__ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ) -> str: '''simple docstring''' # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"] ): continue item.add_marker(pytest.mark.unit ) def lowercase__ ( lowerCAmelCase__ : List[Any] ) -> Any: '''simple docstring''' config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" ) @pytest.fixture(autouse=lowerCAmelCase__ ) def lowercase__ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ) -> List[str]: '''simple docstring''' # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? a__ : Dict = tmp_path_factory.getbasetemp() / "cache" a__ : int = test_hf_cache_home / "datasets" a__ : Tuple = test_hf_cache_home / "metrics" a__ : Any = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(lowerCAmelCase__ ) ) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(lowerCAmelCase__ ) ) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(lowerCAmelCase__ ) ) a__ : Optional[int] = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(lowerCAmelCase__ ) ) a__ : Tuple = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(lowerCAmelCase__ ) ) @pytest.fixture(autouse=lowerCAmelCase__ , scope="session" ) def lowercase__ ( ) -> Union[str, Any]: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCAmelCase__ ) def lowercase__ ( lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' # don't take tests into account when counting downloads monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , lowerCAmelCase__ ) @pytest.fixture def lowercase__ ( lowerCAmelCase__ : Optional[Any] ) -> str: '''simple docstring''' # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , lowerCAmelCase__ )
642
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP snake_case__ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case__ : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) ->Optional[Any]: _UpperCAmelCase =h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 _UpperCAmelCase =w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _a ( A__ ): """simple docstring""" def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): super().__init__() self.register_modules( text_encoder=_snake_case , tokenizer=_snake_case , unet=_snake_case , scheduler=_snake_case , movq=_snake_case , ) _UpperCAmelCase =2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): if latents is None: _UpperCAmelCase =randn_tensor(_snake_case , generator=_snake_case , device=_snake_case , dtype=_snake_case ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) _UpperCAmelCase =latents.to(_snake_case ) _UpperCAmelCase =latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , ): _UpperCAmelCase =len(_snake_case ) if isinstance(_snake_case , _snake_case ) else 1 # get prompt text embeddings _UpperCAmelCase =self.tokenizer( _snake_case , padding="max_length" , truncation=_snake_case , max_length=77 , return_attention_mask=_snake_case , add_special_tokens=_snake_case , return_tensors="pt" , ) _UpperCAmelCase =text_inputs.input_ids _UpperCAmelCase =self.tokenizer(_snake_case , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_snake_case , _snake_case ): _UpperCAmelCase =self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) _UpperCAmelCase =text_input_ids.to(_snake_case ) _UpperCAmelCase =text_inputs.attention_mask.to(_snake_case ) _UpperCAmelCase , _UpperCAmelCase =self.text_encoder( input_ids=_snake_case , attention_mask=_snake_case ) _UpperCAmelCase =prompt_embeds.repeat_interleave(_snake_case , dim=0 ) _UpperCAmelCase =text_encoder_hidden_states.repeat_interleave(_snake_case , dim=0 ) _UpperCAmelCase =text_mask.repeat_interleave(_snake_case , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase =42 if negative_prompt is None: _UpperCAmelCase =[""] * batch_size elif type(_snake_case ) is not type(_snake_case ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(_snake_case )} !=" F" {type(_snake_case )}." ) elif isinstance(_snake_case , _snake_case ): _UpperCAmelCase =[negative_prompt] elif batch_size != len(_snake_case ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(_snake_case )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: _UpperCAmelCase =negative_prompt _UpperCAmelCase =self.tokenizer( _snake_case , padding="max_length" , max_length=77 , truncation=_snake_case , return_attention_mask=_snake_case , add_special_tokens=_snake_case , return_tensors="pt" , ) _UpperCAmelCase =uncond_input.input_ids.to(_snake_case ) _UpperCAmelCase =uncond_input.attention_mask.to(_snake_case ) _UpperCAmelCase , _UpperCAmelCase =self.text_encoder( input_ids=_snake_case , attention_mask=_snake_case ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCAmelCase =negative_prompt_embeds.shape[1] _UpperCAmelCase =negative_prompt_embeds.repeat(1 , _snake_case ) _UpperCAmelCase =negative_prompt_embeds.view(batch_size * num_images_per_prompt , _snake_case ) _UpperCAmelCase =uncond_text_encoder_hidden_states.shape[1] _UpperCAmelCase =uncond_text_encoder_hidden_states.repeat(1 , _snake_case , 1 ) _UpperCAmelCase =uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _snake_case , -1 ) _UpperCAmelCase =uncond_text_mask.repeat_interleave(_snake_case , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase =torch.cat([negative_prompt_embeds, prompt_embeds] ) _UpperCAmelCase =torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) _UpperCAmelCase =torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def SCREAMING_SNAKE_CASE ( self , _snake_case=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase =torch.device(F"cuda:{gpu_id}" ) _UpperCAmelCase =[ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case=0 ): if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _UpperCAmelCase =torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=_snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCAmelCase =None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: _UpperCAmelCase , _UpperCAmelCase =cpu_offload_with_hook(_snake_case , _snake_case , prev_module_hook=_snake_case ) if self.safety_checker is not None: _UpperCAmelCase , _UpperCAmelCase =cpu_offload_with_hook(self.safety_checker , _snake_case , prev_module_hook=_snake_case ) # We'll offload the last model manually. _UpperCAmelCase =hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self ): if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(_snake_case , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_snake_case ) def __call__( self , _snake_case , _snake_case , _snake_case , _snake_case = None , _snake_case = 512 , _snake_case = 512 , _snake_case = 100 , _snake_case = 4.0 , _snake_case = 1 , _snake_case = None , _snake_case = None , _snake_case = "pil" , _snake_case = True , ): if isinstance(_snake_case , _snake_case ): _UpperCAmelCase =1 elif isinstance(_snake_case , _snake_case ): _UpperCAmelCase =len(_snake_case ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(_snake_case )}" ) _UpperCAmelCase =self._execution_device _UpperCAmelCase =batch_size * num_images_per_prompt _UpperCAmelCase =guidance_scale > 1.0 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =self._encode_prompt( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) if isinstance(_snake_case , _snake_case ): _UpperCAmelCase =torch.cat(_snake_case , dim=0 ) if isinstance(_snake_case , _snake_case ): _UpperCAmelCase =torch.cat(_snake_case , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase =image_embeds.repeat_interleave(_snake_case , dim=0 ) _UpperCAmelCase =negative_image_embeds.repeat_interleave(_snake_case , dim=0 ) _UpperCAmelCase =torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_snake_case ) self.scheduler.set_timesteps(_snake_case , device=_snake_case ) _UpperCAmelCase =self.scheduler.timesteps _UpperCAmelCase =self.unet.config.in_channels _UpperCAmelCase , _UpperCAmelCase =get_new_h_w(_snake_case , _snake_case , self.movq_scale_factor ) # create initial latent _UpperCAmelCase =self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _snake_case , _snake_case , _snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(_snake_case ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase ={"text_embeds": prompt_embeds, "image_embeds": image_embeds} _UpperCAmelCase =self.unet( sample=_snake_case , timestep=_snake_case , encoder_hidden_states=_snake_case , added_cond_kwargs=_snake_case , return_dict=_snake_case , )[0] if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase =noise_pred.split(latents.shape[1] , dim=1 ) _UpperCAmelCase , _UpperCAmelCase =noise_pred.chunk(2 ) _UpperCAmelCase , _UpperCAmelCase =variance_pred.chunk(2 ) _UpperCAmelCase =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCAmelCase =torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCAmelCase , _UpperCAmelCase =noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase =self.scheduler.step( _snake_case , _snake_case , _snake_case , generator=_snake_case , ).prev_sample # post-processing _UpperCAmelCase =self.movq.decode(_snake_case , force_not_quantize=_snake_case )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _UpperCAmelCase =image * 0.5 + 0.5 _UpperCAmelCase =image.clamp(0 , 1 ) _UpperCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCAmelCase =self.numpy_to_pil(_snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case )
592
from importlib import import_module from .logging import get_logger snake_case__ : Dict = get_logger(__name__) class _a : """simple docstring""" def __init__( self , _snake_case , _snake_case=None ): _UpperCAmelCase =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , _snake_case , getattr(_snake_case , _snake_case ) ) _UpperCAmelCase =module._original_module if isinstance(_snake_case , _PatchedModuleObj ) else module class _a : """simple docstring""" snake_case =[] def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case=None ): _UpperCAmelCase =obj _UpperCAmelCase =target _UpperCAmelCase =new _UpperCAmelCase =target.split("." )[0] _UpperCAmelCase ={} _UpperCAmelCase =attrs or [] def __enter__( self ): *_UpperCAmelCase , _UpperCAmelCase =self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(_snake_case ) ): try: _UpperCAmelCase =import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase =getattr(self.obj , _snake_case ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(_snake_case , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase =obj_attr # patch at top level setattr(self.obj , _snake_case , _PatchedModuleObj(_snake_case , attrs=self.attrs ) ) _UpperCAmelCase =getattr(self.obj , _snake_case ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(_snake_case , _snake_case , _PatchedModuleObj(getattr(_snake_case , _snake_case , _snake_case ) , attrs=self.attrs ) ) _UpperCAmelCase =getattr(_snake_case , _snake_case ) # finally set the target attribute setattr(_snake_case , _snake_case , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase =getattr(import_module(".".join(_snake_case ) ) , _snake_case ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , _snake_case ) is attr_value: _UpperCAmelCase =getattr(self.obj , _snake_case ) setattr(self.obj , _snake_case , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase =globals()["__builtins__"][target_attr] setattr(self.obj , _snake_case , self.new ) else: raise RuntimeError(F"Tried to patch attribute {target_attr} instead of a submodule." ) def __exit__( self , *_snake_case ): for attr in list(self.original ): setattr(self.obj , _snake_case , self.original.pop(_snake_case ) ) def SCREAMING_SNAKE_CASE ( self ): self.__enter__() self._active_patches.append(self ) def SCREAMING_SNAKE_CASE ( self ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
592
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowercase__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : AutoencoderKL , lowerCAmelCase__ : CLIPTextModel , lowerCAmelCase__ : CLIPTokenizer , lowerCAmelCase__ : UNetaDConditionModel , lowerCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase__ : StableDiffusionSafetyChecker , lowerCAmelCase__ : CLIPImageProcessor , ) -> Optional[Any]: '''simple docstring''' super().__init__() self.register_modules( vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' self.enable_attention_slicing(lowerCAmelCase__ ) @torch.no_grad() def __call__( self : Optional[Any] , lowerCAmelCase__ : Union[str, List[str]] , lowerCAmelCase__ : int = 512 , lowerCAmelCase__ : int = 512 , lowerCAmelCase__ : int = 50 , lowerCAmelCase__ : float = 7.5 , lowerCAmelCase__ : Optional[Union[str, List[str]]] = None , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : Optional[torch.Generator] = None , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , **lowerCAmelCase__ : Optional[int] , ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = 1 elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = len(lowerCAmelCase__ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(lowerCAmelCase__ )}.""" ) # get prompt text embeddings _UpperCamelCase = self.tokenizer( lowerCAmelCase__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) _UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: _UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_embeddings.shape _UpperCamelCase = text_embeddings.repeat(1 , lowerCAmelCase__ , 1 ) _UpperCamelCase = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _UpperCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _UpperCamelCase = 42 if negative_prompt is None: _UpperCamelCase = [''''''] elif type(lowerCAmelCase__ ) is not type(lowerCAmelCase__ ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase__ )} !=""" f""" {type(lowerCAmelCase__ )}.""" ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = [negative_prompt] elif batch_size != len(lowerCAmelCase__ ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase__ )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: _UpperCamelCase = negative_prompt _UpperCamelCase = text_input_ids.shape[-1] _UpperCamelCase = self.tokenizer( lowerCAmelCase__ , padding='''max_length''' , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='''pt''' , ) _UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCamelCase = uncond_embeddings.shape[1] _UpperCamelCase = uncond_embeddings.repeat(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) _UpperCamelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _UpperCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _UpperCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) _UpperCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _UpperCamelCase = torch.randn( lowerCAmelCase__ , generator=lowerCAmelCase__ , device='''cpu''' , dtype=lowerCAmelCase__ ).to(self.device ) _UpperCamelCase = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device='''cpu''' , dtype=lowerCAmelCase__ ).to( self.device ) else: _UpperCamelCase = torch.randn( lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) _UpperCamelCase = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _UpperCamelCase = latents_reference.to(self.device ) _UpperCamelCase = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images _UpperCamelCase = (latents_shape[3] - latents_shape_reference[3]) // 2 _UpperCamelCase = (latents_shape[2] - latents_shape_reference[2]) // 2 _UpperCamelCase = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx _UpperCamelCase = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy _UpperCamelCase = 0 if dx < 0 else dx _UpperCamelCase = 0 if dy < 0 else dy _UpperCamelCase = max(-dx , 0 ) _UpperCamelCase = max(-dy , 0 ) # import pdb # pdb.set_trace() _UpperCamelCase = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _UpperCamelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCamelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCamelCase = {} if accepts_eta: _UpperCamelCase = eta for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance _UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCamelCase = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual _UpperCamelCase = self.unet(lowerCAmelCase__ , lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ ).sample # perform guidance if do_classifier_free_guidance: _UpperCamelCase , _UpperCamelCase = noise_pred.chunk(2 ) _UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = 1 / 0.18215 * latents _UpperCamelCase = self.vae.decode(lowerCAmelCase__ ).sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: _UpperCamelCase = self.feature_extractor(self.numpy_to_pil(lowerCAmelCase__ ) , return_tensors='''pt''' ).to( self.device ) _UpperCamelCase , _UpperCamelCase = self.safety_checker( images=lowerCAmelCase__ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: _UpperCamelCase = None if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCAmelCase__ , nsfw_content_detected=lowerCAmelCase__ )
98
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : List[str] = 'conditional_detr' _A : List[Any] = ['past_key_values'] _A : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=3 , lowerCamelCase=3_00 , lowerCamelCase=6 , lowerCamelCase=20_48 , lowerCamelCase=8 , lowerCamelCase=6 , lowerCamelCase=20_48 , lowerCamelCase=8 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="relu" , lowerCamelCase=2_56 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.0_2 , lowerCamelCase=1.0 , lowerCamelCase=False , lowerCamelCase="sine" , lowerCamelCase="resnet50" , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=2 , lowerCamelCase=5 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=1 , lowerCamelCase=2 , lowerCamelCase=5 , lowerCamelCase=2 , lowerCamelCase=0.2_5 , **lowerCamelCase , ): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) snake_case__ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ = backbone_config.get("model_type" ) snake_case__ = CONFIG_MAPPING[backbone_model_type] snake_case__ = config_class.from_dict(lowerCamelCase ) snake_case__ = use_timm_backbone snake_case__ = backbone_config snake_case__ = num_channels snake_case__ = num_queries snake_case__ = d_model snake_case__ = encoder_ffn_dim snake_case__ = encoder_layers snake_case__ = encoder_attention_heads snake_case__ = decoder_ffn_dim snake_case__ = decoder_layers snake_case__ = decoder_attention_heads snake_case__ = dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = activation_function snake_case__ = init_std snake_case__ = init_xavier_std snake_case__ = encoder_layerdrop snake_case__ = decoder_layerdrop snake_case__ = encoder_layers snake_case__ = auxiliary_loss snake_case__ = position_embedding_type snake_case__ = backbone snake_case__ = use_pretrained_backbone snake_case__ = dilation # Hungarian matcher snake_case__ = class_cost snake_case__ = bbox_cost snake_case__ = giou_cost # Loss coefficients snake_case__ = mask_loss_coefficient snake_case__ = dice_loss_coefficient snake_case__ = cls_loss_coefficient snake_case__ = bbox_loss_coefficient snake_case__ = giou_loss_coefficient snake_case__ = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def A_ ( self ): return self.encoder_attention_heads @property def A_ ( self ): return self.d_model def A_ ( self ): snake_case__ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: snake_case__ = self.backbone_config.to_dict() snake_case__ = self.__class__.model_type return output class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Tuple = version.parse('1.11' ) @property def A_ ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def A_ ( self ): return 1e-5 @property def A_ ( self ): return 12
530
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) __magic_name__ = parser.parse_args() __magic_name__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
530
1
import math def UpperCamelCase__( UpperCamelCase__ : int )->list: A__ = [True] * n A__ = False A__ = False A__ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): A__ = i * 2 while index < n: A__ = False A__ = index + i A__ = [2] for i in range(3 , UpperCamelCase__ , 2 ): if is_prime[i]: primes.append(UpperCamelCase__ ) return primes def UpperCamelCase__( UpperCamelCase__ : int = 99_99_66_66_33_33 )->int: A__ = math.floor(math.sqrt(UpperCamelCase__ ) ) + 1_00 A__ = prime_sieve(UpperCamelCase__ ) A__ = 0 A__ = 0 A__ = primes[prime_index] while (last_prime**2) <= limit: A__ = primes[prime_index + 1] A__ = last_prime**2 A__ = next_prime**2 # Get numbers divisible by lps(current) A__ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A__ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A__ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A__ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
190
import pytest import datasets # Import fixture modules as plugins a__: Dict = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple )->List[str]: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def UpperCamelCase__( UpperCamelCase__ : Dict )->List[Any]: config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int )->Union[str, Any]: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? A__ = tmp_path_factory.getbasetemp() / '''cache''' A__ = test_hf_cache_home / '''datasets''' A__ = test_hf_cache_home / '''metrics''' A__ = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(UpperCamelCase__ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(UpperCamelCase__ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(UpperCamelCase__ ) ) A__ = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(UpperCamelCase__ ) ) A__ = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(UpperCamelCase__ ) ) @pytest.fixture(autouse=UpperCamelCase__ , scope='''session''' ) def UpperCamelCase__( )->int: datasets.disable_progress_bar() @pytest.fixture(autouse=UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : str )->Tuple: # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , UpperCamelCase__ ) @pytest.fixture def UpperCamelCase__( UpperCamelCase__ : List[Any] )->Optional[Any]: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , UpperCamelCase__ )
190
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' snake_case__ : Union[str, Any] = KandinskyVaaControlnetImgaImgPipeline snake_case__ : int = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] snake_case__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] snake_case__ : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : List[Any] = False @property def _UpperCamelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' return 32 @property def _UpperCamelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' return 32 @property def _UpperCamelCase ( self :Dict ) -> str: '''simple docstring''' return self.time_input_dim @property def _UpperCamelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' return self.time_input_dim * 4 @property def _UpperCamelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' return 100 @property def _UpperCamelCase ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) a__ = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } a__ = UNetaDConditionModel(**__magic_name__ ) return model @property def _UpperCamelCase ( self :Tuple ) -> List[str]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self :Tuple ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) a__ = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self :str ) -> int: '''simple docstring''' a__ = self.dummy_unet a__ = self.dummy_movq a__ = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00_085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } a__ = DDIMScheduler(**__magic_name__ ) a__ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _UpperCamelCase ( self :str , __magic_name__ :Dict , __magic_name__ :List[Any]=0 ) -> Any: '''simple docstring''' a__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) a__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __magic_name__ ) # create init_image a__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) a__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] a__ = Image.fromarray(np.uinta(__magic_name__ ) ).convert('''RGB''' ).resize((256, 256) ) # create hint a__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) if str(__magic_name__ ).startswith('''mps''' ): a__ = torch.manual_seed(__magic_name__ ) else: a__ = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a__ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _UpperCamelCase ( self :int ) -> str: '''simple docstring''' a__ = '''cpu''' a__ = self.get_dummy_components() a__ = self.pipeline_class(**__magic_name__ ) a__ = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a__ = pipe(**self.get_dummy_inputs(__magic_name__ ) ) a__ = output.images a__ = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] a__ = image[0, -3:, -3:, -1] a__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a__ = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self :Dict ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' a__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) a__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) a__ = init_image.resize((512, 512) ) a__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) a__ = torch.from_numpy(np.array(__magic_name__ ) ).float() / 255.0 a__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) a__ = '''A robot, 4k photo''' a__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) a__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) a__ = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) a__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) a__ , a__ = pipe_prior( __magic_name__ , image=__magic_name__ , strength=0.85 , generator=__magic_name__ , negative_prompt='''''' , ).to_tuple() a__ = pipeline( image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , hint=__magic_name__ , generator=__magic_name__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) a__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
158
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __lowerCAmelCase : Optional[int] = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def __snake_case ( UpperCamelCase , UpperCamelCase ) -> List[str]: """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __snake_case ( UpperCamelCase ) -> Union[str, Any]: """simple docstring""" a__ = _TestCommandArgs(dataset=UpperCamelCase , all_configs=UpperCamelCase , save_infos=UpperCamelCase ) a__ = TestCommand(*UpperCamelCase ) test_command.run() a__ = os.path.join(UpperCamelCase , '''README.md''' ) assert os.path.exists(UpperCamelCase ) a__ = DatasetInfosDict.from_directory(UpperCamelCase ) a__ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] , download_size=3_940_680 , dataset_size=2_589_981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: a__ , a__ = getattr(dataset_infos['''default'''] , UpperCamelCase ), getattr(expected_dataset_infos['''default'''] , UpperCamelCase ) if key == "num_bytes": assert is_apercent_close(UpperCamelCase , UpperCamelCase ) elif key == "splits": assert list(UpperCamelCase ) == list(UpperCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
158
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __a = logging.get_logger(__name__) class __a( _a ): """simple docstring""" def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> None: warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' ,_SCREAMING_SNAKE_CASE ,) super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
30
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''gpt_neox_japanese''' def __init__( self , lowercase__=3_2_0_0_0 , lowercase__=2_5_6_0 , lowercase__=3_2 , lowercase__=3_2 , lowercase__=4 , lowercase__="gelu" , lowercase__=1.0_0 , lowercase__=1_0_0_0_0 , lowercase__=2_0_4_8 , lowercase__=0.0_2 , lowercase__=1e-5 , lowercase__=True , lowercase__=3_1_9_9_6 , lowercase__=3_1_9_9_9 , lowercase__=0.1 , lowercase__=0.0 , **lowercase__ , ): super().__init__(bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : int = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Optional[int] = intermediate_multiple_size __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : str = rotary_pct __UpperCAmelCase : Any = rotary_emb_base __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Tuple = layer_norm_eps __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : str = attention_dropout __UpperCAmelCase : Any = hidden_dropout
462
0
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __magic_name__( lowerCamelCase): return (data["data"], data["target"]) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = XGBClassifier() classifier.fit(lowerCamelCase, lowerCamelCase) return classifier def __magic_name__( ): __lowerCAmelCase = load_iris() __lowerCAmelCase , __lowerCAmelCase = data_handling(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = train_test_split( lowerCamelCase, lowerCamelCase, test_size=0.25) __lowerCAmelCase = iris['''target_names'''] # Create an XGBoost Classifier from the training data __lowerCAmelCase = xgboost(lowerCamelCase, lowerCamelCase) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowerCamelCase, lowerCamelCase, lowerCamelCase, display_labels=lowerCamelCase, cmap='''Blues''', normalize='''true''', ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''') plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
713
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCAmelCase : str = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
474
0
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
178
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
0
import math import sys def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Tuple = '' try: with open(__A , 'rb' ) as binary_file: _lowerCAmelCase : Union[str, Any] = binary_file.read() for dat in data: _lowerCAmelCase : Optional[Any] = f'{dat:08b}' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = {'0': '0', '1': '1'} _lowerCAmelCase , _lowerCAmelCase : str = '', '' _lowerCAmelCase : Union[str, Any] = len(__A ) for i in range(len(__A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowerCAmelCase : List[Any] = lexicon[curr_string] result += last_match_id _lowerCAmelCase : Any = last_match_id + '0' if math.loga(__A ).is_integer(): _lowerCAmelCase : Any = {} for curr_key in list(__A ): _lowerCAmelCase : Dict = lexicon.pop(__A ) _lowerCAmelCase : int = new_lex _lowerCAmelCase : List[str] = last_match_id + '1' index += 1 _lowerCAmelCase : Optional[int] = '' return result def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 8 try: with open(__A , 'wb' ) as opened_file: _lowerCAmelCase : Dict = [ to_write[i : i + byte_length] for i in range(0 , len(__A ) , __A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__A , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 _lowerCAmelCase : Any = data_bits[counter:] _lowerCAmelCase : Dict = data_bits[counter + 1 :] return data_bits def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Optional[int] = read_file_binary(__A ) _lowerCAmelCase : Tuple = remove_prefix(__A ) _lowerCAmelCase : List[str] = decompress_data(__A ) write_file_binary(__A , __A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
701
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase : str = logging.get_logger(__name__) # General docstring lowerCAmelCase : Optional[Any] = """RegNetConfig""" # Base docstring lowerCAmelCase : int = """facebook/regnet-y-040""" lowerCAmelCase : Optional[Any] = [1, 10_88, 7, 7] # Image classification docstring lowerCAmelCase : Any = """facebook/regnet-y-040""" lowerCAmelCase : Optional[Any] = """tabby, tabby cat""" lowerCAmelCase : Tuple = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = 3 , snake_case__ = 1 , snake_case__ = 1 , snake_case__ = "relu" , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _lowerCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _lowerCAmelCase : List[Any] = tf.keras.layers.ConvaD( filters=snake_case__ , kernel_size=snake_case__ , strides=snake_case__ , padding='VALID' , groups=snake_case__ , use_bias=snake_case__ , name='convolution' , ) _lowerCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) _lowerCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = self.convolution(self.padding(snake_case__ ) ) _lowerCAmelCase : Union[str, Any] = self.normalization(snake_case__ ) _lowerCAmelCase : int = self.activation(snake_case__ ) return hidden_state class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : str = config.num_channels _lowerCAmelCase : List[Any] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = shape_list(snake_case__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _lowerCAmelCase : List[Any] = tf.transpose(snake_case__ , perm=(0, 2, 3, 1) ) _lowerCAmelCase : Tuple = self.embedder(snake_case__ ) return hidden_state class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = 2 , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = tf.keras.layers.ConvaD( filters=snake_case__ , kernel_size=1 , strides=snake_case__ , use_bias=snake_case__ , name='convolution' ) _lowerCAmelCase : Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def a ( self , snake_case__ , snake_case__ = False ): '''simple docstring''' return self.normalization(self.convolution(snake_case__ ) , training=snake_case__ ) class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ , name='pooler' ) _lowerCAmelCase : str = [ tf.keras.layers.ConvaD(filters=snake_case__ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=snake_case__ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = self.pooler(snake_case__ ) for layer_module in self.attention: _lowerCAmelCase : Tuple = layer_module(snake_case__ ) _lowerCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 1 , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Optional[int] = in_channels != out_channels or stride != 1 _lowerCAmelCase : Union[str, Any] = max(1 , out_channels // config.groups_width ) _lowerCAmelCase : Optional[Any] = ( TFRegNetShortCut(snake_case__ , stride=snake_case__ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _lowerCAmelCase : Any = [ TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( snake_case__ , stride=snake_case__ , groups=snake_case__ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=snake_case__ , name='layer.2' ), ] _lowerCAmelCase : List[str] = ACTaFN[config.hidden_act] def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = hidden_state for layer_module in self.layers: _lowerCAmelCase : int = layer_module(snake_case__ ) _lowerCAmelCase : int = self.shortcut(snake_case__ ) hidden_state += residual _lowerCAmelCase : Tuple = self.activation(snake_case__ ) return hidden_state class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 1 , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : List[str] = in_channels != out_channels or stride != 1 _lowerCAmelCase : Union[str, Any] = max(1 , out_channels // config.groups_width ) _lowerCAmelCase : Optional[Any] = ( TFRegNetShortCut(snake_case__ , stride=snake_case__ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) _lowerCAmelCase : Tuple = [ TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( snake_case__ , stride=snake_case__ , groups=snake_case__ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(snake_case__ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=snake_case__ , name='layer.3' ), ] _lowerCAmelCase : Tuple = ACTaFN[config.hidden_act] def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = hidden_state for layer_module in self.layers: _lowerCAmelCase : List[Any] = layer_module(snake_case__ ) _lowerCAmelCase : Tuple = self.shortcut(snake_case__ ) hidden_state += residual _lowerCAmelCase : str = self.activation(snake_case__ ) return hidden_state class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 2 , snake_case__ = 2 , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Dict = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer _lowerCAmelCase : Optional[int] = [ # downsampling is done in the first layer with stride of 2 layer(snake_case__ , snake_case__ , snake_case__ , stride=snake_case__ , name='layers.0' ), *[layer(snake_case__ , snake_case__ , snake_case__ , name=F'layers.{i+1}' ) for i in range(depth - 1 )], ] def a ( self , snake_case__ ): '''simple docstring''' for layer_module in self.layers: _lowerCAmelCase : int = layer_module(snake_case__ ) return hidden_state class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : str = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) _lowerCAmelCase : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case__ , snake_case__ , snake_case__ , depth=snake_case__ , name=F'stages.{i+1}' ) ) def a ( self , snake_case__ , snake_case__ = False , snake_case__ = True ): '''simple docstring''' _lowerCAmelCase : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowerCAmelCase : str = hidden_states + (hidden_state,) _lowerCAmelCase : List[str] = stage_module(snake_case__ ) if output_hidden_states: _lowerCAmelCase : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case__ , hidden_states=snake_case__ ) @keras_serializable class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" __magic_name__ = RegNetConfig def __init__( self , snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = config _lowerCAmelCase : Union[str, Any] = TFRegNetEmbeddings(snake_case__ , name='embedder' ) _lowerCAmelCase : Optional[int] = TFRegNetEncoder(snake_case__ , name='encoder' ) _lowerCAmelCase : Dict = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ , name='pooler' ) @unpack_inputs def a ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): '''simple docstring''' _lowerCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : int = self.embedder(snake_case__ , training=snake_case__ ) _lowerCAmelCase : List[str] = self.encoder( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ ) _lowerCAmelCase : List[Any] = encoder_outputs[0] _lowerCAmelCase : Tuple = self.pooler(snake_case__ ) # Change to NCHW output format have uniformity in the modules _lowerCAmelCase : Optional[int] = tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) _lowerCAmelCase : Optional[Any] = tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _lowerCAmelCase : Union[str, Any] = tuple([tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case__ , pooler_output=snake_case__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = RegNetConfig __magic_name__ = "regnet" __magic_name__ = "pixel_values" @property def a ( self ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowerCAmelCase : List[Any] = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : Dict = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , SCREAMING_SNAKE_CASE_ , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , snake_case__ , *snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) _lowerCAmelCase : List[str] = TFRegNetMainLayer(snake_case__ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__=False , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : str = self.regnet( pixel_values=snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , SCREAMING_SNAKE_CASE_ , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , snake_case__ , *snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[Any] = config.num_labels _lowerCAmelCase : Optional[Any] = TFRegNetMainLayer(snake_case__ , name='regnet' ) # classification head _lowerCAmelCase : Optional[int] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__=False , ): '''simple docstring''' _lowerCAmelCase : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Dict = self.regnet( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ ) _lowerCAmelCase : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] _lowerCAmelCase : List[Any] = self.classifier[0](snake_case__ ) _lowerCAmelCase : Tuple = self.classifier[1](snake_case__ ) _lowerCAmelCase : int = None if labels is None else self.hf_compute_loss(labels=snake_case__ , logits=snake_case__ ) if not return_dict: _lowerCAmelCase : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case__ , logits=snake_case__ , hidden_states=outputs.hidden_states )
630
0
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCAmelCase_ = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class _snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] , _A : Path , _A : Union[str, None] = None , _A : Union[List[str], None] = None , _A : Union[str, List[str], None] = None , _A : bool = True , ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = [file for file in os.listdir(lowercase__) if os.path.isfile(os.path.join(lowercase__ , lowercase__))] if identifier is not None: _SCREAMING_SNAKE_CASE : str = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase__ , lowercase__): for n_ in n_identifier: _SCREAMING_SNAKE_CASE : Union[str, Any] = [file for file in files if n_ not in file] else: _SCREAMING_SNAKE_CASE : int = [file for file in files if n_identifier not in file] _SCREAMING_SNAKE_CASE : Union[str, Any] = ignore_files or [] ignore_files.append("""__init__.py""") _SCREAMING_SNAKE_CASE : Any = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , lowercase__) if only_modules: _SCREAMING_SNAKE_CASE : Dict = file.split(""".""")[0] try: _SCREAMING_SNAKE_CASE : Any = getattr(lowercase__ , lowercase__) _SCREAMING_SNAKE_CASE : Tuple = doctest.DocTestSuite(lowercase__) _SCREAMING_SNAKE_CASE : List[str] = unittest.TextTestRunner().run(lowercase__) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(f"""{module_identifier} is not a module.""") else: _SCREAMING_SNAKE_CASE : Dict = doctest.testfile(str("""..""" / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _lowerCAmelCase ( self : Optional[int]): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = Path("""src/transformers""") _SCREAMING_SNAKE_CASE : Optional[Any] = """modeling""" _SCREAMING_SNAKE_CASE : List[str] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(lowercase__ , identifier=lowercase__ , ignore_files=lowercase__) def _lowerCAmelCase ( self : Optional[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = Path("""src/transformers""") _SCREAMING_SNAKE_CASE : List[str] = """tokenization""" self.analyze_directory(lowercase__ , identifier=lowercase__) def _lowerCAmelCase ( self : int): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = Path("""src/transformers""") _SCREAMING_SNAKE_CASE : Any = """configuration""" self.analyze_directory(lowercase__ , identifier=lowercase__) def _lowerCAmelCase ( self : Union[str, Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : str = Path("""src/transformers""") _SCREAMING_SNAKE_CASE : Optional[int] = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(lowercase__ , n_identifier=lowercase__) def _lowerCAmelCase ( self : str): """simple docstring""" _SCREAMING_SNAKE_CASE : str = Path("""docs/source""") _SCREAMING_SNAKE_CASE : int = ["""favicon.ico"""] self.analyze_directory(lowercase__ , ignore_files=lowercase__ , only_modules=lowercase__)
338
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
0
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: SCREAMING_SNAKE_CASE_ :Tuple = TOKENIZER_CLASSES else: SCREAMING_SNAKE_CASE_ :Tuple = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: SCREAMING_SNAKE_CASE_ :Dict = TOKENIZER_CLASSES[tokenizer_name] SCREAMING_SNAKE_CASE_ :List[Any] = True if checkpoint_name is None: SCREAMING_SNAKE_CASE_ :List[str] = list(tokenizer_class.max_model_input_sizes.keys() ) else: SCREAMING_SNAKE_CASE_ :Tuple = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer SCREAMING_SNAKE_CASE_ :Union[str, Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Dict = checkpoint.split('/' ) SCREAMING_SNAKE_CASE_ :Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif add_prefix: SCREAMING_SNAKE_CASE_ :str = checkpoint SCREAMING_SNAKE_CASE_ :Any = dump_path else: SCREAMING_SNAKE_CASE_ :Optional[int] = None SCREAMING_SNAKE_CASE_ :Optional[Any] = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: SCREAMING_SNAKE_CASE_ :Optional[int] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] SCREAMING_SNAKE_CASE_ :List[Any] = file_path.split(SCREAMING_SNAKE_CASE )[-1][0] if next_char == "/": SCREAMING_SNAKE_CASE_ :Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[Any] = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) SCREAMING_SNAKE_CASE_ :Dict = tokenizer.save_pretrained( SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(SCREAMING_SNAKE_CASE ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
233
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase( lowerCAmelCase__ ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float , **SCREAMING_SNAKE_CASE : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = feature_size SCREAMING_SNAKE_CASE_ :Dict = sampling_rate SCREAMING_SNAKE_CASE_ :Any = padding_value SCREAMING_SNAKE_CASE_ :str = kwargs.pop('padding_side' , 'right' ) SCREAMING_SNAKE_CASE_ :Optional[Any] = kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE ) super().__init__(**SCREAMING_SNAKE_CASE ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): SCREAMING_SNAKE_CASE_ :Union[str, Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = processed_features[self.model_input_names[0]] SCREAMING_SNAKE_CASE_ :Optional[int] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(SCREAMING_SNAKE_CASE ) == 0: if return_attention_mask: SCREAMING_SNAKE_CASE_ :Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch SCREAMING_SNAKE_CASE_ :str = required_input[0] if isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. SCREAMING_SNAKE_CASE_ :List[str] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :Any = required_input[index][0] if return_tensors is None: if is_tf_tensor(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :Union[str, Any] = 'tf' elif is_torch_tensor(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :Tuple = 'pt' elif isinstance(SCREAMING_SNAKE_CASE , (int, float, list, tuple, np.ndarray) ): SCREAMING_SNAKE_CASE_ :Any = 'np' else: raise ValueError( f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE )}. ' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): SCREAMING_SNAKE_CASE_ :Tuple = to_numpy(SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ :str = [to_numpy(SCREAMING_SNAKE_CASE ) for v in value] # Convert padding_strategy in PaddingStrategy SCREAMING_SNAKE_CASE_ :int = self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[Any] = processed_features[self.model_input_names[0]] SCREAMING_SNAKE_CASE_ :Union[str, Any] = len(SCREAMING_SNAKE_CASE ) if not all(len(SCREAMING_SNAKE_CASE ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) SCREAMING_SNAKE_CASE_ :Optional[int] = [] for i in range(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :List[Any] = {k: v[i] for k, v in processed_features.items()} # truncation SCREAMING_SNAKE_CASE_ :Optional[Any] = self._truncate( SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , ) truncated_inputs.append(SCREAMING_SNAKE_CASE ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length SCREAMING_SNAKE_CASE_ :List[str] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) SCREAMING_SNAKE_CASE_ :List[str] = PaddingStrategy.MAX_LENGTH SCREAMING_SNAKE_CASE_ :Dict = {} for i in range(SCREAMING_SNAKE_CASE ): # padding SCREAMING_SNAKE_CASE_ :Tuple = self._pad( truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE , padding_strategy=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) for key, value in outputs.items(): if key not in batch_outputs: SCREAMING_SNAKE_CASE_ :Dict = [] if value.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ :str = value.astype(np.floataa ) batch_outputs[key].append(SCREAMING_SNAKE_CASE ) return BatchFeature(SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ :str = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: SCREAMING_SNAKE_CASE_ :List[str] = len(SCREAMING_SNAKE_CASE ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): SCREAMING_SNAKE_CASE_ :int = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of SCREAMING_SNAKE_CASE_ :List[Any] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE ) < max_length if return_attention_mask and "attention_mask" not in processed_features: SCREAMING_SNAKE_CASE_ :List[Any] = np.ones(len(SCREAMING_SNAKE_CASE ) , dtype=np.intaa ) if needs_to_be_padded: SCREAMING_SNAKE_CASE_ :List[str] = max_length - len(SCREAMING_SNAKE_CASE ) if self.padding_side == "right": if return_attention_mask: SCREAMING_SNAKE_CASE_ :str = np.pad( processed_features['attention_mask'] , (0, difference) ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) SCREAMING_SNAKE_CASE_ :str = np.pad( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: SCREAMING_SNAKE_CASE_ :int = np.pad( processed_features['attention_mask'] , (difference, 0) ) SCREAMING_SNAKE_CASE_ :List[str] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) SCREAMING_SNAKE_CASE_ :Tuple = np.pad( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) SCREAMING_SNAKE_CASE_ :Any = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): SCREAMING_SNAKE_CASE_ :Dict = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of SCREAMING_SNAKE_CASE_ :List[Any] = len(SCREAMING_SNAKE_CASE ) > max_length if needs_to_be_truncated: SCREAMING_SNAKE_CASE_ :Optional[Any] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: SCREAMING_SNAKE_CASE_ :Any = processed_features['attention_mask'][:max_length] return processed_features def _lowercase ( self : int , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : List[str]=None ): """simple docstring""" if padding is not False: if padding is True: SCREAMING_SNAKE_CASE_ :Any = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :Tuple = PaddingStrategy(SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :int = padding else: SCREAMING_SNAKE_CASE_ :int = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
233
1
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowerCamelCase__ ( nn.Module ): def __init__( self : str , _lowercase : int , _lowercase : int , _lowercase : int , _lowercase : int=0.0 , _lowercase : Optional[int] = None , _lowercase : str = "geglu" , _lowercase : Optional[int] = None , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = True , _lowercase : str = "layer_norm" , _lowercase : bool = False , ): super().__init__() A = only_cross_attention A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A = AdaLayerNorm(_lowercase , _lowercase ) elif self.use_ada_layer_norm_zero: A = AdaLayerNormZero(_lowercase , _lowercase ) else: A = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase ) A = Attention( query_dim=_lowercase , heads=_lowercase , dim_head=_lowercase , dropout=_lowercase , bias=_lowercase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_lowercase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A = ( AdaLayerNorm(_lowercase , _lowercase ) if self.use_ada_layer_norm else nn.LayerNorm(_lowercase , elementwise_affine=_lowercase ) ) A = Attention( query_dim=_lowercase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_lowercase , dim_head=_lowercase , dropout=_lowercase , bias=_lowercase , upcast_attention=_lowercase , ) # is self-attn if encoder_hidden_states is none else: A = None A = None # 3. Feed-forward A = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase ) A = FeedForward(_lowercase , dropout=_lowercase , activation_fn=_lowercase , final_dropout=_lowercase ) # let chunk size default to None A = None A = 0 def __a ( self : Tuple , _lowercase : Optional[int] , _lowercase : int ): # Sets chunk feed-forward A = chunk_size A = dim def __a ( self : Tuple , _lowercase : torch.FloatTensor , _lowercase : Optional[torch.FloatTensor] = None , _lowercase : Optional[torch.FloatTensor] = None , _lowercase : Optional[torch.FloatTensor] = None , _lowercase : Optional[torch.LongTensor] = None , _lowercase : Dict[str, Any] = None , _lowercase : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A = self.norma(_lowercase , _lowercase ) elif self.use_ada_layer_norm_zero: A , A , A , A , A = self.norma( _lowercase , _lowercase , _lowercase , hidden_dtype=hidden_states.dtype ) else: A = self.norma(_lowercase ) A = cross_attention_kwargs if cross_attention_kwargs is not None else {} A = self.attna( _lowercase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_lowercase , **_lowercase , ) if self.use_ada_layer_norm_zero: A = gate_msa.unsqueeze(1 ) * attn_output A = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A = ( self.norma(_lowercase , _lowercase ) if self.use_ada_layer_norm else self.norma(_lowercase ) ) A = self.attna( _lowercase , encoder_hidden_states=_lowercase , attention_mask=_lowercase , **_lowercase , ) A = attn_output + hidden_states # 3. Feed-forward A = self.norma(_lowercase ) if self.use_ada_layer_norm_zero: A = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) A = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A = torch.cat( [self.ff(_lowercase ) for hid_slice in norm_hidden_states.chunk(_lowercase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A = self.ff(_lowercase ) if self.use_ada_layer_norm_zero: A = gate_mlp.unsqueeze(1 ) * ff_output A = ff_output + hidden_states return hidden_states class lowerCamelCase__ ( nn.Module ): def __init__( self : Union[str, Any] , _lowercase : int , _lowercase : Optional[int] = None , _lowercase : int = 4 , _lowercase : float = 0.0 , _lowercase : str = "geglu" , _lowercase : bool = False , ): super().__init__() A = int(dim * mult ) A = dim_out if dim_out is not None else dim if activation_fn == "gelu": A = GELU(_lowercase , _lowercase ) if activation_fn == "gelu-approximate": A = GELU(_lowercase , _lowercase , approximate='tanh' ) elif activation_fn == "geglu": A = GEGLU(_lowercase , _lowercase ) elif activation_fn == "geglu-approximate": A = ApproximateGELU(_lowercase , _lowercase ) A = nn.ModuleList([] ) # project in self.net.append(_lowercase ) # project dropout self.net.append(nn.Dropout(_lowercase ) ) # project out self.net.append(nn.Linear(_lowercase , _lowercase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_lowercase ) ) def __a ( self : int , _lowercase : Optional[int] ): for module in self.net: A = module(_lowercase ) return hidden_states class lowerCamelCase__ ( nn.Module ): def __init__( self : int , _lowercase : int , _lowercase : int , _lowercase : str = "none" ): super().__init__() A = nn.Linear(_lowercase , _lowercase ) A = approximate def __a ( self : Union[str, Any] , _lowercase : Tuple ): if gate.device.type != "mps": return F.gelu(_lowercase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __a ( self : Dict , _lowercase : Any ): A = self.proj(_lowercase ) A = self.gelu(_lowercase ) return hidden_states class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , _lowercase : int , _lowercase : int ): super().__init__() A = nn.Linear(_lowercase , dim_out * 2 ) def __a ( self : Tuple , _lowercase : Optional[int] ): if gate.device.type != "mps": return F.gelu(_lowercase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __a ( self : Tuple , _lowercase : str ): A , A = self.proj(_lowercase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_lowercase ) class lowerCamelCase__ ( nn.Module ): def __init__( self : Tuple , _lowercase : int , _lowercase : int ): super().__init__() A = nn.Linear(_lowercase , _lowercase ) def __a ( self : Dict , _lowercase : str ): A = self.proj(_lowercase ) return x * torch.sigmoid(1.7_0_2 * x ) class lowerCamelCase__ ( nn.Module ): def __init__( self : Any , _lowercase : Any , _lowercase : Tuple ): super().__init__() A = nn.Embedding(_lowercase , _lowercase ) A = nn.SiLU() A = nn.Linear(_lowercase , embedding_dim * 2 ) A = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase ) def __a ( self : List[Any] , _lowercase : int , _lowercase : Any ): A = self.linear(self.silu(self.emb(_lowercase ) ) ) A , A = torch.chunk(_lowercase , 2 ) A = self.norm(_lowercase ) * (1 + scale) + shift return x class lowerCamelCase__ ( nn.Module ): def __init__( self : Any , _lowercase : Dict , _lowercase : List[Any] ): super().__init__() A = CombinedTimestepLabelEmbeddings(_lowercase , _lowercase ) A = nn.SiLU() A = nn.Linear(_lowercase , 6 * embedding_dim , bias=_lowercase ) A = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase , eps=1e-6 ) def __a ( self : Tuple , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[Any]=None ): A = self.linear(self.silu(self.emb(_lowercase , _lowercase , hidden_dtype=_lowercase ) ) ) A , A , A , A , A , A = emb.chunk(6 , dim=1 ) A = self.norm(_lowercase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowerCamelCase__ ( nn.Module ): def __init__( self : Tuple , _lowercase : int , _lowercase : int , _lowercase : int , _lowercase : Optional[str] = None , _lowercase : float = 1e-5 ): super().__init__() A = num_groups A = eps if act_fn is None: A = None else: A = get_activation(_lowercase ) A = nn.Linear(_lowercase , out_dim * 2 ) def __a ( self : str , _lowercase : int , _lowercase : List[Any] ): if self.act: A = self.act(_lowercase ) A = self.linear(_lowercase ) A = emb[:, :, None, None] A , A = emb.chunk(2 , dim=1 ) A = F.group_norm(_lowercase , self.num_groups , eps=self.eps ) A = x * (1 + scale) + shift return x
690
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
721
"""simple docstring""" from math import factorial def A( snake_case_ = 20 ): """simple docstring""" lowercase__: Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... lowercase__: int = n // 2 return int(factorial(snake_case_ ) / (factorial(snake_case_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: UpperCamelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
120
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __lowerCamelCase :str = ['bert-base-uncased', 'bert-base-cased'] __lowerCamelCase :str = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class A__ ( tf.keras.Model): """simple docstring""" def __init__( self: Union[str, Any] , __a: int )-> List[str]: super().__init__() lowerCamelCase : Optional[int] = tokenizer lowerCamelCase : Any = AutoConfig.from_pretrained(__a ) lowerCamelCase : Optional[int] = TFAutoModel.from_config(__a ) def a__ ( self: str , __a: int )-> Tuple: lowerCamelCase : Optional[Any] = self.tokenizer(__a ) lowerCamelCase : Any = self.bert(**__a ) return out["pooler_output"] @require_tf @require_tensorflow_text class A__ ( unittest.TestCase): """simple docstring""" def a__ ( self: List[Any] )-> List[str]: super().setUp() lowerCamelCase : Dict = [ BertTokenizer.from_pretrained(__a ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowerCamelCase : int = [TFBertTokenizer.from_pretrained(__a ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__a , use_fast_bert_tokenizer=__a ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCamelCase : List[Any] = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] lowerCamelCase : int = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def a__ ( self: Any )-> Union[str, Any]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowerCamelCase : Tuple = tokenizer(__a , return_tensors="""tf""" , padding="""longest""" ) lowerCamelCase : str = tf_tokenizer(__a ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def a__ ( self: Optional[Any] )-> str: for tf_tokenizer in self.tf_tokenizers: lowerCamelCase : Any = tf_tokenizer(self.paired_sentences ) lowerCamelCase : Optional[int] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def a__ ( self: int )-> Any: for tf_tokenizer in self.tf_tokenizers: lowerCamelCase : Any = tf.function(__a ) for test_inputs in (self.test_sentences, self.paired_sentences): lowerCamelCase : Optional[Any] = tf.constant(__a ) lowerCamelCase : Tuple = compiled_tokenizer(__a ) lowerCamelCase : Dict = tf_tokenizer(__a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def a__ ( self: Union[str, Any] )-> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: lowerCamelCase : Optional[Any] = ModelToSave(tokenizer=__a ) lowerCamelCase : List[Any] = tf.convert_to_tensor(self.test_sentences ) lowerCamelCase : str = model(__a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCamelCase : Any = Path(__a ) / """saved.model""" model.save(__a ) lowerCamelCase : Dict = tf.keras.models.load_model(__a ) lowerCamelCase : Union[str, Any] = loaded_model(__a ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
222
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer __lowerCamelCase :str = logging.get_logger(__name__) __lowerCamelCase :Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCamelCase :str = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } __lowerCamelCase :List[Any] = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } __lowerCamelCase :Tuple = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class A__ ( __lowercase): """simple docstring""" snake_case__ : Union[str, Any] =VOCAB_FILES_NAMES snake_case__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP snake_case__ : int =PRETRAINED_INIT_CONFIGURATION snake_case__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : str =BertTokenizer def __init__( self: str , __a: Union[str, Any]=None , __a: Tuple=None , __a: int=True , __a: List[str]="[UNK]" , __a: Optional[Any]="[SEP]" , __a: Union[str, Any]="[PAD]" , __a: Optional[Any]="[CLS]" , __a: Optional[Any]="[MASK]" , __a: List[Any]=True , __a: int=None , **__a: Union[str, Any] , )-> int: super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __a ) != do_lower_case or normalizer_state.get("""strip_accents""" , __a ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __a ) != tokenize_chinese_chars ): lowerCamelCase : int = getattr(__a , normalizer_state.pop("""type""" ) ) lowerCamelCase : str = do_lower_case lowerCamelCase : List[Any] = strip_accents lowerCamelCase : Tuple = tokenize_chinese_chars lowerCamelCase : str = normalizer_class(**__a ) lowerCamelCase : Union[str, Any] = do_lower_case def a__ ( self: Tuple , __a: List[Any] , __a: int=None )-> Optional[Any]: lowerCamelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self: Any , __a: List[int] , __a: Optional[List[int]] = None )-> List[int]: lowerCamelCase : Dict = [self.sep_token_id] lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self: Optional[int] , __a: str , __a: Optional[str] = None )-> Tuple[str]: lowerCamelCase : Optional[Any] = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
222
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase : Optional[int] = logging.get_logger() def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True) -> Tuple: '''simple docstring''' print(F'''Converting {name}...''') with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __snake_case: str = timm.create_model("""levit_128s""" , pretrained=SCREAMING_SNAKE_CASE__) else: __snake_case: Dict = timm.create_model("""levit_128""" , pretrained=SCREAMING_SNAKE_CASE__) if hidden_sizes == 192: __snake_case: Union[str, Any] = timm.create_model("""levit_192""" , pretrained=SCREAMING_SNAKE_CASE__) if hidden_sizes == 256: __snake_case: List[Any] = timm.create_model("""levit_256""" , pretrained=SCREAMING_SNAKE_CASE__) if hidden_sizes == 384: __snake_case: int = timm.create_model("""levit_384""" , pretrained=SCREAMING_SNAKE_CASE__) from_model.eval() __snake_case: List[Any] = LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__).eval() __snake_case: Any = OrderedDict() __snake_case: List[str] = from_model.state_dict() __snake_case: str = list(from_model.state_dict().keys()) __snake_case: List[Any] = list(our_model.state_dict().keys()) print(len(SCREAMING_SNAKE_CASE__) , len(SCREAMING_SNAKE_CASE__)) for i in range(len(SCREAMING_SNAKE_CASE__)): __snake_case: Dict = weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE__) __snake_case: List[Any] = torch.randn((2, 3, 224, 224)) __snake_case: str = from_model(SCREAMING_SNAKE_CASE__) __snake_case: List[Any] = our_model(SCREAMING_SNAKE_CASE__).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__), "The model logits don't match the original one." __snake_case: Any = name print(SCREAMING_SNAKE_CASE__) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name) __snake_case: Optional[int] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name) print(F'''Pushed {checkpoint_name}''') def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True) -> int: '''simple docstring''' __snake_case: Any = """imagenet-1k-id2label.json""" __snake_case: Optional[int] = 1000 __snake_case: Optional[int] = (1, num_labels) __snake_case: Tuple = """huggingface/label-files""" __snake_case: Tuple = num_labels __snake_case: Tuple = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""") , """r""")) __snake_case: int = {int(SCREAMING_SNAKE_CASE__): v for k, v in idalabel.items()} __snake_case: Tuple = idalabel __snake_case: Union[str, Any] = {v: k for k, v in idalabel.items()} __snake_case: List[str] = partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__) __snake_case: Optional[int] = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } __snake_case: List[str] = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) return config, expected_shape if __name__ == "__main__": __UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) __UpperCAmelCase : int = parser.parse_args() __UpperCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCAmelCase : Tuple = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[Any] = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
155
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : str = ["image_processor", "tokenizer"] _UpperCamelCase : Union[str, Any] = "AutoImageProcessor" _UpperCamelCase : Union[str, Any] = "AutoTokenizer" def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Union[str, Any] = self.image_processor def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if images is not None: _lowercase : Union[str, Any] = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and images is not None: _lowercase : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): return ["input_ids", "attention_mask", "pixel_values"]
66
from sklearn.metrics import mean_squared_error import datasets SCREAMING_SNAKE_CASE__ : List[str] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ SCREAMING_SNAKE_CASE__ : Tuple = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ SCREAMING_SNAKE_CASE__ : Optional[Any] = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _snake_case ( self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def _snake_case ( self ) -> Optional[int]: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def _snake_case ( self , snake_case , snake_case , snake_case=None , snake_case="uniform_average" , snake_case=True ) -> Optional[Any]: """simple docstring""" a__ : List[str] = mean_squared_error( snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case ) return {"mse": mse}
112
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def A ( _lowercase=None , _lowercase=None ): return field(default_factory=lambda: default , metadata=_lowercase ) @dataclass class lowercase__ : UpperCamelCase_ = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) UpperCamelCase_ = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""}) UpperCamelCase_ = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) UpperCamelCase_ = field( default=UpperCamelCase_ , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) UpperCamelCase_ = field( default=UpperCamelCase_ , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) UpperCamelCase_ = field( default=UpperCamelCase_ , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""}) UpperCamelCase_ = field(default=UpperCamelCase_ , metadata={"""help""": """Use FP16 to accelerate inference."""}) UpperCamelCase_ = field(default=UpperCamelCase_ , metadata={"""help""": """Benchmark training of model"""}) UpperCamelCase_ = field(default=UpperCamelCase_ , metadata={"""help""": """Verbose memory tracing"""}) UpperCamelCase_ = field( default=UpperCamelCase_ , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) UpperCamelCase_ = field( default=UpperCamelCase_ , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) UpperCamelCase_ = field(default=UpperCamelCase_ , metadata={"""help""": """Trace memory line by line"""}) UpperCamelCase_ = field(default=UpperCamelCase_ , metadata={"""help""": """Save result to a CSV file"""}) UpperCamelCase_ = field(default=UpperCamelCase_ , metadata={"""help""": """Save all print statements in a log file"""}) UpperCamelCase_ = field(default=UpperCamelCase_ , metadata={"""help""": """Whether to print environment information"""}) UpperCamelCase_ = field( default=UpperCamelCase_ , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) UpperCamelCase_ = field( default=f"inference_time_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) UpperCamelCase_ = field( default=f"inference_memory_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) UpperCamelCase_ = field( default=f"train_time_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) UpperCamelCase_ = field( default=f"train_memory_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) UpperCamelCase_ = field( default=f"env_info_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving environment information."""} , ) UpperCamelCase_ = field( default=f"log_{round(time())}.csv" , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) UpperCamelCase_ = field(default=3 , metadata={"""help""": """Times an experiment will be run."""}) UpperCamelCase_ = field( default=UpperCamelCase_ , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def __A ( self : Dict ): '''simple docstring''' warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , UpperCamelCase__ , ) def __A ( self : Any ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __A ( self : List[str] ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def __A ( self : List[Any] ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
34
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __UpperCamelCase : int = logging.get_logger(__name__) def A ( _lowercase , _lowercase , _lowercase , _lowercase ): def constraint_to_multiple_of(_lowercase , _lowercase , _lowercase=0 , _lowercase=None ): SCREAMING_SNAKE_CASE : int = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE : Dict = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE : Optional[Any] = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE : Optional[Any] = (output_size, output_size) if isinstance(_lowercase , _lowercase ) else output_size SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = get_image_size(_lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = output_size # determine new height and width SCREAMING_SNAKE_CASE : Dict = output_height / input_height SCREAMING_SNAKE_CASE : Optional[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE : List[Any] = scale_width else: # fit height SCREAMING_SNAKE_CASE : List[Any] = scale_height SCREAMING_SNAKE_CASE : List[str] = constraint_to_multiple_of(scale_height * input_height , multiple=_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = constraint_to_multiple_of(scale_width * input_width , multiple=_lowercase ) return (new_height, new_width) class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = ["""pixel_values"""] def __init__( self : int , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : bool = False , UpperCamelCase__ : int = 1 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'''height''': 384, '''width''': 384} SCREAMING_SNAKE_CASE : Any = get_size_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = do_resize SCREAMING_SNAKE_CASE : Any = size SCREAMING_SNAKE_CASE : str = keep_aspect_ratio SCREAMING_SNAKE_CASE : List[str] = ensure_multiple_of SCREAMING_SNAKE_CASE : int = resample SCREAMING_SNAKE_CASE : Any = do_rescale SCREAMING_SNAKE_CASE : List[Any] = rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = do_normalize SCREAMING_SNAKE_CASE : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : bool = False , UpperCamelCase__ : int = 1 , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE : Any = get_resize_output_image_size( UpperCamelCase__ , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=UpperCamelCase__ , multiple=UpperCamelCase__ , ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Dict , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Any , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Optional[Any] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : bool = None , UpperCamelCase__ : int = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : int = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : float = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : str = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : List[Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : Dict = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Tuple = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Dict = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : Any = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Any = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] SCREAMING_SNAKE_CASE : Optional[int] = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] SCREAMING_SNAKE_CASE : Tuple = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ ) def __A ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Tuple] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : List[Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE : Optional[int] = [] for idx in range(len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : List[Any] = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
34
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True ): print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": lowercase = timm.create_model('levit_128s' , pretrained=__SCREAMING_SNAKE_CASE ) else: lowercase = timm.create_model('levit_128' , pretrained=__SCREAMING_SNAKE_CASE ) if hidden_sizes == 192: lowercase = timm.create_model('levit_192' , pretrained=__SCREAMING_SNAKE_CASE ) if hidden_sizes == 256: lowercase = timm.create_model('levit_256' , pretrained=__SCREAMING_SNAKE_CASE ) if hidden_sizes == 384: lowercase = timm.create_model('levit_384' , pretrained=__SCREAMING_SNAKE_CASE ) from_model.eval() lowercase = LevitForImageClassificationWithTeacher(__SCREAMING_SNAKE_CASE ).eval() lowercase = OrderedDict() lowercase = from_model.state_dict() lowercase = list(from_model.state_dict().keys() ) lowercase = list(our_model.state_dict().keys() ) print(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): lowercase = weights[og_keys[i]] our_model.load_state_dict(__SCREAMING_SNAKE_CASE ) lowercase = torch.randn((2, 3, 224, 224) ) lowercase = from_model(__SCREAMING_SNAKE_CASE ) lowercase = our_model(__SCREAMING_SNAKE_CASE ).logits assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "The model logits don't match the original one." lowercase = name print(__SCREAMING_SNAKE_CASE ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True ): lowercase = 'imagenet-1k-id2label.json' lowercase = 1000 lowercase = (1, num_labels) lowercase = 'huggingface/label-files' lowercase = num_labels lowercase = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} lowercase = partial(__SCREAMING_SNAKE_CASE , num_labels=__SCREAMING_SNAKE_CASE , idalabel=__SCREAMING_SNAKE_CASE , labelaid=__SCREAMING_SNAKE_CASE ) lowercase = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } lowercase = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __SCREAMING_SNAKE_CASE , names_to_config[model_name] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, expected_shape if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
84
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = [0] * len(__SCREAMING_SNAKE_CASE ) lowercase = [] lowercase = [] lowercase = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(__SCREAMING_SNAKE_CASE ) while queue: lowercase = queue.pop(0 ) cnt += 1 topo.append(__SCREAMING_SNAKE_CASE ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__SCREAMING_SNAKE_CASE ) if cnt != len(__SCREAMING_SNAKE_CASE ): print('Cycle exists' ) else: print(__SCREAMING_SNAKE_CASE ) # Adjacency List of Graph UpperCAmelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
84
1
def lowerCamelCase ( UpperCamelCase : int ) -> int: if not isinstance(UpperCamelCase , UpperCamelCase ): _lowerCamelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase ) if number < 1: _lowerCamelCase = F"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase ) _lowerCamelCase = 1 for i in range(1 , UpperCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
234
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , snake_case__ : str , snake_case__ : int = 1_3 , snake_case__ : int = 6_4 , snake_case__ : int = 2 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : int = 1_2_8 , snake_case__ : Optional[int]=[1_6, 3_2, 6_4, 1_2_8] , snake_case__ : int = 7 , snake_case__ : int = 4 , snake_case__ : int = 3_7 , snake_case__ : str = "gelu" , snake_case__ : float = 0.1 , snake_case__ : float = 0.1 , snake_case__ : int = 1_0 , snake_case__ : float = 0.02 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : int = 1_2_8 , snake_case__ : List[int] = [2, 2, 2, 2] , snake_case__ : int = 2 , snake_case__ : int = 2 , ) -> Optional[Any]: _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = patch_size _lowerCamelCase = num_channels _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = encoder_stride _lowerCamelCase = num_attention_outputs _lowerCamelCase = embed_dim _lowerCamelCase = embed_dim + 1 _lowerCamelCase = resolution _lowerCamelCase = depths _lowerCamelCase = hidden_sizes _lowerCamelCase = dim _lowerCamelCase = mlp_expansion_ratio def _snake_case ( self : Union[str, Any] ) -> List[str]: _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = self.get_config() return config, pixel_values, labels def _snake_case ( self : Union[str, Any] ) -> int: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _snake_case ( self : str , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] ) -> Optional[int]: _lowerCamelCase = TFEfficientFormerModel(config=snake_case__ ) _lowerCamelCase = model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Tuple ) -> Optional[Any]: _lowerCamelCase = self.type_sequence_label_size _lowerCamelCase = TFEfficientFormerForImageClassification(snake_case__ ) _lowerCamelCase = model(snake_case__ , labels=snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase = 1 _lowerCamelCase = TFEfficientFormerForImageClassification(snake_case__ ) _lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self : Dict ) -> List[str]: _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def _snake_case ( self : Optional[Any] ) -> Any: _lowerCamelCase = TFEfficientFormerModelTester(self ) _lowerCamelCase = ConfigTester( self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def _snake_case ( self : Dict ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def _snake_case ( self : str ) -> Union[str, Any]: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def _snake_case ( self : Optional[int] ) -> List[str]: pass def _snake_case ( self : Any ) -> List[Any]: _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(snake_case__ ) _lowerCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def _snake_case ( self : int ) -> int: def check_hidden_states_output(snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : str ): _lowerCamelCase = model_class(snake_case__ ) _lowerCamelCase = model(**self._prepare_for_class(snake_case__ , snake_case__ ) , training=snake_case__ ) _lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) if hasattr(self.model_tester , 'encoder_seq_length' ): _lowerCamelCase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: _lowerCamelCase = seq_length * self.model_tester.chunk_length else: _lowerCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _lowerCamelCase = outputs.decoder_hidden_states self.asseretIsInstance(snake_case__ , (list, tuple) ) self.assertEqual(len(snake_case__ ) , snake_case__ ) _lowerCamelCase = getattr(self.model_tester , 'seq_length' , snake_case__ ) _lowerCamelCase = getattr(self.model_tester , 'decoder_seq_length' , snake_case__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def _snake_case ( self : Dict , snake_case__ : int , snake_case__ : str , snake_case__ : List[str]=False ) -> List[Any]: _lowerCamelCase = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _snake_case ( self : Optional[Any] ) -> Dict: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def _snake_case ( self : str ) -> Tuple: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def _snake_case ( self : Optional[Any] ) -> Optional[Any]: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def _snake_case ( self : Union[str, Any] ) -> Any: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = TFEfficientFormerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _snake_case ( self : List[Any] ) -> int: _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase = True _lowerCamelCase = getattr(self.model_tester , 'seq_length' , snake_case__ ) _lowerCamelCase = getattr(self.model_tester , 'encoder_seq_length' , snake_case__ ) _lowerCamelCase = getattr(self.model_tester , 'key_length' , snake_case__ ) _lowerCamelCase = getattr(self.model_tester , 'chunk_length' , snake_case__ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): _lowerCamelCase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = True _lowerCamelCase = model_class(snake_case__ ) _lowerCamelCase = model(**self._prepare_for_class(snake_case__ , snake_case__ ) , training=snake_case__ ) _lowerCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCamelCase = True _lowerCamelCase = model_class(snake_case__ ) _lowerCamelCase = model(**self._prepare_for_class(snake_case__ , snake_case__ ) , training=snake_case__ ) _lowerCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _snake_case ( self : Any ) -> Union[str, Any]: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _lowerCamelCase = model_class(snake_case__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _lowerCamelCase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=snake_case__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _lowerCamelCase = model(snake_case__ ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase ( ) -> Optional[int]: _lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[str] ) -> Tuple: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def _snake_case ( self : List[str] ) -> List[Any]: _lowerCamelCase = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=snake_case__ , return_tensors='tf' ) # forward pass _lowerCamelCase = model(**snake_case__ , training=snake_case__ ) # verify the logits _lowerCamelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case__ ) _lowerCamelCase = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) ) @slow def _snake_case ( self : List[Any] ) -> Optional[Any]: _lowerCamelCase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=snake_case__ , return_tensors='tf' ) # forward pass _lowerCamelCase = model(**snake_case__ , training=snake_case__ ) # verify the logits _lowerCamelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case__ ) _lowerCamelCase = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
234
1
"""simple docstring""" from collections import deque from .hash_table import HashTable class A_(snake_case_ ): """simple docstring""" def __init__( self , *A , **A ): super().__init__(*A , **A ) def _lowerCAmelCase ( self , A , A ): _lowerCamelCase : Dict = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(A ) _lowerCamelCase : str = self.values[key] def _lowerCAmelCase ( self ): return ( sum(self.charge_factor - len(A ) for slot in self.values ) / self.size_table * self.charge_factor ) def _lowerCAmelCase ( self , A , A=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(A ) == 0 ): return key return super()._collision_resolution(A , A )
437
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : List[str] ): A_ = torch.nn.Linear(10 , 10 ) A_ = torch.optim.SGD(model.parameters() , 0.1 ) A_ = Accelerator() A_ = accelerator.prepare(UpperCAmelCase ) try: pickle.loads(pickle.dumps(UpperCAmelCase ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
86
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase = logging.get_logger(__name__) lowercase = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''marian''' _UpperCAmelCase = ['''past_key_values'''] _UpperCAmelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , snake_case=58101 , snake_case=None , snake_case=1024 , snake_case=12 , snake_case=4096 , snake_case=16 , snake_case=12 , snake_case=4096 , snake_case=16 , snake_case=0.0 , snake_case=0.0 , snake_case=True , snake_case=True , snake_case="gelu" , snake_case=1024 , snake_case=0.1 , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=58100 , snake_case=False , snake_case=58100 , snake_case=0 , snake_case=0 , snake_case=True , **snake_case , ) -> Dict: _UpperCAmelCase = vocab_size _UpperCAmelCase = decoder_vocab_size or vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = d_model _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = use_cache _UpperCAmelCase = encoder_layers _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=snake_case , eos_token_id=snake_case , is_encoder_decoder=snake_case , decoder_start_token_id=snake_case , forced_eos_token_id=snake_case , **snake_case , ) class lowercase__ ( A ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _UpperCAmelCase = {0: 'batch'} _UpperCAmelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} _UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(snake_case , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _UpperCAmelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _UpperCAmelCase , _UpperCAmelCase = self.num_layers for i in range(snake_case ): _UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} _UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} else: _UpperCAmelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = super().outputs else: _UpperCAmelCase = super(snake_case , self ).outputs if self.use_past: _UpperCAmelCase , _UpperCAmelCase = self.num_layers for i in range(snake_case ): _UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} _UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def lowerCamelCase_ ( self , snake_case , snake_case = -1 , snake_case = -1 , snake_case = False , snake_case = None , ) -> Mapping[str, Any]: _UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( snake_case , snake_case , snake_case , snake_case , snake_case ) # Generate decoder inputs _UpperCAmelCase = seq_length if not self.use_past else 1 _UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( snake_case , snake_case , snake_case , snake_case , snake_case ) _UpperCAmelCase = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _UpperCAmelCase = dict(**snake_case , **snake_case ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _UpperCAmelCase , _UpperCAmelCase = common_inputs['input_ids'].shape _UpperCAmelCase = common_inputs['decoder_input_ids'].shape[1] _UpperCAmelCase , _UpperCAmelCase = self.num_attention_heads _UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase = decoder_seq_length + 3 _UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _UpperCAmelCase = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(snake_case , snake_case )] , dim=1 ) _UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _UpperCAmelCase , _UpperCAmelCase = self.num_layers _UpperCAmelCase = min(snake_case , snake_case ) _UpperCAmelCase = max(snake_case , snake_case ) - min_num_layers _UpperCAmelCase = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case ), torch.zeros(snake_case ), torch.zeros(snake_case ), torch.zeros(snake_case ), ) ) # TODO: test this. _UpperCAmelCase = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(snake_case , snake_case ): common_inputs["past_key_values"].append((torch.zeros(snake_case ), torch.zeros(snake_case )) ) return common_inputs def lowerCamelCase_ ( self , snake_case , snake_case = -1 , snake_case = -1 , snake_case = False , snake_case = None , ) -> Mapping[str, Any]: _UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( snake_case , snake_case , snake_case , snake_case , snake_case ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _UpperCAmelCase , _UpperCAmelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values _UpperCAmelCase = seqlen + 2 _UpperCAmelCase , _UpperCAmelCase = self.num_layers _UpperCAmelCase , _UpperCAmelCase = self.num_attention_heads _UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase = common_inputs['attention_mask'].dtype _UpperCAmelCase = torch.cat( [common_inputs['attention_mask'], torch.ones(snake_case , snake_case , dtype=snake_case )] , dim=1 ) _UpperCAmelCase = [ (torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(snake_case ) ] return common_inputs def lowerCamelCase_ ( self , snake_case , snake_case = -1 , snake_case = -1 , snake_case = False , snake_case = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = tokenizer.num_special_tokens_to_add(snake_case ) _UpperCAmelCase = compute_effective_axis_dimension( snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _UpperCAmelCase = dict(tokenizer(snake_case , return_tensors=snake_case ) ) return common_inputs def lowerCamelCase_ ( self , snake_case , snake_case = -1 , snake_case = -1 , snake_case = False , snake_case = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case , batch_size=snake_case , seq_length=snake_case , is_pair=snake_case , framework=snake_case ) else: _UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( snake_case , batch_size=snake_case , seq_length=snake_case , is_pair=snake_case , framework=snake_case ) return common_inputs def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case ) -> str: if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = super()._flatten_past_key_values_(snake_case , snake_case , snake_case , snake_case ) else: _UpperCAmelCase = super(snake_case , self )._flatten_past_key_values_( snake_case , snake_case , snake_case , snake_case ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
708
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
24
0
def lowercase_ (A : Union[str, Any] , A : List[str] ): snake_case__ : Dict = [1] for i in range(2 , A ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" snake_case__ : str = [] snake_case__ : Optional[int] = list(range(A ) ) # Find permutation while factorials: snake_case__ : List[str] = factorials.pop() snake_case__ , snake_case__ : Tuple = divmod(A , A ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
478
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a_ :int = logging.get_logger(__name__) class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """maskformer-swin""" _SCREAMING_SNAKE_CASE = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Optional[Any], _snake_case : Dict=2_2_4, _snake_case : Optional[Any]=4, _snake_case : Dict=3, _snake_case : int=9_6, _snake_case : int=[2, 2, 6, 2], _snake_case : int=[3, 6, 1_2, 2_4], _snake_case : Tuple=7, _snake_case : Tuple=4.0, _snake_case : int=True, _snake_case : Union[str, Any]=0.0, _snake_case : Tuple=0.0, _snake_case : Dict=0.1, _snake_case : Optional[int]="gelu", _snake_case : List[str]=False, _snake_case : Union[str, Any]=0.0_2, _snake_case : int=1e-5, _snake_case : Any=None, _snake_case : Tuple=None, **_snake_case : int, ) ->Optional[int]: super().__init__(**_snake_case ) snake_case__ : List[Any] = image_size snake_case__ : Tuple = patch_size snake_case__ : Tuple = num_channels snake_case__ : Union[str, Any] = embed_dim snake_case__ : Dict = depths snake_case__ : Optional[Any] = len(_snake_case ) snake_case__ : Optional[int] = num_heads snake_case__ : Union[str, Any] = window_size snake_case__ : Tuple = mlp_ratio snake_case__ : Tuple = qkv_bias snake_case__ : int = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : Optional[Any] = drop_path_rate snake_case__ : List[str] = hidden_act snake_case__ : Tuple = use_absolute_embeddings snake_case__ : Tuple = layer_norm_eps snake_case__ : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case__ : int = int(embed_dim * 2 ** (len(_snake_case ) - 1) ) snake_case__ : int = ['stem'] + [F'''stage{idx}''' for idx in range(1, len(_snake_case ) + 1 )] snake_case__ , snake_case__ : int = get_aligned_output_features_output_indices( out_features=_snake_case, out_indices=_snake_case, stage_names=self.stage_names )
478
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): _UpperCAmelCase = FlaxAutoencoderKL @property def lowerCAmelCase_ ( self: Dict ) -> List[Any]: snake_case__ = 4 snake_case__ = 3 snake_case__ = (32, 32) snake_case__ = jax.random.PRNGKey(0 ) snake_case__ = jax.random.uniform(snake_case__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowerCAmelCase_ ( self: str ) -> List[Any]: snake_case__ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } snake_case__ = self.dummy_input return init_dict, inputs_dict
719
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : str = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) __UpperCamelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def a_ ( _A ) -> Optional[int]: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: snake_case__ = model_type_to_module_name(_A ) snake_case__ = importlib.import_module(f'''.{module_name}''' , 'transformers.models' ) try: return getattr(_A , _A ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_A , '__name__' , _A ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. snake_case__ = importlib.import_module('transformers' ) if hasattr(_A , _A ): return getattr(_A , _A ) return None def a_ ( _A , _A = None , _A = False , _A = False , _A = None , _A = None , _A = None , _A = False , **_A , ) -> Optional[Any]: """simple docstring""" snake_case__ = get_file_from_repo( _A , _A , cache_dir=_A , force_download=_A , resume_download=_A , proxies=_A , use_auth_token=_A , revision=_A , local_files_only=_A , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(_A , encoding='utf-8' ) as reader: return json.load(_A ) class __SCREAMING_SNAKE_CASE: def __init__( self: Optional[int] ) -> Union[str, Any]: raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase ) def lowerCAmelCase_ ( cls: int , UpperCamelCase: int , **UpperCamelCase: str ) -> Optional[Any]: snake_case__ = kwargs.pop('config' , UpperCamelCase ) snake_case__ = kwargs.pop('trust_remote_code' , UpperCamelCase ) snake_case__ = True snake_case__ , snake_case__ = ImageProcessingMixin.get_image_processor_dict(UpperCamelCase , **UpperCamelCase ) snake_case__ = config_dict.get('image_processor_type' , UpperCamelCase ) snake_case__ = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): snake_case__ = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: snake_case__ = config_dict.pop('feature_extractor_type' , UpperCamelCase ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) snake_case__ = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): snake_case__ = config_dict['auto_map']['AutoFeatureExtractor'] snake_case__ = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = AutoConfig.from_pretrained(UpperCamelCase , **UpperCamelCase ) # It could be in `config.image_processor_type`` snake_case__ = getattr(UpperCamelCase , 'image_processor_type' , UpperCamelCase ) if hasattr(UpperCamelCase , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: snake_case__ = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: snake_case__ = image_processor_class_from_name(UpperCamelCase ) snake_case__ = image_processor_auto_map is not None snake_case__ = image_processor_class is not None or type(UpperCamelCase ) in IMAGE_PROCESSOR_MAPPING snake_case__ = resolve_trust_remote_code( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if has_remote_code and trust_remote_code: snake_case__ = get_class_from_dynamic_module( UpperCamelCase , UpperCamelCase , **UpperCamelCase ) snake_case__ = kwargs.pop('code_revision' , UpperCamelCase ) if os.path.isdir(UpperCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(UpperCamelCase , **UpperCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(UpperCamelCase , **UpperCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(UpperCamelCase ) in IMAGE_PROCESSOR_MAPPING: snake_case__ = IMAGE_PROCESSOR_MAPPING[type(UpperCamelCase )] return image_processor_class.from_dict(UpperCamelCase , **UpperCamelCase ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase: Optional[Any] , UpperCamelCase: int ) -> Optional[Any]: IMAGE_PROCESSOR_MAPPING.register(UpperCamelCase , UpperCamelCase )
372
0
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __UpperCAmelCase ( _UpperCAmelCase : str ) -> Optional[int]: return 1 / (1 + np.exp(-z )) def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> List[str]: return (-y * np.log(_UpperCAmelCase ) - (1 - y) * np.log(1 - h )).mean() def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ) -> Optional[Any]: __snake_case = np.dot(_UpperCAmelCase , _UpperCAmelCase ) return np.sum(y * scores - np.log(1 + np.exp(_UpperCAmelCase ) ) ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]=7_00_00 ) -> Union[str, Any]: __snake_case = np.zeros(x.shape[1] ) for iterations in range(_UpperCAmelCase ): __snake_case = np.dot(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = sigmoid_function(_UpperCAmelCase ) __snake_case = np.dot(x.T , h - y ) / y.size __snake_case = theta - alpha * gradient # updating the weights __snake_case = np.dot(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = sigmoid_function(_UpperCAmelCase ) __snake_case = cost_function(_UpperCAmelCase , _UpperCAmelCase ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a : int = datasets.load_iris() a : int = iris.data[:, :2] a : Optional[Any] = (iris.target != 0) * 1 a : Tuple = 0.1 a : List[str] = logistic_reg(alpha, x, y, max_iterations=70_000) print('''theta: ''', theta) # printing the theta i.e our weights vector def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: return sigmoid_function( np.dot(_UpperCAmelCase , _UpperCAmelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((a) , (a)) : Any = (x[:, 0].min(), x[:, 0].max()) ((a) , (a)) : Any = (x[:, 1].min(), x[:, 1].max()) ((a) , (a)) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a : Optional[Any] = np.c_[xxa.ravel(), xxa.ravel()] a : List[Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
69
from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_ ( _snake_case : int = 1000000 , _snake_case : int = 10 ) -> int: '''simple docstring''' __magic_name__ : defaultdict = defaultdict(_snake_case ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __magic_name__ : Optional[int] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __magic_name__ : Optional[int] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_snake_case , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"{solution() = }")
124
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ : Any = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """gpt2""": 10_24, """gpt2-medium""": 10_24, """gpt2-large""": 10_24, """gpt2-xl""": 10_24, """distilgpt2""": 10_24, } class __lowerCAmelCase( lowerCAmelCase__ ): __snake_case : Optional[Any] = VOCAB_FILES_NAMES __snake_case : str = PRETRAINED_VOCAB_FILES_MAP __snake_case : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[str] = ['input_ids', 'attention_mask'] __snake_case : str = GPTaTokenizer def __init__( self : Tuple , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Tuple="<|endoftext|>" , SCREAMING_SNAKE_CASE : List[Any]="<|endoftext|>" , SCREAMING_SNAKE_CASE : List[str]="<|endoftext|>" , SCREAMING_SNAKE_CASE : Optional[int]=False , **SCREAMING_SNAKE_CASE : Optional[int] , ): """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ :Optional[Any] = kwargs.pop('add_bos_token' , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , SCREAMING_SNAKE_CASE ) != add_prefix_space: SCREAMING_SNAKE_CASE_ :str = getattr(SCREAMING_SNAKE_CASE , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE_ :int = pre_tok_class(**SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Any = add_prefix_space def _lowercase ( self : Optional[int] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ :int = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def _lowercase ( self : List[str] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ :str = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Union[str, Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : "Conversation" ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE ) > self.model_max_length: SCREAMING_SNAKE_CASE_ :Optional[Any] = input_ids[-self.model_max_length :] return input_ids
233
'''simple docstring''' from math import sqrt def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE = 100_0000 ): SCREAMING_SNAKE_CASE_ :int = 0 SCREAMING_SNAKE_CASE_ :int = 0 SCREAMING_SNAKE_CASE_ :int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(SCREAMING_SNAKE_CASE , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
233
1
from __future__ import annotations import math def _UpperCAmelCase ( a__ , a__ , a__ , a__ , a__): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""") if not scores: raise ValueError("""Scores cannot be empty""") if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , a__ , a__ , a__) , minimax(depth + 1 , node_index * 2 + 1 , a__ , a__ , a__) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , a__ , a__ , a__) , minimax(depth + 1 , node_index * 2 + 1 , a__ , a__ , a__) , ) ) def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[Any] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] a_ : Tuple = math.log(len(a__) , 2) print(f'''Optimal value : {minimax(0 , 0 , a__ , a__ , a__)}''') if __name__ == "__main__": import doctest doctest.testmod() main()
540
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case : int = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __snake_case : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
540
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Union[str, Any] =logging.get_logger(__name__) _UpperCamelCase : List[str] ={"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 'openai-gpt' SCREAMING_SNAKE_CASE_ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _snake_case=4_04_78 , _snake_case=5_12 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=1E-5 , _snake_case=0.0_2 , _snake_case="cls_index" , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=0.1 , **_snake_case , ): """simple docstring""" __lowerCamelCase = vocab_size __lowerCamelCase = n_positions __lowerCamelCase = n_embd __lowerCamelCase = n_layer __lowerCamelCase = n_head __lowerCamelCase = afn __lowerCamelCase = resid_pdrop __lowerCamelCase = embd_pdrop __lowerCamelCase = attn_pdrop __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = initializer_range __lowerCamelCase = summary_type __lowerCamelCase = summary_use_proj __lowerCamelCase = summary_activation __lowerCamelCase = summary_first_dropout __lowerCamelCase = summary_proj_to_labels super().__init__(**_snake_case )
706
'''simple docstring''' def lowerCamelCase_ ( A_ ): __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator __lowerCamelCase = len(A_ ) if (len(A_ ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(A_ ) , '''Postfix'''.center(A_ ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(A_ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(A_ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(A_ ) == 0: stack.append(A_ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(A_ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(A_ ) # push x to stack print( x.center(8 ) , (''''''.join(A_ )).ljust(A_ ) , (''''''.join(A_ )).ljust(A_ ) , sep=''' | ''' , ) # Output in tabular format while len(A_ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(A_ )).ljust(A_ ) , (''''''.join(A_ )).ljust(A_ ) , sep=''' | ''' , ) # Output in tabular format return "".join(A_ ) # return Postfix as str def lowerCamelCase_ ( A_ ): __lowerCamelCase = list(infix[::-1] ) # reverse the infix equation for i in range(len(A_ ) ): if infix[i] == "(": __lowerCamelCase = ''')''' # change "(" to ")" elif infix[i] == ")": __lowerCamelCase = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(A_ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _UpperCamelCase : Optional[Any] =input("\nEnter an Infix Equation = ") # Input an Infix equation _UpperCamelCase : str ="".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
575
0
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def _a ( UpperCAmelCase__ ) -> float: if num <= 0: raise ValueError('''math domain error''' ) return quad(UpperCAmelCase__ , 0 , UpperCAmelCase__ , args=(UpperCAmelCase__) )[0] def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> float: return math.pow(UpperCAmelCase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
482
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: __SCREAMING_SNAKE_CASE = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __SCREAMING_SNAKE_CASE = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } __SCREAMING_SNAKE_CASE = f"""{src_lang}-{tgt_lang}""" __SCREAMING_SNAKE_CASE = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , '''README.md''' ) print(f"""Generating {path}""" ) with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(UpperCAmelCase__ ) # make sure we are under the root of the project lowerCAmelCase__ =Path(__file__).resolve().parent.parent.parent lowerCAmelCase__ =repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: lowerCAmelCase__ =model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
482
1
'''simple docstring''' from collections.abc import Sequence from queue import Queue class lowercase : def __init__( self : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : int=None) -> Union[str, Any]: lowercase_ = start lowercase_ = end lowercase_ = val lowercase_ = (start + end) // 2 lowercase_ = left lowercase_ = right def __repr__( self : str) -> int: return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class lowercase : def __init__( self : Dict , __lowerCAmelCase : Sequence , __lowerCAmelCase : Dict) -> Tuple: lowercase_ = collection lowercase_ = function if self.collection: lowercase_ = self._build_tree(0 , len(__lowerCAmelCase) - 1) def __UpperCAmelCase ( self : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int]) -> Tuple: self._update_tree(self.root , __lowerCAmelCase , __lowerCAmelCase) def __UpperCAmelCase ( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any]) -> Any: return self._query_range(self.root , __lowerCAmelCase , __lowerCAmelCase) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple) -> Tuple: if start == end: return SegmentTreeNode(__lowerCAmelCase , __lowerCAmelCase , self.collection[start]) lowercase_ = (start + end) // 2 lowercase_ = self._build_tree(__lowerCAmelCase , __lowerCAmelCase) lowercase_ = self._build_tree(mid + 1 , __lowerCAmelCase) return SegmentTreeNode(__lowerCAmelCase , __lowerCAmelCase , self.fn(left.val , right.val) , __lowerCAmelCase , __lowerCAmelCase) def __UpperCAmelCase ( self : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int) -> int: if node.start == i and node.end == i: lowercase_ = val return if i <= node.mid: self._update_tree(node.left , __lowerCAmelCase , __lowerCAmelCase) else: self._update_tree(node.right , __lowerCAmelCase , __lowerCAmelCase) lowercase_ = self.fn(node.left.val , node.right.val) def __UpperCAmelCase ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str) -> int: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , __lowerCAmelCase , __lowerCAmelCase) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , __lowerCAmelCase , node.mid) , self._query_range(node.right , node.mid + 1 , __lowerCAmelCase) , ) else: # range in right child tree return self._query_range(node.right , __lowerCAmelCase , __lowerCAmelCase) def __UpperCAmelCase ( self : List[Any]) -> Tuple: if self.root is not None: lowercase_ = Queue() queue.put(self.root) while not queue.empty(): lowercase_ = queue.get() yield node if node.left is not None: queue.put(node.left) if node.right is not None: queue.put(node.right) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 50) lowerCAmelCase_ : Optional[Any] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
461
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowercase ( __lowerCamelCase , unittest.TestCase ): lowerCamelCase_ =ReformerTokenizer lowerCamelCase_ =ReformerTokenizerFast lowerCamelCase_ =True lowerCamelCase_ =False lowerCamelCase_ =True def __UpperCAmelCase ( self : Optional[Any]) -> Optional[Any]: super().setUp() lowercase_ = ReformerTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def __UpperCAmelCase ( self : int) -> int: lowercase_ = "<s>" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase) , __lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase) , __lowerCAmelCase) def __UpperCAmelCase ( self : Tuple) -> Optional[int]: lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<unk>") self.assertEqual(vocab_keys[1] , "<s>") self.assertEqual(vocab_keys[-1] , "j") self.assertEqual(len(__lowerCAmelCase) , 1000) def __UpperCAmelCase ( self : Union[str, Any]) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __UpperCAmelCase ( self : List[Any]) -> List[Any]: if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = "I was born in 92000, and this is falsé." lowercase_ = tokenizer.tokenize(__lowerCAmelCase) lowercase_ = rust_tokenizer.tokenize(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) lowercase_ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) lowercase_ = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(__lowerCAmelCase) lowercase_ = rust_tokenizer.encode(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) def __UpperCAmelCase ( self : Tuple , __lowerCAmelCase : List[str]=15) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase_ = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) # Simple input lowercase_ = "This is a simple input" lowercase_ = ["This is a simple input 1", "This is a simple input 2"] lowercase_ = ("This is a simple input", "This is a pair") lowercase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length") # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length") # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length") # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length") # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length" , ) def __UpperCAmelCase ( self : Tuple) -> Tuple: pass def __UpperCAmelCase ( self : Any) -> Optional[Any]: lowercase_ = ReformerTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase) lowercase_ = tokenizer.tokenize("This is a test") self.assertListEqual(__lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase) , [285, 46, 10, 170, 382] , ) lowercase_ = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(__lowerCAmelCase) self.assertListEqual( __lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase_ = tokenizer.convert_ids_to_tokens(__lowerCAmelCase) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __UpperCAmelCase ( self : List[str]) -> Any: return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment") @slow def __UpperCAmelCase ( self : Tuple) -> str: lowercase_ = "Hello World!" lowercase_ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase)) @slow def __UpperCAmelCase ( self : Any) -> Dict: lowercase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) lowercase_ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase)) @require_torch @slow def __UpperCAmelCase ( self : Any) -> Tuple: import torch from transformers import ReformerConfig, ReformerModel # Build sequence lowercase_ = list(self.big_tokenizer.get_vocab().keys())[:10] lowercase_ = " ".join(__lowerCAmelCase) lowercase_ = self.big_tokenizer.encode_plus(__lowerCAmelCase , return_tensors="pt") lowercase_ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt") lowercase_ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) lowercase_ = encoded_sequence["input_ids"].shape lowercase_ = ReformerModel(__lowerCAmelCase) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowerCAmelCase) model(**__lowerCAmelCase) @slow def __UpperCAmelCase ( self : List[Any]) -> Tuple: # fmt: off lowercase_ = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 lowercase_ = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=__lowerCAmelCase , sequences=__lowerCAmelCase , )
461
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
342
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __a :Optional[Any] = 'true' def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : List[Any]=82 ,__UpperCamelCase : Dict=16 ): """simple docstring""" set_seed(42 ) A_ = RegressionModel() A_ = deepcopy(__UpperCamelCase ) A_ = RegressionDataset(length=__UpperCamelCase ) A_ = DataLoader(__UpperCamelCase ,batch_size=__UpperCamelCase ) model.to(accelerator.device ) A_ , A_ = accelerator.prepare(__UpperCamelCase ,__UpperCamelCase ) return model, ddp_model, dataloader def __snake_case ( __UpperCamelCase : Accelerator ,__UpperCamelCase : Dict=False ): """simple docstring""" A_ = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) A_ = load_dataset("glue" ,"mrpc" ,split="validation" ) def tokenize_function(__UpperCamelCase : Optional[Any] ): A_ = tokenizer(examples["sentence1"] ,examples["sentence2"] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs with accelerator.main_process_first(): A_ = dataset.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=["idx", "sentence1", "sentence2"] ,) A_ = tokenized_datasets.rename_column("label" ,"labels" ) def collate_fn(__UpperCamelCase : Union[str, Any] ): if use_longest: return tokenizer.pad(__UpperCamelCase ,padding="longest" ,return_tensors="pt" ) return tokenizer.pad(__UpperCamelCase ,padding="max_length" ,max_length=128 ,return_tensors="pt" ) return DataLoader(__UpperCamelCase ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=16 ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : str ): """simple docstring""" A_ = Accelerator(dispatch_batches=__UpperCamelCase ,split_batches=__UpperCamelCase ) A_ = get_dataloader(__UpperCamelCase ,not dispatch_batches ) A_ = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" ,return_dict=__UpperCamelCase ) A_ , A_ = accelerator.prepare(__UpperCamelCase ,__UpperCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : int ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = [] for batch in dataloader: A_ , A_ = batch.values() with torch.no_grad(): A_ = model(__UpperCamelCase ) A_ , A_ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) A_ , A_ = [], [] for logit, targ in logits_and_targets: logits.append(__UpperCamelCase ) targs.append(__UpperCamelCase ) A_ , A_ = torch.cat(__UpperCamelCase ), torch.cat(__UpperCamelCase ) return logits, targs def __snake_case ( __UpperCamelCase : Accelerator ,__UpperCamelCase : Dict=82 ,__UpperCamelCase : List[Any]=False ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Optional[int]=16 ): """simple docstring""" A_ , A_ , A_ = get_basic_setup(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) A_ , A_ = generate_predictions(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) assert ( len(__UpperCamelCase ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__UpperCamelCase )}''' def __snake_case ( __UpperCamelCase : bool = False ,__UpperCamelCase : bool = False ): """simple docstring""" A_ = evaluate.load("glue" ,"mrpc" ) A_ , A_ = get_mrpc_setup(__UpperCamelCase ,__UpperCamelCase ) # First do baseline A_ , A_ , A_ = setup["no"] model.to(__UpperCamelCase ) model.eval() for batch in dataloader: batch.to(__UpperCamelCase ) with torch.inference_mode(): A_ = model(**__UpperCamelCase ) A_ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__UpperCamelCase ,references=batch["labels"] ) A_ = metric.compute() # Then do distributed A_ , A_ , A_ = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): A_ = model(**__UpperCamelCase ) A_ = outputs.logits.argmax(dim=-1 ) A_ = batch["labels"] A_ , A_ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__UpperCamelCase ,references=__UpperCamelCase ) A_ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __snake_case ( ): """simple docstring""" A_ = Accelerator(split_batches=__UpperCamelCase ,dispatch_batches=__UpperCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__UpperCamelCase ,__UpperCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: A_ = Accelerator(split_batches=__UpperCamelCase ,dispatch_batches=__UpperCamelCase ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__UpperCamelCase ,99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) A_ = Accelerator() test_torch_metrics(__UpperCamelCase ,512 ) accelerator.state._reset_state() def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" main() if __name__ == "__main__": main()
86
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase__ =GPTSanJapaneseTokenizer UpperCamelCase__ =False UpperCamelCase__ ={"do_clean_text": False, "add_prefix_space": False} def SCREAMING_SNAKE_CASE__ ( self : int ): super().setUp() # fmt: off _lowerCAmelCase = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on _lowerCAmelCase = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 _lowerCAmelCase = {'unk_token': '<unk>'} _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(lowercase__ ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **lowercase__ : Tuple ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : List[str] ): _lowerCAmelCase = 'こんにちは、世界。 \nこんばんは、㔺界。😀' _lowerCAmelCase = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : List[Any] ): _lowerCAmelCase , _lowerCAmelCase = self.get_input_output_texts(lowercase__ ) _lowerCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) _lowerCAmelCase = tokenizer.decode(lowercase__ , clean_up_tokenization_spaces=lowercase__ ) return text, ids def SCREAMING_SNAKE_CASE__ ( self : str ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = self.get_tokenizer() # Testing tokenization _lowerCAmelCase = 'こんにちは、世界。 こんばんは、㔺界。' _lowerCAmelCase = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] _lowerCAmelCase = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Testing conversion to ids without special tokens _lowerCAmelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _lowerCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Testing conversion to ids with special tokens _lowerCAmelCase = tokens + [tokenizer.unk_token] _lowerCAmelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] _lowerCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.get_tokenizer() # Testing tokenization _lowerCAmelCase = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' _lowerCAmelCase = 'こんにちは、、、、世界。こんばんは、、、、世界。' _lowerCAmelCase = tokenizer.encode(lowercase__ ) _lowerCAmelCase = tokenizer.decode(lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization _lowerCAmelCase = 'こんにちは、世界。' _lowerCAmelCase = 'こんばんは、㔺界。😀' _lowerCAmelCase = 'こんにちは、世界。こんばんは、世界。😀' _lowerCAmelCase = tokenizer.encode(prefix_text + input_text ) _lowerCAmelCase = tokenizer.encode('' , prefix_text=prefix_text + input_text ) _lowerCAmelCase = tokenizer.encode(lowercase__ , prefix_text=lowercase__ ) _lowerCAmelCase = tokenizer.decode(lowercase__ ) _lowerCAmelCase = tokenizer.decode(lowercase__ ) _lowerCAmelCase = tokenizer.decode(lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization _lowerCAmelCase = 'こんにちは、世界。' _lowerCAmelCase = 'こんばんは、㔺界。😀' _lowerCAmelCase = len(tokenizer.encode(lowercase__ ) ) - 2 _lowerCAmelCase = len(tokenizer.encode(lowercase__ ) ) - 2 _lowerCAmelCase = [1] + [0] * (len_prefix + len_text + 1) _lowerCAmelCase = [1] * (len_prefix + len_text + 1) + [0] _lowerCAmelCase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _lowerCAmelCase = tokenizer(prefix_text + input_text ).token_type_ids _lowerCAmelCase = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids _lowerCAmelCase = tokenizer(lowercase__ , prefix_text=lowercase__ ).token_type_ids self.assertListEqual(lowercase__ , lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) _lowerCAmelCase = tokenizer.encode('あンいワ' ) _lowerCAmelCase = tokenizer.encode('' , prefix_text='あンいワ' ) _lowerCAmelCase = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(lowercase__ ) , tokenizer.decode(lowercase__ ) ) self.assertEqual(tokenizer.decode(lowercase__ ) , tokenizer.decode(lowercase__ ) ) self.assertNotEqual(lowercase__ , lowercase__ ) self.assertNotEqual(lowercase__ , lowercase__ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) _lowerCAmelCase = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] _lowerCAmelCase = tokenizer(lowercase__ , padding=lowercase__ ) _lowerCAmelCase = tokenizer.batch_encode_plus(lowercase__ , padding=lowercase__ ) # fmt: off _lowerCAmelCase = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] _lowerCAmelCase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _lowerCAmelCase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowercase__ ) self.assertListEqual(x_token.token_type_ids , lowercase__ ) self.assertListEqual(x_token.attention_mask , lowercase__ ) self.assertListEqual(x_token_a.input_ids , lowercase__ ) self.assertListEqual(x_token_a.token_type_ids , lowercase__ ) self.assertListEqual(x_token_a.attention_mask , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def SCREAMING_SNAKE_CASE__ ( self : str ): # tokenizer has no padding token pass
716
def _lowerCamelCase ( snake_case = 50_000_000 ): _lowerCAmelCase = set() _lowerCAmelCase = int((limit - 24) ** (1 / 2) ) _lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , snake_case ) ) ) for primea in primes: _lowerCAmelCase = primea * primea for primea in primes: _lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: _lowerCAmelCase = primea * primea * primea * primea _lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(snake_case ) return len(snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
225
0
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCamelCase = 16 __UpperCamelCase = 32 def _a ( _lowerCamelCase , _lowerCamelCase = 16 ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __snake_case : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) __snake_case : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __snake_case : Optional[Any] = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __snake_case : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __snake_case : int = 16 elif accelerator.mixed_precision != "no": __snake_case : Any = 8 else: __snake_case : List[Any] = None return tokenizer.pad( _lowerCamelCase , padding="""longest""" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. __snake_case : List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) __snake_case : Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCamelCase = mocked_dataloaders # noqa: F811 def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _lowerCamelCase ) == "1": __snake_case : Optional[int] = 2 # Initialize accelerator __snake_case : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case : Union[str, Any] = config["""lr"""] __snake_case : Optional[int] = int(config["""num_epochs"""] ) __snake_case : Optional[int] = int(config["""seed"""] ) __snake_case : List[Any] = int(config["""batch_size"""] ) __snake_case : int = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_lowerCamelCase ) def inner_training_loop(_lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case : str = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __snake_case : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer __snake_case : int = AdamW(params=model.parameters() , lr=_lowerCamelCase ) __snake_case , __snake_case : Optional[int] = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate scheduler __snake_case : Optional[Any] = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : int = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __snake_case : Optional[int] = model(**_lowerCamelCase ) __snake_case : Optional[Any] = outputs.loss accelerator.backward(_lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits.argmax(dim=-1 ) __snake_case , __snake_case : Optional[int] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) __snake_case : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __snake_case : Any = parser.parse_args() __snake_case : Any = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
26
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase ,lowerCAmelCase = imgs[0].size lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase ,lowerCAmelCase = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ): lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id)) __UpperCamelCase : Optional[Any] = pipeline.to(unet.device) __UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
4
0
import string import numpy def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE ) class A__ : """simple docstring""" _lowercase : Tuple = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) _lowercase : Union[str, Any] = numpy.vectorize(lambda A : x % 36 ) _lowercase : List[str] = numpy.vectorize(A ) def __init__( self : Optional[Any] , A_ : numpy.ndarray ): '''simple docstring''' _lowerCAmelCase : int = self.modulus(A_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _lowerCAmelCase : Tuple = encrypt_key.shape[0] def __magic_name__ ( self : Optional[int] , A_ : str ): '''simple docstring''' return self.key_string.index(A_ ) def __magic_name__ ( self : str , A_ : int ): '''simple docstring''' return self.key_string[round(A_ )] def __magic_name__ ( self : str ): '''simple docstring''' _lowerCAmelCase : List[str] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowerCAmelCase : str = det % len(self.key_string ) _lowerCAmelCase : Tuple = len(self.key_string ) if greatest_common_divisor(A_ , len(self.key_string ) ) != 1: _lowerCAmelCase : str = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(A_ ) def __magic_name__ ( self : Any , A_ : str ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [char for char in text.upper() if char in self.key_string] _lowerCAmelCase : List[str] = chars[-1] while len(A_ ) % self.break_key != 0: chars.append(A_ ) return "".join(A_ ) def __magic_name__ ( self : int , A_ : str ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.process_text(text.upper() ) _lowerCAmelCase : List[str] = "" for i in range(0 , len(A_ ) - self.break_key + 1 , self.break_key ): _lowerCAmelCase : Optional[Any] = text[i : i + self.break_key] _lowerCAmelCase : List[str] = [self.replace_letters(A_ ) for char in batch] _lowerCAmelCase : Optional[int] = numpy.array([vec] ).T _lowerCAmelCase : int = self.modulus(self.encrypt_key.dot(A_ ) ).T.tolist()[ 0 ] _lowerCAmelCase : List[Any] = "".join( self.replace_digits(A_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __magic_name__ ( self : List[Any] ): '''simple docstring''' _lowerCAmelCase : List[str] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowerCAmelCase : Optional[Any] = det % len(self.key_string ) _lowerCAmelCase : List[str] = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _lowerCAmelCase : List[str] = i break _lowerCAmelCase : List[Any] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(A_ ) ) def __magic_name__ ( self : str , A_ : str ): '''simple docstring''' _lowerCAmelCase : Tuple = self.make_decrypt_key() _lowerCAmelCase : Tuple = self.process_text(text.upper() ) _lowerCAmelCase : int = "" for i in range(0 , len(A_ ) - self.break_key + 1 , self.break_key ): _lowerCAmelCase : str = text[i : i + self.break_key] _lowerCAmelCase : Any = [self.replace_letters(A_ ) for char in batch] _lowerCAmelCase : Any = numpy.array([vec] ).T _lowerCAmelCase : Optional[Any] = self.modulus(decrypt_key.dot(A_ ) ).T.tolist()[0] _lowerCAmelCase : Union[str, Any] = "".join( self.replace_digits(A_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def _snake_case ( ): """simple docstring""" _lowerCAmelCase : List[Any] = int(input("Enter the order of the encryption key: " ) ) _lowerCAmelCase : int = [] print("Enter each row of the encryption key with space separated integers" ) for _ in range(SCREAMING_SNAKE_CASE ): _lowerCAmelCase : int = [int(SCREAMING_SNAKE_CASE ) for x in input().split()] hill_matrix.append(SCREAMING_SNAKE_CASE ) _lowerCAmelCase : Tuple = HillCipher(numpy.array(SCREAMING_SNAKE_CASE ) ) print("Would you like to encrypt or decrypt some text? (1 or 2)" ) _lowerCAmelCase : Any = input("\n1. Encrypt\n2. Decrypt\n" ) if option == "1": _lowerCAmelCase : Union[str, Any] = input("What text would you like to encrypt?: " ) print("Your encrypted text is:" ) print(hc.encrypt(SCREAMING_SNAKE_CASE ) ) elif option == "2": _lowerCAmelCase : Any = input("What text would you like to decrypt?: " ) print("Your decrypted text is:" ) print(hc.decrypt(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
717
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase = logging.get_logger(__name__) class A__ ( A ): """simple docstring""" _lowercase : Union[str, Any] = ['''pixel_values'''] def __init__( self : List[str] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PIL.Image.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : Union[int, float] = 1 / 2_5_5 , A_ : bool = True , A_ : bool = True , A_ : Optional[Union[float, List[float]]] = None , A_ : Optional[Union[float, List[float]]] = None , **A_ : List[str] , ): '''simple docstring''' super().__init__(**A_ ) _lowerCAmelCase : str = size if size is not None else {"height": 2_5_6, "width": 2_5_6} _lowerCAmelCase : Any = get_size_dict(A_ ) _lowerCAmelCase : Tuple = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _lowerCAmelCase : Any = get_size_dict(A_ , param_name="crop_size" ) _lowerCAmelCase : str = do_resize _lowerCAmelCase : str = size _lowerCAmelCase : Dict = resample _lowerCAmelCase : Union[str, Any] = do_center_crop _lowerCAmelCase : Union[str, Any] = crop_size _lowerCAmelCase : List[Any] = do_rescale _lowerCAmelCase : Tuple = rescale_factor _lowerCAmelCase : Any = do_normalize _lowerCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __magic_name__ ( self : Optional[int] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PIL.Image.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( A_ , size=(size["height"], size["width"]) , resample=A_ , data_format=A_ , **A_ ) def __magic_name__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ): '''simple docstring''' _lowerCAmelCase : Any = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(A_ , size=(size["height"], size["width"]) , data_format=A_ , **A_ ) def __magic_name__ ( self : List[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : List[Any] , ): '''simple docstring''' return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def __magic_name__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ): '''simple docstring''' return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def __magic_name__ ( self : Union[str, Any] , A_ : ImageInput , A_ : bool = None , A_ : Dict[str, int] = None , A_ : Union[str, Any]=None , A_ : bool = None , A_ : Dict[str, int] = None , A_ : bool = None , A_ : float = None , A_ : bool = None , A_ : Optional[Union[float, List[float]]] = None , A_ : Optional[Union[float, List[float]]] = None , A_ : Optional[Union[str, TensorType]] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : Dict , ): '''simple docstring''' _lowerCAmelCase : List[str] = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : str = resample if resample is not None else self.resample _lowerCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : str = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : List[Any] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Optional[int] = size if size is not None else self.size _lowerCAmelCase : List[str] = get_size_dict(A_ ) _lowerCAmelCase : int = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : List[str] = get_size_dict(A_ , param_name="crop_size" ) _lowerCAmelCase : Tuple = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowerCAmelCase : Union[str, Any] = [to_numpy_array(A_ ) for image in images] if do_resize: _lowerCAmelCase : List[str] = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: _lowerCAmelCase : Any = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: _lowerCAmelCase : str = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: _lowerCAmelCase : Dict = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] _lowerCAmelCase : Tuple = [to_channel_dimension_format(A_ , A_ ) for image in images] _lowerCAmelCase : int = {"pixel_values": images} return BatchFeature(data=A_ , tensor_type=A_ )
503
0
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]: if len(__A ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) _snake_case = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
495
import os import sys import unittest a_ :Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) a_ :List[Any] = os.path.join("tests", "models", "bert", "test_modeling_bert.py") a_ :Any = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Tuple ) ->List[str]: snake_case__ : Optional[int] = get_test_to_tester_mapping(_snake_case ) snake_case__ : int = get_test_to_tester_mapping(_snake_case ) snake_case__ : Optional[int] = {'BertModelTest': 'BertModelTester'} snake_case__ : Union[str, Any] = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(_snake_case ), _snake_case ) self.assertEqual(get_test_info.to_json(_snake_case ), _snake_case ) def lowercase_ ( self : Dict ) ->Tuple: snake_case__ : List[str] = get_model_to_test_mapping(_snake_case ) snake_case__ : int = get_model_to_test_mapping(_snake_case ) snake_case__ : Optional[Any] = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } snake_case__ : Optional[Any] = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(_snake_case ), _snake_case ) self.assertEqual(get_test_info.to_json(_snake_case ), _snake_case ) def lowercase_ ( self : List[Any] ) ->Tuple: snake_case__ : Union[str, Any] = get_model_to_tester_mapping(_snake_case ) snake_case__ : Optional[int] = get_model_to_tester_mapping(_snake_case ) snake_case__ : Union[str, Any] = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } snake_case__ : List[str] = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(_snake_case ), _snake_case ) self.assertEqual(get_test_info.to_json(_snake_case ), _snake_case )
478
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase : int = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class lowerCamelCase__ ( A ): __a = """retribert""" def __init__( self : int , UpperCamelCase : List[str]=30_522 , UpperCamelCase : Optional[Any]=768 , UpperCamelCase : Dict=8 , UpperCamelCase : str=12 , UpperCamelCase : Optional[int]=3_072 , UpperCamelCase : Union[str, Any]="gelu" , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : List[str]=2 , UpperCamelCase : Any=0.02 , UpperCamelCase : List[str]=1e-1_2 , UpperCamelCase : Tuple=True , UpperCamelCase : str=128 , UpperCamelCase : Optional[Any]=0 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : int = share_encoders __UpperCAmelCase : Any = projection_dim
708
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : int ) -> list[int]: '''simple docstring''' __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : Optional[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_UpperCamelCase ) if n > 1: factors.append(_UpperCamelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
299
0
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( A : Any , A : Dict , A : Tuple): '''simple docstring''' UpperCamelCase : int = TaConfig.from_json_file(A) print(F'''Building PyTorch model from configuration: {config}''') UpperCamelCase : Any = TaForConditionalGeneration(A) # Load weights from tf checkpoint load_tf_weights_in_ta(A , A , A) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''') model.save_pretrained(A) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
173
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = '''table-transformer''' __SCREAMING_SNAKE_CASE = ['''past_key_values'''] __SCREAMING_SNAKE_CASE = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=3 , lowerCamelCase=1_00 , lowerCamelCase=6 , lowerCamelCase=20_48 , lowerCamelCase=8 , lowerCamelCase=6 , lowerCamelCase=20_48 , lowerCamelCase=8 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="relu" , lowerCamelCase=2_56 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1.0 , lowerCamelCase=False , lowerCamelCase="sine" , lowerCamelCase="resnet50" , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=1 , lowerCamelCase=5 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=1 , lowerCamelCase=5 , lowerCamelCase=2 , lowerCamelCase=0.1 , **lowerCamelCase , ) -> Dict: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCamelCase : Any = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase : Optional[int] = backbone_config.get("model_type" ) UpperCamelCase : Optional[int] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase : Any = config_class.from_dict(lowerCamelCase ) # set timm attributes to None UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = None, None, None UpperCamelCase : Any = use_timm_backbone UpperCamelCase : Dict = backbone_config UpperCamelCase : Tuple = num_channels UpperCamelCase : str = num_queries UpperCamelCase : Tuple = d_model UpperCamelCase : List[str] = encoder_ffn_dim UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : List[Any] = encoder_attention_heads UpperCamelCase : Optional[int] = decoder_ffn_dim UpperCamelCase : str = decoder_layers UpperCamelCase : Optional[Any] = decoder_attention_heads UpperCamelCase : List[str] = dropout UpperCamelCase : Any = attention_dropout UpperCamelCase : int = activation_dropout UpperCamelCase : int = activation_function UpperCamelCase : List[str] = init_std UpperCamelCase : List[str] = init_xavier_std UpperCamelCase : Dict = encoder_layerdrop UpperCamelCase : Any = decoder_layerdrop UpperCamelCase : Tuple = encoder_layers UpperCamelCase : int = auxiliary_loss UpperCamelCase : Optional[Any] = position_embedding_type UpperCamelCase : int = backbone UpperCamelCase : List[Any] = use_pretrained_backbone UpperCamelCase : Dict = dilation # Hungarian matcher UpperCamelCase : List[Any] = class_cost UpperCamelCase : int = bbox_cost UpperCamelCase : List[str] = giou_cost # Loss coefficients UpperCamelCase : List[Any] = mask_loss_coefficient UpperCamelCase : List[str] = dice_loss_coefficient UpperCamelCase : str = bbox_loss_coefficient UpperCamelCase : Optional[int] = giou_loss_coefficient UpperCamelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return self.d_model class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: '''simple docstring''' return 1e-5 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return 12
173
1
import unittest from knapsack import greedy_knapsack as kp class SCREAMING_SNAKE_CASE_ (unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self : List[str] ) ->int: lowerCamelCase_ : Union[str, Any] = [10, 20, 30, 40, 50, 60] lowerCamelCase_ : List[Any] = [2, 4, 6, 8, 10, 12] lowerCamelCase_ : Optional[Any] = 100 self.assertEqual(kp.calc_profit(__a , __a , __a ) , 210 ) def _lowerCAmelCase ( self : Optional[int] ) ->int: self.assertRaisesRegex(__a , """max_weight must greater than zero.""" ) def _lowerCAmelCase ( self : str ) ->int: self.assertRaisesRegex(__a , """Weight can not be negative.""" ) def _lowerCAmelCase ( self : List[Any] ) ->List[Any]: self.assertRaisesRegex(__a , """Profit can not be negative.""" ) def _lowerCAmelCase ( self : Dict ) ->Optional[Any]: self.assertRaisesRegex(__a , """max_weight must greater than zero.""" ) def _lowerCAmelCase ( self : int ) ->Dict: self.assertRaisesRegex( __a , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
171
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = "" _a = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self : Any , __a : Optional[DatasetInfo] = None , __a : Optional[str] = None , **__a : Any , ) ->Any: super().__init__(self , **__a ) lowerCamelCase_ : Tuple = repo_info lowerCamelCase_ : Any = token lowerCamelCase_ : Any = None def _lowerCAmelCase ( self : Optional[int] ) ->List[Any]: if self.dir_cache is None: lowerCamelCase_ : Dict = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowerCamelCase_ : int = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__a ): {"""name""": str(__a ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _lowerCAmelCase ( self : int , __a : str , __a : str = "rb" , **__a : Optional[Any] , ) ->Dict: if not isinstance(self.repo_info , __a ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) lowerCamelCase_ : int = hf_hub_url(self.repo_info.id , __a , revision=self.repo_info.sha ) return fsspec.open( __a , mode=__a , headers=get_authentication_headers_for_url(__a , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def _lowerCAmelCase ( self : Dict , __a : str , **__a : List[Any] ) ->List[Any]: self._get_dirs() lowerCamelCase_ : Tuple = self._strip_protocol(__a ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__a ) def _lowerCAmelCase ( self : Any , __a : Optional[Any] , __a : str=False , **__a : List[str] ) ->List[Any]: self._get_dirs() lowerCamelCase_ : Optional[Any] = PurePosixPath(path.strip("""/""" ) ) lowerCamelCase_ : Dict = {} for p, f in self.dir_cache.items(): lowerCamelCase_ : str = PurePosixPath(p.strip("""/""" ) ) lowerCamelCase_ : Dict = p.parent if root == path: lowerCamelCase_ : int = f lowerCamelCase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
171
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Optional[int] = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
0
"""simple docstring""" _UpperCamelCase : Any = {str(digit): digit**5 for digit in range(10)} def a_ ( _lowerCAmelCase : int ): '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_lowerCAmelCase ) ) def a_ ( ): '''simple docstring''' return sum( number for number in range(1000 , 100_0000 ) if number == digits_fifth_powers_sum(_lowerCAmelCase ) ) if __name__ == "__main__": print(solution())
599
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_( lowercase__ ): """simple docstring""" __snake_case : Any ='''transfo-xl''' __snake_case : List[str] =['''mems'''] __snake_case : int ={ '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any]=2_6_7_7_3_5 , lowerCAmelCase__ : List[Any]=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0] , lowerCAmelCase__ : List[Any]=1_0_2_4 , lowerCAmelCase__ : Tuple=1_0_2_4 , lowerCAmelCase__ : Tuple=1_6 , lowerCAmelCase__ : int=6_4 , lowerCAmelCase__ : str=4_0_9_6 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : int=1_8 , lowerCAmelCase__ : Optional[Any]=1_6_0_0 , lowerCAmelCase__ : Optional[Any]=1_0_0_0 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : int=0 , lowerCAmelCase__ : Tuple=-1 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : int="normal" , lowerCAmelCase__ : Union[str, Any]=0.01 , lowerCAmelCase__ : str=0.01 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Tuple=1e-5 , lowerCAmelCase__ : str=0 , **lowerCAmelCase__ : int , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = [] self.cutoffs.extend(lowerCAmelCase__) if proj_share_all_but_first: SCREAMING_SNAKE_CASE = [False] + [True] * len(self.cutoffs) else: SCREAMING_SNAKE_CASE = [False] + [False] * len(self.cutoffs) SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = d_embed SCREAMING_SNAKE_CASE = d_head SCREAMING_SNAKE_CASE = d_inner SCREAMING_SNAKE_CASE = div_val SCREAMING_SNAKE_CASE = pre_lnorm SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = mem_len SCREAMING_SNAKE_CASE = same_length SCREAMING_SNAKE_CASE = attn_type SCREAMING_SNAKE_CASE = clamp_len SCREAMING_SNAKE_CASE = sample_softmax SCREAMING_SNAKE_CASE = adaptive SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = dropatt SCREAMING_SNAKE_CASE = untie_r SCREAMING_SNAKE_CASE = init SCREAMING_SNAKE_CASE = init_range SCREAMING_SNAKE_CASE = proj_init_std SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__) @property def __UpperCamelCase ( self : Tuple) -> Tuple: """simple docstring""" logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''') return -1 @max_position_embeddings.setter def __UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Dict) -> Any: """simple docstring""" raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''')
715
__UpperCAmelCase = 9.80_665 def A_ ( lowercase_ , lowercase_ , lowercase_ = g ) ->float: """simple docstring""" if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
259
0
def __lowerCAmelCase ( _A ,_A ): """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def __lowerCAmelCase ( ): """simple docstring""" assert and_gate(0 ,0 ) == 0 assert and_gate(0 ,1 ) == 0 assert and_gate(1 ,0 ) == 0 assert and_gate(1 ,1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
398
class _lowercase : """simple docstring""" def __init__( self , UpperCAmelCase ): '''simple docstring''' _lowercase = arr.split(""",""" ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = [int(self.array[0] )] * len(self.array ) _lowercase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _lowercase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _lowercase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A_: List[str] = input('please input some numbers:') A_: Optional[int] = SubArray(whole_array) A_: Dict = array.solve_sub_array() print(('the results is:', re))
398
1
"""simple docstring""" def _snake_case ( ) -> Optional[Any]: lowerCamelCase_ : List[str] =[] lowerCamelCase_ : Any =1 while len(_lowerCAmelCase ) < 1e6: constant.append(str(_lowerCAmelCase ) ) i += 1 lowerCamelCase_ : Any ="".join(_lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9_999] ) * int(constant[99_999] ) * int(constant[999_999] ) ) if __name__ == "__main__": print(solution())
716
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase__ ( snake_case__ ): _UpperCAmelCase :torch.FloatTensor class lowercase__ ( snake_case__, snake_case__ ): @register_to_config def __init__( self : Any , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : Tuple[str] = ("DownEncoderBlock2D",) , snake_case__ : Tuple[str] = ("UpDecoderBlock2D",) , snake_case__ : Tuple[int] = (64,) , snake_case__ : int = 1 , snake_case__ : str = "silu" , snake_case__ : int = 3 , snake_case__ : int = 32 , snake_case__ : int = 256 , snake_case__ : int = 32 , snake_case__ : Optional[int] = None , snake_case__ : float = 0.18_215 , snake_case__ : str = "group" , ): super().__init__() # pass init params to Encoder lowerCamelCase_ : Union[str, Any] =Encoder( in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , ) lowerCamelCase_ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCamelCase_ : List[str] =nn.Convad(snake_case__ , snake_case__ , 1 ) lowerCamelCase_ : Optional[int] =VectorQuantizer(snake_case__ , snake_case__ , beta=0.25 , remap=snake_case__ , sane_index_shape=snake_case__ ) lowerCamelCase_ : List[str] =nn.Convad(snake_case__ , snake_case__ , 1 ) # pass init params to Decoder lowerCamelCase_ : Tuple =Decoder( in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , norm_type=snake_case__ , ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): lowerCamelCase_ : Optional[int] =self.encoder(snake_case__ ) lowerCamelCase_ : Dict =self.quant_conv(snake_case__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=snake_case__ ) @apply_forward_hook def UpperCAmelCase__ ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : bool = False , snake_case__ : bool = True ): # also go through quantization layer if not force_not_quantize: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : int =self.quantize(snake_case__ ) else: lowerCamelCase_ : Optional[int] =h lowerCamelCase_ : Optional[Any] =self.post_quant_conv(snake_case__ ) lowerCamelCase_ : List[str] =self.decoder(snake_case__ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): lowerCamelCase_ : List[str] =sample lowerCamelCase_ : Any =self.encode(snake_case__ ).latents lowerCamelCase_ : List[Any] =self.decode(snake_case__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ )
244
0
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : str = parent __A : str = batch_size __A : Optional[Any] = seq_length __A : Optional[Any] = is_training __A : Optional[int] = use_input_mask __A : int = use_token_type_ids __A : Union[str, Any] = use_labels __A : List[Any] = vocab_size __A : List[Any] = hidden_size __A : str = num_hidden_layers __A : Union[str, Any] = num_attention_heads __A : Any = intermediate_size __A : Any = hidden_act __A : List[Any] = hidden_dropout_prob __A : Dict = attention_probs_dropout_prob __A : List[Any] = max_position_embeddings __A : List[str] = type_vocab_size __A : Optional[Any] = type_sequence_label_size __A : str = initializer_range __A : Dict = num_labels __A : Dict = num_choices __A : Dict = scope def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : Optional[int] = None if self.use_input_mask: __A : List[str] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[int] = None if self.use_token_type_ids: __A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Dict = None __A : Any = None __A : Optional[int] = None if self.use_labels: __A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : Any = ids_tensor([self.batch_size] , self.num_choices) __A : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Dict = BioGptModel(config=__lowercase) model.to(__lowercase) model.eval() __A : Any = model(__lowercase , attention_mask=__lowercase) __A : Any = model(__lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): '''simple docstring''' __A : int = BioGptForCausalLM(config=__lowercase) model.to(__lowercase) model.eval() __A : Dict = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase): '''simple docstring''' __A : Any = BioGptModel(config=__lowercase) model.to(__lowercase) model.eval() # create attention mask __A : int = torch.ones(input_ids.shape , dtype=torch.long , device=__lowercase) __A : str = self.seq_length // 2 __A : Any = 0 # first forward pass __A : Union[str, Any] = model(__lowercase , attention_mask=__lowercase).to_tuple() # create hypothetical next token and extent to next_input_ids __A : str = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __A : List[str] = ids_tensor((1,) , __lowercase).item() + 1 __A : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __A : List[str] = random_other_next_tokens # append to next input_ids and attn_mask __A : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __A : Tuple = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__lowercase)] , dim=1 , ) # get two different outputs __A : Optional[int] = model(__lowercase , attention_mask=__lowercase)['''last_hidden_state'''] __A : Tuple = model(__lowercase , past_key_values=__lowercase , attention_mask=__lowercase)['''last_hidden_state'''] # select random slice __A : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1]).item() __A : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __A : Tuple = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-3)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase): '''simple docstring''' __A : Optional[int] = BioGptModel(config=__lowercase).to(__lowercase).eval() __A : Any = torch.ones(input_ids.shape , dtype=torch.long , device=__lowercase) # first forward pass __A : Union[str, Any] = model(__lowercase , attention_mask=__lowercase , use_cache=__lowercase) __A : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __A : str = ids_tensor((self.batch_size, 3) , config.vocab_size) __A : Dict = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __A : Tuple = torch.cat([input_ids, next_tokens] , dim=-1) __A : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1) __A : Union[str, Any] = model(__lowercase , attention_mask=__lowercase)['''last_hidden_state'''] __A : Optional[int] = model(__lowercase , attention_mask=__lowercase , past_key_values=__lowercase)[ '''last_hidden_state''' ] # select random slice __A : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __A : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __A : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-3)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = BioGptForCausalLM(__lowercase) model.to(__lowercase) if gradient_checkpointing: model.gradient_checkpointing_enable() __A : Optional[int] = model(__lowercase , labels=__lowercase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , *_UpperCAmelCase): '''simple docstring''' __A : str = BioGptModel(__lowercase) __A : List[str] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.01) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase): '''simple docstring''' __A : List[str] = self.num_labels __A : Optional[Any] = BioGptForTokenClassification(__lowercase) model.to(__lowercase) model.eval() __A : Tuple = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() ( __A ) : str = config_and_inputs __A : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): lowerCAmelCase = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowerCAmelCase = (BioGptForCausalLM,) if is_torch_available() else () lowerCAmelCase = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = BioGptModelTester(self) __A : List[str] = ConfigTester(self , config_class=__lowercase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A : Any = type self.model_tester.create_and_check_model(*__lowercase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__lowercase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__lowercase , gradient_checkpointing=__lowercase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__lowercase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__lowercase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__lowercase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt') model.to(__lowercase) __A : Optional[Any] = BioGptTokenizer.from_pretrained('microsoft/biogpt') __A : Union[str, Any] = '''left''' # Define PAD Token = EOS Token = 50256 __A : Dict = tokenizer.eos_token __A : Dict = model.config.eos_token_id # use different length sentences to test batching __A : int = [ '''Hello, my dog is a little''', '''Today, I''', ] __A : Union[str, Any] = tokenizer(__lowercase , return_tensors='pt' , padding=__lowercase) __A : Optional[Any] = inputs['''input_ids'''].to(__lowercase) __A : List[str] = model.generate( input_ids=__lowercase , attention_mask=inputs['attention_mask'].to(__lowercase) , ) __A : Dict = tokenizer(sentences[0] , return_tensors='pt').input_ids.to(__lowercase) __A : List[str] = model.generate(input_ids=__lowercase) __A : Tuple = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __A : int = tokenizer(sentences[1] , return_tensors='pt').input_ids.to(__lowercase) __A : List[str] = model.generate(input_ids=__lowercase , max_length=model.config.max_length - num_paddings) __A : Optional[Any] = tokenizer.batch_decode(__lowercase , skip_special_tokens=__lowercase) __A : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__lowercase) __A : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__lowercase) __A : List[str] = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__lowercase , __lowercase) self.assertListEqual(__lowercase , [non_padded_sentence, padded_sentence]) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : str = BioGptModel.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : str = 3 __A : List[str] = input_dict['''input_ids'''] __A : Any = input_ids.ne(1).to(__lowercase) __A : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __A : int = BioGptForSequenceClassification(__lowercase) model.to(__lowercase) model.eval() __A : str = model(__lowercase , attention_mask=__lowercase , labels=__lowercase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = 3 __A : Any = '''multi_label_classification''' __A : Optional[Any] = input_dict['''input_ids'''] __A : Optional[Any] = input_ids.ne(1).to(__lowercase) __A : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __A : List[str] = BioGptForSequenceClassification(__lowercase) model.to(__lowercase) model.eval() __A : Any = model(__lowercase , attention_mask=__lowercase , labels=__lowercase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = BioGptForCausalLM.from_pretrained('microsoft/biogpt') __A : int = torch.tensor([[2, 4805, 9, 656, 21]]) __A : str = model(__lowercase)[0] __A : Optional[int] = 4_2384 __A : Dict = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , __lowercase) __A : Tuple = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = BioGptTokenizer.from_pretrained('microsoft/biogpt') __A : List[Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt') model.to(__lowercase) torch.manual_seed(0) __A : Union[str, Any] = tokenizer('COVID-19 is' , return_tensors='pt').to(__lowercase) __A : Union[str, Any] = model.generate( **__lowercase , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=__lowercase , ) __A : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=__lowercase) __A : Optional[Any] = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__lowercase , __lowercase)
8
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowerCAmelCase ( __lowerCAmelCase ) -> Union[str, Any]: # picklable for multiprocessing """simple docstring""" return x.sum() def _lowerCAmelCase ( __lowerCAmelCase ) -> Union[str, Any]: # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class a : __lowerCAmelCase : int __lowerCAmelCase : str class a ( __lowerCamelCase ): def __lowerCamelCase ( self :List[str] ): snake_case__ : Optional[int] = {} snake_case__ : str = [] snake_case__ : Optional[Any] = 1 snake_case__ : Optional[int] = [1, 2] snake_case__ : Any = {'''a''': 1, '''b''': 2} snake_case__ : Optional[int] = {'''a''': [1, 2], '''b''': [3, 4]} snake_case__ : Tuple = {'''a''': {'''1''': 1}, '''b''': 2} snake_case__ : List[Any] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} snake_case__ : Union[str, Any] = {} snake_case__ : Union[str, Any] = [] snake_case__ : Union[str, Any] = 2 snake_case__ : Optional[int] = [2, 3] snake_case__ : Optional[Any] = {'''a''': 2, '''b''': 3} snake_case__ : Dict = {'''a''': [2, 3], '''b''': [4, 5]} snake_case__ : Optional[int] = {'''a''': {'''1''': 2}, '''b''': 3} snake_case__ : Tuple = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} self.assertEqual(map_nested(__lowercase ,__lowercase ) ,__lowercase ) self.assertEqual(map_nested(__lowercase ,__lowercase ) ,__lowercase ) self.assertEqual(map_nested(__lowercase ,__lowercase ) ,__lowercase ) self.assertEqual(map_nested(__lowercase ,__lowercase ) ,__lowercase ) self.assertEqual(map_nested(__lowercase ,__lowercase ) ,__lowercase ) self.assertEqual(map_nested(__lowercase ,__lowercase ) ,__lowercase ) self.assertEqual(map_nested(__lowercase ,__lowercase ) ,__lowercase ) self.assertEqual(map_nested(__lowercase ,__lowercase ) ,__lowercase ) snake_case__ : str = 2 self.assertEqual(map_nested(__lowercase ,__lowercase ,num_proc=__lowercase ) ,__lowercase ) self.assertEqual(map_nested(__lowercase ,__lowercase ,num_proc=__lowercase ) ,__lowercase ) self.assertEqual(map_nested(__lowercase ,__lowercase ,num_proc=__lowercase ) ,__lowercase ) self.assertEqual(map_nested(__lowercase ,__lowercase ,num_proc=__lowercase ) ,__lowercase ) self.assertEqual(map_nested(__lowercase ,__lowercase ,num_proc=__lowercase ) ,__lowercase ) self.assertEqual(map_nested(__lowercase ,__lowercase ,num_proc=__lowercase ) ,__lowercase ) self.assertEqual(map_nested(__lowercase ,__lowercase ,num_proc=__lowercase ) ,__lowercase ) self.assertEqual(map_nested(__lowercase ,__lowercase ,num_proc=__lowercase ) ,__lowercase ) snake_case__ : Dict = {'''a''': np.eye(2 ), '''b''': np.zeros(3 ), '''c''': np.ones(2 )} snake_case__ : Any = {'''a''': 2, '''b''': 0, '''c''': 2} snake_case__ : str = { '''a''': np.eye(2 ).astype(__lowercase ), '''b''': np.zeros(3 ).astype(__lowercase ), '''c''': np.ones(2 ).astype(__lowercase ), } self.assertEqual(map_nested(__lowercase ,__lowercase ,map_numpy=__lowercase ) ,__lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__lowercase ,__lowercase ,map_numpy=__lowercase ).items()} ,{k: v.tolist() for k, v in expected_map_nested_sna_int.items()} ,) self.assertEqual(map_nested(__lowercase ,__lowercase ,map_numpy=__lowercase ,num_proc=__lowercase ) ,__lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__lowercase ,__lowercase ,map_numpy=__lowercase ,num_proc=__lowercase ).items()} ,{k: v.tolist() for k, v in expected_map_nested_sna_int.items()} ,) with self.assertRaises(__lowercase ): # can't pickle a local lambda map_nested(lambda __lowercase : x + 1 ,__lowercase ,num_proc=__lowercase ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : List[str] = {'''a''': 1, '''b''': 2} snake_case__ : Optional[Any] = {'''a''': 3, '''b''': 4} snake_case__ : str = {'''a''': 5, '''b''': 6} snake_case__ : Union[str, Any] = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__lowercase ,__lowercase ,__lowercase ) ) ,__lowercase ) def __lowerCamelCase ( self :List[str] ): class a : __lowerCAmelCase : Union[str, Any] = """bar""" snake_case__ : Dict = Foo() self.assertEqual(foo.my_attr ,'''bar''' ) with temporary_assignment(__lowercase ,'''my_attr''' ,'''BAR''' ): self.assertEqual(foo.my_attr ,'''BAR''' ) self.assertEqual(foo.my_attr ,'''bar''' ) @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: """simple docstring""" with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: snake_case__ : int = {f"""{i}""": i for i in range(__lowerCAmelCase )} snake_case__ : str = map_nested(lambda __lowerCAmelCase : x + 10 , __lowerCAmelCase , num_proc=__lowerCAmelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class a ( __lowerCamelCase ): @require_tf def __lowerCamelCase ( self :Tuple ): import tensorflow as tf from tensorflow.keras import layers snake_case__ : Union[str, Any] = layers.Dense(2 ) def gen_random_output(): snake_case__ : Tuple = tf.random.uniform((1, 3) ) return model(__lowercase ).numpy() with temp_seed(4_2 ,set_tensorflow=__lowercase ): snake_case__ : List[str] = gen_random_output() with temp_seed(4_2 ,set_tensorflow=__lowercase ): snake_case__ : List[str] = gen_random_output() snake_case__ : Tuple = gen_random_output() np.testing.assert_equal(__lowercase ,__lowercase ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) @require_torch def __lowerCamelCase ( self :Union[str, Any] ): import torch def gen_random_output(): snake_case__ : Dict = torch.nn.Linear(3 ,2 ) snake_case__ : List[str] = torch.rand(1 ,3 ) return model(__lowercase ).detach().numpy() with temp_seed(4_2 ,set_pytorch=__lowercase ): snake_case__ : Optional[int] = gen_random_output() with temp_seed(4_2 ,set_pytorch=__lowercase ): snake_case__ : Optional[Any] = gen_random_output() snake_case__ : Optional[Any] = gen_random_output() np.testing.assert_equal(__lowercase ,__lowercase ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) def __lowerCamelCase ( self :Any ): def gen_random_output(): return np.random.rand(1 ,3 ) with temp_seed(4_2 ): snake_case__ : Dict = gen_random_output() with temp_seed(4_2 ): snake_case__ : int = gen_random_output() snake_case__ : Union[str, Any] = gen_random_output() np.testing.assert_equal(__lowercase ,__lowercase ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) @pytest.mark.parametrize('''input_data''' , [{}] ) def _lowerCAmelCase ( __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = NestedDataStructure(__lowerCAmelCase ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' , [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] , ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" snake_case__ : List[Any] = NestedDataStructure(__lowerCAmelCase ).flatten() assert output == expected_output def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case__ : Tuple = A(x=1 , y='''foobar''' ) snake_case__ : List[str] = {'''x''': 1, '''y''': '''foobar'''} assert asdict(__lowerCAmelCase ) == expected_output snake_case__ : List[Any] = {'''a''': {'''b''': A(x=10 , y='''foo''' )}, '''c''': [A(x=20 , y='''bar''' )]} snake_case__ : Tuple = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]} assert asdict(__lowerCAmelCase ) == expected_output with pytest.raises(__lowerCAmelCase ): asdict([1, A(x=10 , y='''foo''' )] ) def _lowerCAmelCase ( __lowerCAmelCase ) -> List[Any]: """simple docstring""" return text.split() def _lowerCAmelCase ( __lowerCAmelCase ) -> Tuple: """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowerCAmelCase ( ) -> Any: """simple docstring""" with Pool(2 ) as pool: snake_case__ : List[str] = list(iflatmap_unordered(__lowerCAmelCase , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(__lowerCAmelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: snake_case__ : List[Any] = list(iflatmap_unordered(__lowerCAmelCase , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(__lowerCAmelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: snake_case__ : List[str] = [] for yield_time, content in iflatmap_unordered( __lowerCAmelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__lowerCAmelCase ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(__lowerCAmelCase ) == 4
252
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class SCREAMING_SNAKE_CASE_ ( _lowerCAmelCase ): """simple docstring""" def __magic_name__ ( self ): lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = 5 # Realm tok lowerCamelCase__ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase__ = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) lowerCamelCase__ = os.path.join(_lowerCAmelCase , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCamelCase__ = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) def __magic_name__ ( self ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def __magic_name__ ( self ): shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ): lowerCamelCase__ = RealmConfig(num_block_records=self.num_block_records ) return config def __magic_name__ ( self ): lowerCamelCase__ = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def __magic_name__ ( self ): lowerCamelCase__ = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=_lowerCAmelCase , ) return block_records def __magic_name__ ( self ): lowerCamelCase__ = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __magic_name__ ( self ): lowerCamelCase__ = self.get_config() lowerCamelCase__ = self.get_dummy_retriever() lowerCamelCase__ = retriever.tokenizer lowerCamelCase__ = np.array([0, 3] , dtype="long" ) lowerCamelCase__ = tokenizer(["Test question"] ).input_ids lowerCamelCase__ = tokenizer( ["the fourth"] , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ).input_ids lowerCamelCase__ = config.reader_seq_len lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = retriever( _lowerCAmelCase , _lowerCAmelCase , answer_ids=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors="np" ) self.assertEqual(len(_lowerCAmelCase ) , 2 ) self.assertEqual(len(_lowerCAmelCase ) , 2 ) self.assertEqual(len(_lowerCAmelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def __magic_name__ ( self ): lowerCamelCase__ = self.get_config() lowerCamelCase__ = self.get_dummy_retriever() lowerCamelCase__ = retriever.tokenizer lowerCamelCase__ = np.array([0, 3, 5] , dtype="long" ) lowerCamelCase__ = tokenizer(["Test question"] ).input_ids lowerCamelCase__ = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ).input_ids lowerCamelCase__ = config.reader_seq_len lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = retriever( _lowerCAmelCase , _lowerCAmelCase , answer_ids=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors="np" ) self.assertEqual([False, True, True] , _lowerCAmelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _lowerCAmelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _lowerCAmelCase ) def __magic_name__ ( self ): lowerCamelCase__ = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path lowerCamelCase__ = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: lowerCamelCase__ = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) lowerCamelCase__ = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
709
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , _lowerCAmelCase = None ): if components is None: lowerCamelCase__ = [] lowerCamelCase__ = list(_lowerCAmelCase ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(_lowerCAmelCase , self.__components ) ) + ")" def __add__( self , _lowerCAmelCase ): lowerCamelCase__ = len(self ) if size == len(_lowerCAmelCase ): lowerCamelCase__ = [self.__components[i] + other.component(_lowerCAmelCase ) for i in range(_lowerCAmelCase )] return Vector(_lowerCAmelCase ) else: raise Exception("must have the same size" ) def __sub__( self , _lowerCAmelCase ): lowerCamelCase__ = len(self ) if size == len(_lowerCAmelCase ): lowerCamelCase__ = [self.__components[i] - other.component(_lowerCAmelCase ) for i in range(_lowerCAmelCase )] return Vector(_lowerCAmelCase ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self , _lowerCAmelCase ): ... @overload def __mul__( self , _lowerCAmelCase ): ... def __mul__( self , _lowerCAmelCase ): if isinstance(_lowerCAmelCase , (float, int) ): lowerCamelCase__ = [c * other for c in self.__components] return Vector(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(self ) == len(_lowerCAmelCase ): lowerCamelCase__ = len(self ) lowerCamelCase__ = [self.__components[i] * other.component(_lowerCAmelCase ) for i in range(_lowerCAmelCase )] return sum(_lowerCAmelCase ) else: # error case raise Exception("invalid operand!" ) def __magic_name__ ( self ): return Vector(self.__components ) def __magic_name__ ( self , _lowerCAmelCase ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): assert -len(self.__components ) <= pos < len(self.__components ) lowerCamelCase__ = value def __magic_name__ ( self ): if len(self.__components ) == 0: raise Exception("Vector is empty" ) lowerCamelCase__ = [c**2 for c in self.__components] return math.sqrt(sum(_lowerCAmelCase ) ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase = False ): lowerCamelCase__ = self * other lowerCamelCase__ = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __UpperCamelCase ( a) ->Vector: assert isinstance(a, a) return Vector([0] * dimension) def __UpperCamelCase ( a, a) ->Vector: assert isinstance(a, a) and (isinstance(a, a)) lowerCamelCase__ = [0] * dimension lowerCamelCase__ = 1 return Vector(a) def __UpperCamelCase ( a, a, a) ->Vector: assert ( isinstance(a, a) and isinstance(a, a) and (isinstance(a, (int, float))) ) return x * scalar + y def __UpperCamelCase ( a, a, a) ->Vector: random.seed(a) lowerCamelCase__ = [random.randint(a, a) for _ in range(a)] return Vector(a) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = matrix lowerCamelCase__ = w lowerCamelCase__ = h def __str__( self ): lowerCamelCase__ = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , _lowerCAmelCase ): if self.__width == other.width() and self.__height == other.height(): lowerCamelCase__ = [] for i in range(self.__height ): lowerCamelCase__ = [ self.__matrix[i][j] + other.component(_lowerCAmelCase , _lowerCAmelCase ) for j in range(self.__width ) ] matrix.append(_lowerCAmelCase ) return Matrix(_lowerCAmelCase , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self , _lowerCAmelCase ): if self.__width == other.width() and self.__height == other.height(): lowerCamelCase__ = [] for i in range(self.__height ): lowerCamelCase__ = [ self.__matrix[i][j] - other.component(_lowerCAmelCase , _lowerCAmelCase ) for j in range(self.__width ) ] matrix.append(_lowerCAmelCase ) return Matrix(_lowerCAmelCase , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self , _lowerCAmelCase ): ... @overload def __mul__( self , _lowerCAmelCase ): ... def __mul__( self , _lowerCAmelCase ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # matrix-vector if len(_lowerCAmelCase ) == self.__width: lowerCamelCase__ = zero_vector(self.__height ) for i in range(self.__height ): lowerCamelCase__ = [ self.__matrix[i][j] * other.component(_lowerCAmelCase ) for j in range(self.__width ) ] ans.change_component(_lowerCAmelCase , sum(_lowerCAmelCase ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(_lowerCAmelCase , (int, float) ): # matrix-scalar lowerCamelCase__ = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_lowerCAmelCase , self.__width , self.__height ) return None def __magic_name__ ( self ): return self.__height def __magic_name__ ( self ): return self.__width def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if 0 <= x < self.__height and 0 <= y < self.__width: lowerCamelCase__ = value else: raise Exception("change_component: indices out of bounds" ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): if self.__height != self.__width: raise Exception("Matrix is not square" ) lowerCamelCase__ = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_lowerCAmelCase ) ): lowerCamelCase__ = minor[i][:y] + minor[i][y + 1 :] return Matrix(_lowerCAmelCase , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_lowerCAmelCase , _lowerCAmelCase ) else: raise Exception("Indices out of bounds" ) def __magic_name__ ( self ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowerCamelCase__ = [ self.__matrix[0][y] * self.cofactor(0 , _lowerCAmelCase ) for y in range(self.__width ) ] return sum(_lowerCAmelCase ) def __UpperCamelCase ( a) ->Matrix: lowerCamelCase__ = [[0] * n for _ in range(a)] return Matrix(a, a, a) def __UpperCamelCase ( a, a, a, a) ->Matrix: random.seed(a) lowerCamelCase__ = [ [random.randint(a, a) for _ in range(a)] for _ in range(a) ] return Matrix(a, a, a)
360
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __a : str = logging.get_logger(__name__) # pylint: disable=invalid-name __a : Union[str, Any] = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def UpperCAmelCase ( lowercase , lowercase , lowercase=8 ): """simple docstring""" __lowercase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowercase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , movq=lowerCAmelCase__ , ) __lowercase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: '''simple docstring''' if latents is None: __lowercase = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) __lowercase = latents.to(lowerCAmelCase__ ) __lowercase = latents * scheduler.init_noise_sigma return latents def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__=0 ) -> int: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __lowercase = torch.device(F"cuda:{gpu_id}" ) __lowercase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__=0 ) -> Dict: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __lowercase = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowerCAmelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowercase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowercase , __lowercase = cpu_offload_with_hook(lowerCAmelCase__ , lowerCAmelCase__ , prev_module_hook=lowerCAmelCase__ ) # We'll offload the last model manually. __lowercase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 5_12 , lowerCAmelCase__ = 5_12 , lowerCAmelCase__ = 1_00 , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> int: '''simple docstring''' __lowercase = self._execution_device __lowercase = guidance_scale > 1.0 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = torch.cat(lowerCAmelCase__ , dim=0 ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = torch.cat(lowerCAmelCase__ , dim=0 ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = torch.cat(lowerCAmelCase__ , dim=0 ) __lowercase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __lowercase = image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 ) __lowercase = negative_image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 ) __lowercase = hint.repeat_interleave(lowerCAmelCase__ , dim=0 ) __lowercase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCAmelCase__ ) __lowercase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCAmelCase__ ) self.scheduler.set_timesteps(lowerCAmelCase__ , device=lowerCAmelCase__ ) __lowercase = self.scheduler.timesteps __lowercase = self.movq.config.latent_channels __lowercase , __lowercase = downscale_height_and_width(lowerCAmelCase__ , lowerCAmelCase__ , self.movq_scale_factor ) # create initial latent __lowercase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = {'''image_embeds''': image_embeds, '''hint''': hint} __lowercase = self.unet( sample=lowerCAmelCase__ , timestep=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , added_cond_kwargs=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 ) __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase , __lowercase = variance_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowercase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ , )[0] # post-processing __lowercase = self.movq.decode(lowerCAmelCase__ , force_not_quantize=lowerCAmelCase__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: __lowercase = image * 0.5 + 0.5 __lowercase = image.clamp(0 , 1 ) __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
534
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a : Tuple = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Dict = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
534
1
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['vqvae'] def __init__( self , __a , __a , __a , __a , ) -> Dict: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , __a) else 10_00 @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__a) _UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: _UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) _UpperCamelCase = noise _UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a) _UpperCamelCase = self.mel.audio_slice_to_image(__a) _UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) _UpperCamelCase = (input_image / 2_55) * 2 - 1 _UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: _UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__a , 0)).latent_dist.sample( generator=__a)[0] _UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCamelCase = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1]) _UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCamelCase = int(mask_start_secs * pixels_per_second) _UpperCamelCase = int(mask_end_secs * pixels_per_second) _UpperCamelCase = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __a): _UpperCamelCase = self.unet(__a , __a , __a)['''sample'''] else: _UpperCamelCase = self.unet(__a , __a)['''sample'''] if isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['''prev_sample'''] else: _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['''prev_sample'''] if mask is not None: if mask_start > 0: _UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCamelCase = self.vqvae.decode(__a)['''sample'''] _UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() _UpperCamelCase = (images * 2_55).round().astype('''uint8''') _UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='''RGB''').convert('''L''') for _ in images)) _UpperCamelCase = [self.mel.image_to_audio(__a) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a)[:, np.newaxis, :]) , **ImagePipelineOutput(__a)) @torch.no_grad() def UpperCAmelCase ( self , __a , __a = 50) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __a) self.scheduler.set_timesteps(__a) _UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) _UpperCamelCase = (sample / 2_55) * 2 - 1 _UpperCamelCase = torch.Tensor(__a).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): _UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCamelCase = self.scheduler.alphas_cumprod[t] _UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = self.unet(__a , __a)['''sample'''] _UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __a , __a , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = acos(torch.dot(torch.flatten(__a) , torch.flatten(__a)) / torch.norm(__a) / torch.norm(__a)) return sin((1 - alpha) * theta) * xa / sin(__a) + sin(alpha * theta) * xa / sin(__a)
78
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case=False ) -> Tuple: """simple docstring""" _UpperCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCamelCase = '''''' else: _UpperCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _UpperCamelCase = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCamelCase = in_proj_bias[: config.hidden_size] _UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCamelCase = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Any: """simple docstring""" _UpperCamelCase = dct.pop(__snake_case ) _UpperCamelCase = val def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = ViTConfig() _UpperCamelCase = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _UpperCamelCase = True _UpperCamelCase = int(vit_name[-12:-10] ) _UpperCamelCase = int(vit_name[-9:-6] ) else: _UpperCamelCase = 10_00 _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} _UpperCamelCase = int(vit_name[-6:-4] ) _UpperCamelCase = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): _UpperCamelCase = 1_92 _UpperCamelCase = 7_68 _UpperCamelCase = 12 _UpperCamelCase = 3 elif vit_name[9:].startswith('''small''' ): _UpperCamelCase = 3_84 _UpperCamelCase = 15_36 _UpperCamelCase = 12 _UpperCamelCase = 6 else: pass else: if vit_name[4:].startswith('''small''' ): _UpperCamelCase = 7_68 _UpperCamelCase = 23_04 _UpperCamelCase = 8 _UpperCamelCase = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): _UpperCamelCase = 10_24 _UpperCamelCase = 40_96 _UpperCamelCase = 24 _UpperCamelCase = 16 elif vit_name[4:].startswith('''huge''' ): _UpperCamelCase = 12_80 _UpperCamelCase = 51_20 _UpperCamelCase = 32 _UpperCamelCase = 16 # load original model from timm _UpperCamelCase = timm.create_model(__snake_case, pretrained=__snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCamelCase = timm_model.state_dict() if base_model: remove_classification_head_(__snake_case ) _UpperCamelCase = create_rename_keys(__snake_case, __snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case, __snake_case ) # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCamelCase = ViTModel(__snake_case ).eval() else: _UpperCamelCase = ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _UpperCamelCase = DeiTImageProcessor(size=config.image_size ) else: _UpperCamelCase = ViTImageProcessor(size=config.image_size ) _UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''' ) _UpperCamelCase = encoding['''pixel_values'''] _UpperCamelCase = model(__snake_case ) if base_model: _UpperCamelCase = timm_model.forward_features(__snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__snake_case, outputs.pooler_output, atol=1e-3 ) else: _UpperCamelCase = timm_model(__snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1e-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _a = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
78
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def lowercase__ ( lowerCAmelCase : str , lowerCAmelCase : str ) -> int: """simple docstring""" UpperCAmelCase = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1_024, 'hidden_size': 768, 'max_length': 512, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1_024, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1E-5, 'token_type_vocab_size': 2, } UpperCAmelCase = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py UpperCAmelCase = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCAmelCase , output_all_encodings=lowerCAmelCase , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCAmelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later UpperCAmelCase = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab UpperCAmelCase = os.path.join(get_home_dir() , 'models' ) UpperCAmelCase = _load_vocab(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , cls=lowerCAmelCase ) UpperCAmelCase = nlp.model.BERTModel( lowerCAmelCase , len(lowerCAmelCase ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCAmelCase , use_token_type_embed=lowerCAmelCase , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCAmelCase , use_decoder=lowerCAmelCase , ) original_bort.load_parameters(lowerCAmelCase , cast_dtype=lowerCAmelCase , ignore_extra=lowerCAmelCase ) UpperCAmelCase = original_bort._collect_params_with_prefix() # Build our config 🤗 UpperCAmelCase = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(lowerCAmelCase ), } UpperCAmelCase = BertConfig.from_dict(lowerCAmelCase ) UpperCAmelCase = BertForMaskedLM(lowerCAmelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCAmelCase : int ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCAmelCase : str , lowerCAmelCase : Tuple ): UpperCAmelCase = hf_param.shape UpperCAmelCase = to_torch(params[gluon_param] ) UpperCAmelCase = gluon_param.shape assert ( shape_hf == shape_gluon ), F"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param UpperCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) UpperCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) UpperCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) UpperCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) UpperCAmelCase = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): UpperCAmelCase = hf_bort_model.bert.encoder.layer[i] # self attention UpperCAmelCase = layer.attention.self UpperCAmelCase = check_and_map_params( self_attn.key.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) UpperCAmelCase = check_and_map_params( self_attn.key.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) UpperCAmelCase = check_and_map_params( self_attn.query.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) UpperCAmelCase = check_and_map_params( self_attn.query.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) UpperCAmelCase = check_and_map_params( self_attn.value.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) UpperCAmelCase = check_and_map_params( self_attn.value.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output UpperCAmelCase = layer.attention.output UpperCAmelCase = check_and_map_params( self_output.dense.bias , F"encoder.transformer_cells.{i}.proj.bias" ) UpperCAmelCase = check_and_map_params( self_output.dense.weight , F"encoder.transformer_cells.{i}.proj.weight" ) UpperCAmelCase = check_and_map_params( self_output.LayerNorm.bias , F"encoder.transformer_cells.{i}.layer_norm.beta" ) UpperCAmelCase = check_and_map_params( self_output.LayerNorm.weight , F"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate UpperCAmelCase = layer.intermediate UpperCAmelCase = check_and_map_params( intermediate.dense.bias , F"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) UpperCAmelCase = check_and_map_params( intermediate.dense.weight , F"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output UpperCAmelCase = layer.output UpperCAmelCase = check_and_map_params( bert_output.dense.bias , F"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) UpperCAmelCase = check_and_map_params( bert_output.dense.weight , F"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) UpperCAmelCase = check_and_map_params( bert_output.LayerNorm.bias , F"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) UpperCAmelCase = check_and_map_params( bert_output.LayerNorm.weight , F"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models UpperCAmelCase = RobertaTokenizer.from_pretrained('roberta-base' ) UpperCAmelCase = tokenizer.encode_plus(lowerCAmelCase )['input_ids'] # Get gluon output UpperCAmelCase = mx.nd.array([input_ids] ) UpperCAmelCase = original_bort(inputs=lowerCAmelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCAmelCase ) UpperCAmelCase = BertModel.from_pretrained(lowerCAmelCase ) hf_bort_model.eval() UpperCAmelCase = tokenizer.encode_plus(lowerCAmelCase , return_tensors='pt' ) UpperCAmelCase = hf_bort_model(**lowerCAmelCase )[0] UpperCAmelCase = output_gluon[0].asnumpy() UpperCAmelCase = output_hf[0].detach().numpy() UpperCAmelCase = np.max(np.abs(hf_layer - gluon_layer ) ).item() UpperCAmelCase = np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
373
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE_ = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''BeitFeatureExtractor'''] SCREAMING_SNAKE_CASE_ = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
373
1
import re from filelock import FileLock try: import nltk UpperCAmelCase_ : Any = True except (ImportError, ModuleNotFoundError): UpperCAmelCase_ : Optional[int] = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> str: """simple docstring""" re.sub("""<n>""" , """""" , __magic_name__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__magic_name__ ) )
590
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> List[Any]: """simple docstring""" if gpta_config_file == "": UpperCamelCase :str = GPTaConfig() else: UpperCamelCase :int = GPTaConfig.from_json_file(__magic_name__ ) UpperCamelCase :List[str] = GPTaModel(__magic_name__ ) # Load weights from numpy load_tf_weights_in_gpta(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model UpperCamelCase :Union[str, Any] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME UpperCamelCase :Union[str, Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , __magic_name__ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
590
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A : def __init__( self: str , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[Any]=7 , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=True , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: Any=True , _lowerCAmelCase: str=99 , _lowerCAmelCase: List[str]=32 , _lowerCAmelCase: Optional[Any]=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Optional[int]=37 , _lowerCAmelCase: Union[str, Any]="gelu" , _lowerCAmelCase: int=0.1 , _lowerCAmelCase: Optional[int]=0.1 , _lowerCAmelCase: Optional[int]=512 , _lowerCAmelCase: List[str]=16 , _lowerCAmelCase: Optional[Any]=2 , _lowerCAmelCase: List[Any]=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: List[Any]=4 , _lowerCAmelCase: List[str]=None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =13 UpperCAmelCase_ =7 UpperCAmelCase_ =True UpperCAmelCase_ =True UpperCAmelCase_ =True UpperCAmelCase_ =True UpperCAmelCase_ =99 UpperCAmelCase_ =384 UpperCAmelCase_ =2 UpperCAmelCase_ =4 UpperCAmelCase_ =37 UpperCAmelCase_ ="""gelu""" UpperCAmelCase_ =0.1 UpperCAmelCase_ =0.1 UpperCAmelCase_ =512 UpperCAmelCase_ =16 UpperCAmelCase_ =2 UpperCAmelCase_ =0.02 UpperCAmelCase_ =3 UpperCAmelCase_ =4 UpperCAmelCase_ =128 UpperCAmelCase_ =2 UpperCAmelCase_ =9 UpperCAmelCase_ =1 UpperCAmelCase_ =None def lowerCAmelCase__ ( self: List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_input_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =None UpperCAmelCase_ =None UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ =ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ =ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: int , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Any ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFConvBertModel(config=_lowerCamelCase ) UpperCAmelCase_ ={"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase_ =[input_ids, input_mask] UpperCAmelCase_ =model(_lowerCamelCase ) UpperCAmelCase_ =model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: int ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =TFConvBertForMaskedLM(config=_lowerCamelCase ) UpperCAmelCase_ ={ """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCAmelCase_ =model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: int , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =self.num_labels UpperCAmelCase_ =TFConvBertForSequenceClassification(config=_lowerCamelCase ) UpperCAmelCase_ ={ """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCAmelCase_ =model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Any ) -> Dict: '''simple docstring''' UpperCAmelCase_ =self.num_choices UpperCAmelCase_ =TFConvBertForMultipleChoice(config=_lowerCamelCase ) UpperCAmelCase_ =tf.tile(tf.expand_dims(_lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ =tf.tile(tf.expand_dims(_lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ =tf.tile(tf.expand_dims(_lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ ={ """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCAmelCase_ =model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Any , _lowerCAmelCase: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.num_labels UpperCAmelCase_ =TFConvBertForTokenClassification(config=_lowerCamelCase ) UpperCAmelCase_ ={ """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCAmelCase_ =model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Dict , _lowerCAmelCase: Tuple , _lowerCAmelCase: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =TFConvBertForQuestionAnswering(config=_lowerCamelCase ) UpperCAmelCase_ ={ """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCAmelCase_ =model(_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self: Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() ( UpperCAmelCase_ ) =config_and_inputs UpperCAmelCase_ ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A ( a__ , a__ , unittest.TestCase ): _snake_case =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _snake_case =( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =TFConvBertModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: List[str] ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowerCAmelCase__ ( self: Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def lowerCAmelCase__ ( self: Dict ) -> str: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def lowerCAmelCase__ ( self: str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ =True UpperCAmelCase_ =True if hasattr(_lowerCamelCase , "use_cache" ): UpperCAmelCase_ =True UpperCAmelCase_ =getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase_ =getattr(self.model_tester , "key_length" , _lowerCamelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ =self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase_ =model_class(_lowerCamelCase ) UpperCAmelCase_ =len(model(_lowerCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase , saved_model=_lowerCamelCase ) UpperCAmelCase_ =os.path.join(_lowerCamelCase , "saved_model" , "1" ) UpperCAmelCase_ =tf.keras.models.load_model(_lowerCamelCase ) UpperCAmelCase_ =model(_lowerCamelCase ) if self.is_encoder_decoder: UpperCAmelCase_ =outputs["""encoder_hidden_states"""] UpperCAmelCase_ =outputs["""encoder_attentions"""] else: UpperCAmelCase_ =outputs["""hidden_states"""] UpperCAmelCase_ =outputs["""attentions"""] self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) UpperCAmelCase_ =getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_lowerCamelCase ) def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ =True UpperCAmelCase_ =getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase_ =getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase_ =getattr(self.model_tester , "key_length" , _lowerCamelCase ) UpperCAmelCase_ =getattr(self.model_tester , "key_length" , _lowerCamelCase ) def check_decoder_attentions_output(_lowerCAmelCase: int ): UpperCAmelCase_ =len(_lowerCamelCase ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase_ =outputs.decoder_attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_lowerCAmelCase: List[Any] ): UpperCAmelCase_ =[ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase_ =True UpperCAmelCase_ =False UpperCAmelCase_ =model_class(_lowerCamelCase ) UpperCAmelCase_ =model(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCAmelCase_ =len(_lowerCamelCase ) self.assertEqual(config.output_hidden_states , _lowerCamelCase ) check_encoder_attentions_output(_lowerCamelCase ) if self.is_encoder_decoder: UpperCAmelCase_ =model_class(_lowerCamelCase ) UpperCAmelCase_ =model(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , _lowerCamelCase ) check_decoder_attentions_output(_lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase_ =True UpperCAmelCase_ =model_class(_lowerCamelCase ) UpperCAmelCase_ =model(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , _lowerCamelCase ) check_encoder_attentions_output(_lowerCamelCase ) # Check attention is always last and order is fine UpperCAmelCase_ =True UpperCAmelCase_ =True UpperCAmelCase_ =model_class(_lowerCamelCase ) UpperCAmelCase_ =model(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , _lowerCamelCase ) check_encoder_attentions_output(_lowerCamelCase ) @require_tf class A ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) UpperCAmelCase_ =tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase_ =model(_lowerCamelCase )[0] UpperCAmelCase_ =[1, 6, 768] self.assertEqual(output.shape , _lowerCamelCase ) UpperCAmelCase_ =tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCamelCase , atol=1e-4 )
54
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __A ={ 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _UpperCamelCase ( UpperCamelCase__ ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): if args.student_type == "roberta": UpperCAmelCase__ : Optional[Any] = False elif args.student_type == "gpt2": UpperCAmelCase__ : str = False def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): if args.student_type == "roberta": UpperCAmelCase__ : str = False def _UpperCamelCase ( ): UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=UpperCamelCase__ , choices=["""distilbert""", """roberta""", """gpt2"""] , required=UpperCamelCase__ , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=UpperCamelCase__ , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=UpperCamelCase__ , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=UpperCamelCase__ , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=UpperCamelCase__ , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=UpperCamelCase__ , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=UpperCamelCase__ , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=UpperCamelCase__ , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=UpperCamelCase__ , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=UpperCamelCase__ , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=UpperCamelCase__ , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=UpperCamelCase__ , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=UpperCamelCase__ , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=UpperCamelCase__ , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=UpperCamelCase__ , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=UpperCamelCase__ , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=UpperCamelCase__ , default=5_0 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=UpperCamelCase__ , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=UpperCamelCase__ , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5e-4 , type=UpperCamelCase__ , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=UpperCamelCase__ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=UpperCamelCase__ , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=UpperCamelCase__ , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=UpperCamelCase__ , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=UpperCamelCase__ , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=UpperCamelCase__ , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=UpperCamelCase__ , default=5_6 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=UpperCamelCase__ , default=5_0_0 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=UpperCamelCase__ , default=4_0_0_0 , help="""Checkpoint interval.""" ) UpperCAmelCase__ : Dict = parser.parse_args() sanity_checks(UpperCamelCase__ ) # ARGS # init_gpu_params(UpperCamelCase__ ) set_seed(UpperCamelCase__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(UpperCamelCase__ ) , UpperCamelCase__ , indent=4 ) git_log(args.dump_path ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = MODEL_CLASSES[args.student_type] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase__ : Optional[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase__ : Any = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase__ : Any = tokenizer.all_special_tokens.index(UpperCamelCase__ ) UpperCAmelCase__ : str = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) UpperCAmelCase__ : Any = special_tok_ids UpperCAmelCase__ : str = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file , """rb""" ) as fp: UpperCAmelCase__ : str = pickle.load(UpperCamelCase__ ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , """rb""" ) as fp: UpperCAmelCase__ : int = pickle.load(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = np.maximum(UpperCamelCase__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase__ : Tuple = 0.0 # do not predict special tokens UpperCAmelCase__ : Any = torch.from_numpy(UpperCamelCase__ ) else: UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Optional[int] = LmSeqsDataset(params=UpperCamelCase__ , data=UpperCamelCase__ ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) UpperCAmelCase__ : int = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase__ : Optional[int] = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) UpperCAmelCase__ : str = student_model_class.from_pretrained(args.student_pretrained_weights , config=UpperCamelCase__ ) else: UpperCAmelCase__ : Any = student_model_class(UpperCamelCase__ ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info("""Student loaded.""" ) # TEACHER # UpperCAmelCase__ : int = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=UpperCamelCase__ ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(UpperCamelCase__ , UpperCamelCase__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(UpperCamelCase__ , UpperCamelCase__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase__ : Optional[Any] = Distiller( params=UpperCamelCase__ , dataset=UpperCamelCase__ , token_probs=UpperCamelCase__ , student=UpperCamelCase__ , teacher=UpperCamelCase__ ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
407
0
"""simple docstring""" import argparse import os import re import packaging.version lowerCAmelCase__ = 'examples/' lowerCAmelCase__ = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowerCAmelCase__ = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } lowerCAmelCase__ = 'README.md' def _lowerCamelCase ( __a, __a, __a ): with open(__a, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE_ = replace.replace('''VERSION''', __a ) SCREAMING_SNAKE_CASE_ = re_pattern.sub(__a, __a ) with open(__a, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.write(__a ) def _lowerCamelCase ( __a ): for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a, __a ), __a, pattern='''examples''' ) def _lowerCamelCase ( __a, __a=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a, __a, __a ) if not patch: update_version_in_examples(__a ) def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = '''🤗 Transformers currently provides the following architectures''' SCREAMING_SNAKE_CASE_ = '''1. Want to contribute a new model?''' with open(__a, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE_ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): SCREAMING_SNAKE_CASE_ = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''', '''https://huggingface.co/docs/diffusers/model_doc''', ) index += 1 with open(__a, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.writelines(__a ) def _lowerCamelCase ( ): with open(REPLACE_FILES['''init'''], '''r''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() SCREAMING_SNAKE_CASE_ = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def _lowerCamelCase ( __a=False ): SCREAMING_SNAKE_CASE_ = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE_ = default_version.base_version elif patch: SCREAMING_SNAKE_CASE_ = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: SCREAMING_SNAKE_CASE_ = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE_ = input(F'Which version are you releasing? [{default_version}]' ) if len(__a ) == 0: SCREAMING_SNAKE_CASE_ = default_version print(F'Updating version to {version}.' ) global_version_update(__a, patch=__a ) def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = get_version() SCREAMING_SNAKE_CASE_ = F'{current_version.major}.{current_version.minor + 1}.0.dev0' SCREAMING_SNAKE_CASE_ = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE_ = input(F'Which version are we developing now? [{dev_version}]' ) if len(__a ) == 0: SCREAMING_SNAKE_CASE_ = dev_version print(F'Updating version to {version}.' ) global_version_update(__a ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowerCAmelCase__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
628
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase__ = logging.getLogger(__name__) def _lowerCamelCase ( __a, __a ): return (preds == labels).mean() @dataclass class snake_case : UpperCAmelCase__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase__ = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase__ = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase__ = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class snake_case : UpperCAmelCase__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) UpperCAmelCase__ = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) UpperCAmelCase__ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase__ = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _lowerCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', __a ) # Set seed set_seed(training_args.seed ) try: SCREAMING_SNAKE_CASE_ = processors[data_args.task_name]() SCREAMING_SNAKE_CASE_ = processor.get_labels() SCREAMING_SNAKE_CASE_ = len(__a ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=__a, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) SCREAMING_SNAKE_CASE_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=__a, cache_dir=model_args.cache_dir, ) # Get datasets SCREAMING_SNAKE_CASE_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=__a, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=__a, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def compute_metrics(__a ) -> Dict: SCREAMING_SNAKE_CASE_ = np.argmax(p.predictions, axis=1 ) return {"acc": simple_accuracy(__a, p.label_ids )} # Data collator SCREAMING_SNAKE_CASE_ = DataCollatorWithPadding(__a, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer SCREAMING_SNAKE_CASE_ = Trainer( model=__a, args=__a, train_dataset=__a, eval_dataset=__a, compute_metrics=__a, data_collator=__a, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE_ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() SCREAMING_SNAKE_CASE_ = os.path.join(training_args.output_dir, '''eval_results.txt''' ) if trainer.is_world_master(): with open(__a, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''', __a, __a ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__a ) return results def _lowerCamelCase ( __a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
628
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _lowerCAmelCase: Union[str, Any] = logging.get_logger('transformers.models.encodec') _lowerCAmelCase: List[Any] = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } _lowerCAmelCase: str = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } _lowerCAmelCase: Optional[int] = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } _lowerCAmelCase: Dict = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } _lowerCAmelCase: Tuple = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } _lowerCAmelCase: str = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _lowerCAmelCase: Dict = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _lowerCAmelCase: Tuple = [] _lowerCAmelCase: str = [] def _lowercase( __a : Any , __a : List[str] , __a : Tuple , __a : Union[str, Any] , __a : Optional[Any] ): for attribute in key.split('.' ): a__ =getattr(__a , __a ) if weight_type is not None: a__ =getattr(__a , __a ).shape else: a__ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a__ =value elif weight_type == "weight_g": a__ =value elif weight_type == "weight_v": a__ =value elif weight_type == "bias": a__ =value elif weight_type == "running_mean": a__ =value elif weight_type == "running_var": a__ =value elif weight_type == "num_batches_tracked": a__ =value elif weight_type == "weight_ih_l0": a__ =value elif weight_type == "weight_hh_l0": a__ =value elif weight_type == "bias_ih_l0": a__ =value elif weight_type == "bias_hh_l0": a__ =value elif weight_type == "weight_ih_l1": a__ =value elif weight_type == "weight_hh_l1": a__ =value elif weight_type == "bias_ih_l1": a__ =value elif weight_type == "bias_hh_l1": a__ =value else: a__ =value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def _lowercase( __a : Optional[int] , __a : Union[str, Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: a__ , a__ =key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase( __a : str , __a : int , __a : Tuple ): a__ =[] if model_name == "encodec_24khz" or "encodec_32khz": a__ =MAPPING_24K elif model_name == "encodec_48khz": a__ =MAPPING_48K else: raise ValueError(f"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__a , __a ): logger.info(f"""{name} was ignored""" ) continue a__ =False for key, mapped_key in MAPPING.items(): if "*" in key: a__ , a__ =key.split('.*.' ) if prefix in name and suffix in name: a__ =suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue a__ =True if "*" in mapped_key: a__ =name.split(__a )[0].split('.' )[-2] a__ =mapped_key.replace('*' , __a ) if "weight_g" in name: a__ ='weight_g' elif "weight_v" in name: a__ ='weight_v' elif "weight_ih_l0" in name: a__ ='weight_ih_l0' elif "weight_hh_l0" in name: a__ ='weight_hh_l0' elif "bias_ih_l0" in name: a__ ='bias_ih_l0' elif "bias_hh_l0" in name: a__ ='bias_hh_l0' elif "weight_ih_l1" in name: a__ ='weight_ih_l1' elif "weight_hh_l1" in name: a__ ='weight_hh_l1' elif "bias_ih_l1" in name: a__ ='bias_ih_l1' elif "bias_hh_l1" in name: a__ ='bias_hh_l1' elif "bias" in name: a__ ='bias' elif "weight" in name: a__ ='weight' elif "running_mean" in name: a__ ='running_mean' elif "running_var" in name: a__ ='running_var' elif "num_batches_tracked" in name: a__ ='num_batches_tracked' else: a__ =None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) @torch.no_grad() def _lowercase( __a : str , __a : int , __a : str , __a : Tuple=None , __a : Optional[int]=None , ): if config_path is not None: a__ =EncodecConfig.from_pretrained(__a ) else: a__ =EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": a__ =[8, 5, 4, 4] a__ =[2.2] a__ =64 a__ =3_2000 a__ =2048 a__ =False a__ =False a__ =False elif model_name == "encodec_48khz": a__ =[8, 5, 4, 2] a__ =[3.0, 6.0, 12.0, 24.0] a__ =4_8000 a__ =2 a__ =False a__ ='time_group_norm' a__ =True a__ =1.0 a__ =0.01 else: raise ValueError(f"""Unknown model name: {model_name}""" ) a__ =EncodecModel(__a ) a__ =EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__a ) a__ =torch.load(__a ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights a__ =original_checkpoint['best_state'] recursively_load_weights(__a , __a , __a ) model.save_pretrained(__a ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(__a ) model.push_to_hub(__a ) if __name__ == "__main__": _lowerCAmelCase: str = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase: str = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
20
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _UpperCAmelCase ( a ): '''simple docstring''' a__ =42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
506
0
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __UpperCAmelCase = datasets.logging.get_logger(__name__) __UpperCAmelCase = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n" __UpperCAmelCase = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n" __UpperCAmelCase = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n" __UpperCAmelCase = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", "BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", "BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", "BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", "BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" ) SCREAMING_SNAKE_CASE : Any = "bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: SCREAMING_SNAKE_CASE : Dict = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: SCREAMING_SNAKE_CASE : int = self.config_name.upper() else: raise KeyError( f'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer SCREAMING_SNAKE_CASE : Optional[Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) SCREAMING_SNAKE_CASE : Optional[Any] = score.BleurtScorer(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scorer.score(references=UpperCamelCase_ , candidates=UpperCamelCase_ ) return {"scores": scores}
710
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __UpperCAmelCase = {"""UserAgent""": UserAgent().random} def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = script.contents[0] SCREAMING_SNAKE_CASE : int = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCamelCase__ : """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = f'''https://www.instagram.com/{username}/''' SCREAMING_SNAKE_CASE : Any = self.get_json() def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = requests.get(self.url , headers=lowerCamelCase_ ).text SCREAMING_SNAKE_CASE : List[Any] = BeautifulSoup(lowerCamelCase_ , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Dict ): '''simple docstring''' return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : int ): '''simple docstring''' return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return self.user_data["username"] @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.user_data["full_name"] @property def lowerCamelCase_ ( self : int ): '''simple docstring''' return self.user_data["biography"] @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return self.user_data["business_email"] @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return self.user_data["external_url"] @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return self.user_data["is_verified"] @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.user_data["is_private"] def __A ( lowerCamelCase_ = "github" ): """simple docstring""" import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE : Any = InstagramUser(lowerCamelCase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowerCamelCase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = InstagramUser("""github""") print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
79
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
630
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """dpr""" def __init__( self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase="absolute" , lowercase = 0 , **lowercase , ): super().__init__(pad_token_id=lowercase , **lowercase ) _lowerCamelCase : int = vocab_size _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Tuple = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : Dict = projection_dim _lowerCamelCase : int = position_embedding_type
630
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case ={"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =[ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =[ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
513
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={"""vocab_file""": """spiece.model"""} __snake_case ={ """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } __snake_case ={ """google/bigbird-roberta-base""": 4_096, """google/bigbird-roberta-large""": 4_096, """google/bigbird-base-trivia-itc""": 4_096, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : List[int] = [] def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : Union[str, Any]="<s>" , UpperCAmelCase__ : str="</s>" , UpperCAmelCase__ : List[Any]="<pad>" , UpperCAmelCase__ : Any="[SEP]" , UpperCAmelCase__ : List[Any]="[MASK]" , UpperCAmelCase__ : Optional[int]="[CLS]" , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Tuple , ) -> None: lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else bos_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else eos_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else unk_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else pad_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else cls_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) @property def __UpperCAmelCase ( self : List[str] ) -> Tuple: return self.sp_model.get_piece_size() def __UpperCAmelCase ( self : Dict ) -> Tuple: lowerCAmelCase = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Optional[int]: lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self : int , UpperCAmelCase__ : List[Any] ) -> Dict: lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : str ) -> List[str]: return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Optional[int] ) -> Dict: return self.sp_model.piece_to_id(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : int ) -> Optional[int]: lowerCAmelCase = self.sp_model.IdToPiece(UpperCAmelCase__ ) return token def __UpperCAmelCase ( self : int , UpperCAmelCase__ : List[str] ) -> Any: lowerCAmelCase = [] lowerCAmelCase = '' lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase__ ) + token lowerCAmelCase = True lowerCAmelCase = [] else: current_sub_tokens.append(UpperCAmelCase__ ) lowerCAmelCase = False out_string += self.sp_model.decode(UpperCAmelCase__ ) return out_string.strip() def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : int , ) -> str: lowerCAmelCase = kwargs.pop('use_source_tokenizer' , UpperCAmelCase__ ) lowerCAmelCase = self.convert_ids_to_tokens(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCAmelCase = [] lowerCAmelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) lowerCAmelCase = [] sub_texts.append(UpperCAmelCase__ ) else: current_sub_text.append(UpperCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: lowerCAmelCase = re.sub(R' (\[(MASK|SEP)\])' , R'\1' , ' '.join(UpperCAmelCase__ ) ) else: lowerCAmelCase = ''.join(UpperCAmelCase__ ) lowerCAmelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCAmelCase = self.clean_up_tokenization(UpperCAmelCase__ ) return clean_text else: return text def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase = os.path.join( UpperCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
513
1
'''simple docstring''' import numpy as np def snake_case_ (UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : float = 1e-12 , UpperCamelCase : int = 100 , ): '''simple docstring''' assert np.shape(UpperCamelCase )[0] == np.shape(UpperCamelCase )[1] # Ensure proper dimensionality. assert np.shape(UpperCamelCase )[0] == np.shape(UpperCamelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(UpperCamelCase ) == np.iscomplexobj(UpperCamelCase ) _a = np.iscomplexobj(UpperCamelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(UpperCamelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _a = False _a = 0 _a = 0 _a = 1e12 while not convergence: # Multiple matrix by the vector. _a = np.dot(UpperCamelCase , UpperCamelCase ) # Normalize the resulting output vector. _a = w / np.linalg.norm(UpperCamelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _a = vector.conj().T if is_complex else vector.T _a = np.dot(UpperCamelCase , np.dot(UpperCamelCase , UpperCamelCase ) ) # Check convergence. _a = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _a = True _a = lambda_ if is_complex: _a = np.real(lambda_ ) return lambda_, vector def snake_case_ (): '''simple docstring''' _a = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _a = np.array([41, 4, 20] ) _a = real_input_matrix.astype(np.complexaaa ) _a = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _a = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _a = real_input_matrix _a = real_vector elif problem_type == "complex": _a = complex_input_matrix _a = complex_vector # Our implementation. _a , _a = power_iteration(UpperCamelCase , UpperCamelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _a , _a = np.linalg.eigh(UpperCamelCase ) # Last eigenvalue is the maximum one. _a = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _a = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(UpperCamelCase ) - np.abs(UpperCamelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
22
"""simple docstring""" from __future__ import annotations lowercase__ :Dict = 'Muhammad Umer Farooq' lowercase__ :Any = 'MIT' lowercase__ :List[str] = '1.0.0' lowercase__ :str = 'Muhammad Umer Farooq' lowercase__ :List[str] = '[email protected]' lowercase__ :Dict = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class snake_case ( __UpperCAmelCase ): '''simple docstring''' def __init__( self : str , __lowercase : str ): '''simple docstring''' super().__init__() __UpperCAmelCase : list[str] = [] __UpperCAmelCase : Tuple = domain def A_ ( self : Any , __lowercase : str , __lowercase : list[tuple[str, str | None]] ): '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __UpperCAmelCase : List[Any] = parse.urljoin(self.domain , __lowercase ) self.urls.append(__lowercase ) def lowerCamelCase_ ( UpperCAmelCase_ ) ->str: """simple docstring""" return ".".join(get_sub_domain_name(UpperCAmelCase_ ).split('''.''' )[-2:] ) def lowerCamelCase_ ( UpperCAmelCase_ ) ->str: """simple docstring""" return parse.urlparse(UpperCAmelCase_ ).netloc def lowerCamelCase_ ( UpperCAmelCase_ = "https://github.com" ) ->list[str]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = get_domain_name(UpperCAmelCase_ ) # Initialize the parser __UpperCAmelCase : int = Parser(UpperCAmelCase_ ) try: # Open URL __UpperCAmelCase : Union[str, Any] = requests.get(UpperCAmelCase_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __UpperCAmelCase : str = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __UpperCAmelCase : Optional[int] = requests.get(UpperCAmelCase_ ) # Get the valid email. __UpperCAmelCase : Tuple = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(UpperCAmelCase_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ :List[str] = emails_from_url('https://github.com') print(f"""{len(emails)} emails found:""") print('\n'.join(sorted(emails)))
522
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Optional[int] ={ """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict =[ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase : Dict =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _lowercase (a_ ): '''simple docstring''' lowercase__ = (CMStochasticIterativeScheduler,) lowercase__ = 10 def _lowerCamelCase ( self , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**snake_case__ ) return config def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = 10 UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = self.scheduler_classes[0](**snake_case__ ) scheduler.set_timesteps(snake_case__ ) UpperCamelCase_ = scheduler.timesteps[0] UpperCamelCase_ = scheduler.timesteps[1] UpperCamelCase_ = self.dummy_sample UpperCamelCase_ = 0.1 * sample UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowerCamelCase ( self ): '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**snake_case__ ) UpperCamelCase_ = 1 scheduler.set_timesteps(snake_case__ ) UpperCamelCase_ = scheduler.timesteps UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(snake_case__ ): # 1. scale model input UpperCamelCase_ = scheduler.scale_model_input(snake_case__ , snake_case__ ) # 2. predict noise residual UpperCamelCase_ = model(snake_case__ , snake_case__ ) # 3. predict previous sample x_t-1 UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample UpperCamelCase_ = pred_prev_sample UpperCamelCase_ = torch.sum(torch.abs(snake_case__ ) ) UpperCamelCase_ = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**snake_case__ ) UpperCamelCase_ = [106, 0] scheduler.set_timesteps(timesteps=snake_case__ ) UpperCamelCase_ = scheduler.timesteps UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCamelCase_ = scheduler.scale_model_input(snake_case__ , snake_case__ ) # 2. predict noise residual UpperCamelCase_ = model(snake_case__ , snake_case__ ) # 3. predict previous sample x_t-1 UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample UpperCamelCase_ = pred_prev_sample UpperCamelCase_ = torch.sum(torch.abs(snake_case__ ) ) UpperCamelCase_ = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**snake_case__ ) UpperCamelCase_ = [39, 30, 12, 15, 0] with self.assertRaises(snake_case__ , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**snake_case__ ) UpperCamelCase_ = [39, 30, 12, 1, 0] UpperCamelCase_ = len(snake_case__ ) with self.assertRaises(snake_case__ , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case__ , timesteps=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**snake_case__ ) UpperCamelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case__ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case__ )
504
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1_6_0_0, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1_6_0_0, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class lowerCamelCase_ ( unittest.TestCase ): def __lowercase ( self : Union[str, Any] ): """simple docstring""" if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=lowerCAmelCase__ , ) assert hasattr(self , '''env''' ) def __lowercase ( self : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" # configuration for running training on smdistributed Model Parallel SCREAMING_SNAKE_CASE : Tuple = { '''enabled''': True, '''processes_per_host''': 8, } SCREAMING_SNAKE_CASE : Optional[int] = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } SCREAMING_SNAKE_CASE : str = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} SCREAMING_SNAKE_CASE : Optional[Any] = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCAmelCase__ , instance_type=self.instance_type , debugger_hook_config=lowerCAmelCase__ , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=lowerCAmelCase__ , py_version='''py36''' , ) def __lowercase ( self : Dict , lowerCAmelCase__ : int ): """simple docstring""" TrainingJobAnalytics(lowerCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def __lowercase ( self : Dict , lowerCAmelCase__ : List[Any] ): """simple docstring""" # create estimator SCREAMING_SNAKE_CASE : Any = self.create_estimator(lowerCAmelCase__ ) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE : int = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE : Tuple = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE : int = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , lowerCAmelCase__ )
527
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase ( A : dict , A : str , A : set , A : set , A : dict , A : dict , A : PriorityQueue , A : dict , A : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue SCREAMING_SNAKE_CASE : str = cst_fwd.get(A , np.inf ) SCREAMING_SNAKE_CASE : Optional[int] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) SCREAMING_SNAKE_CASE : Tuple = new_cost_f SCREAMING_SNAKE_CASE : List[str] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: SCREAMING_SNAKE_CASE : Union[str, Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase ( A : str , A : str , A : dict , A : dict ): SCREAMING_SNAKE_CASE : Dict = -1 SCREAMING_SNAKE_CASE : Optional[int] = set() SCREAMING_SNAKE_CASE : Optional[Any] = set() SCREAMING_SNAKE_CASE : Any = {source: 0} SCREAMING_SNAKE_CASE : Tuple = {destination: 0} SCREAMING_SNAKE_CASE : Union[str, Any] = {source: None} SCREAMING_SNAKE_CASE : Optional[int] = {destination: None} SCREAMING_SNAKE_CASE : PriorityQueue[Any] = PriorityQueue() SCREAMING_SNAKE_CASE : PriorityQueue[Any] = PriorityQueue() SCREAMING_SNAKE_CASE : List[str] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = queue_forward.get() visited_forward.add(A ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = queue_backward.get() visited_backward.add(A ) SCREAMING_SNAKE_CASE : Tuple = pass_and_relaxation( A , A , A , A , A , A , A , A , A , ) SCREAMING_SNAKE_CASE : Optional[int] = pass_and_relaxation( A , A , A , A , A , A , A , A , A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: SCREAMING_SNAKE_CASE : int = shortest_distance return shortest_path_distance lowerCAmelCase_ : int = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } lowerCAmelCase_ : str = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
527
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class __snake_case ( _lowercase): snake_case__ : Optional[int] = "canine" def __init__( self : List[Any] , __lowerCAmelCase : str=7_6_8 , __lowerCAmelCase : List[Any]=1_2 , __lowerCAmelCase : Optional[int]=1_2 , __lowerCAmelCase : str=3_0_7_2 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Any=1_6_3_8_4 , __lowerCAmelCase : str=1_6 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Dict=1E-12 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Dict=0xe0_00 , __lowerCAmelCase : Optional[int]=0xe0_01 , __lowerCAmelCase : List[Any]=4 , __lowerCAmelCase : str=4 , __lowerCAmelCase : Optional[int]=8 , __lowerCAmelCase : List[Any]=1_6_3_8_4 , __lowerCAmelCase : Optional[Any]=1_2_8 , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : int = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : str = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Tuple = type_vocab_size _lowerCamelCase : int = layer_norm_eps # Character config: _lowerCamelCase : Dict = downsampling_rate _lowerCamelCase : str = upsampling_kernel_size _lowerCamelCase : List[Any] = num_hash_functions _lowerCamelCase : Dict = num_hash_buckets _lowerCamelCase : Optional[Any] = local_transformer_stride
598
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __snake_case ( _lowercase): snake_case__ : torch.FloatTensor class __snake_case ( _lowercase , _lowercase): @register_to_config def __init__( self : Optional[Any] , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 3 , __lowerCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , __lowerCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , __lowerCAmelCase : Tuple[int] = (6_4,) , __lowerCAmelCase : int = 1 , __lowerCAmelCase : str = "silu" , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 3_2 , __lowerCAmelCase : int = 2_5_6 , __lowerCAmelCase : int = 3_2 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : float = 0.1_82_15 , __lowerCAmelCase : str = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder _lowerCamelCase : Optional[Any] = Encoder( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , down_block_types=__lowerCAmelCase , block_out_channels=__lowerCAmelCase , layers_per_block=__lowerCAmelCase , act_fn=__lowerCAmelCase , norm_num_groups=__lowerCAmelCase , double_z=__lowerCAmelCase , ) _lowerCamelCase : Dict = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowerCamelCase : List[str] = nn.Convad(__lowerCAmelCase , __lowerCAmelCase , 1 ) _lowerCamelCase : int = VectorQuantizer(__lowerCAmelCase , __lowerCAmelCase , beta=0.25 , remap=__lowerCAmelCase , sane_index_shape=__lowerCAmelCase ) _lowerCamelCase : Dict = nn.Convad(__lowerCAmelCase , __lowerCAmelCase , 1 ) # pass init params to Decoder _lowerCamelCase : List[str] = Decoder( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , up_block_types=__lowerCAmelCase , block_out_channels=__lowerCAmelCase , layers_per_block=__lowerCAmelCase , act_fn=__lowerCAmelCase , norm_num_groups=__lowerCAmelCase , norm_type=__lowerCAmelCase , ) @apply_forward_hook def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : bool = True ): """simple docstring""" _lowerCamelCase : List[Any] = self.encoder(__lowerCAmelCase ) _lowerCamelCase : int = self.quant_conv(__lowerCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__lowerCAmelCase ) @apply_forward_hook def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = True ): """simple docstring""" if not force_not_quantize: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.quantize(__lowerCAmelCase ) else: _lowerCamelCase : Dict = h _lowerCamelCase : List[Any] = self.post_quant_conv(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.decoder(__lowerCAmelCase , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : bool = True ): """simple docstring""" _lowerCamelCase : Union[str, Any] = sample _lowerCamelCase : Tuple = self.encode(__lowerCAmelCase ).latents _lowerCamelCase : Optional[int] = self.decode(__lowerCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCAmelCase )
598
1
def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" return " ".join( ''''''.join(word[::-1] ) if len(_UpperCamelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
60
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = 'The Nymphenburg Palace is a beautiful palace in Munich!' def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ ={ "attention_cell": "multi_head", "num_layers": 4, "units": 1024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1e-5, "token_type_vocab_size": 2, } UpperCAmelCase__ =bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py UpperCAmelCase__ =BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=A , output_all_encodings=A , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , A ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later UpperCAmelCase__ ="openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab UpperCAmelCase__ =os.path.join(get_home_dir() , "models" ) UpperCAmelCase__ =_load_vocab(A , A , A , cls=A ) UpperCAmelCase__ =nlp.model.BERTModel( A , len(A ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=A , use_token_type_embed=A , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=A , use_decoder=A , ) original_bort.load_parameters(A , cast_dtype=A , ignore_extra=A ) UpperCAmelCase__ =original_bort._collect_params_with_prefix() # Build our config 🤗 UpperCAmelCase__ ={ "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(A ), } UpperCAmelCase__ =BertConfig.from_dict(A ) UpperCAmelCase__ =BertForMaskedLM(A ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(A ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(A , A ): UpperCAmelCase__ =hf_param.shape UpperCAmelCase__ =to_torch(params[gluon_param] ) UpperCAmelCase__ =gluon_param.shape assert ( shape_hf == shape_gluon ), F"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param UpperCAmelCase__ =check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) UpperCAmelCase__ =check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) UpperCAmelCase__ =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) UpperCAmelCase__ =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) UpperCAmelCase__ =torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): UpperCAmelCase__ =hf_bort_model.bert.encoder.layer[i] # self attention UpperCAmelCase__ =layer.attention.self UpperCAmelCase__ =check_and_map_params( self_attn.key.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) UpperCAmelCase__ =check_and_map_params( self_attn.key.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) UpperCAmelCase__ =check_and_map_params( self_attn.query.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) UpperCAmelCase__ =check_and_map_params( self_attn.query.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) UpperCAmelCase__ =check_and_map_params( self_attn.value.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) UpperCAmelCase__ =check_and_map_params( self_attn.value.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output UpperCAmelCase__ =layer.attention.output UpperCAmelCase__ =check_and_map_params( self_output.dense.bias , F"""encoder.transformer_cells.{i}.proj.bias""" ) UpperCAmelCase__ =check_and_map_params( self_output.dense.weight , F"""encoder.transformer_cells.{i}.proj.weight""" ) UpperCAmelCase__ =check_and_map_params( self_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.layer_norm.beta""" ) UpperCAmelCase__ =check_and_map_params( self_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate UpperCAmelCase__ =layer.intermediate UpperCAmelCase__ =check_and_map_params( intermediate.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) UpperCAmelCase__ =check_and_map_params( intermediate.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output UpperCAmelCase__ =layer.output UpperCAmelCase__ =check_and_map_params( bert_output.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) UpperCAmelCase__ =check_and_map_params( bert_output.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) UpperCAmelCase__ =check_and_map_params( bert_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) UpperCAmelCase__ =check_and_map_params( bert_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models UpperCAmelCase__ =RobertaTokenizer.from_pretrained("roberta-base" ) UpperCAmelCase__ =tokenizer.encode_plus(A )["input_ids"] # Get gluon output UpperCAmelCase__ =mx.nd.array([input_ids] ) UpperCAmelCase__ =original_bort(inputs=A , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(A ) UpperCAmelCase__ =BertModel.from_pretrained(A ) hf_bort_model.eval() UpperCAmelCase__ =tokenizer.encode_plus(A , return_tensors="pt" ) UpperCAmelCase__ =hf_bort_model(**A )[0] UpperCAmelCase__ =output_gluon[0].asnumpy() UpperCAmelCase__ =output_hf[0].detach().numpy() UpperCAmelCase__ =np.max(np.abs(hf_layer - gluon_layer ) ).item() UpperCAmelCase__ =np.allclose(A , A , atol=1e-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , A ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
625
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __a = random.Random() def lowerCamelCase__ ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ): '''simple docstring''' if rng is None: UpperCAmelCase_ : str = global_rng UpperCAmelCase_ : List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=400 ,_SCREAMING_SNAKE_CASE=2_000 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=160 ,_SCREAMING_SNAKE_CASE=8 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=4_000 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = min_seq_length UpperCAmelCase_ : Dict = max_seq_length UpperCAmelCase_ : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase_ : Optional[int] = padding_value UpperCAmelCase_ : Dict = sampling_rate UpperCAmelCase_ : List[Any] = return_attention_mask UpperCAmelCase_ : Optional[Any] = do_normalize UpperCAmelCase_ : Optional[Any] = feature_size UpperCAmelCase_ : List[str] = chunk_length UpperCAmelCase_ : Any = hop_length def a__ ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: def _flatten(_SCREAMING_SNAKE_CASE ): return list(itertools.chain(*_SCREAMING_SNAKE_CASE ) ) if equal_length: UpperCAmelCase_ : int = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase_ : Optional[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: UpperCAmelCase_ : Dict = [np.asarray(_SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> str: UpperCAmelCase_ : Any = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : List[str] = feat_extract_first.save_pretrained(_SCREAMING_SNAKE_CASE )[0] check_json_file_has_correct_format(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = self.feature_extraction_class.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = feat_extract_first.to_dict() UpperCAmelCase_ : List[str] = feat_extract_second.to_dict() UpperCAmelCase_ : Optional[int] = feat_extract_first.mel_filters UpperCAmelCase_ : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Optional[Any] = os.path.join(_SCREAMING_SNAKE_CASE ,'''feat_extract.json''' ) feat_extract_first.to_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = self.feature_extraction_class.from_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = feat_extract_first.to_dict() UpperCAmelCase_ : Tuple = feat_extract_second.to_dict() UpperCAmelCase_ : List[str] = feat_extract_first.mel_filters UpperCAmelCase_ : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase_ : List[Any] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] UpperCAmelCase_ : Any = [np.asarray(_SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test feature size UpperCAmelCase_ : Optional[Any] = feature_extractor(_SCREAMING_SNAKE_CASE ,padding='''max_length''' ,return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input UpperCAmelCase_ : Dict = feature_extractor(speech_inputs[0] ,return_tensors='''np''' ).input_features UpperCAmelCase_ : Optional[int] = feature_extractor(np_speech_inputs[0] ,return_tensors='''np''' ).input_features self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) # Test batched UpperCAmelCase_ : Optional[Any] = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).input_features UpperCAmelCase_ : Optional[Any] = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase_ : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase_ : str = np.asarray(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).input_features UpperCAmelCase_ : List[str] = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) # Test truncation required UpperCAmelCase_ : int = [floats_list((1, x) )[0] for x in range(200 ,(feature_extractor.n_samples + 500) ,200 )] UpperCAmelCase_ : Any = [np.asarray(_SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] UpperCAmelCase_ : Optional[int] = [x[: feature_extractor.n_samples] for x in speech_inputs] UpperCAmelCase_ : List[str] = [np.asarray(_SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs_truncated] UpperCAmelCase_ : List[Any] = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).input_features UpperCAmelCase_ : List[str] = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) def a__ ( self ) -> List[Any]: import torch UpperCAmelCase_ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ : str = np.random.rand(100 ,32 ).astype(np.floataa ) UpperCAmelCase_ : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase_ : Dict = feature_extractor.pad([{'''input_features''': inputs}] ,return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCAmelCase_ : List[str] = feature_extractor.pad([{'''input_features''': inputs}] ,return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ : Dict = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' ,'''clean''' ,split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase_ : List[Any] = ds.sort('''id''' ).select(range(_SCREAMING_SNAKE_CASE ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def a__ ( self ) -> Union[str, Any]: # fmt: off UpperCAmelCase_ : Dict = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on UpperCAmelCase_ : Tuple = self._load_datasamples(1 ) UpperCAmelCase_ : Optional[Any] = WhisperFeatureExtractor() UpperCAmelCase_ : str = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape ,(1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 ) ) def a__ ( self ) -> Any: UpperCAmelCase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ : str = self._load_datasamples(1 )[0] UpperCAmelCase_ : Tuple = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue UpperCAmelCase_ : Optional[int] = feat_extract.zero_mean_unit_var_norm([audio] ,attention_mask=_SCREAMING_SNAKE_CASE )[0] self.assertTrue(np.all(np.mean(_SCREAMING_SNAKE_CASE ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_SCREAMING_SNAKE_CASE ) - 1 ) < 1e-3 ) )
300
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __a: """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,) -> Tuple: UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : Optional[Any] = 13 UpperCAmelCase_ : Optional[Any] = 7 UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : str = True UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : str = True UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Dict = False UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Dict = 2 UpperCAmelCase_ : Tuple = 99 UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Optional[int] = 32 UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Tuple = 4 UpperCAmelCase_ : List[Any] = 0.1 UpperCAmelCase_ : int = 0.1 UpperCAmelCase_ : List[str] = 512 UpperCAmelCase_ : Any = 16 UpperCAmelCase_ : Union[str, Any] = 2 UpperCAmelCase_ : Any = 0.02 UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : List[Any] = 4 UpperCAmelCase_ : Dict = '''last''' UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Union[str, Any] = 0 def a__ ( self ) -> List[str]: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) UpperCAmelCase_ : Optional[Any] = None if self.use_input_lengths: UpperCAmelCase_ : Optional[int] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : List[str] = None if self.use_token_type_ids: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) UpperCAmelCase_ : str = None UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Any = None if self.use_labels: UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : Any = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : int = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> Any: UpperCAmelCase_ : Tuple = TFFlaubertModel(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase_ : List[Any] = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = [input_ids, input_mask] UpperCAmelCase_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> str: UpperCAmelCase_ : int = TFFlaubertWithLMHeadModel(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> Tuple: UpperCAmelCase_ : List[Any] = TFFlaubertForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> int: UpperCAmelCase_ : List[Any] = TFFlaubertForSequenceClassification(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase_ : str = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> Optional[Any]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : List[str] = TFFlaubertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : List[str] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> str: UpperCAmelCase_ : List[Any] = self.num_choices UpperCAmelCase_ : Any = TFFlaubertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase_ : Union[str, Any] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase_ : str = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase_ : Dict = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase_ : str = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ) : Any = config_and_inputs UpperCAmelCase_ : Tuple = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class __a( _a , _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowerCAmelCase = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a__ ( self ) -> Any: UpperCAmelCase_ : Optional[int] = TFFlaubertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,emb_dim=37 ) def a__ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def a__ ( self ) -> Tuple: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def a__ ( self ) -> Any: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = TFFlaubertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_tf @require_sentencepiece @require_tokenizers class __a( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> int: UpperCAmelCase_ : Optional[Any] = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) UpperCAmelCase_ : Dict = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" UpperCAmelCase_ : str = model(_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase_ : Optional[int] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,_SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. UpperCAmelCase_ : List[Any] = tf.convert_to_tensor( [ [ [-1.8_76_87_73, -1.56_65_55, 0.27_07_24_18], [-1.6_92_00_38, -0.5_87_35_05, 1.9_32_95_99], [-2.9_56_39_85, -1.6_99_38_35, 1.7_97_20_52], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
300
1
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset UpperCamelCase = random.Random() def _lowerCamelCase ( UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : Dict=1.0, UpperCAmelCase_ : List[Any]=None, UpperCAmelCase_ : Optional[Any]=None ) -> int: """simple docstring""" if rng is None: A__ = global_rng A__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=400 , SCREAMING_SNAKE_CASE__=2000 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=128 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=30 , SCREAMING_SNAKE_CASE__=44100 , ) -> Optional[Any]: A__ = parent A__ = batch_size A__ = min_seq_length A__ = max_seq_length A__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ = spectrogram_length A__ = feature_size A__ = num_audio_channels A__ = hop_length A__ = chunk_length A__ = sampling_rate def snake_case__ ( self ) -> int: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case__ ( self , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False ) -> Tuple: def _flatten(SCREAMING_SNAKE_CASE__ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE__ ) ) if equal_length: A__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ = [np.asarray(SCREAMING_SNAKE_CASE__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase__ ( _lowerCAmelCase , unittest.TestCase ): """simple docstring""" A__ : str = TvltFeatureExtractor def snake_case__ ( self ) -> str: A__ = TvltFeatureExtractionTester(self ) def snake_case__ ( self ) -> Dict: A__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "spectrogram_length" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "feature_size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "num_audio_channels" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "hop_length" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "chunk_length" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "sampling_rate" ) ) def snake_case__ ( self ) -> List[str]: A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE__ )[0] check_json_file_has_correct_format(SCREAMING_SNAKE_CASE__ ) A__ = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) A__ = feat_extract_first.to_dict() A__ = feat_extract_second.to_dict() A__ = dict_first.pop("mel_filters" ) A__ = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Tuple: A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = os.path.join(SCREAMING_SNAKE_CASE__ , "feat_extract.json" ) feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE__ ) A__ = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE__ ) A__ = feat_extract_first.to_dict() A__ = feat_extract_second.to_dict() A__ = dict_first.pop("mel_filters" ) A__ = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> str: # Initialize feature_extractor A__ = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 A__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ = [np.asarray(SCREAMING_SNAKE_CASE__ ) for speech_input in speech_inputs] # Test not batched input A__ = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched A__ = feature_extractor(SCREAMING_SNAKE_CASE__ , return_tensors="np" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking A__ = feature_extractor( SCREAMING_SNAKE_CASE__ , return_tensors="np" , sampling_rate=44100 , mask_audio=SCREAMING_SNAKE_CASE__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. A__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ = np.asarray(SCREAMING_SNAKE_CASE__ ) A__ = feature_extractor(SCREAMING_SNAKE_CASE__ , return_tensors="np" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Tuple: A__ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech A__ = ds.sort("id" ).select(range(SCREAMING_SNAKE_CASE__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def snake_case__ ( self ) -> Optional[int]: A__ = self._load_datasamples(1 ) A__ = TvltFeatureExtractor() A__ = feature_extractor(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) A__ = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
104
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } UpperCamelCase = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } UpperCamelCase = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Dict = VOCAB_FILES_NAMES A__ : str = PRETRAINED_VOCAB_FILES_MAP A__ : List[Any] = PRETRAINED_INIT_CONFIGURATION A__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[str] = ElectraTokenizer def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="[UNK]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="[PAD]" , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[MASK]" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> str: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get("strip_accents" , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): A__ = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop("type" ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**SCREAMING_SNAKE_CASE__ ) A__ = do_lower_case def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> List[str]: A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: A__ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
104
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) # TODO Update this A ={ 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class _a ( __a ): __a : List[Any] = """esm""" def __init__( self : str , lowercase : Optional[Any]=None , lowercase : Any=None , lowercase : Union[str, Any]=None , lowercase : Dict=768 , lowercase : Dict=12 , lowercase : str=12 , lowercase : Optional[int]=3_072 , lowercase : Dict=0.1 , lowercase : str=0.1 , lowercase : Tuple=1_026 , lowercase : int=0.02 , lowercase : int=1E-12 , lowercase : Any="absolute" , lowercase : List[Any]=True , lowercase : Any=None , lowercase : Optional[Any]=False , lowercase : Optional[Any]=False , lowercase : str=None , lowercase : List[Any]=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , mask_token_id=lowercase , **lowercase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache UpperCAmelCase = emb_layer_norm_before UpperCAmelCase = token_dropout UpperCAmelCase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) UpperCAmelCase = EsmFoldConfig() elif isinstance(lowercase , lowercase ): UpperCAmelCase = EsmFoldConfig(**lowercase ) UpperCAmelCase = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) UpperCAmelCase = get_default_vocab_list() else: UpperCAmelCase = vocab_list else: UpperCAmelCase = None UpperCAmelCase = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , lowercase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = super().to_dict() if isinstance(self.esmfold_config , lowercase ): UpperCAmelCase = self.esmfold_config.to_dict() return output @dataclass class _a : __a : str = None __a : bool = True __a : bool = False __a : bool = False __a : bool = False __a : float = 0 __a : bool = True __a : bool = False __a : int = 128 __a : "TrunkConfig" = None def A ( self : List[str] ): '''simple docstring''' if self.trunk is None: UpperCAmelCase = TrunkConfig() elif isinstance(self.trunk , lowercase ): UpperCAmelCase = TrunkConfig(**self.trunk ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = asdict(self ) UpperCAmelCase = self.trunk.to_dict() return output @dataclass class _a : __a : int = 48 __a : int = 1_024 __a : int = 128 __a : int = 32 __a : int = 32 __a : int = 32 __a : float = 0 __a : float = 0 __a : bool = False __a : int = 4 __a : Optional[int] = 128 __a : "StructureModuleConfig" = None def A ( self : List[Any] ): '''simple docstring''' if self.structure_module is None: UpperCAmelCase = StructureModuleConfig() elif isinstance(self.structure_module , lowercase ): UpperCAmelCase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) UpperCAmelCase = self.sequence_state_dim // self.sequence_head_width UpperCAmelCase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = asdict(self ) UpperCAmelCase = self.structure_module.to_dict() return output @dataclass class _a : __a : int = 384 __a : int = 128 __a : int = 16 __a : int = 128 __a : int = 12 __a : int = 4 __a : int = 8 __a : float = 0.1 __a : int = 8 __a : int = 1 __a : int = 2 __a : int = 7 __a : int = 10 __a : float = 1e-8 __a : float = 1e5 def A ( self : str ): '''simple docstring''' return asdict(self ) def snake_case_ (): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
358
'''simple docstring''' def snake_case_ (_a : list[list[int]] , _a : int , _a : int , _a : list[int] ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def snake_case_ (_a : list[list[int]] , _a : list[int] , _a : int ): # Base Case if curr_ind == len(_a ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_a ) ): if valid_connection(_a , _a , _a , _a ): # Insert current vertex into path as next transition UpperCAmelCase = next_ver # Validate created path if util_hamilton_cycle(_a , _a , curr_ind + 1 ): return True # Backtrack UpperCAmelCase = -1 return False def snake_case_ (_a : list[list[int]] , _a : int = 0 ): UpperCAmelCase = [-1] * (len(_a ) + 1) # initialize start and end of path with starting index UpperCAmelCase = UpperCAmelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_a , _a , 1 ) else []
358
1
"""simple docstring""" import os import numpy import onnx def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Tuple = a.name lowerCAmelCase : Tuple = b.name lowerCAmelCase : List[str] = "" lowerCAmelCase : str = "" lowerCAmelCase : Optional[Any] = a == b lowerCAmelCase : Tuple = name_a lowerCAmelCase : Tuple = name_b return res def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _graph_replace_input_with(node_proto.attribute[1].g , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Optional[Any] = list(model.graph.initializer ) lowerCAmelCase : Tuple = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowerCAmelCase : Dict = inits[i].name lowerCAmelCase : int = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Tuple = os.path.dirname(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = os.path.basename(SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = onnx.load(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : List[Any] = list(model.graph.initializer ) lowerCAmelCase : Optional[int] = set() lowerCAmelCase : Tuple = {} lowerCAmelCase : str = [] lowerCAmelCase : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE ) ): if i in dup_set: continue for j in range(i + 1 , len(SCREAMING_SNAKE_CASE ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(SCREAMING_SNAKE_CASE ) dup_set.add(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = inits[j].data_type lowerCAmelCase : str = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print("unexpected data type: " , SCREAMING_SNAKE_CASE ) total_reduced_size += mem_size lowerCAmelCase : int = inits[i].name lowerCAmelCase : Tuple = inits[j].name if name_i in dup_map: dup_map[name_i].append(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Tuple = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , "GB" ) lowerCAmelCase : Union[str, Any] = sorted(SCREAMING_SNAKE_CASE ) _remove_dup_initializers_from_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = "optimized_" + model_file_name lowerCAmelCase : Any = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) onnx.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return new_model
645
"""simple docstring""" from __future__ import annotations def a__ ( SCREAMING_SNAKE_CASE : list[float] , SCREAMING_SNAKE_CASE : list[float] ): '''simple docstring''' lowerCAmelCase : int = sorted(numsa + numsa ) lowerCAmelCase , lowerCAmelCase : int = divmod(len(SCREAMING_SNAKE_CASE ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = [float(x) for x in input('''Enter the elements of first array: ''').split()] lowerCAmelCase__ = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
645
1
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def __lowerCAmelCase ( lowerCamelCase : np.ndarray ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def __lowerCAmelCase ( lowerCamelCase : np.ndarray ): '''simple docstring''' return (gray > 1_27) & (gray <= 2_55) def __lowerCAmelCase ( lowerCamelCase : np.ndarray , lowerCamelCase : np.ndarray ): '''simple docstring''' __lowerCAmelCase = np.zeros_like(lowerCamelCase ) __lowerCAmelCase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowerCAmelCase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowerCAmelCase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowerCAmelCase = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowerCAmelCase : Union[str, Any] = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' lowerCAmelCase : Any = np.array(Image.open(lena_path)) # kernel to be applied lowerCAmelCase : Union[str, Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowerCAmelCase : Union[str, Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowerCAmelCase : Any = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
718
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __lowerCAmelCase ( lowerCamelCase : bytes , lowerCamelCase : int ): '''simple docstring''' __lowerCAmelCase = f'''{sampling_rate}''' __lowerCAmelCase = "1" __lowerCAmelCase = "f32le" __lowerCAmelCase = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(lowerCamelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __lowerCAmelCase = ffmpeg_process.communicate(lowerCamelCase ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error __lowerCAmelCase = output_stream[0] __lowerCAmelCase = np.frombuffer(lowerCamelCase , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def __lowerCAmelCase ( lowerCamelCase : int , lowerCamelCase : float , lowerCamelCase : str = "f32le" , ): '''simple docstring''' __lowerCAmelCase = f'''{sampling_rate}''' __lowerCAmelCase = "1" if format_for_conversion == "s16le": __lowerCAmelCase = 2 elif format_for_conversion == "f32le": __lowerCAmelCase = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) __lowerCAmelCase = platform.system() if system == "Linux": __lowerCAmelCase = "alsa" __lowerCAmelCase = "default" elif system == "Darwin": __lowerCAmelCase = "avfoundation" __lowerCAmelCase = ":0" elif system == "Windows": __lowerCAmelCase = "dshow" __lowerCAmelCase = "default" __lowerCAmelCase = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] __lowerCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __lowerCAmelCase = _ffmpeg_stream(lowerCamelCase , lowerCamelCase ) for item in iterator: yield item def __lowerCAmelCase ( lowerCamelCase : int , lowerCamelCase : float , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[Tuple[float, float], float]] = None , lowerCamelCase : str = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: __lowerCAmelCase = stream_chunk_s else: __lowerCAmelCase = chunk_length_s __lowerCAmelCase = ffmpeg_microphone(lowerCamelCase , lowerCamelCase , format_for_conversion=lowerCamelCase ) if format_for_conversion == "s16le": __lowerCAmelCase = np.intaa __lowerCAmelCase = 2 elif format_for_conversion == "f32le": __lowerCAmelCase = np.floataa __lowerCAmelCase = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: __lowerCAmelCase = chunk_length_s / 6 __lowerCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowerCamelCase , (int, float) ): __lowerCAmelCase = [stride_length_s, stride_length_s] __lowerCAmelCase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __lowerCAmelCase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __lowerCAmelCase = datetime.datetime.now() __lowerCAmelCase = datetime.timedelta(seconds=lowerCamelCase ) for item in chunk_bytes_iter(lowerCamelCase , lowerCamelCase , stride=(stride_left, stride_right) , stream=lowerCamelCase ): # Put everything back in numpy scale __lowerCAmelCase = np.frombuffer(item["raw"] , dtype=lowerCamelCase ) __lowerCAmelCase = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) __lowerCAmelCase = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __lowerCAmelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Tuple[int, int] , lowerCamelCase : bool = False ): '''simple docstring''' __lowerCAmelCase = B"" __lowerCAmelCase , __lowerCAmelCase = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) __lowerCAmelCase = 0 for raw in iterator: acc += raw if stream and len(lowerCamelCase ) < chunk_len: __lowerCAmelCase = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowerCamelCase ) >= chunk_len: # We are flushing the accumulator __lowerCAmelCase = (_stride_left, stride_right) __lowerCAmelCase = {"raw": acc[:chunk_len], "stride": stride} if stream: __lowerCAmelCase = False yield item __lowerCAmelCase = stride_left __lowerCAmelCase = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowerCamelCase ) > stride_left: __lowerCAmelCase = {"raw": acc, "stride": (_stride_left, 0)} if stream: __lowerCAmelCase = False yield item def __lowerCAmelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : int ): '''simple docstring''' __lowerCAmelCase = 2**24 # 16Mo try: with subprocess.Popen(lowerCamelCase , stdout=subprocess.PIPE , bufsize=lowerCamelCase ) as ffmpeg_process: while True: __lowerCAmelCase = ffmpeg_process.stdout.read(lowerCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
39
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCamelCase_ ( )-> Dict: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def lowerCamelCase_ ( )-> Dict: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def lowerCamelCase_ ( )-> Optional[int]: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase ): http_head('https://huggingface.co' )
411
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowerCamelCase_ ( lowerCAmelCase: BertModel , lowerCAmelCase: str , lowerCAmelCase: str )-> Dict: _snake_case : Optional[Any] = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') _snake_case : Union[str, Any] = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Optional[Any] = model.state_dict() def to_tf_var_name(lowerCAmelCase: str ): for patt, repl in iter(lowerCAmelCase ): _snake_case : Union[str, Any] = name.replace(lowerCAmelCase , lowerCAmelCase ) return F"""bert/{name}""" def create_tf_var(lowerCAmelCase: np.ndarray , lowerCAmelCase: str , lowerCAmelCase: tf.Session ): _snake_case : Union[str, Any] = tf.dtypes.as_dtype(tensor.dtype ) _snake_case : Tuple = tf.get_variable(dtype=lowerCAmelCase , shape=tensor.shape , name=lowerCAmelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCAmelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _snake_case : List[Any] = to_tf_var_name(lowerCAmelCase ) _snake_case : Dict = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _snake_case : List[Any] = torch_tensor.T _snake_case : Union[str, Any] = create_tf_var(tensor=lowerCAmelCase , name=lowerCAmelCase , session=lowerCAmelCase ) tf.keras.backend.set_value(lowerCAmelCase , lowerCAmelCase ) _snake_case : Dict = session.run(lowerCAmelCase ) print(F"""Successfully created {tf_name}: {np.allclose(lowerCAmelCase , lowerCAmelCase )}""" ) _snake_case : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCAmelCase , os.path.join(lowerCAmelCase , model_name.replace('-' , '_' ) + '.ckpt' ) ) def lowerCamelCase_ ( lowerCAmelCase: Dict=None )-> List[Any]: _snake_case : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=lowerCAmelCase , required=lowerCAmelCase , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=lowerCAmelCase , required=lowerCAmelCase , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=lowerCAmelCase , required=lowerCAmelCase , help='Directory in which to save tensorflow model' ) _snake_case : str = parser.parse_args(lowerCAmelCase ) _snake_case : int = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCAmelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
411
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ : int = len(SCREAMING_SNAKE_CASE_ ) lowercase_ : int = len(SCREAMING_SNAKE_CASE_ ) lowercase_ : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) lowercase_ : list = [] for char_count in range(SCREAMING_SNAKE_CASE_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(alternative_string_arrange('AB', 'XYZ'), end=' ')
438
'''simple docstring''' import math def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ = 10_001 ): try: lowercase_ : List[Any] = int(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) lowercase_ : list[int] = [] lowercase_ : Optional[int] = 2 while len(SCREAMING_SNAKE_CASE_ ) < nth: if is_prime(SCREAMING_SNAKE_CASE_ ): primes.append(SCREAMING_SNAKE_CASE_ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE_ ) - 1] if __name__ == "__main__": print(F"""{solution() = }""")
438
1
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowerCAmelCase = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowerCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] lowerCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowerCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE ) lowerCAmelCase = val def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if "handwritten" in checkpoint_url: lowerCAmelCase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCAmelCase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase = ViTConfig(image_size=3_84 , qkv_bias=SCREAMING_SNAKE_CASE ) lowerCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowerCAmelCase = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder lowerCAmelCase = 10_24 lowerCAmelCase = 40_96 lowerCAmelCase = 24 lowerCAmelCase = 16 lowerCAmelCase = 10_24 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCAmelCase = False lowerCAmelCase = """relu""" lowerCAmelCase = 10_24 lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = False # load HuggingFace model lowerCAmelCase = ViTModel(SCREAMING_SNAKE_CASE , add_pooling_layer=SCREAMING_SNAKE_CASE ) lowerCAmelCase = TrOCRForCausalLM(SCREAMING_SNAKE_CASE ) lowerCAmelCase = VisionEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) model.eval() # load state_dict of original model, rename some keys lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location="""cpu""" , check_hash=SCREAMING_SNAKE_CASE )["""model"""] lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowerCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowerCAmelCase = val else: lowerCAmelCase = val # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image lowerCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) lowerCAmelCase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowerCAmelCase = TrOCRProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = processor(images=prepare_img(SCREAMING_SNAKE_CASE ) , return_tensors="""pt""" ).pixel_values # verify logits lowerCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowerCAmelCase = model(pixel_values=SCREAMING_SNAKE_CASE , decoder_input_ids=SCREAMING_SNAKE_CASE ) lowerCAmelCase = outputs.logits lowerCAmelCase = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: lowerCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: lowerCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: lowerCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: lowerCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , SCREAMING_SNAKE_CASE , atol=1e-3 ), "First elements of logits not as expected" Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
532
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def A_ ( lowercase , lowercase , lowercase = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path UpperCAmelCase_ : Tuple = quote(lowercase ) return hfh.hf_hub_url(lowercase , lowercase , repo_type="""dataset""" , revision=lowercase )
470
0
from __future__ import annotations import os from collections.abc import Mapping lowercase__ =tuple[int, int] class UpperCamelCase__ : def __init__(self : int , snake_case_ : set[int] , snake_case_ : Mapping[EdgeT, int] ): __a : set[int] = vertices __a : dict[EdgeT, int] = { (min(snake_case_ ), max(snake_case_ )): weight for edge, weight in edges.items() } def lowerCAmelCase (self : Union[str, Any] , snake_case_ : EdgeT , snake_case_ : int ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __a : Dict = weight def lowerCAmelCase (self : Optional[Any] ): __a : Graph = Graph({min(self.vertices )} , {} ) __a : EdgeT __a : int __a : EdgeT __a : int while len(subgraph.vertices ) < len(self.vertices ): __a : List[str] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __a : Union[str, Any] = edge __a : Dict = weight subgraph.add_edge(snake_case_ , snake_case_ ) return subgraph def __UpperCamelCase ( lowerCAmelCase__ : str = "p107_network.txt" ): __a : str = os.path.abspath(os.path.dirname(lowerCAmelCase__ ) ) __a : str = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) __a : dict[EdgeT, int] = {} __a : list[str] __a : int __a : int with open(lowerCAmelCase__ ) as f: __a : Tuple = f.read().strip().split('''\n''' ) __a : Union[str, Any] = [line.split(''',''' ) for line in data] for edgea in range(1 , len(lowerCAmelCase__ ) ): for edgea in range(lowerCAmelCase__ ): if adjaceny_matrix[edgea][edgea] != "-": __a : Optional[Any] = int(adjaceny_matrix[edgea][edgea] ) __a : Graph = Graph(set(range(len(lowerCAmelCase__ ) ) ) , lowerCAmelCase__ ) __a : Graph = graph.prims_algorithm() __a : int = sum(graph.edges.values() ) __a : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
326
lowercase__ ={ "joule": 1.0, "kilojoule": 1000, "megajoule": 1000000, "gigajoule": 1000000000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 3600000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 4186800.00, "electronvolt": 1.602176634e-19, "britishthermalunit_it": 1055.05585, "footpound": 1.355_818, } def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __a : Dict = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(lowerCAmelCase__ )}" ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
326
1
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCAmelCase_ ( unittest.TestCase , _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = self.tool("""hey""" ) _lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = self.tool("""hey""" ) _lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
5
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument SCREAMING_SNAKE_CASE :Tuple = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def _lowerCAmelCase ( lowerCAmelCase_ :Any )->Any: '''simple docstring''' snake_case_ = list(s_dict.keys() ) for key in keys: snake_case_ = r".*/layers_(\d+)" snake_case_ = key if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): snake_case_ = re.sub(r"layers_(\d+)" , r"block/\1/layer" , lowerCAmelCase_ ) snake_case_ = r"(encoder|decoder)\/" if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): snake_case_ = re.match(lowerCAmelCase_ , lowerCAmelCase_ ).groups() if groups[0] == "encoder": snake_case_ = re.sub(r"/mlp/" , r"/1/mlp/" , lowerCAmelCase_ ) snake_case_ = re.sub(r"/pre_mlp_layer_norm/" , r"/1/layer_norm/" , lowerCAmelCase_ ) elif groups[0] == "decoder": snake_case_ = re.sub(r"/mlp/" , r"/2/mlp/" , lowerCAmelCase_ ) snake_case_ = re.sub(r"/pre_mlp_layer_norm/" , r"/2/layer_norm/" , lowerCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: snake_case_ = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) print(F'''{key} -> {new_key}''' ) snake_case_ = s_dict.pop(lowerCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: snake_case_ = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: snake_case_ = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: snake_case_ = s_dict[key].shape[0] snake_case_ = s_dict[key] for idx in range(lowerCAmelCase_ ): snake_case_ = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring' )}''' ) s_dict.pop(lowerCAmelCase_ ) return s_dict SCREAMING_SNAKE_CASE :Optional[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Any )->Optional[int]: '''simple docstring''' import regex as re with open(lowerCAmelCase_ , "r" ) as f: snake_case_ = f.read() snake_case_ = re.findall(r"(.*) = ([0-9.]*)" , lowerCAmelCase_ ) snake_case_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": snake_case_ = float(lowerCAmelCase_ ) if "." in value else int(lowerCAmelCase_ ) snake_case_ = re.findall(r"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase_ )[0] snake_case_ = str(activation[1] ) snake_case_ = num_experts snake_case_ = SwitchTransformersConfig(**lowerCAmelCase_ ) return config def _lowerCAmelCase ( lowerCAmelCase_ :Optional[Any] , lowerCAmelCase_ :List[Any] , lowerCAmelCase_ :Dict=None , lowerCAmelCase_ :str="./" , lowerCAmelCase_ :Optional[int]=8 )->List[str]: '''simple docstring''' print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) snake_case_ = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) if gin_file is not None: snake_case_ = convert_gin_to_config(lowerCAmelCase_ , lowerCAmelCase_ ) else: snake_case_ = SwitchTransformersConfig.from_pretrained(lowerCAmelCase_ ) snake_case_ = SwitchTransformersForConditionalGeneration(lowerCAmelCase_ ) snake_case_ = flax_params["target"] snake_case_ = flatten_dict(lowerCAmelCase_ , sep="/" ) snake_case_ = rename_keys(lowerCAmelCase_ ) snake_case_ = unflatten_dict(lowerCAmelCase_ , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase_ , lowerCAmelCase_ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') SCREAMING_SNAKE_CASE :int = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
283
0
'''simple docstring''' import string from math import logaa def __snake_case ( lowercase : str , lowercase : str ): snake_case_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) snake_case_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __snake_case ( lowercase : str , lowercase : str ): snake_case_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' snake_case_ = corpus_without_punctuation.split("\n" ) snake_case_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowerCAmelCase__ )) def __snake_case ( lowercase : int , lowercase : int , lowercase : Any=False ): if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def __snake_case ( lowercase : int , lowercase : int ): return round(tf * idf , 3 )
709
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def __snake_case ( lowercase : int = 1_000_000 , lowercase : int = 10 ): snake_case_ = defaultdict(lowercase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: snake_case_ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: snake_case_ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
420
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class UpperCAmelCase_ ( UpperCamelCase , UpperCamelCase ): '''simple docstring''' @register_to_config def __init__( self , __A = 768 , ): """simple docstring""" super().__init__() lowerCamelCase : Optional[int] = nn.Parameter(torch.zeros(1 , __A ) ) lowerCamelCase : Union[str, Any] = nn.Parameter(torch.ones(1 , __A ) ) def _snake_case ( self , __A = None , __A = None , ): """simple docstring""" lowerCamelCase : Optional[Any] = nn.Parameter(self.mean.to(__A ).to(__A ) ) lowerCamelCase : List[str] = nn.Parameter(self.std.to(__A ).to(__A ) ) return self def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : int = (embeds - self.mean) * 1.0 / self.std return embeds def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : int = (embeds * self.std) + self.mean return embeds
340
import torch from diffusers import DiffusionPipeline class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A , __A ): """simple docstring""" super().__init__() self.register_modules(unet=__A , scheduler=__A ) def __call__( self ): """simple docstring""" lowerCamelCase : List[str] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCamelCase : Optional[Any] = 1 lowerCamelCase : Optional[int] = self.unet(__A , __A ).sample lowerCamelCase : List[str] = self.scheduler.step(__A , __A , __A ).prev_sample lowerCamelCase : str = scheduler_output - scheduler_output + torch.ones_like(__A ) return result
340
1
def __lowerCAmelCase ( A_ : int | float | str ) -> tuple[int, int]: try: __UpperCAmelCase = float(A_ ) except ValueError: raise ValueError("Please enter a valid number" ) __UpperCAmelCase = decimal - int(A_ ) if fractional_part == 0: return int(A_ ), 1 else: __UpperCAmelCase = len(str(A_ ).split("." )[1] ) __UpperCAmelCase = int(decimal * (10**number_of_frac_digits) ) __UpperCAmelCase = 10**number_of_frac_digits __UpperCAmelCase , __UpperCAmelCase = denominator, numerator while True: __UpperCAmelCase = dividend % divisor if remainder == 0: break __UpperCAmelCase , __UpperCAmelCase = divisor, remainder __UpperCAmelCase , __UpperCAmelCase = numerator / divisor, denominator / divisor return int(A_ ), int(A_ ) if __name__ == "__main__": print(F"{decimal_to_fraction(2) = }") print(F"{decimal_to_fraction(89.0) = }") print(F"{decimal_to_fraction('67') = }") print(F"{decimal_to_fraction('45.0') = }") print(F"{decimal_to_fraction(1.5) = }") print(F"{decimal_to_fraction('6.25') = }") print(F"{decimal_to_fraction('78td') = }")
286
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
286
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" if collection == []: return [] # get some information about the collection _UpperCamelCase : Tuple = len(lowerCAmelCase_ ) _UpperCamelCase : List[Any] = max(lowerCAmelCase_ ) _UpperCamelCase : Union[str, Any] = min(lowerCAmelCase_ ) # create the counting array _UpperCamelCase : List[str] = coll_max + 1 - coll_min _UpperCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 ,lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = counting_arr[i] + counting_arr[i - 1] # create the output collection _UpperCamelCase : Optional[Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 ,lowerCAmelCase_ ) ): _UpperCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" return "".join([chr(lowerCAmelCase_ ) for i in counting_sort([ord(lowerCAmelCase_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" lowerCamelCase__ = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase__ = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
624
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging a__ : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Any , UpperCAmelCase__ : Union[str, Any]=None , **UpperCAmelCase__ : Union[str, Any] ) -> Any: warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , UpperCAmelCase__ , ) super().__init__(args=UpperCAmelCase__ , **UpperCAmelCase__ )
682
0
def snake_case (UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCamelCase , n - 1 , UpperCamelCase ) * a) % mod else: lowerCamelCase__ = binary_exponentiation(UpperCamelCase , n / 2 , UpperCamelCase ) return (b * b) % mod # a prime number a__ : Dict = 7_0_1 a__ : Tuple = 1_0_0_0_0_0_0_0_0_0 a__ : Union[str, Any] = 1_0 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
235
import os from collections import deque import torch from torch.utils.data import Dataset class lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , a_ : List[str]="" , a_ : str="train" ): """simple docstring""" assert os.path.isdir(a_ ) lowerCamelCase__ = [] lowerCamelCase__ = os.listdir(a_ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue lowerCamelCase__ = os.path.join(a_ , a_ ) if not os.path.isfile(a_ ): continue self.documents.append(a_ ) def __len__( self : List[Any] ): """simple docstring""" return len(self.documents ) def __getitem__( self : Optional[int] , a_ : Any ): """simple docstring""" lowerCamelCase__ = self.documents[idx] lowerCamelCase__ = document_path.split("""/""" )[-1] with open(a_ , encoding="""utf-8""" ) as source: lowerCamelCase__ = source.read() lowerCamelCase__ , lowerCamelCase__ = process_story(a_ ) return document_name, story_lines, summary_lines def snake_case (UpperCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ = list(filter(lambda UpperCamelCase : len(UpperCamelCase ) != 0 , [line.strip() for line in raw_story.split("""\n""" )] ) ) # for some unknown reason some lines miss a period, add it lowerCamelCase__ = [_add_missing_period(UpperCamelCase ) for line in nonempty_lines] # gather article lines lowerCamelCase__ = [] lowerCamelCase__ = deque(UpperCamelCase ) while True: try: lowerCamelCase__ = lines.popleft() if element.startswith("""@highlight""" ): break story_lines.append(UpperCamelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines lowerCamelCase__ = list(filter(lambda UpperCamelCase : not t.startswith("""@highlight""" ) , UpperCamelCase ) ) return story_lines, summary_lines def snake_case (UpperCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ = [""".""", """!""", """?""", """...""", """'""", """`""", """\"""", """\u2019""", """\u2019""", """)"""] if line.startswith("""@highlight""" ): return line if line[-1] in END_TOKENS: return line return line + "." def snake_case (UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ): '''simple docstring''' if len(UpperCamelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(UpperCamelCase )) ) return sequence def snake_case (UpperCamelCase : List[str] , UpperCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ = torch.ones_like(UpperCamelCase ) lowerCamelCase__ = sequence == pad_token_id lowerCamelCase__ = 0 return mask def snake_case (UpperCamelCase : int , UpperCamelCase : List[str] , UpperCamelCase : str ): '''simple docstring''' lowerCamelCase__ = [tokenizer.encode(UpperCamelCase ) for line in story_lines] lowerCamelCase__ = [token for sentence in story_lines_token_ids for token in sentence] lowerCamelCase__ = [tokenizer.encode(UpperCamelCase ) for line in summary_lines] lowerCamelCase__ = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def snake_case (UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ = [] for sequence in batch: lowerCamelCase__ = -1 lowerCamelCase__ = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(UpperCamelCase ) return torch.tensor(UpperCamelCase )
235
1