code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def __snake_case ( lowerCAmelCase_ ) -> list[list[int]]: SCREAMING_SNAKE_CASE__ = [] if len(lowerCAmelCase_ ) == 1: return [nums.copy()] for _ in range(len(lowerCAmelCase_ ) ): SCREAMING_SNAKE_CASE__ = nums.pop(0 ) SCREAMING_SNAKE_CASE__ = permute(lowerCAmelCase_ ) for perm in permutations: perm.append(lowerCAmelCase_ ) result.extend(lowerCAmelCase_ ) nums.append(lowerCAmelCase_ ) return result def __snake_case ( lowerCAmelCase_ ) -> int: def backtrack(lowerCAmelCase_ ): if start == len(lowerCAmelCase_ ) - 1: output.append(nums[:] ) else: for i in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = nums[i], nums[start] backtrack(start + 1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = nums[i], nums[start] # backtrack SCREAMING_SNAKE_CASE__ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function _A : List[str] = permutea([1, 2, 3]) print(res) doctest.testmod()
100
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase : List[Any] = 'CompVis/stable-diffusion-v1-1' lowerCamelCase : Union[str, Any] = 'CompVis/stable-diffusion-v1-2' lowerCamelCase : List[str] = 'CompVis/stable-diffusion-v1-3' lowerCamelCase : Any = 'CompVis/stable-diffusion-v1-4' class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A , A , A , A , A , A , A = True , ) -> List[str]: super()._init_() snake_case : List[Any] = StableDiffusionPipeline.from_pretrained(A ) snake_case : str = StableDiffusionPipeline.from_pretrained(A ) snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained(A ) snake_case : Dict = StableDiffusionPipeline( vae=A , text_encoder=A , tokenizer=A , unet=A , scheduler=A , safety_checker=A , feature_extractor=A , requires_safety_checker=A , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCAmelCase ( self ) -> Dict[str, Any]: return {k: getattr(self , A ) for k in self.config.keys() if not k.startswith("""_""" )} def UpperCAmelCase ( self , A = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def UpperCAmelCase ( self ) -> Dict: self.enable_attention_slicing(A ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Optional[Any]: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Optional[Any]: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Any: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Optional[int]: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> List[Any]: snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(A ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 snake_case : Tuple = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get first result from Stable Diffusion Checkpoint v1.2 snake_case : Tuple = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get first result from Stable Diffusion Checkpoint v1.3 snake_case : List[Any] = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get first result from Stable Diffusion Checkpoint v1.4 snake_case : Dict = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
587
0
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: # Construct model if openai_config_file == "": _lowercase : Any = OpenAIGPTConfig() else: _lowercase : Optional[int] = OpenAIGPTConfig.from_json_file(lowerCamelCase_ ) _lowercase : Union[str, Any] = OpenAIGPTModel(lowerCamelCase_ ) # Load weights from numpy load_tf_weights_in_openai_gpt(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model _lowercase : int = pytorch_dump_folder_path + '/' + WEIGHTS_NAME _lowercase : str = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase_ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
354
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowerCamelCase( _a ): lowercase_ : List[Any] = (DPMSolverSinglestepScheduler,) lowercase_ : List[str] = (("""num_inference_steps""", 25),) def UpperCamelCase ( self, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf'), 'variance_type': None, } config.update(**lowerCamelCase) return config def UpperCamelCase ( self, lowerCamelCase=0, **lowerCamelCase) -> Any: """simple docstring""" _lowercase : Dict = dict(self.forward_default_kwargs) _lowercase : Union[str, Any] = kwargs.pop('num_inference_steps', lowerCamelCase) _lowercase : Optional[int] = self.dummy_sample _lowercase : Optional[int] = 0.1 * sample _lowercase : Optional[int] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowercase : Any = self.get_scheduler_config(**lowerCamelCase) _lowercase : List[Any] = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals _lowercase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase) _lowercase : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase) new_scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals _lowercase : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowercase , _lowercase : List[Any] = sample, sample for t in range(lowerCamelCase, time_step + scheduler.config.solver_order + 1): _lowercase : Dict = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : int = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase=0, **lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[int] = dict(self.forward_default_kwargs) _lowercase : List[str] = kwargs.pop('num_inference_steps', lowerCamelCase) _lowercase : List[str] = self.dummy_sample _lowercase : str = 0.1 * sample _lowercase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowercase : Any = self.get_scheduler_config() _lowercase : List[str] = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals (must be after setting timesteps) _lowercase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase) _lowercase : List[Any] = scheduler_class.from_pretrained(lowerCamelCase) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residual (must be after setting timesteps) _lowercase : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowercase : Optional[int] = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : List[Any] = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self, lowerCamelCase=None, **lowerCamelCase) -> Optional[Any]: """simple docstring""" if scheduler is None: _lowercase : str = self.scheduler_classes[0] _lowercase : int = self.get_scheduler_config(**lowerCamelCase) _lowercase : Optional[Any] = scheduler_class(**lowerCamelCase) _lowercase : List[Any] = self.scheduler_classes[0] _lowercase : Optional[int] = self.get_scheduler_config(**lowerCamelCase) _lowercase : Optional[Any] = scheduler_class(**lowerCamelCase) _lowercase : List[Any] = 10 _lowercase : List[str] = self.dummy_model() _lowercase : Dict = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase) for i, t in enumerate(scheduler.timesteps): _lowercase : Optional[int] = model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample return sample def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) _lowercase : Optional[int] = 50 _lowercase : Union[str, Any] = self.dummy_model() _lowercase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): _lowercase : Optional[Any] = model(lowerCamelCase, lowerCamelCase) _lowercase : int = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample _lowercase : Optional[int] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_5_7_4) < 1E-3 def UpperCamelCase ( self) -> Tuple: """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) _lowercase : List[str] = self.full_loop(scheduler=lowerCamelCase) _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_7_9_1) < 1E-3 _lowercase : str = DEISMultistepScheduler.from_config(scheduler.config) _lowercase : List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config) _lowercase : Tuple = UniPCMultistepScheduler.from_config(scheduler.config) _lowercase : Any = DPMSolverSinglestepScheduler.from_config(scheduler.config) _lowercase : Any = self.full_loop(scheduler=lowerCamelCase) _lowercase : Optional[int] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_7_9_1) < 1E-3 def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=lowerCamelCase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase, prediction_type=lowerCamelCase, sample_max_value=lowerCamelCase, algorithm_type='dpmsolver++', solver_order=lowerCamelCase, solver_type=lowerCamelCase, ) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, algorithm_type=lowerCamelCase, ) _lowercase : Optional[Any] = self.full_loop( solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, algorithm_type=lowerCamelCase, ) assert not torch.isnan(lowerCamelCase).any(), "Samples have nan numbers" def UpperCamelCase ( self) -> str: """simple docstring""" self.check_over_configs(lower_order_final=lowerCamelCase) self.check_over_configs(lower_order_final=lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('inf')) self.check_over_configs(lambda_min_clipped=-5.1) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.check_over_configs(variance_type=lowerCamelCase) self.check_over_configs(variance_type='learned_range') def UpperCamelCase ( self) -> Dict: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase, time_step=0) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = self.full_loop() _lowercase : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_7_9_1) < 1E-3 def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Tuple = self.full_loop(use_karras_sigmas=lowerCamelCase) _lowercase : List[str] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_2_4_8) < 1E-3 def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Tuple = self.full_loop(prediction_type='v_prediction') _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.1_4_5_3) < 1E-3 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = self.full_loop(prediction_type='v_prediction', use_karras_sigmas=lowerCamelCase) _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.0_6_4_9) < 1E-3 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[Any] = self.scheduler_classes[0] _lowercase : Optional[int] = self.get_scheduler_config(thresholding=lowerCamelCase, dynamic_thresholding_ratio=0) _lowercase : Any = scheduler_class(**lowerCamelCase) _lowercase : str = 10 _lowercase : List[str] = self.dummy_model() _lowercase : Tuple = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase) for i, t in enumerate(scheduler.timesteps): _lowercase : Tuple = model(lowerCamelCase, lowerCamelCase) _lowercase : Dict = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample assert sample.dtype == torch.floataa
354
1
from __future__ import annotations class A : def __init__( self: Dict , _lowerCAmelCase: int ) -> None: '''simple docstring''' UpperCAmelCase_ =order # a_{0} ... a_{k} UpperCAmelCase_ =[1.0] + [0.0] * order # b_{0} ... b_{k} UpperCAmelCase_ =[1.0] + [0.0] * order # x[n-1] ... x[n-k] UpperCAmelCase_ =[0.0] * self.order # y[n-1] ... y[n-k] UpperCAmelCase_ =[0.0] * self.order def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: list[float] , _lowerCAmelCase: list[float] ) -> None: '''simple docstring''' if len(_lowerCAmelCase ) < self.order: UpperCAmelCase_ =[1.0, *a_coeffs] if len(_lowerCAmelCase ) != self.order + 1: UpperCAmelCase_ =( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(_lowerCAmelCase )}' ) raise ValueError(_lowerCAmelCase ) if len(_lowerCAmelCase ) != self.order + 1: UpperCAmelCase_ =( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(_lowerCAmelCase )}' ) raise ValueError(_lowerCAmelCase ) UpperCAmelCase_ =a_coeffs UpperCAmelCase_ =b_coeffs def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: float ) -> float: '''simple docstring''' UpperCAmelCase_ =0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) UpperCAmelCase_ =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0] UpperCAmelCase_ =self.input_history[:-1] UpperCAmelCase_ =self.output_history[:-1] UpperCAmelCase_ =sample UpperCAmelCase_ =result return result
54
"""simple docstring""" from math import pi, sqrt, tan def _lowerCAmelCase(a : float ) -> float: if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _lowerCAmelCase(a : float , a : float , a : float ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _lowerCAmelCase(a : float ) -> float: if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _lowerCAmelCase(a : float ) -> float: if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _lowerCAmelCase(a : float , a : float ) -> float: if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _lowerCAmelCase(a : float , a : float , a : float ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) _SCREAMING_SNAKE_CASE =(height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _lowerCAmelCase(a : float , a : float ) -> float: if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _lowerCAmelCase(a : float , a : float ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a , 2 ) * torus_radius * tube_radius def _lowerCAmelCase(a : float , a : float ) -> float: if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _lowerCAmelCase(a : float ) -> float: if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _lowerCAmelCase(a : float , a : float ) -> float: if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _lowerCAmelCase(a : float , a : float , a : float ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) _SCREAMING_SNAKE_CASE =(sidea + sidea + sidea) / 2 _SCREAMING_SNAKE_CASE =sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _lowerCAmelCase(a : float , a : float ) -> float: if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _lowerCAmelCase(a : float , a : float , a : float ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _lowerCAmelCase(a : float ) -> float: if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _lowerCAmelCase(a : float , a : float ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _lowerCAmelCase(a : float , a : float ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _lowerCAmelCase(a : int , a : float ) -> float: if not isinstance(a , a ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(f"Rectangle: {area_rectangle(1_0, 2_0) = }") print(f"Square: {area_square(1_0) = }") print(f"Triangle: {area_triangle(1_0, 1_0) = }") print(f"Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }") print(f"Parallelogram: {area_parallelogram(1_0, 2_0) = }") print(f"Rhombus: {area_rhombus(1_0, 2_0) = }") print(f"Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }") print(f"Circle: {area_circle(2_0) = }") print(f"Ellipse: {area_ellipse(1_0, 2_0) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(f"Cube: {surface_area_cube(2_0) = }") print(f"Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }") print(f"Sphere: {surface_area_sphere(2_0) = }") print(f"Hemisphere: {surface_area_hemisphere(2_0) = }") print(f"Cone: {surface_area_cone(1_0, 2_0) = }") print(f"Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }") print(f"Cylinder: {surface_area_cylinder(1_0, 2_0) = }") print(f"Torus: {surface_area_torus(2_0, 1_0) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 1_0) = }") print(f"Square: {area_reg_polygon(4, 1_0) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 1_0) = }")
255
0
'''simple docstring''' import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCAmelCase__ , UpperCAmelCase__ ): a__ : Tuple = 1 @register_to_config def __init__(self : Tuple , __a : List[str]=2000 , __a : List[Any]=0.1 , __a : List[str]=20 , __a : Any=1E-3 ): UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None def _lowercase (self : Dict , __a : Optional[int] , __a : Union[str, torch.device] = None ): UpperCAmelCase_ = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def _lowercase (self : Optional[Any] , __a : Union[str, Any] , __a : Dict , __a : List[str] , __a : Union[str, Any]=None ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score UpperCAmelCase_ = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) UpperCAmelCase_ = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) UpperCAmelCase_ = std.flatten() while len(std.shape ) < len(score.shape ): UpperCAmelCase_ = std.unsqueeze(-1 ) UpperCAmelCase_ = -score / std # compute UpperCAmelCase_ = -1.0 / len(self.timesteps ) UpperCAmelCase_ = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) UpperCAmelCase_ = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): UpperCAmelCase_ = beta_t.unsqueeze(-1 ) UpperCAmelCase_ = -0.5 * beta_t * x UpperCAmelCase_ = torch.sqrt(__a ) UpperCAmelCase_ = drift - diffusion**2 * score UpperCAmelCase_ = x + drift * dt # add noise UpperCAmelCase_ = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) UpperCAmelCase_ = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self : Tuple ): return self.config.num_train_timesteps
714
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_: str ={ 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Optional[int] =['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: int =[ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
415
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Union[str, Any] = { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class __magic_name__ ( __snake_case ): UpperCamelCase : Optional[int] = "xglm" UpperCamelCase : str = ["past_key_values"] UpperCamelCase : Tuple = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self , __magic_name__=2_5_6_0_0_8 , __magic_name__=2_0_4_8 , __magic_name__=1_0_2_4 , __magic_name__=4_0_9_6 , __magic_name__=2_4 , __magic_name__=1_6 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.02 , __magic_name__=True , __magic_name__=True , __magic_name__=2 , __magic_name__=1 , __magic_name__=0 , __magic_name__=2 , **__magic_name__ , ): """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = ffn_dim _lowerCAmelCase = num_layers _lowerCAmelCase = attention_heads _lowerCAmelCase = activation_function _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = init_std _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase = use_cache super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
589
from manim import * class A__ ( __snake_case ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) UpperCamelCase = Rectangle(height=0.2_5 , width=0.2_5 ) UpperCamelCase = [mem.copy() for i in range(6 )] UpperCamelCase = [mem.copy() for i in range(6 )] UpperCamelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = Text('CPU' , font_size=24 ) UpperCamelCase = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_SCREAMING_SNAKE_CASE ) UpperCamelCase = [mem.copy() for i in range(4 )] UpperCamelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = Text('GPU' , font_size=24 ) UpperCamelCase = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) gpu.move_to([-1, -1, 0] ) self.add(_SCREAMING_SNAKE_CASE ) UpperCamelCase = [mem.copy() for i in range(6 )] UpperCamelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = Text('Model' , font_size=24 ) UpperCamelCase = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.add(_SCREAMING_SNAKE_CASE ) UpperCamelCase = [] UpperCamelCase = [] for i, rect in enumerate(_SCREAMING_SNAKE_CASE ): UpperCamelCase = fill.copy().set_fill(_SCREAMING_SNAKE_CASE , opacity=0.8 ) target.move_to(_SCREAMING_SNAKE_CASE ) model_arr.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(_SCREAMING_SNAKE_CASE , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_SCREAMING_SNAKE_CASE ) self.add(*_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) UpperCamelCase = [meta_mem.copy() for i in range(6 )] UpperCamelCase = [meta_mem.copy() for i in range(6 )] UpperCamelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = Text('Disk' , font_size=24 ) UpperCamelCase = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) disk.move_to([-4, -1.2_5, 0] ) self.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(_SCREAMING_SNAKE_CASE , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_SCREAMING_SNAKE_CASE ) UpperCamelCase = MarkupText( f'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = Square(0.3 ) input.set_fill(_SCREAMING_SNAKE_CASE , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _SCREAMING_SNAKE_CASE , buff=0.5 ) self.play(Write(_SCREAMING_SNAKE_CASE ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_SCREAMING_SNAKE_CASE , buff=0.0_2 ) self.play(MoveToTarget(_SCREAMING_SNAKE_CASE ) ) self.play(FadeOut(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = Arrow(start=_SCREAMING_SNAKE_CASE , end=_SCREAMING_SNAKE_CASE , color=_SCREAMING_SNAKE_CASE , buff=0.5 ) a.next_to(model_arr[0].get_left() , _SCREAMING_SNAKE_CASE , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) UpperCamelCase = MarkupText( f'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=3 ) ) UpperCamelCase = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.0_2} self.play( Write(_SCREAMING_SNAKE_CASE ) , Circumscribe(model_arr[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(model_cpu_arr[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) UpperCamelCase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , _SCREAMING_SNAKE_CASE , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) UpperCamelCase = AnimationGroup( FadeOut(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , MoveToTarget(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , FadeIn(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_SCREAMING_SNAKE_CASE ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: UpperCamelCase = 0.7 self.play( Circumscribe(model_arr[i] , **_SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[i] , **_SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[i + 1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(model_arr[i + 1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[-1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) UpperCamelCase = a_c UpperCamelCase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(_SCREAMING_SNAKE_CASE ) , FadeOut(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , ) UpperCamelCase = MarkupText(f'Inference on a model too large for GPU memory\nis successfully completed.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=3 ) , MoveToTarget(_SCREAMING_SNAKE_CASE ) ) self.wait()
280
0
"""simple docstring""" from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCamelCase ( lowercase_ ): lowercase = 'Salesforce/blip-image-captioning-base' lowercase = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) lowercase = 'image_captioner' lowercase = AutoModelForVisionaSeq lowercase = ['image'] lowercase = ['text'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' requires_backends(self ,['vision'] ) super().__init__(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' return self.pre_processor(images=__UpperCamelCase ,return_tensors='pt' ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return self.model.generate(**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' return self.pre_processor.batch_decode(__UpperCamelCase ,skip_special_tokens=__UpperCamelCase )[0].strip()
705
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def lowercase__( ): lowercase_ : List[Any] = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) lowercase_ : int = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) # Let's go lowercase_ : str = parser.parse_args() if not hasattr(__SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run lowercase_ : Optional[Any] = args.func(__SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
477
0
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def A ( UpperCamelCase_ : Optional[int] ) -> Any: '''simple docstring''' return EnvironmentCommand() def A ( UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class A ( SCREAMING_SNAKE_CASE__ ): @staticmethod def __SCREAMING_SNAKE_CASE ( __magic_name__ : ArgumentParser ): """simple docstring""" lowerCAmelCase__ = parser.add_parser("env" ) download_parser.set_defaults(func=__magic_name__ ) download_parser.add_argument( "--accelerate-config_file" , default=__magic_name__ , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=__magic_name__ ) def __init__( self : List[Any] , __magic_name__ : Union[str, Any] , *__magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = accelerate_config_file def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = "not installed" if is_safetensors_available(): import safetensors lowerCAmelCase__ = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors lowerCAmelCase__ = f"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" lowerCAmelCase__ = "not installed" lowerCAmelCase__ = lowerCAmelCase__ = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowerCAmelCase__ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(__magic_name__ ): lowerCAmelCase__ = load_config_from_file(self._accelerate_config_file ).to_dict() lowerCAmelCase__ = ( "\n".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(__magic_name__ , __magic_name__ ) else f"""\t{accelerate_config}""" ) lowerCAmelCase__ = "not installed" lowerCAmelCase__ = "NA" if is_torch_available(): import torch lowerCAmelCase__ = torch.__version__ lowerCAmelCase__ = torch.cuda.is_available() lowerCAmelCase__ = "not installed" lowerCAmelCase__ = "NA" if is_tf_available(): import tensorflow as tf lowerCAmelCase__ = tf.__version__ try: # deprecated in v2.1 lowerCAmelCase__ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowerCAmelCase__ = bool(tf.config.list_physical_devices("GPU" ) ) lowerCAmelCase__ = "not installed" lowerCAmelCase__ = "not installed" lowerCAmelCase__ = "not installed" lowerCAmelCase__ = "NA" if is_flax_available(): import flax import jax import jaxlib lowerCAmelCase__ = flax.__version__ lowerCAmelCase__ = jax.__version__ lowerCAmelCase__ = jaxlib.__version__ lowerCAmelCase__ = jax.lib.xla_bridge.get_backend().platform lowerCAmelCase__ = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": f"""{safetensors_version}""", "Accelerate version": f"""{accelerate_version}""", "Accelerate config": f"""{accelerate_config_str}""", "PyTorch version (GPU?)": f"""{pt_version} ({pt_cuda_available})""", "Tensorflow version (GPU?)": f"""{tf_version} ({tf_cuda_available})""", "Flax version (CPU?/GPU?/TPU?)": f"""{flax_version} ({jax_backend})""", "Jax version": f"""{jax_version}""", "JaxLib version": f"""{jaxlib_version}""", "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(__magic_name__ ) ) return info @staticmethod def __SCREAMING_SNAKE_CASE ( __magic_name__ : List[Any] ): """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
48
'''simple docstring''' import operator def snake_case ( snake_case : list , snake_case : bool = False , snake_case : list | None = None ) -> list: """simple docstring""" lowerCAmelCase = operator.lt if reverse else operator.gt lowerCAmelCase = solution or [] if not arr: return solution lowerCAmelCase = [arr.pop(0 )] for i, item in enumerate(snake_case ): if _operator(snake_case , sublist[-1] ): sublist.append(snake_case ) arr.pop(snake_case ) # merging sublist into solution list if not solution: solution.extend(snake_case ) else: while sublist: lowerCAmelCase = sublist.pop(0 ) for i, xx in enumerate(snake_case ): if not _operator(snake_case , snake_case ): solution.insert(snake_case , snake_case ) break else: solution.append(snake_case ) strand_sort(snake_case , snake_case , snake_case ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
284
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCamelCase__ (_UpperCAmelCase): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name) a_ : Dict = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class _snake_case ( A__ ): @staticmethod def SCREAMING_SNAKE_CASE__ ( a) -> Any: SCREAMING_SNAKE_CASE = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=a , required=a , help='Model\'s type.') train_parser.add_argument( '--tf_checkpoint' , type=a , required=a , help='TensorFlow checkpoint path or folder.') train_parser.add_argument( '--pytorch_dump_output' , type=a , required=a , help='Path to the PyTorch saved model output.') train_parser.add_argument('--config' , type=a , default='' , help='Configuration file path or folder.') train_parser.add_argument( '--finetuning_task_name' , type=a , default=a , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=a) def __init__( self , a , a , a , a , a , *a , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = logging.get_logger('transformers-cli/converting') self._logger.info(f'''Loading model {model_type}''') SCREAMING_SNAKE_CASE = model_type SCREAMING_SNAKE_CASE = tf_checkpoint SCREAMING_SNAKE_CASE = pytorch_dump_output SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = finetuning_task_name def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(a) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a) if "ckpt" in self._tf_checkpoint.lower(): SCREAMING_SNAKE_CASE = self._tf_checkpoint SCREAMING_SNAKE_CASE = '' else: SCREAMING_SNAKE_CASE = self._tf_checkpoint SCREAMING_SNAKE_CASE = '' convert_transfo_xl_checkpoint_to_pytorch( a , self._config , self._pytorch_dump_output , a) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]')
444
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) a_ : int = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
444
1
"""simple docstring""" class _lowerCAmelCase : # Public class to implement a graph """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = row lowerCAmelCase__ :Optional[int] = col lowerCAmelCase__ :int = graph def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowerCAmelCase__ :Tuple = [-1, 0, 1, -1, 1, -1, 0, 1] lowerCAmelCase__ :Dict = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __UpperCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __UpperCAmelCase ) def snake_case ( self ): # And finally, count all islands. '''simple docstring''' lowerCAmelCase__ :Optional[int] = [[False for j in range(self.COL )] for i in range(self.ROW )] lowerCAmelCase__ :Union[str, Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) count += 1 return count
93
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } UpperCamelCase__ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> Union[str, Any]: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase__ = getattr(__A, __A ) if weight_type is not None: UpperCAmelCase__ = getattr(__A, __A ).shape else: UpperCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value elif weight_type == "running_mean": UpperCAmelCase__ = value elif weight_type == "running_var": UpperCAmelCase__ = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ = value elif weight_type == "inv_freq": UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A, __A, __A ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( __A, __A, __A, __A, hf_model.config.feat_extract_norm == "group", ) UpperCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(__A )[0].split("." )[-2] UpperCAmelCase__ = mapped_key.replace("*", __A ) if "pos_bias_u" in name: UpperCAmelCase__ = None elif "pos_bias_v" in name: UpperCAmelCase__ = None elif "weight_g" in name: UpperCAmelCase__ = "weight_g" elif "weight_v" in name: UpperCAmelCase__ = "weight_v" elif "bias" in name: UpperCAmelCase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ = "weight" elif "running_mean" in name: UpperCAmelCase__ = "running_mean" elif "inv_freq" in name: UpperCAmelCase__ = "inv_freq" elif "running_var" in name: UpperCAmelCase__ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase__ = "num_batches_tracked" else: UpperCAmelCase__ = None set_recursively(__A, __A, __A, __A, __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = full_name.split("conv_layers." )[-1] UpperCAmelCase__ = name.split("." ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) @torch.no_grad() def lowerCAmelCase_ ( __A, __A, __A=None, __A=None, __A=True ) -> Optional[Any]: '''simple docstring''' if config_path is not None: UpperCAmelCase__ = WavaVecaConformerConfig.from_pretrained(__A, hidden_act="swish" ) else: UpperCAmelCase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase__ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase__ = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ = target_dict.pad_index UpperCAmelCase__ = target_dict.bos_index UpperCAmelCase__ = target_dict.eos_index UpperCAmelCase__ = len(target_dict.symbols ) UpperCAmelCase__ = os.path.join(__A, "vocab.json" ) if not os.path.isdir(__A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__A ) ) return os.makedirs(__A, exist_ok=__A ) UpperCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 with open(__A, "w", encoding="utf-8" ) as vocab_handle: json.dump(__A, __A ) UpperCAmelCase__ = WavaVecaCTCTokenizer( __A, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=__A, ) UpperCAmelCase__ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16_000, padding_value=0, do_normalize=__A, return_attention_mask=__A, ) UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=__A, tokenizer=__A ) processor.save_pretrained(__A ) UpperCAmelCase__ = WavaVecaConformerForCTC(__A ) else: UpperCAmelCase__ = WavaVecaConformerForPreTraining(__A ) if is_finetuned: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase__ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase__ = fairseq.tasks.setup_task(__A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=__A ) UpperCAmelCase__ = model[0].eval() recursively_load_weights(__A, __A, not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCamelCase__ = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
486
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : int = 4_00_00_00 ): '''simple docstring''' lowercase = [0, 1] lowercase = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowercase = 0 for j in range(len(__snake_case ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
134
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = 2 while True: if is_prime(__snake_case ): yield num num += 1 def _SCREAMING_SNAKE_CASE ( __snake_case : int = 2_00_00_00 ): '''simple docstring''' return sum(takewhile(lambda __snake_case : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
134
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _snake_case : Tuple = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Union[str, Any] = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
53
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __UpperCAmelCase : __lowercase = None def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = os.path.join(lowerCAmelCase_ , 'feat_extract.json' ) feat_extract_first.to_json_file(lowerCAmelCase_ ) _snake_case = self.feature_extraction_class.from_json_file(lowerCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = feat_extract_first.save_pretrained(lowerCAmelCase_ )[0] check_json_file_has_correct_format(lowerCAmelCase_ ) _snake_case = self.feature_extraction_class.from_pretrained(lowerCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class() self.assertIsNotNone(lowerCAmelCase_ )
495
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase : str = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = ["""PoolFormerFeatureExtractor"""] __lowercase : List[str] = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys __lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
66
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Tuple = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __lowercase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
66
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): # Initialise PyTorch model UpperCamelCase_ : List[str] = AlbertConfig.from_json_file(_UpperCamelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_ : Tuple = AlbertForPreTraining(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
635
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = XLMTokenizer lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __lowerCamelCase = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __lowerCamelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__UpperCAmelCase ) ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = '''lower newer''' __lowerCamelCase = '''lower newer''' return input_text, output_text def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = XLMTokenizer(self.vocab_file , self.merges_file ) __lowerCamelCase = '''lower''' __lowerCamelCase = ['''low''', '''er</w>'''] __lowerCamelCase = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = tokens + ['''<unk>'''] __lowerCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) __lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
175
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( __snake_case ): UpperCAmelCase__ : List[str] = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ : Optional[Any] = '''ChineseCLIPImageProcessor''' UpperCAmelCase__ : List[str] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : List[str] , _snake_case : str=None , _snake_case : Dict=None , **_snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _lowercase , ) UpperCAmelCase_ = kwargs.pop('''feature_extractor''') UpperCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(_lowercase , _lowercase) UpperCAmelCase_ = self.image_processor def __call__( self : Dict , _snake_case : int=None , _snake_case : List[str]=None , _snake_case : int=None , **_snake_case : List[str]): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''') if text is not None: UpperCAmelCase_ = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase) if images is not None: UpperCAmelCase_ = self.image_processor(_lowercase , return_tensors=_lowercase , **_lowercase) if text is not None and images is not None: UpperCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowercase) , tensor_type=_lowercase) def lowerCamelCase ( self : int , *_snake_case : Optional[int] , **_snake_case : Tuple): """simple docstring""" return self.tokenizer.batch_decode(*_lowercase , **_lowercase) def lowerCamelCase ( self : Tuple , *_snake_case : Union[str, Any] , **_snake_case : Optional[Any]): """simple docstring""" return self.tokenizer.decode(*_lowercase , **_lowercase) @property def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.tokenizer.model_input_names UpperCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def lowerCamelCase ( self : Any): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _lowercase , ) return self.image_processor_class
719
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A (__A : int ) -> bool: """simple docstring""" UpperCAmelCase_ = int(number**0.5 ) return number == sq * sq def A (__A : int , __A : int , __A : int , __A : int , __A : int , __A : int ) -> tuple[int, int]: """simple docstring""" UpperCAmelCase_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase_ = x_den * y_den * z_den UpperCAmelCase_ = gcd(__A , __A ) top //= hcf bottom //= hcf return top, bottom def A (__A : int = 35 ) -> int: """simple docstring""" UpperCAmelCase_ = set() UpperCAmelCase_ = 42 UpperCAmelCase_ = Fraction(0 ) UpperCAmelCase_ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCAmelCase_ = x_num * y_den + x_den * y_num UpperCAmelCase_ = x_den * y_den UpperCAmelCase_ = gcd(__A , __A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( __A , __A , __A , __A , __A , __A ) unique_s.add(__A ) # n=2 UpperCAmelCase_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase_ = x_den * x_den * y_den * y_den if is_sq(__A ) and is_sq(__A ): UpperCAmelCase_ = int(sqrt(__A ) ) UpperCAmelCase_ = int(sqrt(__A ) ) UpperCAmelCase_ = gcd(__A , __A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( __A , __A , __A , __A , __A , __A ) unique_s.add(__A ) # n=-1 UpperCAmelCase_ = x_num * y_num UpperCAmelCase_ = x_den * y_num + x_num * y_den UpperCAmelCase_ = gcd(__A , __A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( __A , __A , __A , __A , __A , __A ) unique_s.add(__A ) # n=2 UpperCAmelCase_ = x_num * x_num * y_num * y_num UpperCAmelCase_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__A ) and is_sq(__A ): UpperCAmelCase_ = int(sqrt(__A ) ) UpperCAmelCase_ = int(sqrt(__A ) ) UpperCAmelCase_ = gcd(__A , __A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( __A , __A , __A , __A , __A , __A ) unique_s.add(__A ) for num, den in unique_s: total += Fraction(__A , __A ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
169
0
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed A_ : Any = logging.getLogger(__name__) def UpperCamelCase__ ( __magic_name__ : List[str]=2 , __magic_name__ : Tuple=3 , __magic_name__ : Tuple=16 , __magic_name__ : int = 10 , __magic_name__ : int = 2 ) -> Optional[Any]: '''simple docstring''' def get_dataset(__magic_name__ : List[str] ): snake_case__ : int = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__magic_name__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) snake_case__ : Optional[Any] = get_dataset(__magic_name__ ) snake_case__ : Union[str, Any] = get_dataset(__magic_name__ ) snake_case__ : int = DataLoader(__magic_name__ , shuffle=__magic_name__ , batch_size=__magic_name__ , num_workers=4 ) snake_case__ : Optional[int] = DataLoader(__magic_name__ , shuffle=__magic_name__ , batch_size=__magic_name__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCamelCase__ ( __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : Optional[int]=None ) -> Optional[int]: '''simple docstring''' snake_case__ : Union[str, Any] = [] for epoch in range(__magic_name__ ): # Train quickly model.train() for batch in dataloader: snake_case__ , snake_case__ : Tuple = batch snake_case__ : int = model(__magic_name__ ) snake_case__ : Union[str, Any] = torch.nn.functional.mse_loss(__magic_name__ , __magic_name__ ) accelerator.backward(__magic_name__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() snake_case__ : int = nn.Parameter(torch.randn(1 ) ) snake_case__ : Tuple = nn.Parameter(torch.randn(1 ) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): return x * self.a + self.b class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) snake_case__ : Optional[int] = DummyModel() snake_case__ : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) snake_case__ , snake_case__ : Dict = dummy_dataloaders() snake_case__ : List[str] = ProjectConfiguration(total_limit=1 , project_dir=__SCREAMING_SNAKE_CASE , automatic_checkpoint_naming=__SCREAMING_SNAKE_CASE ) # Train baseline snake_case__ : Any = Accelerator(project_config=__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __UpperCamelCase ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) snake_case__ : Any = DummyModel() snake_case__ : Dict = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) snake_case__ , snake_case__ : Optional[Any] = dummy_dataloaders() # Train baseline snake_case__ : Union[str, Any] = Accelerator() snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save initial snake_case__ : Dict = os.path.join(__SCREAMING_SNAKE_CASE , """initial""" ) accelerator.save_state(__SCREAMING_SNAKE_CASE ) ((snake_case__) , (snake_case__)) : List[str] = model.a.item(), model.b.item() snake_case__ : List[Any] = optimizer.state_dict() snake_case__ : Optional[Any] = train(3 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ((snake_case__) , (snake_case__)) : str = model.a.item(), model.b.item() snake_case__ : Dict = optimizer.state_dict() # Train partially set_seed(4_2 ) snake_case__ : Dict = DummyModel() snake_case__ : Any = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) snake_case__ , snake_case__ : Optional[Any] = dummy_dataloaders() snake_case__ : Optional[Any] = Accelerator() snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) accelerator.load_state(__SCREAMING_SNAKE_CASE ) ((snake_case__) , (snake_case__)) : Any = model.a.item(), model.b.item() snake_case__ : List[str] = optimizer.state_dict() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict = train(2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save everything snake_case__ : Any = os.path.join(__SCREAMING_SNAKE_CASE , """checkpoint""" ) accelerator.save_state(__SCREAMING_SNAKE_CASE ) # Load everything back in and make sure all states work accelerator.load_state(__SCREAMING_SNAKE_CASE ) test_rands += train(1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ((snake_case__) , (snake_case__)) : Union[str, Any] = model.a.item(), model.b.item() snake_case__ : str = optimizer.state_dict() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) snake_case__ : Union[str, Any] = DummyModel() snake_case__ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) snake_case__ , snake_case__ : Any = dummy_dataloaders() snake_case__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=__SCREAMING_SNAKE_CASE ) # Train baseline snake_case__ : Optional[Any] = Accelerator(project_dir=__SCREAMING_SNAKE_CASE , project_config=__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() ((snake_case__) , (snake_case__)) : Union[str, Any] = model.a.item(), model.b.item() snake_case__ : List[str] = optimizer.state_dict() snake_case__ : Any = train(3 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ((snake_case__) , (snake_case__)) : Optional[int] = model.a.item(), model.b.item() snake_case__ : int = optimizer.state_dict() # Train partially set_seed(4_2 ) snake_case__ : Any = DummyModel() snake_case__ : Any = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) snake_case__ , snake_case__ : Union[str, Any] = dummy_dataloaders() snake_case__ : List[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = Accelerator(project_dir=__SCREAMING_SNAKE_CASE , project_config=__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) accelerator.load_state(os.path.join(__SCREAMING_SNAKE_CASE , """checkpoints""" , """checkpoint_0""" ) ) ((snake_case__) , (snake_case__)) : Any = model.a.item(), model.b.item() snake_case__ : List[str] = optimizer.state_dict() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = train(2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__SCREAMING_SNAKE_CASE , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ((snake_case__) , (snake_case__)) : Tuple = model.a.item(), model.b.item() snake_case__ : Union[str, Any] = optimizer.state_dict() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = torch.tensor([1, 2, 3] ) snake_case__ : List[Any] = torch.tensor([2, 3, 4] ) snake_case__ : Union[str, Any] = DummyModel() snake_case__ : Any = torch.optim.Adam(net.parameters() ) snake_case__ : Union[str, Any] = Accelerator() with self.assertRaises(__SCREAMING_SNAKE_CASE ) as ve: accelerator.register_for_checkpointing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def __UpperCamelCase ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) snake_case__ : List[str] = DummyModel() snake_case__ : Tuple = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) snake_case__ : Union[str, Any] = torch.optim.lr_scheduler.StepLR(__SCREAMING_SNAKE_CASE , step_size=1 , gamma=0.99 ) snake_case__ , snake_case__ : Dict = dummy_dataloaders() snake_case__ : List[str] = ProjectConfiguration(automatic_checkpoint_naming=__SCREAMING_SNAKE_CASE ) # Train baseline snake_case__ : Optional[Any] = Accelerator(project_dir=__SCREAMING_SNAKE_CASE , project_config=__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Tuple = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() snake_case__ : Any = scheduler.state_dict() train(3 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertNotEqual(__SCREAMING_SNAKE_CASE , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__SCREAMING_SNAKE_CASE , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(__SCREAMING_SNAKE_CASE , scheduler.state_dict() ) def __UpperCamelCase ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) snake_case__ : str = DummyModel() snake_case__ : List[Any] = ProjectConfiguration(automatic_checkpoint_naming=__SCREAMING_SNAKE_CASE , total_limit=2 ) # Train baseline snake_case__ : Any = Accelerator(project_dir=__SCREAMING_SNAKE_CASE , project_config=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = accelerator.prepare(__SCREAMING_SNAKE_CASE ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def __UpperCamelCase ( self ): snake_case__ : Tuple = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=os.environ.copy() ) if __name__ == "__main__": A_ : List[str] = "/tmp/accelerate/state_checkpointing" A_ : List[str] = DummyModel() A_ : List[Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3) A_ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) A_ , A_ : List[str] = dummy_dataloaders() A_ : Dict = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline A_ : Tuple = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) A_ , A_ , A_ , A_ , A_ : Optional[int] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) A_ , A_ : Any = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: A_ : Optional[int] = group["params"][0].device break assert param_device.type == accelerator.device.type A_ : List[str] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: A_ : List[Any] = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: A_ : Optional[int] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
38
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __A ( UpperCamelCase__ ): a__ : List[str] = """Salesforce/blip-image-captioning-base""" a__ : Optional[Any] = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) a__ : str = """image_captioner""" a__ : List[str] = AutoModelForVisionaSeq a__ : int = ["""image"""] a__ : Optional[Any] = ["""text"""] def __init__(self : Any , *__a : Dict , **__a : Union[str, Any] ): requires_backends(self , ["vision"] ) super().__init__(*__a , **__a ) def _lowercase (self : Union[str, Any] , __a : "Image" ): return self.pre_processor(images=__a , return_tensors="pt" ) def _lowercase (self : List[str] , __a : Dict ): return self.model.generate(**__a ) def _lowercase (self : int , __a : Optional[Any] ): return self.pre_processor.batch_decode(__a , skip_special_tokens=__a )[0].strip()
78
0
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any=100 , __lowerCamelCase : Optional[Any]=13 , __lowerCamelCase : Tuple=30 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=True , __lowerCamelCase : int=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Any=4 , __lowerCamelCase : int=37 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Tuple=10 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : List[str]=3 , ) -> str: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ = num_patches + 1 def lowercase_ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) return config, pixel_values, labels def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = FlaxBeitModel(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = FlaxBeitForMaskedImageModeling(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ = FlaxBeitForImageClassification(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = FlaxBeitForImageClassification(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) def lowercase_ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ), ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowercase_ ( self : Dict ) -> None: SCREAMING_SNAKE_CASE__ = FlaxBeitModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def lowercase_ ( self : Any ) -> List[str]: self.config_tester.run_common_tests() def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def lowercase_ ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase ) @jax.jit def model_jitted(__lowerCamelCase : str , **__lowerCamelCase : Dict ): return model(pixel_values=__lowerCamelCase , **__lowerCamelCase ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE__ = model_jitted(**__lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE__ = model_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ ( self : Union[str, Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowercase_ ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def lowercase_ ( self : List[Any] ) -> Any: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) SCREAMING_SNAKE_CASE__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__lowerCamelCase ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self : List[str] ) -> Dict: return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__lowerCamelCase , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos SCREAMING_SNAKE_CASE__ = np.ones((1, 196) , dtype=__lowerCamelCase ) # forward pass SCREAMING_SNAKE_CASE__ = model(pixel_values=__lowerCamelCase , bool_masked_pos=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE__ = (1, 196, 8192) self.assertEqual(logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , __lowerCamelCase , atol=1e-2 ) ) @slow def lowercase_ ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE__ = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__lowerCamelCase , return_tensors='''np''' ) # forward pass SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE__ = (1, 1000) self.assertEqual(logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) SCREAMING_SNAKE_CASE__ = 281 self.assertEqual(logits.argmax(-1 ).item() , __lowerCamelCase ) @slow def lowercase_ ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__lowerCamelCase , return_tensors='''np''' ) # forward pass SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE__ = (1, 2_1841) self.assertEqual(logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) SCREAMING_SNAKE_CASE__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , __lowerCamelCase )
708
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[str] = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "longformer" def __init__( self : int , __lowerCamelCase : Union[List[int], int] = 512 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 1 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 3_0522 , __lowerCamelCase : int = 768 , __lowerCamelCase : int = 12 , __lowerCamelCase : int = 12 , __lowerCamelCase : int = 3072 , __lowerCamelCase : str = "gelu" , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 2 , __lowerCamelCase : float = 0.02 , __lowerCamelCase : float = 1e-12 , __lowerCamelCase : bool = False , **__lowerCamelCase : Tuple , ) -> List[Any]: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = attention_window SCREAMING_SNAKE_CASE__ = sep_token_id SCREAMING_SNAKE_CASE__ = bos_token_id SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = onnx_export class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : Dict , __lowerCamelCase : "PretrainedConfig" , __lowerCamelCase : str = "default" , __lowerCamelCase : "List[PatchingSpec]" = None ) -> List[str]: super().__init__(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = True @property def lowercase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def lowercase_ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE__ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE__ = {0: '''batch'''} return outputs @property def lowercase_ ( self : Optional[int] ) -> float: return 1e-4 @property def lowercase_ ( self : Union[str, Any] ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowercase_ ( self : Dict , __lowerCamelCase : "PreTrainedTokenizerBase" , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs( preprocessor=__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE__ = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global SCREAMING_SNAKE_CASE__ = 1 return inputs
472
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
477
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand a__ = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(SCREAMING_SNAKE_CASE__ ): return ext raise Exception( F'''Unable to determine file format from file extension {path}. ''' F'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> int: _snake_case : str = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) _snake_case : Optional[Any] = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format _snake_case : Any = PipelineDataFormat.from_str( format=SCREAMING_SNAKE_CASE__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Pipeline , lowerCAmelCase : PipelineDataFormat) -> Dict: """simple docstring""" _snake_case : int = nlp _snake_case : Dict = reader @staticmethod def UpperCamelCase_ ( lowerCAmelCase : ArgumentParser) -> Any: """simple docstring""" _snake_case : Any = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""") run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""") run_parser.add_argument("""--input""" , type=lowerCAmelCase , help="""Path to the file to use for inference""") run_parser.add_argument("""--output""" , type=lowerCAmelCase , help="""Path to the file that will be used post to write results.""") run_parser.add_argument("""--model""" , type=lowerCAmelCase , help="""Name or path to the model to instantiate.""") run_parser.add_argument("""--config""" , type=lowerCAmelCase , help="""Name or path to the model's config to instantiate.""") run_parser.add_argument( """--tokenizer""" , type=lowerCAmelCase , help="""Name of the tokenizer to use. (default: same as the model name)""") run_parser.add_argument( """--column""" , type=lowerCAmelCase , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=lowerCAmelCase , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=lowerCAmelCase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""") run_parser.set_defaults(func=lowerCAmelCase) def UpperCamelCase_ ( self : Optional[int]) -> Tuple: """simple docstring""" _snake_case , _snake_case : int = self._nlp, [] for entry in self._reader: _snake_case : List[Any] = nlp(**lowerCAmelCase) if self._reader.is_multi_columns else nlp(lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase): outputs.append(lowerCAmelCase) else: outputs += output # Saving data if self._nlp.binary_output: _snake_case : Any = self._reader.save_binary(lowerCAmelCase) logger.warning(F'''Current pipeline requires output to be in binary format, saving at {binary_path}''') else: self._reader.save(lowerCAmelCase)
477
1
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def __lowerCamelCase ( __a :List[str] , __a :Union[str, Any] , __a :Optional[Any] ) -> List[Any]: """simple docstring""" A__ = hf_hub_url(repo_id=__a , path=__a , revision=__a ) assert url == F'https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(__a )}'
247
import os import string import sys A : Dict = 1 << 8 A : Dict = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 2_7, '''up''': 6_5 + ARROW_KEY_FLAG, '''down''': 6_6 + ARROW_KEY_FLAG, '''right''': 6_7 + ARROW_KEY_FLAG, '''left''': 6_8 + ARROW_KEY_FLAG, '''mod_int''': 9_1, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 5_0, '''delete''': 5_1, '''pg_up''': 5_3, '''pg_down''': 5_4, } A : Any = KEYMAP['''up'''] A : Optional[Any] = KEYMAP['''left'''] if sys.platform == "win32": A : Optional[Any] = [] A : str = { b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(1_0): A : Tuple = ord(str(i)) def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" if os.name == "nt": import msvcrt A__ = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__a ) == 0: # Read the keystroke A__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): A__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: A__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__a ) if ord(__a ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) A__ = chr(KEYMAP["""esc"""] ) except KeyError: A__ = cha[1] else: A__ = ch.decode(__a ) else: A__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty A__ = sys.stdin.fileno() A__ = termios.tcgetattr(__a ) try: tty.setraw(__a ) A__ = sys.stdin.read(1 ) finally: termios.tcsetattr(__a , termios.TCSADRAIN , __a ) return ch def __lowerCamelCase ( ) -> List[str]: """simple docstring""" A__ = get_raw_chars() if ord(__a ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__a ) == KEYMAP["esc"]: A__ = get_raw_chars() if ord(__a ) == KEYMAP["mod_int"]: A__ = get_raw_chars() if ord(__a ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__a ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__a ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
247
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __UpperCAmelCase ( __lowerCAmelCase ): A__ : Optional[int] = '''Speech2TextFeatureExtractor''' A__ : Tuple = '''Speech2TextTokenizer''' def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ =self.feature_extractor lowerCamelCase__ =False def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCamelCase__ =kwargs.pop("raw_speech" ) else: lowerCamelCase__ =kwargs.pop("audio" , _lowerCamelCase ) lowerCamelCase__ =kwargs.pop("sampling_rate" , _lowerCamelCase ) lowerCamelCase__ =kwargs.pop("text" , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ =args[0] lowerCamelCase__ =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCamelCase__ =self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) if text is not None: lowerCamelCase__ =self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ =encodings["input_ids"] return inputs def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def _a ( self ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCamelCase__ =True lowerCamelCase__ =self.tokenizer yield lowerCamelCase__ =self.feature_extractor lowerCamelCase__ =False
530
"""simple docstring""" from __future__ import annotations from typing import Any class __UpperCAmelCase : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 ): lowerCamelCase__ , lowerCamelCase__ =row, column lowerCamelCase__ =[[default_value for c in range(_lowerCamelCase )] for r in range(_lowerCamelCase )] def __str__( self ): lowerCamelCase__ =F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCamelCase__ =0 for row_vector in self.array: for obj in row_vector: lowerCamelCase__ =max(_lowerCamelCase , len(str(_lowerCamelCase ) ) ) lowerCamelCase__ =F'''%{max_element_length}s''' # Make string and return def single_line(_lowerCamelCase ) -> str: nonlocal string_format_identifier lowerCamelCase__ ="[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_lowerCamelCase ) for row_vector in self.array ) return s def __repr__( self ): return str(self ) def _a ( self , _lowerCamelCase ): if not (isinstance(_lowerCamelCase , (list, tuple) ) and len(_lowerCamelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , _lowerCamelCase ): assert self.validate_indicies(_lowerCamelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , _lowerCamelCase , _lowerCamelCase ): assert self.validate_indicies(_lowerCamelCase ) lowerCamelCase__ =value def __add__( self , _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert self.row == another.row and self.column == another.column # Add lowerCamelCase__ =Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ =self[r, c] + another[r, c] return result def __neg__( self ): lowerCamelCase__ =Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ =-self[r, c] return result def __sub__( self , _lowerCamelCase ): return self + (-another) def __mul__( self , _lowerCamelCase ): if isinstance(_lowerCamelCase , (int, float) ): # Scalar multiplication lowerCamelCase__ =Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ =self[r, c] * another return result elif isinstance(_lowerCamelCase , _lowerCamelCase ): # Matrix multiplication assert self.column == another.row lowerCamelCase__ =Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCamelCase__ =F'''Unsupported type given for another ({type(_lowerCamelCase )})''' raise TypeError(_lowerCamelCase ) def _a ( self ): lowerCamelCase__ =Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ =self[r, c] return result def _a ( self , _lowerCamelCase , _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCamelCase__ =v.transpose() lowerCamelCase__ =(v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCamelCase_ ( ) -> None: '''simple docstring''' lowerCamelCase__ =Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCamelCase__ =1 print(F'''a^(-1) is {ainv}''' ) # u, v lowerCamelCase__ =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ =1, 2, -3 lowerCamelCase__ =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ =4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(__lowerCAmelCase , __lowerCAmelCase )}''' ) def lowerCamelCase_ ( ) -> None: '''simple docstring''' import doctest doctest.testmod() testa()
530
1
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCamelCase__ : Optional[int] = "base_with_context" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=SCREAMING_SNAKE_CASE_ ) for lyr_num, lyr in enumerate(model.encoders ): _SCREAMING_SNAKE_CASE = weights[F"layers_{lyr_num}"] _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = ly_weight["""attention"""] _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=SCREAMING_SNAKE_CASE_ ) for lyr_num, lyr in enumerate(model.encoders ): _SCREAMING_SNAKE_CASE = weights[F"layers_{lyr_num}"] _SCREAMING_SNAKE_CASE = ly_weight["""attention"""] _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _SCREAMING_SNAKE_CASE = weights[F"layers_{lyr_num}"] _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = ly_weight["""self_attention"""] _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = ly_weight["""MultiHeadDotProductAttention_0"""] _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _SCREAMING_SNAKE_CASE = jnp.tree_util.tree_map(onp.array , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] _SCREAMING_SNAKE_CASE = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) _SCREAMING_SNAKE_CASE = inference.parse_training_gin_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = inference.InferenceModel(args.checkpoint_path , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) _SCREAMING_SNAKE_CASE = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) _SCREAMING_SNAKE_CASE = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) _SCREAMING_SNAKE_CASE = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _SCREAMING_SNAKE_CASE = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) _SCREAMING_SNAKE_CASE = SpectrogramDiffusionPipeline( notes_encoder=SCREAMING_SNAKE_CASE_ , continuous_encoder=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , melgan=SCREAMING_SNAKE_CASE_ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCamelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="Path to the original jax model checkpoint.", ) UpperCamelCase__ : List[Any] = parser.parse_args() main(args)
0
'''simple docstring''' import sys UpperCamelCase__ : int = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = N ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = -sys.maxsize - 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) - 12 ): _SCREAMING_SNAKE_CASE = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _SCREAMING_SNAKE_CASE = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
0
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase__ ( _UpperCamelCase) -> List[str]: """simple docstring""" UpperCamelCase = filter(lambda _UpperCamelCase: p.requires_grad , model.parameters()) UpperCamelCase = sum([np.prod(p.size()) for p in model_parameters]) return params __magic_name__ : List[str] = logging.getLogger(__name__) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> str: """simple docstring""" if metric == "rouge2": UpperCamelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": UpperCamelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": UpperCamelCase = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.') UpperCamelCase = ModelCheckpoint( dirpath=_UpperCamelCase , filename=_UpperCamelCase , monitor=F'val_{metric}' , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> str: """simple docstring""" return EarlyStopping( monitor=F'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=_UpperCamelCase , verbose=_UpperCamelCase , ) class A__ ( pl.Callback ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase = {f'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_SCREAMING_SNAKE_CASE ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : pl.Trainer , _SCREAMING_SNAKE_CASE : pl.LightningModule , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any]=True ): """simple docstring""" logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) UpperCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results UpperCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCamelCase = od / 'test_results.txt' UpperCamelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCamelCase = od / f'{type_path}_results/{trainer.global_step:05d}.txt' UpperCamelCase = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) generations_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , 'a+' ) as writer: for key in sorted(_SCREAMING_SNAKE_CASE ): if key in ["log", "progress_bar", "preds"]: continue UpperCamelCase = metrics[key] if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): UpperCamelCase = val.item() UpperCamelCase = f'{key}: {val:.6f}\n' writer.write(_SCREAMING_SNAKE_CASE ) if not save_generations: return if "preds" in metrics: UpperCamelCase = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_SCREAMING_SNAKE_CASE ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" try: UpperCamelCase = pl_module.model.model.num_parameters() except AttributeError: UpperCamelCase = pl_module.model.num_parameters() UpperCamelCase = count_trainable_parameters(_SCREAMING_SNAKE_CASE ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : pl.Trainer , _SCREAMING_SNAKE_CASE : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'test' ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : pl.Trainer , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
280
def lowercase__ ( _UpperCamelCase) -> list: """simple docstring""" if bit_count < 0: raise ValueError('The given input must be positive') # get the generated string sequence UpperCamelCase = gray_code_sequence_string(_UpperCamelCase) # # convert them to integers for i in range(len(_UpperCamelCase)): UpperCamelCase = int(sequence[i] , 2) return sequence def lowercase__ ( _UpperCamelCase) -> list: """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCamelCase = gray_code_sequence_string(bit_count - 1) UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2): UpperCamelCase = '0' + smaller_sequence[i] sequence.append(_UpperCamelCase) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2)): UpperCamelCase = '1' + smaller_sequence[i] sequence.append(_UpperCamelCase) return sequence if __name__ == "__main__": import doctest doctest.testmod()
280
1
from math import log from scipy.constants import Boltzmann, physical_constants UpperCamelCase__ = 300 # TEMPERATURE (unit = K) def _UpperCamelCase (a__ :float , a__ :float , a__ :float , ): """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
710
import argparse import datetime def _UpperCamelCase (a__ :str ): """simple docstring""" UpperCamelCase__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } UpperCamelCase__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(a__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month UpperCamelCase__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) UpperCamelCase__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day UpperCamelCase__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator UpperCamelCase__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year UpperCamelCase__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation UpperCamelCase__ = datetime.date(int(a__ ) , int(a__ ) , int(a__ ) ) # Start math if m <= 2: UpperCamelCase__ = y - 1 UpperCamelCase__ = m + 12 # maths var UpperCamelCase__ = int(str(a__ )[:2] ) UpperCamelCase__ = int(str(a__ )[2:] ) UpperCamelCase__ = int(2.6 * m - 5.39 ) UpperCamelCase__ = int(c / 4 ) UpperCamelCase__ = int(k / 4 ) UpperCamelCase__ = int(d + k ) UpperCamelCase__ = int(t + u + v + x ) UpperCamelCase__ = int(z - (2 * c) ) UpperCamelCase__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response UpperCamelCase__ = f"""Your date {date_input}, is a {days[str(a__ )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) UpperCamelCase__ = parser.parse_args() zeller(args.date_input)
548
0
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any]="ro" , __lowerCamelCase : Optional[Any]="en" , __lowerCamelCase : Optional[int]="wmt16" , __lowerCamelCase : Tuple=None ) -> None: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) _snake_case = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) _snake_case = datasets.load_dataset(__lowerCamelCase , __lowerCamelCase ) if save_dir is None: _snake_case = f'''{dataset}-{pair}''' _snake_case = Path(__lowerCamelCase ) save_dir.mkdir(exist_ok=__lowerCamelCase ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets _snake_case = '''val''' if split == '''validation''' else split _snake_case = save_dir.joinpath(f'''{fn}.source''' ) _snake_case = save_dir.joinpath(f'''{fn}.target''' ) _snake_case = src_path.open('''w+''' ) _snake_case = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): _snake_case = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
224
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ = 16 UpperCAmelCase__ = 32 def _UpperCAmelCase ( __lowerCamelCase : Accelerator , __lowerCamelCase : int = 16 ) -> Optional[int]: _snake_case = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _snake_case = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase : Tuple ): # max_length=None => use the model max length (it's actually the default) _snake_case = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case = 16 elif accelerator.mixed_precision != "no": _snake_case = 8 else: _snake_case = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. _snake_case = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) _snake_case = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ = mocked_dataloaders # noqa: F811 def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": _snake_case = 2 # Initialize accelerator _snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case = config['''lr'''] _snake_case = int(config['''num_epochs'''] ) _snake_case = int(config['''seed'''] ) _snake_case = int(config['''batch_size'''] ) _snake_case = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase : str ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case = model.to(accelerator.device ) # Instantiate optimizer _snake_case = AdamW(params=model.parameters() , lr=__lowerCamelCase ) _snake_case , _snake_case = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler _snake_case = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _snake_case = model(**__lowerCamelCase ) _snake_case = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case = model(**__lowerCamelCase ) _snake_case = outputs.logits.argmax(dim=-1 ) _snake_case , _snake_case = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) _snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _UpperCAmelCase ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _snake_case = parser.parse_args() _snake_case = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
224
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
700
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Tuple ="roc_bert" def __init__( self : Tuple , lowerCAmelCase : Union[str, Any]=3_05_22 , lowerCAmelCase : Union[str, Any]=7_68 , lowerCAmelCase : str=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=30_72 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=5_12 , lowerCAmelCase : int=2 , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1e-12 , lowerCAmelCase : Any=True , lowerCAmelCase : int=0 , lowerCAmelCase : List[Any]="absolute" , lowerCAmelCase : List[str]=None , lowerCAmelCase : str=True , lowerCAmelCase : Dict=True , lowerCAmelCase : int=7_68 , lowerCAmelCase : Union[str, Any]=9_10 , lowerCAmelCase : Tuple=5_12 , lowerCAmelCase : Tuple=2_48_58 , lowerCAmelCase : Any=True , **lowerCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = vocab_size __lowerCAmelCase : Any = max_position_embeddings __lowerCAmelCase : str = hidden_size __lowerCAmelCase : List[str] = num_hidden_layers __lowerCAmelCase : List[str] = num_attention_heads __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : List[Any] = hidden_dropout_prob __lowerCAmelCase : int = attention_probs_dropout_prob __lowerCAmelCase : str = initializer_range __lowerCAmelCase : Dict = type_vocab_size __lowerCAmelCase : int = layer_norm_eps __lowerCAmelCase : Union[str, Any] = use_cache __lowerCAmelCase : Dict = enable_pronunciation __lowerCAmelCase : Optional[int] = enable_shape __lowerCAmelCase : Any = pronunciation_embed_dim __lowerCAmelCase : Optional[Any] = pronunciation_vocab_size __lowerCAmelCase : Tuple = shape_embed_dim __lowerCAmelCase : Tuple = shape_vocab_size __lowerCAmelCase : List[Any] = concat_input __lowerCAmelCase : List[Any] = position_embedding_type __lowerCAmelCase : List[Any] = classifier_dropout super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase )
218
0
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase__ ( nn.Module ): __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0.0 __UpperCAmelCase = 1 __UpperCAmelCase = 1 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = jnp.floataa def UpperCamelCase_ ( self) -> Optional[int]: _lowerCamelCase : List[Any] = [] _lowerCamelCase : List[Any] = [] for i in range(self.num_layers): _lowerCamelCase : Dict = self.in_channels if i == 0 else self.out_channels _lowerCamelCase : Optional[Any] = FlaxResnetBlockaD( in_channels=SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(SCREAMING_SNAKE_CASE) _lowerCamelCase : str = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(SCREAMING_SNAKE_CASE) _lowerCamelCase : int = resnets _lowerCamelCase : Tuple = attentions if self.add_downsample: _lowerCamelCase : int = FlaxDownsampleaD(self.out_channels , dtype=self.dtype) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True) -> Optional[int]: _lowerCamelCase : Tuple = () for resnet, attn in zip(self.resnets , self.attentions): _lowerCamelCase : List[str] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE) output_states += (hidden_states,) if self.add_downsample: _lowerCamelCase : int = self.downsamplers_a(SCREAMING_SNAKE_CASE) output_states += (hidden_states,) return hidden_states, output_states class lowercase__ ( nn.Module ): __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0.0 __UpperCAmelCase = 1 __UpperCAmelCase = True __UpperCAmelCase = jnp.floataa def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Optional[int] = [] for i in range(self.num_layers): _lowerCamelCase : Tuple = self.in_channels if i == 0 else self.out_channels _lowerCamelCase : Optional[Any] = FlaxResnetBlockaD( in_channels=SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(SCREAMING_SNAKE_CASE) _lowerCamelCase : str = resnets if self.add_downsample: _lowerCamelCase : Optional[int] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True) -> Tuple: _lowerCamelCase : Optional[int] = () for resnet in self.resnets: _lowerCamelCase : Dict = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE) output_states += (hidden_states,) if self.add_downsample: _lowerCamelCase : List[Any] = self.downsamplers_a(SCREAMING_SNAKE_CASE) output_states += (hidden_states,) return hidden_states, output_states class lowercase__ ( nn.Module ): __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0.0 __UpperCAmelCase = 1 __UpperCAmelCase = 1 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = jnp.floataa def UpperCamelCase_ ( self) -> str: _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : List[str] = [] for i in range(self.num_layers): _lowerCamelCase : Union[str, Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCamelCase : Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels _lowerCamelCase : Optional[int] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = resnets _lowerCamelCase : Optional[Any] = attentions if self.add_upsample: _lowerCamelCase : List[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True) -> int: for resnet, attn in zip(self.resnets , self.attentions): # pop res hidden states _lowerCamelCase : Any = res_hidden_states_tuple[-1] _lowerCamelCase : Tuple = res_hidden_states_tuple[:-1] _lowerCamelCase : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1) _lowerCamelCase : str = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE) if self.add_upsample: _lowerCamelCase : Any = self.upsamplers_a(SCREAMING_SNAKE_CASE) return hidden_states class lowercase__ ( nn.Module ): __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0.0 __UpperCAmelCase = 1 __UpperCAmelCase = True __UpperCAmelCase = jnp.floataa def UpperCamelCase_ ( self) -> List[Any]: _lowerCamelCase : str = [] for i in range(self.num_layers): _lowerCamelCase : Union[str, Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCamelCase : Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels _lowerCamelCase : Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(SCREAMING_SNAKE_CASE) _lowerCamelCase : int = resnets if self.add_upsample: _lowerCamelCase : Dict = FlaxUpsampleaD(self.out_channels , dtype=self.dtype) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True) -> int: for resnet in self.resnets: # pop res hidden states _lowerCamelCase : Union[str, Any] = res_hidden_states_tuple[-1] _lowerCamelCase : str = res_hidden_states_tuple[:-1] _lowerCamelCase : str = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1) _lowerCamelCase : int = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE) if self.add_upsample: _lowerCamelCase : List[str] = self.upsamplers_a(SCREAMING_SNAKE_CASE) return hidden_states class lowercase__ ( nn.Module ): __UpperCAmelCase = 42 __UpperCAmelCase = 0.0 __UpperCAmelCase = 1 __UpperCAmelCase = 1 __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = jnp.floataa def UpperCamelCase_ ( self) -> Optional[int]: # there is always at least one resnet _lowerCamelCase : Optional[int] = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _lowerCamelCase : str = [] for _ in range(self.num_layers): _lowerCamelCase : Dict = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = resnets _lowerCamelCase : List[str] = attentions def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True) -> List[Any]: _lowerCamelCase : Any = self.resnets[0](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) for attn, resnet in zip(self.attentions , self.resnets[1:]): _lowerCamelCase : Dict = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE) return hidden_states
88
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : Any = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = '''vivit''' def __init__( self : Union[str, Any] , lowercase : int=2_24 , lowercase : Tuple=32 , lowercase : str=[2, 16, 16] , lowercase : str=3 , lowercase : Dict=7_68 , lowercase : Union[str, Any]=12 , lowercase : List[Any]=12 , lowercase : Dict=30_72 , lowercase : int="gelu_fast" , lowercase : Dict=0.0 , lowercase : Dict=0.0 , lowercase : List[str]=0.0_2 , lowercase : Tuple=1E-06 , lowercase : Any=True , **lowercase : Union[str, Any] , ): '''simple docstring''' UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : Dict = attention_probs_dropout_prob UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : List[Any] = image_size UpperCAmelCase : str = num_frames UpperCAmelCase : str = tubelet_size UpperCAmelCase : int = num_channels UpperCAmelCase : Optional[int] = qkv_bias super().__init__(**lowercase )
595
0
import datasets from .evaluate import evaluate a= "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" a= "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" a= "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : Optional[int] = {prediction['id']: prediction['prediction_text'] for prediction in predictions} __UpperCamelCase : Optional[Any] = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] __UpperCamelCase : Optional[Any] = evaluate(dataset=__UpperCamelCase , predictions=__UpperCamelCase ) return score
707
'''simple docstring''' def _UpperCamelCase ( _a : int ): """simple docstring""" if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase : Dict = gray_code_sequence_string(_a ) # # convert them to integers for i in range(len(_a ) ): __UpperCamelCase : int = int(sequence[i] , 2 ) return sequence def _UpperCamelCase ( _a : int ): """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase : Dict = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase : Tuple = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase : str = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase : Optional[Any] = '0' + smaller_sequence[i] sequence.append(_a ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase : List[Any] = '1' + smaller_sequence[i] sequence.append(_a ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
287
0
'''simple docstring''' from itertools import product def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int ): lowercase = sides_number lowercase = max_face_number * dice_number lowercase = [0] * (max_total + 1) lowercase = 1 lowercase = range(lowercase_ , max_face_number + 1 ) for dice_numbers in product(lowercase_ , repeat=lowercase_ ): lowercase = sum(lowercase_ ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE ( ): lowercase = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowercase = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowercase = 0 lowercase = 9 lowercase = 4 * 9 lowercase = 6 for peter_total in range(lowercase_ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowercase = (4**9) * (6**6) lowercase = peter_wins_count / total_games_number lowercase = round(lowercase_ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
588
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def _a ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def _a ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _a ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowercase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def _a ( self ) -> int: '''simple docstring''' def extract(*_lowerCAmelCase , **_lowerCAmelCase ): class __UpperCamelCase : def __init__( self ) -> List[str]: '''simple docstring''' lowercase = torch.ones([0] ) def _a ( self , _lowerCAmelCase ) -> int: '''simple docstring''' self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def _a ( self ) -> str: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowercase = 77 lowercase = self.dummy_image.to(_lowerCAmelCase ) lowercase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) lowercase = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) lowercase = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=_lowerCAmelCase , ) lowercase = output.images lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) lowercase = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _a ( self ) -> str: '''simple docstring''' lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowercase = 77 lowercase = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) lowercase = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.manual_seed(0 ) lowercase = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type="""np""" , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _a ( self ) -> int: '''simple docstring''' lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase = init_image.resize((760, 504) ) lowercase = """BAAI/AltDiffusion""" lowercase = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = """A fantasy landscape, trending on artstation""" lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type="""np""" , ) lowercase = output.images[0] lowercase = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Tuple: '''simple docstring''' lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase = init_image.resize((768, 512) ) lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) lowercase = """BAAI/AltDiffusion""" lowercase = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = """A fantasy landscape, trending on artstation""" lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
588
1
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __A ( A ): '''simple docstring''' def a__ (self ) -> List[str]: """simple docstring""" _a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(A , '''neck_hidden_sizes''' ) ) self.parent.assertTrue(hasattr(A , '''num_attention_heads''' ) ) class __A : '''simple docstring''' def __init__(self , A , A=13 , A=32 , A=2 , A=3 , A=640 , A=4 , A="silu" , A=3 , A=32 , A=0.1 , A=0.1 , A=0.1 , A=0.02 , A=True , A=True , A=10 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = last_hidden_size _a = num_attention_heads _a = hidden_act _a = conv_kernel_size _a = output_stride _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = classifier_dropout_prob _a = use_labels _a = is_training _a = num_labels _a = initializer_range _a = scope def a__ (self ) -> Dict: """simple docstring""" _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.num_labels ) _a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _a = self.get_config() return config, pixel_values, labels, pixel_labels def a__ (self ) -> Any: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def a__ (self , A , A , A , A ) -> Tuple: """simple docstring""" _a = MobileViTModel(config=A ) model.to(A ) model.eval() _a = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a__ (self , A , A , A , A ) -> Tuple: """simple docstring""" _a = self.num_labels _a = MobileViTForImageClassification(A ) model.to(A ) model.eval() _a = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ (self , A , A , A , A ) -> List[Any]: """simple docstring""" _a = self.num_labels _a = MobileViTForSemanticSegmentation(A ) model.to(A ) model.eval() _a = model(A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _a = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase : List[str] = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : str = False __lowerCamelCase : Dict = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : List[str] = False def a__ (self ) -> List[Any]: """simple docstring""" _a = MobileViTModelTester(self ) _a = MobileViTConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''' ) def a__ (self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='''MobileViT does not output attentions''' ) def a__ (self ) -> List[Any]: """simple docstring""" pass def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(A , A , A ): _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.hidden_states _a = 5 self.assertEqual(len(A ) , A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _a = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(A , A , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def a__ (self ) -> Any: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def a__ (self ) -> List[Any]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = MobileViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowerCAmelCase (): """simple docstring""" _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ) -> Tuple: """simple docstring""" return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None @slow def a__ (self ) -> List[Any]: """simple docstring""" _a = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(A ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=A , return_tensors='''pt''' ).to(A ) # forward pass with torch.no_grad(): _a = model(**A ) # verify the logits _a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A ) _a = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) ) @slow def a__ (self ) -> List[Any]: """simple docstring""" _a = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _a = model.to(A ) _a = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _a = prepare_img() _a = image_processor(images=A , return_tensors='''pt''' ).to(A ) # forward pass with torch.no_grad(): _a = model(**A ) _a = outputs.logits # verify the logits _a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , A ) _a = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A , atol=1E-4 ) ) @slow def a__ (self ) -> Any: """simple docstring""" _a = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _a = model.to(A ) _a = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _a = prepare_img() _a = image_processor(images=A , return_tensors='''pt''' ).to(A ) # forward pass with torch.no_grad(): _a = model(**A ) _a = outputs.logits.detach().cpu() _a = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(50, 60)] ) _a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , A ) _a = image_processor.post_process_semantic_segmentation(outputs=A ) _a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , A )
352
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __A ( A ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = 'pegasus' __lowerCamelCase : Tuple = ['past_key_values'] __lowerCamelCase : List[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , A=50_265 , A=1_024 , A=12 , A=4_096 , A=16 , A=12 , A=4_096 , A=16 , A=0.0 , A=0.0 , A=True , A=True , A="gelu" , A=1_024 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=0 , A=False , A=0 , A=1 , A=1 , **A , ) -> str: """simple docstring""" _a = vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , forced_eos_token_id=A , **A , ) @property def a__ (self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def a__ (self ) -> int: """simple docstring""" return self.d_model
352
1
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __UpperCamelCase : Union[str, Any] = TypeVar('''T''') def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return (position - 1) // 2 def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return (2 * position) + 1 def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return (2 * position) + 2 class a ( Generic[T] ): def __init__( self ): """simple docstring""" lowerCAmelCase = [] lowerCAmelCase = {} lowerCAmelCase = 0 def __len__( self ): """simple docstring""" return self.elements def __repr__( self ): """simple docstring""" return str(self.heap ) def UpperCamelCase__ ( self ): """simple docstring""" return self.elements == 0 def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.heap.append((elem, weight) ) lowerCAmelCase = self.elements self.elements += 1 self._bubble_up(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ): """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowerCAmelCase ,lowerCAmelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowerCAmelCase ,lowerCAmelCase = self.heap[0] self._bubble_down(_SCREAMING_SNAKE_CASE ) return elem def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.position_map[elem] lowerCAmelCase = (elem, weight) if position > 0: lowerCAmelCase = get_parent_position(_SCREAMING_SNAKE_CASE ) lowerCAmelCase ,lowerCAmelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_SCREAMING_SNAKE_CASE ) else: self._bubble_down(_SCREAMING_SNAKE_CASE ) else: self._bubble_down(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.position_map[elem] if curr_pos == 0: return None lowerCAmelCase = get_parent_position(_SCREAMING_SNAKE_CASE ) lowerCAmelCase ,lowerCAmelCase = self.heap[curr_pos] lowerCAmelCase ,lowerCAmelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return self._bubble_up(_SCREAMING_SNAKE_CASE ) return None def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.position_map[elem] lowerCAmelCase ,lowerCAmelCase = self.heap[curr_pos] lowerCAmelCase = get_child_left_position(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = get_child_right_position(_SCREAMING_SNAKE_CASE ) if child_left_position < self.elements and child_right_position < self.elements: lowerCAmelCase ,lowerCAmelCase = self.heap[child_left_position] lowerCAmelCase ,lowerCAmelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return self._bubble_down(_SCREAMING_SNAKE_CASE ) if child_left_position < self.elements: lowerCAmelCase ,lowerCAmelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return self._bubble_down(_SCREAMING_SNAKE_CASE ) else: return None if child_right_position < self.elements: lowerCAmelCase ,lowerCAmelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return self._bubble_down(_SCREAMING_SNAKE_CASE ) return None def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.heap[nodea_pos][0] lowerCAmelCase = self.heap[nodea_pos][0] lowerCAmelCase ,lowerCAmelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowerCAmelCase = nodea_pos lowerCAmelCase = nodea_pos class a ( Generic[T] ): def __init__( self ): """simple docstring""" lowerCAmelCase = {} lowerCAmelCase = 0 def __repr__( self ): """simple docstring""" return str(self.connections ) def __len__( self ): """simple docstring""" return self.nodes def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if node not in self.connections: lowerCAmelCase = {} self.nodes += 1 def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" self.add_node(_SCREAMING_SNAKE_CASE ) self.add_node(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = weight lowerCAmelCase = weight def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : GraphUndirectedWeighted[T] , ): lowerCAmelCase = {node: maxsize for node in graph.connections} lowerCAmelCase = {node: None for node in graph.connections} lowerCAmelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_UpperCAmelCase , _UpperCAmelCase ) if priority_queue.is_empty(): return dist, parent # initialization lowerCAmelCase = priority_queue.extract_min() lowerCAmelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_UpperCAmelCase , dist[neighbour] ) lowerCAmelCase = node # running prim's algorithm while not priority_queue.is_empty(): lowerCAmelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_UpperCAmelCase , dist[neighbour] ) lowerCAmelCase = node return dist, parent
4
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : Dict = (DDPMScheduler,) def _SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ): if i == len(_SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase = -1 else: lowerCAmelCase = timesteps[i + 1] lowerCAmelCase = scheduler.previous_timestep(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = prev_t.item() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [1_00, 87, 50, 1, 0] lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
284
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _snake_case = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def snake_case ( _a: Tuple , _a: List[Any] , _a: Union[str, Any] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = state_dict.pop(__snake_case ) lowerCamelCase__ = val def snake_case ( _a: Optional[int] )-> List[Any]: '''simple docstring''' lowerCamelCase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowerCamelCase__ = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) lowerCamelCase__ = value else: lowerCamelCase__ = value return new_state_dict def snake_case ( _a: Optional[Any] , _a: Optional[int]=False )-> str: '''simple docstring''' lowerCamelCase__ = "" if is_panoptic: lowerCamelCase__ = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) lowerCamelCase__ = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[:256, :] lowerCamelCase__ = in_proj_bias[:256] lowerCamelCase__ = in_proj_weight[256:512, :] lowerCamelCase__ = in_proj_bias[256:512] lowerCamelCase__ = in_proj_weight[-256:, :] lowerCamelCase__ = in_proj_bias[-256:] def snake_case ( )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__ = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def snake_case ( _a: Any , _a: Optional[int] )-> Dict: '''simple docstring''' lowerCamelCase__ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowerCamelCase__ = "resnet101" if "dc5" in model_name: lowerCamelCase__ = True lowerCamelCase__ = "panoptic" in model_name if is_panoptic: lowerCamelCase__ = 250 else: lowerCamelCase__ = 91 lowerCamelCase__ = "huggingface/label-files" lowerCamelCase__ = "coco-detection-id2label.json" lowerCamelCase__ = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ = {int(__snake_case ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} # load image processor lowerCamelCase__ = "coco_panoptic" if is_panoptic else "coco_detection" lowerCamelCase__ = ConditionalDetrImageProcessor(format=__snake_case ) # prepare image lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=__snake_case , return_tensors='pt' ) lowerCamelCase__ = encoding["pixel_values"] logger.info(F'Converting model {model_name}...' ) # load original model from torch hub lowerCamelCase__ = torch.hub.load('DeppMeng/ConditionalDETR' , __snake_case , pretrained=__snake_case ).eval() lowerCamelCase__ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowerCamelCase__ = "conditional_detr." + src rename_key(__snake_case , __snake_case , __snake_case ) lowerCamelCase__ = rename_backbone_keys(__snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(__snake_case , is_panoptic=__snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCamelCase__ = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): lowerCamelCase__ = state_dict.pop(__snake_case ) lowerCamelCase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCamelCase__ = state_dict.pop(__snake_case ) lowerCamelCase__ = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: lowerCamelCase__ = state_dict.pop(__snake_case ) lowerCamelCase__ = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): lowerCamelCase__ = state_dict.pop(__snake_case ) lowerCamelCase__ = val # finally, create HuggingFace model and load state dict lowerCamelCase__ = ConditionalDetrForSegmentation(__snake_case ) if is_panoptic else ConditionalDetrForObjectDetection(__snake_case ) model.load_state_dict(__snake_case ) model.eval() model.push_to_hub(repo_id=__snake_case , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion lowerCamelCase__ = conditional_detr(__snake_case ) lowerCamelCase__ = model(__snake_case ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1E-4 ) # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _snake_case = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
713
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _snake_case = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _snake_case = 10 _snake_case = 256 def snake_case ( _a: List[str] )-> Optional[MinHash]: '''simple docstring''' if len(_a ) < MIN_NUM_TOKENS: return None lowerCamelCase__ = MinHash(num_perm=_a ) for token in set(_a ): min_hash.update(token.encode() ) return min_hash def snake_case ( _a: str )-> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(_a ) if len(t.strip() ) > 0} class _a : def __init__( self : List[Any] , *, SCREAMING_SNAKE_CASE__ : float = 0.85 , ): lowerCamelCase__ = duplication_jaccard_threshold lowerCamelCase__ = NUM_PERM lowerCamelCase__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowerCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : MinHash ): lowerCamelCase__ = self._index.query(SCREAMING_SNAKE_CASE__ ) if code_key in self._index.keys: print(F'Duplicate key {code_key}' ) return self._index.insert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(SCREAMING_SNAKE_CASE__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = [] for base, duplicates in self._duplicate_clusters.items(): lowerCamelCase__ = [base] + list(SCREAMING_SNAKE_CASE__ ) # reformat the cluster to be a list of dict lowerCamelCase__ = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(SCREAMING_SNAKE_CASE__ ) return duplicate_clusters def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.get_duplicate_clusters() with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case ( _a: Union[str, Any] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = element lowerCamelCase__ = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case ( _a: Type[Dataset] )-> Tuple: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_a , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case ( _a: Type[Dataset] , _a: float )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = DuplicationIndex(duplication_jaccard_threshold=_a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_a ) ) , max_queue_size=100 ) ): di.add(_a , _a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case ( _a: str , _a: str )-> float: '''simple docstring''' lowerCamelCase__ = get_tokens(_a ) lowerCamelCase__ = get_tokens(_a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _snake_case = None def snake_case ( _a: Dict , _a: Union[str, Any] )-> List[str]: '''simple docstring''' lowerCamelCase__ = [] for elementa in cluster: lowerCamelCase__ = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: lowerCamelCase__ = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(_a , _a ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCamelCase__ = 1 extremes.append(_a ) return extremes def snake_case ( _a: Any , _a: Tuple , _a: Dict )-> Union[str, Any]: '''simple docstring''' global _shared_dataset lowerCamelCase__ = dataset lowerCamelCase__ = [] lowerCamelCase__ = partial(_find_cluster_extremes_shared , jaccard_threshold=_a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _a , _a , ) , total=len(_a ) , ): extremes_list.append(_a ) return extremes_list def snake_case ( _a: Type[Dataset] , _a: float = 0.85 )-> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowerCamelCase__ = make_duplicate_clusters(_a , _a ) lowerCamelCase__ = {x['base_index'] for cluster in duplicate_clusters for x in cluster} lowerCamelCase__ = {} lowerCamelCase__ = find_extremes(_a , _a , _a ) for extremes in extremes_clusters: for element in extremes: lowerCamelCase__ = element lowerCamelCase__ = duplicate_indices - set(extreme_dict.keys() ) lowerCamelCase__ = dataset.filter(lambda _a , _a : idx not in remove_indices , with_indices=_a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCamelCase__ = element['base_index'] in extreme_dict if element["is_extreme"]: lowerCamelCase__ = extreme_dict[element['base_index']]['copies'] print(F'Original dataset size: {len(_a )}' ) print(F'Number of duplicate clusters: {len(_a )}' ) print(F'Files in duplicate cluster: {len(_a )}' ) print(F'Unique files in duplicate cluster: {len(_a )}' ) print(F'Filtered dataset size: {len(_a )}' ) return ds_filter, duplicate_clusters
659
0
'''simple docstring''' import argparse import struct import unittest class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : bytes ) -> None: '''simple docstring''' _UpperCamelCase = data # Initialize hash values _UpperCamelCase = [ 0X6a_09_e6_67, 0Xbb_67_ae_85, 0X3c_6e_f3_72, 0Xa5_4f_f5_3a, 0X51_0e_52_7f, 0X9b_05_68_8c, 0X1f_83_d9_ab, 0X5b_e0_cd_19, ] # Initialize round constants _UpperCamelCase = [ 0X42_8a_2f_98, 0X71_37_44_91, 0Xb5_c0_fb_cf, 0Xe9_b5_db_a5, 0X39_56_c2_5b, 0X59_f1_11_f1, 0X92_3f_82_a4, 0Xab_1c_5e_d5, 0Xd8_07_aa_98, 0X12_83_5b_01, 0X24_31_85_be, 0X55_0c_7d_c3, 0X72_be_5d_74, 0X80_de_b1_fe, 0X9b_dc_06_a7, 0Xc1_9b_f1_74, 0Xe4_9b_69_c1, 0Xef_be_47_86, 0X0f_c1_9d_c6, 0X24_0c_a1_cc, 0X2d_e9_2c_6f, 0X4a_74_84_aa, 0X5c_b0_a9_dc, 0X76_f9_88_da, 0X98_3e_51_52, 0Xa8_31_c6_6d, 0Xb0_03_27_c8, 0Xbf_59_7f_c7, 0Xc6_e0_0b_f3, 0Xd5_a7_91_47, 0X06_ca_63_51, 0X14_29_29_67, 0X27_b7_0a_85, 0X2e_1b_21_38, 0X4d_2c_6d_fc, 0X53_38_0d_13, 0X65_0a_73_54, 0X76_6a_0a_bb, 0X81_c2_c9_2e, 0X92_72_2c_85, 0Xa2_bf_e8_a1, 0Xa8_1a_66_4b, 0Xc2_4b_8b_70, 0Xc7_6c_51_a3, 0Xd1_92_e8_19, 0Xd6_99_06_24, 0Xf4_0e_35_85, 0X10_6a_a0_70, 0X19_a4_c1_16, 0X1e_37_6c_08, 0X27_48_77_4c, 0X34_b0_bc_b5, 0X39_1c_0c_b3, 0X4e_d8_aa_4a, 0X5b_9c_ca_4f, 0X68_2e_6f_f3, 0X74_8f_82_ee, 0X78_a5_63_6f, 0X84_c8_78_14, 0X8c_c7_02_08, 0X90_be_ff_fa, 0Xa4_50_6c_eb, 0Xbe_f9_a3_f7, 0Xc6_71_78_f2, ] _UpperCamelCase = self.preprocessing(self.data ) self.final_hash() @staticmethod def snake_case__ ( lowerCAmelCase__ : bytes ) -> bytes: '''simple docstring''' _UpperCamelCase = b'''\x80''' + (b'''\x00''' * (63 - (len(lowerCAmelCase__ ) + 8) % 64)) _UpperCamelCase = struct.pack('''>Q''' , (len(lowerCAmelCase__ ) * 8) ) return data + padding + big_endian_integer def snake_case__ ( self : Union[str, Any] ) -> None: '''simple docstring''' _UpperCamelCase = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _UpperCamelCase = list(struct.unpack('''>16L''' , lowerCAmelCase__ ) ) # add 48 0-ed integers words += [0] * 48 _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _UpperCamelCase = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _UpperCamelCase = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _UpperCamelCase = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_00_00_00_00 # Compression _UpperCamelCase = self.ror(lowerCAmelCase__ , 6 ) ^ self.ror(lowerCAmelCase__ , 11 ) ^ self.ror(lowerCAmelCase__ , 25 ) _UpperCamelCase = (e & f) ^ ((~e & 0Xff_ff_ff_ff) & g) _UpperCamelCase = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_00_00_00_00 _UpperCamelCase = self.ror(lowerCAmelCase__ , 2 ) ^ self.ror(lowerCAmelCase__ , 13 ) ^ self.ror(lowerCAmelCase__ , 22 ) _UpperCamelCase = (a & b) ^ (a & c) ^ (b & c) _UpperCamelCase = (sa + maj) % 0X1_00_00_00_00 _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = ( g, f, e, ((d + tempa) % 0X1_00_00_00_00), c, b, a, ((tempa + tempa) % 0X1_00_00_00_00), ) _UpperCamelCase = [a, b, c, d, e, f, g, h] # Modify final values _UpperCamelCase = [ ((element + mutated_hash_values[index]) % 0X1_00_00_00_00) for index, element in enumerate(self.hashes ) ] _UpperCamelCase = ''''''.join([hex(lowerCAmelCase__ )[2:].zfill(8 ) for value in self.hashes] ) def snake_case__ ( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' return 0Xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] ) -> None: '''simple docstring''' import hashlib _UpperCamelCase = bytes('''Test String''' , '''utf-8''' ) self.assertEqual(SHAaaa(lowerCAmelCase__ ).hash , hashlib.shaaaa(lowerCAmelCase__ ).hexdigest() ) def a__ ( ) -> None: """simple docstring""" import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''-s''', '''--string''', dest='''input_string''', default='''Hello World!! Welcome to Cryptography''', help='''Hash the string''', ) parser.add_argument( '''-f''', '''--file''', dest='''input_file''', help='''Hash contents of a file''' ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, '''rb''' ) as f: _UpperCamelCase = f.read() else: _UpperCamelCase = bytes(lowercase, '''utf-8''' ) print(SHAaaa(lowercase ).hash ) if __name__ == "__main__": main()
98
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } __lowerCamelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } __lowerCamelCase = """</w>""" __lowerCamelCase = """@@ """ def UpperCAmelCase__ ( __snake_case ) -> Optional[Any]: _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs # Speech2Text2 has no max input length __lowerCamelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class _snake_case ( lowerCamelCase ): """simple docstring""" lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , a , a="<s>" , a="<pad>" , a="</s>" , a="<unk>" , a=False , a=None , **a , ) -> str: """simple docstring""" super().__init__( unk_token=a , bos_token=a , eos_token=a , pad_token=a , do_lower_case=a , **a , ) _A = do_lower_case with open(a , encoding='''utf-8''' ) as vocab_handle: _A = json.load(a ) _A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) _A = None _A = None else: with open(a , encoding='''utf-8''' ) as merges_handle: _A = merges_handle.read().split('''\n''' )[:-1] _A = [tuple(merge.split()[:2] ) for merge in merges] _A = dict(zip(a , range(len(a ) ) ) ) _A = {} @property def lowercase_ ( self ) -> int: """simple docstring""" return len(self.decoder ) def lowercase_ ( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self , a ) -> int: """simple docstring""" _A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A = get_pairs(a ) if not pairs: return token while True: _A = min(a , key=lambda a : self.bpe_ranks.get(a , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(a ): try: _A = word.index(a , a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(a ) _A = new_word if len(a ) == 1: break else: _A = get_pairs(a ) _A = ''' '''.join(a ) if word == "\n " + BPE_TOKEN_MERGES: _A = '''\n''' + BPE_TOKEN_MERGES if word.endswith(a ): _A = word.replace(a , '''''' ) _A = word.replace(''' ''' , a ) _A = word return word def lowercase_ ( self , a ) -> List[str]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: _A = text.lower() _A = text.split() _A = [] for token in text: if token: split_tokens.extend(list(self.bpe(a ).split(''' ''' ) ) ) return split_tokens def lowercase_ ( self , a ) -> int: """simple docstring""" return self.encoder.get(a , self.encoder.get(self.unk_token ) ) def lowercase_ ( self , a ) -> str: """simple docstring""" _A = self.decoder.get(a , self.unk_token ) return result def lowercase_ ( self , a ) -> str: """simple docstring""" _A = ''' '''.join(a ) # make sure @@ tokens are concatenated _A = ''''''.join(string.split(a ) ) return string def lowercase_ ( self , a , a = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a ) + '''\n''' ) _A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(a , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _A = token_index writer.write(''' '''.join(a ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
317
0
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class _UpperCamelCase (a_ , unittest.TestCase ): snake_case_ = WavaVecaPhonemeCTCTokenizer snake_case_ = False def __UpperCAmelCase ( self )-> str: super().setUp() __lowerCAmelCase = ( "<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː " "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː " "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 " "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ " "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ " "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ " "əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ " "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ " "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ " "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ " "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ " "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ " "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4" ).split(" " ) __lowerCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) __lowerCAmelCase = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCamelCase ) + "\n" ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=2_0 , __UpperCamelCase=5 )-> Tuple[str, list]: __lowerCAmelCase = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__UpperCamelCase )) for i in range(len(__UpperCamelCase ) )] __lowerCAmelCase = list(filter(lambda __UpperCamelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__UpperCamelCase ) , __UpperCamelCase ) ) if max_length is not None and len(__UpperCamelCase ) > max_length: __lowerCAmelCase = toks[:max_length] if min_length is not None and len(__UpperCamelCase ) < min_length and len(__UpperCamelCase ) > 0: while len(__UpperCamelCase ) < min_length: __lowerCAmelCase = toks + toks # toks_str = [t[1] for t in toks] __lowerCAmelCase = [t[0] for t in toks] # Ensure consistency __lowerCAmelCase = tokenizer.decode(__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) if " " not in output_txt and len(__UpperCamelCase ) > 1: __lowerCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__UpperCamelCase ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__UpperCamelCase ) ) if with_prefix_space: __lowerCAmelCase = " " + output_txt __lowerCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) return output_txt, output_ids def __UpperCAmelCase ( self , **__UpperCamelCase )-> Any: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __UpperCAmelCase ( self )-> Dict: __lowerCAmelCase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) # check adding a single token tokenizer.add_tokens("xxx" ) __lowerCAmelCase = tokenizer("m xxx ɪ" , do_phonemize=__UpperCamelCase ).input_ids self.assertEqual(__UpperCamelCase , [1_3, 3_9_2, 1_7] ) # xxx should be last token tokenizer.add_tokens(["aaa", "bbb", "ccc"] ) __lowerCAmelCase = tokenizer("m aaa ɪ ccc" , do_phonemize=__UpperCamelCase ).input_ids self.assertEqual(__UpperCamelCase , [1_3, 3_9_3, 1_7, 3_9_5] ) # aaa and ccc should be after xxx and 2 after aaa __lowerCAmelCase = tokenizer("maɪ c" , do_phonemize=__UpperCamelCase ).input_ids self.assertEqual(__UpperCamelCase , [3, 2_0_0] ) # mai should be <unk> (=3) def __UpperCAmelCase ( self )-> Union[str, Any]: __lowerCAmelCase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __lowerCAmelCase = "Hello how are you" __lowerCAmelCase = tokenizer.phonemize(__UpperCamelCase , phonemizer_lang="en-us" ) self.assertEqual(__UpperCamelCase , "h ə l oʊ h aʊ ɑːɹ j uː" ) def __UpperCAmelCase ( self )-> Optional[Any]: __lowerCAmelCase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __lowerCAmelCase = "Hello how are you" __lowerCAmelCase = tokenizer.phonemize(__UpperCamelCase , phonemizer_lang="en-us" ) self.assertEqual(tokenizer(__UpperCamelCase ).input_ids , tokenizer(__UpperCamelCase , do_phonemize=__UpperCamelCase ).input_ids ) def __UpperCAmelCase ( self )-> Tuple: __lowerCAmelCase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __lowerCAmelCase = "Hello how are you" __lowerCAmelCase = tokenizer.phonemize(__UpperCamelCase , phonemizer_lang="en-us" ) __lowerCAmelCase = tokenizer.decode(tokenizer(__UpperCamelCase ).input_ids ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCAmelCase ( self )-> Dict: __lowerCAmelCase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __lowerCAmelCase = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7], ] __lowerCAmelCase = tokenizer.decode(sample_ids[0] ) __lowerCAmelCase = tokenizer.batch_decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , batch_tokens[0] ) self.assertEqual(__UpperCamelCase , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) def __UpperCAmelCase ( self )-> str: __lowerCAmelCase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) __lowerCAmelCase = "Hello how are you" __lowerCAmelCase = tokenizer.phonemize(__UpperCamelCase , phonemizer_lang="en-us" ) self.assertEqual(__UpperCamelCase , "h ə l oʊ | h aʊ | ɑːɹ | j uː |" ) def __UpperCAmelCase ( self )-> Dict: __lowerCAmelCase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) __lowerCAmelCase = "Hello how are you" __lowerCAmelCase = tokenizer.phonemize(__UpperCamelCase , phonemizer_lang="en-us" ) self.assertEqual(tokenizer(__UpperCamelCase ).input_ids , tokenizer(__UpperCamelCase , do_phonemize=__UpperCamelCase ).input_ids ) def __UpperCAmelCase ( self )-> str: __lowerCAmelCase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off __lowerCAmelCase = [ [1_1, 5, 1_5, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 1_5, 8, tokenizer.word_delimiter_token_id, 9_8], [tokenizer.word_delimiter_token_id, 2_4, 2_2, tokenizer.word_delimiter_token_id, 5, 2_4, 2_2, 5, 7_7], ] # fmt: on # decode with word_del_token filter __lowerCAmelCase = tokenizer.decode(sample_ids[0] ) __lowerCAmelCase = tokenizer.batch_decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , batch_tokens[0] ) self.assertEqual(__UpperCamelCase , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) # decode with no word_del_token filter __lowerCAmelCase = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__UpperCamelCase ) __lowerCAmelCase = tokenizer.batch_decode(__UpperCamelCase , filter_word_delimiter_token=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , batch_tokens[0] ) self.assertEqual(__UpperCamelCase , ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"] ) def __UpperCAmelCase ( self )-> Union[str, Any]: __lowerCAmelCase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) __lowerCAmelCase = "Hello how are you" __lowerCAmelCase = tokenizer.phonemize(__UpperCamelCase , phonemizer_lang="en-us" ) __lowerCAmelCase = tokenizer.decode(tokenizer(__UpperCamelCase ).input_ids , filter_word_delimiter_token=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCAmelCase ( self )-> Optional[Any]: __lowerCAmelCase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) __lowerCAmelCase = "Hello how are you" __lowerCAmelCase = tokenizer.phonemize(__UpperCamelCase , phonemizer_lang="en-us" ) __lowerCAmelCase = tokenizer.decode(tokenizer(__UpperCamelCase ).input_ids , filter_word_delimiter_token=__UpperCamelCase ) self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |" )] ).strip() , __UpperCamelCase ) def __UpperCAmelCase ( self )-> Optional[int]: __lowerCAmelCase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token=__UpperCamelCase ) __lowerCAmelCase = "Hello how are you" __lowerCAmelCase = tokenizer(__UpperCamelCase , phonemizer_lang="en-us" ).input_ids __lowerCAmelCase = tokenizer(__UpperCamelCase , phonemizer_lang="fr-fr" ).input_ids self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = tokenizer.decode(__UpperCamelCase ) __lowerCAmelCase = tokenizer.decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , "h ə l oʊ h aʊ ɑːɹ j uː" ) self.assertEqual(__UpperCamelCase , "ɛ l o h aʊ a ʁ j u" ) def __UpperCAmelCase ( self )-> Any: __lowerCAmelCase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __lowerCAmelCase = "Hello how Are you" __lowerCAmelCase = "hello how are you" __lowerCAmelCase = tokenizer(__UpperCamelCase ).input_ids __lowerCAmelCase = tokenizer(__UpperCamelCase ).input_ids self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCAmelCase ( self )-> Optional[int]: __lowerCAmelCase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) tokenizer.add_tokens(["!", "?"] ) tokenizer.add_special_tokens({"cls_token": "$$$"} ) # fmt: off __lowerCAmelCase = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8, 3_9_2, 3_9_2, 3_9_3, 3_9_2, 3_9_2, 3_9_3, 3_9_4, 3_9_4], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7, tokenizer.pad_token_id, 3_9_4, 3_9_4], ] # fmt: on __lowerCAmelCase = tokenizer.batch_decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"] ) @staticmethod def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: __lowerCAmelCase = [d[key] for d in offsets] return retrieved_list def __UpperCAmelCase ( self )-> Any: __lowerCAmelCase = self.get_tokenizer(word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" __lowerCAmelCase = [1_1, 5, 5, 5, 1_5, 1_5, tokenizer.pad_token_id, 1_5, 1_5, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 1_5, 8, 8, 8, tokenizer.word_delimiter_token_id, 9_8] # fmt: on __lowerCAmelCase = tokenizer.decode(__UpperCamelCase , output_char_offsets=__UpperCamelCase , filter_word_delimiter_token=__UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("text" in outputs ) self.assertTrue("char_offsets" in outputs ) self.assertTrue(isinstance(__UpperCamelCase , __UpperCamelCase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"] , "char" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "char" ) , ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "start_offset" ) , [0, 1, 4, 7, 9, 1_1, 1_2, 1_5, 1_6] ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "end_offset" ) , [1, 4, 6, 9, 1_0, 1_2, 1_5, 1_6, 1_7] ) def __UpperCAmelCase ( self )-> Dict: __lowerCAmelCase = self.get_tokenizer(word_delimiter_token="|" ) def check_list_tuples_equal(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(isinstance(__UpperCamelCase , __UpperCamelCase ) ) self.assertTrue(isinstance(outputs_list[0] , __UpperCamelCase ) ) # transform list to ModelOutput __lowerCAmelCase = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["text"] , outputs_batch_a["text"] ) def recursive_check(__UpperCamelCase , __UpperCamelCase ): if isinstance(__UpperCamelCase , __UpperCamelCase ): [recursive_check(__UpperCamelCase , __UpperCamelCase ) for la, la in zip(__UpperCamelCase , __UpperCamelCase )] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["char_offsets"] , outputs_batch_a["char_offsets"] ) # fmt: off __lowerCAmelCase = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 4, 8, 9_8, 3_2, 3_2, 3_2, 3_2, 4, 3_3, tokenizer.word_delimiter_token_id, 3_2, 3_2, 3_3, 3_4, 3_4], [2_4, 2_2, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 2_4, 2_2, 2_2, 2_2, 4, 5, 7_7, tokenizer.pad_token_id, 2_2, 2_2, 4, 3_4, 3_4, 3_4, 3_4], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char __lowerCAmelCase = tokenizer.batch_decode(__UpperCamelCase , output_char_offsets=__UpperCamelCase ) __lowerCAmelCase = [tokenizer.decode(__UpperCamelCase , output_char_offsets=__UpperCamelCase ) for ids in sample_ids] check_list_tuples_equal(__UpperCamelCase , __UpperCamelCase ) @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes" ) def __UpperCAmelCase ( self )-> Dict: pass @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes" ) def __UpperCAmelCase ( self )-> Any: pass @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency" ) def __UpperCAmelCase ( self )-> str: pass @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing" ) def __UpperCAmelCase ( self )-> Any: pass def __UpperCAmelCase ( self )-> Tuple: __lowerCAmelCase = self.get_tokenizers(do_lower_case=__UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = tokenizer.vocab_size __lowerCAmelCase = len(__UpperCamelCase ) self.assertNotEqual(__UpperCamelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __lowerCAmelCase = ["aaaaa bbbbbb", "cccccccccdddddddd"] __lowerCAmelCase = tokenizer.add_tokens(__UpperCamelCase ) __lowerCAmelCase = tokenizer.vocab_size __lowerCAmelCase = len(__UpperCamelCase ) self.assertNotEqual(__UpperCamelCase , 0 ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , len(__UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , all_size + len(__UpperCamelCase ) ) __lowerCAmelCase = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=__UpperCamelCase ) self.assertGreaterEqual(len(__UpperCamelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __lowerCAmelCase = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} __lowerCAmelCase = tokenizer.add_special_tokens(__UpperCamelCase ) __lowerCAmelCase = tokenizer.vocab_size __lowerCAmelCase = len(__UpperCamelCase ) self.assertNotEqual(__UpperCamelCase , 0 ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , len(__UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , all_size_a + len(__UpperCamelCase ) ) __lowerCAmelCase = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=__UpperCamelCase ) self.assertGreaterEqual(len(__UpperCamelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." ) def __UpperCAmelCase ( self )-> Dict: pass @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." ) def __UpperCAmelCase ( self )-> Optional[Any]: pass def __UpperCAmelCase ( self )-> Tuple: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. __lowerCAmelCase = self.get_tokenizers(fast=__UpperCamelCase , do_lower_case=__UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"] __lowerCAmelCase = tokenizer.convert_tokens_to_string(__UpperCamelCase ) self.assertIsInstance(output["text"] , __UpperCamelCase )
290
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class _UpperCamelCase (enum.Enum ): snake_case_ = 0 snake_case_ = 1 snake_case_ = 2 @add_end_docstrings(a_ ) class _UpperCamelCase (a_ ): snake_case_ = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self , *__UpperCamelCase , **__UpperCamelCase )-> Optional[int]: super().__init__(*__UpperCamelCase , **__UpperCamelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __lowerCAmelCase = None if self.model.config.prefix is not None: __lowerCAmelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __lowerCAmelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._sanitize_parameters(prefix=__UpperCamelCase , **self._forward_params ) __lowerCAmelCase = {**self._preprocess_params, **preprocess_params} __lowerCAmelCase = {**self._forward_params, **forward_params} def __UpperCAmelCase ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , )-> int: __lowerCAmelCase = {} if prefix is not None: __lowerCAmelCase = prefix if prefix: __lowerCAmelCase = self.tokenizer( __UpperCamelCase , padding=__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=self.framework ) __lowerCAmelCase = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" " [None, 'hole']" ) __lowerCAmelCase = handle_long_generation preprocess_params.update(__UpperCamelCase ) __lowerCAmelCase = generate_kwargs __lowerCAmelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) __lowerCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) __lowerCAmelCase = ReturnType.TENSORS if return_type is not None: __lowerCAmelCase = return_type if clean_up_tokenization_spaces is not None: __lowerCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: __lowerCAmelCase = self.tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) if len(__UpperCamelCase ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) __lowerCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __UpperCAmelCase ( self , *__UpperCamelCase , **__UpperCamelCase )-> List[str]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*__UpperCamelCase , **__UpperCamelCase ) def __call__( self , __UpperCamelCase , **__UpperCamelCase )-> List[Any]: return super().__call__(__UpperCamelCase , **__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase=None , **__UpperCamelCase )-> int: __lowerCAmelCase = self.tokenizer( prefix + prompt_text , padding=__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=self.framework ) __lowerCAmelCase = prompt_text if handle_long_generation == "hole": __lowerCAmelCase = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: __lowerCAmelCase = generate_kwargs["max_new_tokens"] else: __lowerCAmelCase = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: __lowerCAmelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) __lowerCAmelCase = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: __lowerCAmelCase = inputs["attention_mask"][:, -keep_length:] return inputs def __UpperCAmelCase ( self , __UpperCamelCase , **__UpperCamelCase )-> Optional[Any]: __lowerCAmelCase = model_inputs["input_ids"] __lowerCAmelCase = model_inputs.get("attention_mask" , __UpperCamelCase ) # Allow empty prompts if input_ids.shape[1] == 0: __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = 1 else: __lowerCAmelCase = input_ids.shape[0] __lowerCAmelCase = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __lowerCAmelCase = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: __lowerCAmelCase = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: __lowerCAmelCase = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __lowerCAmelCase = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __lowerCAmelCase = self.model.generate(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , **__UpperCamelCase ) __lowerCAmelCase = generated_sequence.shape[0] if self.framework == "pt": __lowerCAmelCase = generated_sequence.reshape(__UpperCamelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __lowerCAmelCase = tf.reshape(__UpperCamelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase=ReturnType.FULL_TEXT , __UpperCamelCase=True )-> Any: __lowerCAmelCase = model_outputs["generated_sequence"][0] __lowerCAmelCase = model_outputs["input_ids"] __lowerCAmelCase = model_outputs["prompt_text"] __lowerCAmelCase = generated_sequence.numpy().tolist() __lowerCAmelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __lowerCAmelCase = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __lowerCAmelCase = self.tokenizer.decode( __UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __lowerCAmelCase = 0 else: __lowerCAmelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , ) ) if return_type == ReturnType.FULL_TEXT: __lowerCAmelCase = prompt_text + text[prompt_length:] else: __lowerCAmelCase = text[prompt_length:] __lowerCAmelCase = {"generated_text": all_text} records.append(__UpperCamelCase ) return records
290
1
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase_ : Tuple = 300 # TEMPERATURE (unit = K) def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float , ): """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
442
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : str = logging.get_logger(__name__) lowerCAmelCase_ : Any = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( snake_case_ ): __magic_name__ : str = '''transfo-xl''' __magic_name__ : List[str] = ['''mems'''] __magic_name__ : Dict = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , lowercase__ : List[Any]=26_7735 , lowercase__ : Optional[Any]=[2_0000, 4_0000, 20_0000] , lowercase__ : Optional[Any]=1024 , lowercase__ : str=1024 , lowercase__ : Any=16 , lowercase__ : int=64 , lowercase__ : str=4096 , lowercase__ : Union[str, Any]=4 , lowercase__ : List[Any]=False , lowercase__ : List[Any]=18 , lowercase__ : str=1600 , lowercase__ : str=1000 , lowercase__ : Any=True , lowercase__ : Optional[Any]=True , lowercase__ : Union[str, Any]=0 , lowercase__ : str=-1 , lowercase__ : int=True , lowercase__ : str=0.1 , lowercase__ : Optional[Any]=0.0 , lowercase__ : Tuple=True , lowercase__ : Optional[int]="normal" , lowercase__ : str=0.01 , lowercase__ : List[str]=0.01 , lowercase__ : Union[str, Any]=0.02 , lowercase__ : str=1e-5 , lowercase__ : Any=0 , **lowercase__ : List[str] , ): '''simple docstring''' a_ : Optional[Any] = vocab_size a_ : Optional[int] = [] self.cutoffs.extend(lowercase__ ) if proj_share_all_but_first: a_ : Any = [False] + [True] * len(self.cutoffs ) else: a_ : Tuple = [False] + [False] * len(self.cutoffs ) a_ : Tuple = d_model a_ : Optional[int] = d_embed a_ : List[Any] = d_head a_ : List[str] = d_inner a_ : Tuple = div_val a_ : Dict = pre_lnorm a_ : Optional[Any] = n_layer a_ : Dict = n_head a_ : Any = mem_len a_ : Union[str, Any] = same_length a_ : Dict = attn_type a_ : List[str] = clamp_len a_ : str = sample_softmax a_ : Any = adaptive a_ : List[Any] = dropout a_ : str = dropatt a_ : Dict = untie_r a_ : Tuple = init a_ : Optional[int] = init_range a_ : List[Any] = proj_init_std a_ : Optional[int] = init_std a_ : int = layer_norm_epsilon super().__init__(eos_token_id=lowercase__ , **lowercase__ ) @property def lowercase_ ( self : int ): '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def lowercase_ ( self : Optional[int] , lowercase__ : Tuple ): '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
442
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class a_ ( UpperCamelCase_ , unittest.TestCase ): _snake_case = MobileBertTokenizer _snake_case = MobileBertTokenizerFast _snake_case = True _snake_case = True _snake_case = filter_non_english _snake_case = """google/mobilebert-uncased""" def SCREAMING_SNAKE_CASE__ (self) -> str: """simple docstring""" super().setUp() __snake_case : str = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) __snake_case : str = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def SCREAMING_SNAKE_CASE__ (self , __a) -> Tuple: """simple docstring""" __snake_case : Any = 'UNwant\u00E9d,running' __snake_case : Union[str, Any] = 'unwanted, running' return input_text, output_text def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case : Dict = self.tokenizer_class(self.vocab_file) __snake_case : int = tokenizer.tokenize('UNwant\u00E9d,running') self.assertListEqual(__a , ['un', '##want', '##ed', ',', 'runn', '##ing']) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a) , [9, 6, 7, 1_2, 1_0, 1_1]) def SCREAMING_SNAKE_CASE__ (self) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return __snake_case : Dict = self.get_tokenizer() __snake_case : Optional[Any] = self.get_rust_tokenizer() __snake_case : int = 'UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.tokenize(__a) __snake_case : int = rust_tokenizer.tokenize(__a) self.assertListEqual(__a , __a) __snake_case : Union[str, Any] = tokenizer.encode(__a , add_special_tokens=__a) __snake_case : int = rust_tokenizer.encode(__a , add_special_tokens=__a) self.assertListEqual(__a , __a) __snake_case : Optional[int] = self.get_rust_tokenizer() __snake_case : List[str] = tokenizer.encode(__a) __snake_case : int = rust_tokenizer.encode(__a) self.assertListEqual(__a , __a) # With lower casing __snake_case : Tuple = self.get_tokenizer(do_lower_case=__a) __snake_case : int = self.get_rust_tokenizer(do_lower_case=__a) __snake_case : Optional[int] = 'UNwant\u00E9d,running' __snake_case : str = tokenizer.tokenize(__a) __snake_case : Any = rust_tokenizer.tokenize(__a) self.assertListEqual(__a , __a) __snake_case : List[str] = tokenizer.encode(__a , add_special_tokens=__a) __snake_case : Dict = rust_tokenizer.encode(__a , add_special_tokens=__a) self.assertListEqual(__a , __a) __snake_case : Optional[Any] = self.get_rust_tokenizer() __snake_case : Union[str, Any] = tokenizer.encode(__a) __snake_case : Optional[Any] = rust_tokenizer.encode(__a) self.assertListEqual(__a , __a) def SCREAMING_SNAKE_CASE__ (self) -> Tuple: """simple docstring""" __snake_case : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz') , ['ah', '\u535A', '\u63A8', 'zz']) def SCREAMING_SNAKE_CASE__ (self) -> List[Any]: """simple docstring""" __snake_case : Dict = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['hello', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hällo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['h\u00E9llo']) def SCREAMING_SNAKE_CASE__ (self) -> Optional[Any]: """simple docstring""" __snake_case : int = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def SCREAMING_SNAKE_CASE__ (self) -> Dict: """simple docstring""" __snake_case : int = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?']) def SCREAMING_SNAKE_CASE__ (self) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HäLLo', '!', 'how', 'Are', 'yoU', '?']) def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case : int = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HaLLo', '!', 'how', 'Are', 'yoU', '?']) def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case : Optional[Any] = BasicTokenizer(do_lower_case=__a , never_split=['[UNK]']) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]']) def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __snake_case : Optional[Any] = {} for i, token in enumerate(__a): __snake_case : str = i __snake_case : Optional[Any] = WordpieceTokenizer(vocab=__a , unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize('') , []) self.assertListEqual(tokenizer.tokenize('unwanted running') , ['un', '##want', '##ed', 'runn', '##ing']) self.assertListEqual(tokenizer.tokenize('unwantedX running') , ['[UNK]', 'runn', '##ing']) def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" self.assertTrue(_is_whitespace(' ')) self.assertTrue(_is_whitespace('\t')) self.assertTrue(_is_whitespace('\r')) self.assertTrue(_is_whitespace('\n')) self.assertTrue(_is_whitespace('\u00A0')) self.assertFalse(_is_whitespace('A')) self.assertFalse(_is_whitespace('-')) def SCREAMING_SNAKE_CASE__ (self) -> List[Any]: """simple docstring""" self.assertTrue(_is_control('\u0005')) self.assertFalse(_is_control('A')) self.assertFalse(_is_control(' ')) self.assertFalse(_is_control('\t')) self.assertFalse(_is_control('\r')) def SCREAMING_SNAKE_CASE__ (self) -> Tuple: """simple docstring""" self.assertTrue(_is_punctuation('-')) self.assertTrue(_is_punctuation('$')) self.assertTrue(_is_punctuation('`')) self.assertTrue(_is_punctuation('.')) self.assertFalse(_is_punctuation('A')) self.assertFalse(_is_punctuation(' ')) def SCREAMING_SNAKE_CASE__ (self) -> Dict: """simple docstring""" __snake_case : Any = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) self.assertListEqual( [rust_tokenizer.tokenize(__a) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) @slow def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" __snake_case : int = self.tokenizer_class.from_pretrained('google/mobilebert-uncased') __snake_case : Optional[Any] = tokenizer.encode('sequence builders' , add_special_tokens=__a) __snake_case : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=__a) __snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(__a) __snake_case : str = tokenizer.build_inputs_with_special_tokens(__a , __a) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def SCREAMING_SNAKE_CASE__ (self) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a) __snake_case : Dict = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __snake_case : Union[str, Any] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) __snake_case : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , 'do_lower_case') else False __snake_case : Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'])) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping']) def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = ['的', '人', '有'] __snake_case : List[str] = ''.join(__a) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __snake_case : Any = True __snake_case : int = self.tokenizer_class.from_pretrained(__a , **__a) __snake_case : int = self.rust_tokenizer_class.from_pretrained(__a , **__a) __snake_case : List[Any] = tokenizer_p.encode(__a , add_special_tokens=__a) __snake_case : Optional[Any] = tokenizer_r.encode(__a , add_special_tokens=__a) __snake_case : int = tokenizer_r.convert_ids_to_tokens(__a) __snake_case : List[Any] = tokenizer_p.convert_ids_to_tokens(__a) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a) self.assertListEqual(__a , __a) __snake_case : Tuple = False __snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a) __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(__a , **__a) __snake_case : str = tokenizer_r.encode(__a , add_special_tokens=__a) __snake_case : int = tokenizer_p.encode(__a , add_special_tokens=__a) __snake_case : str = tokenizer_r.convert_ids_to_tokens(__a) __snake_case : Any = tokenizer_p.convert_ids_to_tokens(__a) # it is expected that only the first Chinese character is not preceded by "##". __snake_case : Optional[Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(__a) ] self.assertListEqual(__a , __a) self.assertListEqual(__a , __a)
704
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __A = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _SCREAMING_SNAKE_CASE ( A : Tuple ) -> str: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(A ) def _SCREAMING_SNAKE_CASE ( A : int ) -> Optional[int]: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main __snake_case : Any = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(A , id=A )
61
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" lowercase__ = [[0 for _ in range(A )] for _ in range(m + 1 )] for i in range(m + 1 ): lowercase__ = 1 for n in range(m + 1 ): for k in range(1 , A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowerCamelCase : Any = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: lowerCamelCase : Dict = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
460
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Tuple = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
460
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = '''▁''' UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCamelCase = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } UpperCamelCase = { '''xlm-roberta-base''': 512, '''xlm-roberta-large''': 512, '''xlm-roberta-large-finetuned-conll02-dutch''': 512, '''xlm-roberta-large-finetuned-conll02-spanish''': 512, '''xlm-roberta-large-finetuned-conll03-english''': 512, '''xlm-roberta-large-finetuned-conll03-german''': 512, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : str = VOCAB_FILES_NAMES __snake_case : Dict = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = ["input_ids", "attention_mask"] def __init__( self: Tuple , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Optional[Any]="<unk>" , UpperCAmelCase_: Dict="<pad>" , UpperCAmelCase_: int="<mask>" , UpperCAmelCase_: Optional[Dict[str, Any]] = None , **UpperCAmelCase_: Dict , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _SCREAMING_SNAKE_CASE = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = len(self.sp_model ) + self.fairseq_offset _SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() return state def __setstate__( self: Dict , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] _SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase ( self: Any , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None , UpperCAmelCase_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) + [1] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: str ): '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) def UpperCamelCase ( self: int , UpperCAmelCase_: int ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(UpperCAmelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase ( self: int , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """""".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , """ """ ).strip() return out_string def UpperCamelCase ( self: str , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
569
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __snake_case : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __snake_case : ClassVar[Features] = Features({"text": Value("string" )} ) __snake_case : ClassVar[Features] = Features({"labels": ClassLabel} ) __snake_case : str = "text" __snake_case : str = "labels" def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Optional[int] ): '''simple docstring''' if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , UpperCAmelCase_ ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) _SCREAMING_SNAKE_CASE = copy.deepcopy(self ) _SCREAMING_SNAKE_CASE = self.label_schema.copy() _SCREAMING_SNAKE_CASE = features[self.label_column] _SCREAMING_SNAKE_CASE = label_schema return task_template @property def UpperCamelCase ( self: Dict ): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
569
1
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __lowercase ( unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Union[str, Any] = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) __a : Union[str, Any] = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) __a : List[Any] = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): for example in examples: __a : Dict = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'''score''': ANY(_UpperCAmelCase ), '''label''': ANY(_UpperCAmelCase )}, {'''score''': ANY(_UpperCAmelCase ), '''label''': ANY(_UpperCAmelCase )}, ] , ) @require_torch def _lowerCamelCase ( self ): __a : str = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' __a : List[str] = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) __a : Tuple = pipeline( '''video-classification''' , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) __a : List[str] = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) __a : List[Any] = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}] , ) __a : List[Any] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}], [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}], ] , ) @require_tf def _lowerCamelCase ( self ): pass
52
"""simple docstring""" from __future__ import annotations def lowercase ( UpperCamelCase : list[float] ): """simple docstring""" if len(UpperCamelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) A__ : Union[str, Any] =nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
656
0
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=5 ) -> int: '''simple docstring''' assert masked_input.count("""<mask>""" ) == 1 __SCREAMING_SNAKE_CASE = torch.tensor(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ).unsqueeze(0 ) # Batch size 1 __SCREAMING_SNAKE_CASE = model(__UpperCAmelCase )[0] # The last hidden-state is the first element of the output tuple __SCREAMING_SNAKE_CASE = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __SCREAMING_SNAKE_CASE = logits[0, masked_index, :] __SCREAMING_SNAKE_CASE = logits.softmax(dim=0 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = prob.topk(k=__UpperCAmelCase , dim=0 ) __SCREAMING_SNAKE_CASE = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__UpperCAmelCase ) )] ) __SCREAMING_SNAKE_CASE = tokenizer.mask_token __SCREAMING_SNAKE_CASE = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): __SCREAMING_SNAKE_CASE = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(__UpperCAmelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(__UpperCAmelCase ) , __UpperCAmelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__UpperCAmelCase , __UpperCAmelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs a = CamembertTokenizer.from_pretrained("camembert-base") a = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() a = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
13
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hidden_states.shape __SCREAMING_SNAKE_CASE = jax.image.resize( lowerCamelCase ,shape=(batch, height * 2, width * 2, channels) ,method="""nearest""" ,) __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : int = None __UpperCamelCase : float = 0.0 __UpperCamelCase : bool = None __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.in_channels if self.out_channels is None else self.out_channels __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = nn.Dense(lowerCamelCase ,dtype=self.dtype ) __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Dropout(self.dropout_prob ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __SCREAMING_SNAKE_CASE = None if use_nin_shortcut: __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding="""VALID""" ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Tuple ,lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hidden_states __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.time_emb_proj(nn.swish(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = jnp.expand_dims(jnp.expand_dims(lowerCamelCase ,1 ) ,1 ) __SCREAMING_SNAKE_CASE = hidden_states + temb __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.dropout(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) if self.conv_shortcut is not None: __SCREAMING_SNAKE_CASE = self.conv_shortcut(lowerCamelCase ) return hidden_states + residual
13
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "pegasus" lowerCamelCase_ = ["past_key_values"] lowerCamelCase_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self :Any , __A :Optional[int]=5_0265 , __A :int=1024 , __A :Union[str, Any]=12 , __A :Union[str, Any]=4096 , __A :Tuple=16 , __A :Union[str, Any]=12 , __A :Tuple=4096 , __A :int=16 , __A :List[Any]=0.0 , __A :Tuple=0.0 , __A :Dict=True , __A :List[str]=True , __A :Optional[int]="gelu" , __A :int=1024 , __A :Optional[Any]=0.1 , __A :List[Any]=0.0 , __A :str=0.0 , __A :List[str]=0.0_2 , __A :str=0 , __A :str=False , __A :List[Any]=0 , __A :int=1 , __A :str=1 , **__A :Tuple , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = encoder_ffn_dim SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = encoder_attention_heads SCREAMING_SNAKE_CASE__ = decoder_ffn_dim SCREAMING_SNAKE_CASE__ = decoder_layers SCREAMING_SNAKE_CASE__ = decoder_attention_heads SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = encoder_layerdrop SCREAMING_SNAKE_CASE__ = decoder_layerdrop SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , **__A , ) @property def _snake_case ( self :int ) -> int: """simple docstring""" return self.encoder_attention_heads @property def _snake_case ( self :str ) -> int: """simple docstring""" return self.d_model
6
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowerCAmelCase = s_dict.pop(SCREAMING_SNAKE_CASE ) elif "subsample" in key: lowerCAmelCase = s_dict.pop(SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase = emb.weight.shape lowerCAmelCase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) lowerCAmelCase = emb.weight.data return lin_layer def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location="""cpu""" ) lowerCAmelCase = mam_aaa["""args"""] lowerCAmelCase = mam_aaa["""model"""] lowerCAmelCase = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) rename_keys(SCREAMING_SNAKE_CASE ) lowerCAmelCase = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowerCAmelCase = args.share_decoder_input_output_embed lowerCAmelCase = [int(SCREAMING_SNAKE_CASE ) for i in args.conv_kernel_sizes.split(""",""" )] lowerCAmelCase = SpeechaTextConfig( vocab_size=SCREAMING_SNAKE_CASE , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(SCREAMING_SNAKE_CASE ) , conv_channels=args.conv_channels , conv_kernel_sizes=SCREAMING_SNAKE_CASE , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=SCREAMING_SNAKE_CASE , num_beams=5 , max_length=2_00 , use_cache=SCREAMING_SNAKE_CASE , decoder_start_token_id=2 , early_stopping=SCREAMING_SNAKE_CASE , ) lowerCAmelCase = SpeechaTextForConditionalGeneration(SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase = model.model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0 and not set(SCREAMING_SNAKE_CASE ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F' but all the following weights are missing {missing}' ) if tie_embeds: lowerCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCAmelCase = lm_head_weights model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
532
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase ={ "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
def snake_case__ ( lowerCAmelCase_ = 1000000 ): """simple docstring""" SCREAMING_SNAKE_CASE =limit + 1 SCREAMING_SNAKE_CASE =[0] * limit for first_term in range(1, lowerCAmelCase_ ): for n in range(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a SCREAMING_SNAKE_CASE =sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'{solution() = }')
252
0
"""simple docstring""" from __future__ import annotations def a_ ( lowercase__ :list[int] ): if not nums: return 0 __lowerCamelCase = nums[0] __lowerCamelCase = 0 for num in nums[1:]: __lowerCamelCase ,__lowerCamelCase = ( max_excluding + num, max(lowercase__, lowercase__ ), ) return max(lowercase__, lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
281
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __snake_case (lowerCamelCase ): __a = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
281
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __UpperCAmelCase( A__ ): """simple docstring""" __magic_name__ = """deformable_detr""" __magic_name__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , __magic_name__=True , __magic_name__=None , __magic_name__=3 , __magic_name__=300 , __magic_name__=1024 , __magic_name__=6 , __magic_name__=1024 , __magic_name__=8 , __magic_name__=6 , __magic_name__=1024 , __magic_name__=8 , __magic_name__=0.0 , __magic_name__=True , __magic_name__="relu" , __magic_name__=256 , __magic_name__=0.1 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.02 , __magic_name__=1.0 , __magic_name__=True , __magic_name__=False , __magic_name__="sine" , __magic_name__="resnet50" , __magic_name__=True , __magic_name__=False , __magic_name__=4 , __magic_name__=4 , __magic_name__=4 , __magic_name__=False , __magic_name__=300 , __magic_name__=False , __magic_name__=1 , __magic_name__=5 , __magic_name__=2 , __magic_name__=1 , __magic_name__=1 , __magic_name__=5 , __magic_name__=2 , __magic_name__=0.1 , __magic_name__=0.25 , __magic_name__=False , **__magic_name__ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : Union[str, Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__magic_name__ , __magic_name__ ): A_ : Dict = backbone_config.get('''model_type''' ) A_ : List[str] = CONFIG_MAPPING[backbone_model_type] A_ : str = config_class.from_dict(__magic_name__ ) A_ : Union[str, Any] = use_timm_backbone A_ : Tuple = backbone_config A_ : Optional[Any] = num_channels A_ : str = num_queries A_ : Optional[int] = max_position_embeddings A_ : Any = d_model A_ : Union[str, Any] = encoder_ffn_dim A_ : Optional[Any] = encoder_layers A_ : str = encoder_attention_heads A_ : Optional[int] = decoder_ffn_dim A_ : Tuple = decoder_layers A_ : List[str] = decoder_attention_heads A_ : List[Any] = dropout A_ : Union[str, Any] = attention_dropout A_ : int = activation_dropout A_ : Dict = activation_function A_ : str = init_std A_ : List[Any] = init_xavier_std A_ : int = encoder_layerdrop A_ : Dict = auxiliary_loss A_ : Dict = position_embedding_type A_ : Union[str, Any] = backbone A_ : List[str] = use_pretrained_backbone A_ : List[Any] = dilation # deformable attributes A_ : str = num_feature_levels A_ : Optional[Any] = encoder_n_points A_ : Optional[Any] = decoder_n_points A_ : Tuple = two_stage A_ : str = two_stage_num_proposals A_ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A_ : Union[str, Any] = class_cost A_ : Tuple = bbox_cost A_ : Any = giou_cost # Loss coefficients A_ : Any = mask_loss_coefficient A_ : Any = dice_loss_coefficient A_ : str = bbox_loss_coefficient A_ : Dict = giou_loss_coefficient A_ : Dict = eos_coefficient A_ : Union[str, Any] = focal_alpha A_ : str = disable_custom_kernels super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def UpperCAmelCase ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCAmelCase ( self ): """simple docstring""" return self.d_model def UpperCAmelCase ( self ): """simple docstring""" A_ : Tuple = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A_ : Optional[int] = self.backbone_config.to_dict() A_ : Tuple = self.__class__.model_type return output
236
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ): """simple docstring""" A_ : str = 10 def UpperCAmelCase ( self ): """simple docstring""" A_ : Optional[Any] = [1, 2, 3, 4] A_ : Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__magic_name__ , self.block_size , 0 ) , __magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" A_ : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] A_ : Union[str, Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__magic_name__ , self.block_size , 0 ) , __magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] A_ : Union[str, Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__magic_name__ , self.block_size , 0 ) , __magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Optional[Any] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' A_ , A_ : Optional[Any] = process_story(__magic_name__ ) self.assertEqual(__magic_name__ , [] ) def UpperCAmelCase ( self ): """simple docstring""" A_ : int = '''''' A_ , A_ : Union[str, Any] = process_story(__magic_name__ ) self.assertEqual(__magic_name__ , [] ) self.assertEqual(__magic_name__ , [] ) def UpperCAmelCase ( self ): """simple docstring""" A_ : int = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) A_ , A_ : Optional[int] = process_story(__magic_name__ ) A_ : List[str] = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(__magic_name__ , __magic_name__ ) A_ : Union[str, Any] = ['''It was the best of times.'''] self.assertEqual(__magic_name__ , __magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" A_ : List[str] = torch.tensor([1, 2, 3, 4] ) A_ : Any = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__magic_name__ , 0 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Any = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) A_ : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__magic_name__ , 23 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Optional[int] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) A_ : Union[str, Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__magic_name__ , 1 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ): """simple docstring""" A_ : int = 101 A_ : List[str] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) A_ : Tuple = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) A_ : Optional[Any] = compute_token_type_ids(__magic_name__ , __magic_name__ ) np.testing.assert_array_equal(__magic_name__ , __magic_name__ )
236
1
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 snake_case_ : Any = 1 snake_case_ : Optional[int] = 1 while repunit: snake_case_ : Optional[int] = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def __lowerCAmelCase ( __UpperCamelCase : int = 1_0_0_0_0_0_0 ): '''simple docstring''' snake_case_ : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__UpperCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'''{solution() = }''')
58
class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase ): __A : List[str] = val __A : str = None __A : List[Any] = None def __UpperCAmelCase( self , __UpperCAmelCase ): if self.val: if val < self.val: if self.left is None: __A : int = Node(__UpperCAmelCase ) else: self.left.insert(__UpperCAmelCase ) elif val > self.val: if self.right is None: __A : int = Node(__UpperCAmelCase ) else: self.right.insert(__UpperCAmelCase ) else: __A : Any = val def lowerCamelCase_ ( _lowercase , _lowercase ) -> Tuple: # Recursive traversal if root: inorder(root.left , _lowercase ) res.append(root.val ) inorder(root.right , _lowercase ) def lowerCamelCase_ ( _lowercase ) -> str: # Build BST if len(_lowercase ) == 0: return arr __A : Union[str, Any] = Node(arr[0] ) for i in range(1 , len(_lowercase ) ): root.insert(arr[i] ) # Traverse BST in order. __A : str = [] inorder(_lowercase , _lowercase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
520
0
'''simple docstring''' import baseaa def _UpperCamelCase ( lowerCAmelCase__: str ) -> bytes: return baseaa.baaencode(string.encode('utf-8' ) ) def _UpperCamelCase ( lowerCAmelCase__: bytes ) -> str: return baseaa.baadecode(lowerCAmelCase__ ).decode('utf-8' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = "Hello World!" SCREAMING_SNAKE_CASE : Tuple = baseaa_encode(test) print(encoded) SCREAMING_SNAKE_CASE : int = baseaa_decode(encoded) print(decoded)
238
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
238
1
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def a ( __UpperCAmelCase : Any , __UpperCAmelCase : Tuple ) -> Any: __magic_name__: Union[str, Any] = old_name if "patch_embed" in old_name: __magic_name__, __magic_name__, __magic_name__: List[str] = old_name.split(""".""" ) if layer == "0": __magic_name__: Optional[int] = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": __magic_name__: str = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": __magic_name__: Dict = old_name.replace("""3""" , """convolution2""" ) else: __magic_name__: Dict = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(R"""\d\.\d""" , __UpperCAmelCase ): __magic_name__: int = R"""\b\d{2}\b""" if bool(re.search(__UpperCAmelCase , __UpperCAmelCase ) ): __magic_name__: Tuple = re.search(R"""\d\.\d\d.""" , __UpperCAmelCase ).group() else: __magic_name__: int = re.search(R"""\d\.\d.""" , __UpperCAmelCase ).group() if int(match[0] ) < 6: __magic_name__: List[Any] = old_name.replace(__UpperCAmelCase , """""" ) __magic_name__: str = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) __magic_name__: Optional[Any] = """intermediate_stages.""" + trimmed_name else: __magic_name__: Any = old_name.replace(__UpperCAmelCase , """""" ) if int(match[2] ) < num_meta4D_last_stage: __magic_name__: Dict = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: __magic_name__: Union[str, Any] = str(int(match[2] ) - num_meta4D_last_stage ) __magic_name__: Union[str, Any] = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: __magic_name__: Optional[int] = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: __magic_name__: Optional[Any] = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: __magic_name__: Any = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: __magic_name__: int = trimmed_name.replace("""fc2""" , """linear_out""" ) __magic_name__: List[Any] = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(R""".\d.""" , __UpperCAmelCase ): __magic_name__: Optional[int] = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: __magic_name__: str = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __magic_name__: Optional[int] = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __magic_name__: List[Any] = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: __magic_name__: Optional[int] = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: __magic_name__: int = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: __magic_name__: Dict = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: __magic_name__: List[str] = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __magic_name__: Tuple = new_name.replace("""norm""" , """layernorm""" ) __magic_name__: Dict = """efficientformer.""" + new_name else: __magic_name__: Union[str, Any] = """efficientformer.encoder.""" + new_name return new_name def a ( __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] ) -> Optional[Any]: for key in checkpoint.copy().keys(): __magic_name__: List[str] = checkpoint.pop(__UpperCAmelCase ) __magic_name__: Union[str, Any] = val return checkpoint def a ( ) -> Dict: __magic_name__: Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__: List[Any] = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return image def a ( __UpperCAmelCase : Path , __UpperCAmelCase : Path , __UpperCAmelCase : Path , __UpperCAmelCase : bool ) -> Any: __magic_name__: Union[str, Any] = torch.load(__UpperCAmelCase , map_location="""cpu""" )["""model"""] __magic_name__: List[Any] = EfficientFormerConfig.from_json_file(__UpperCAmelCase ) __magic_name__: Any = EfficientFormerForImageClassificationWithTeacher(__UpperCAmelCase ) __magic_name__: Dict = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) __magic_name__: int = config.depths[-1] - config.num_metaad_blocks + 1 __magic_name__: int = convert_torch_checkpoint(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() __magic_name__: Optional[Any] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image __magic_name__: Any = prepare_img() __magic_name__: List[Any] = 2_5_6 __magic_name__: Optional[int] = 2_2_4 __magic_name__: List[str] = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) __magic_name__: int = processor(images=__UpperCAmelCase , return_tensors="""pt""" ).pixel_values # original processing pipeline __magic_name__: Optional[int] = Compose( [ Resize(__UpperCAmelCase , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(__UpperCAmelCase ), ToTensor(), Normalize(__UpperCAmelCase , __UpperCAmelCase ), ] ) __magic_name__: List[str] = image_transforms(__UpperCAmelCase ).unsqueeze(0 ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Optional[Any] = model(__UpperCAmelCase ) __magic_name__: Any = outputs.logits __magic_name__: Any = (1, 1_0_0_0) if "l1" in model_name: __magic_name__: List[str] = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28] ) assert torch.allclose(logits[0, :1_0] , __UpperCAmelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __magic_name__: List[Any] = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27] ) assert torch.allclose(logits[0, :1_0] , __UpperCAmelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __magic_name__: Any = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78] ) assert logits.shape == expected_shape else: raise ValueError( f'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(__UpperCAmelCase ) print(f'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=f'Bearnardd/{pytorch_dump_path}' , commit_message="""Add model""" , use_temp_dir=__UpperCAmelCase , ) processor.push_to_hub( repo_id=f'Bearnardd/{pytorch_dump_path}' , commit_message="""Add image processor""" , use_temp_dir=__UpperCAmelCase , ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) __lowerCamelCase = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
96
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC _lowercase = parse(importlib.metadata.version('torch')) def __UpperCamelCase ( a : Union[str, Version] , a : str , a : str ) ->Optional[Any]: if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) snake_case = STR_OPERATION_TO_FUNC[operation] if isinstance(a , a ): snake_case = parse(importlib.metadata.version(a ) ) return operation(a , parse(a ) ) def __UpperCamelCase ( a : str , a : str ) ->List[str]: return compare_versions(a , a , a )
342
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , __a : Dict , __a : List[Any]=13 , __a : Union[str, Any]=2 , __a : int=24 , __a : Union[str, Any]=16 , __a : Union[str, Any]=True , __a : Optional[Any]=True , __a : Dict=32 , __a : Dict=5 , __a : Any=4 , __a : Optional[int]=37 , __a : int="gelu" , __a : Any=0.1 , __a : Tuple=0.1 , __a : Dict=10 , __a : Union[str, Any]=0.02 , __a : Tuple=None , __a : Union[str, Any]=2 , __a : Any=2 , ) -> List[str]: """simple docstring""" __lowercase : Tuple = parent __lowercase : Union[str, Any] = batch_size __lowercase : Optional[int] = patch_size __lowercase : int = max_length __lowercase : Tuple = num_mel_bins __lowercase : Optional[int] = is_training __lowercase : List[str] = use_labels __lowercase : List[Any] = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : str = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : Optional[int] = hidden_dropout_prob __lowercase : str = attention_probs_dropout_prob __lowercase : int = type_sequence_label_size __lowercase : str = initializer_range __lowercase : Optional[Any] = scope __lowercase : int = frequency_stride __lowercase : Dict = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase : int = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __lowercase : Union[str, Any] = (self.max_length - self.patch_size) // self.time_stride + 1 __lowercase : Dict = frequency_out_dimension * time_out_dimension __lowercase : List[Any] = num_patches + 2 def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __lowercase : Tuple = None if self.use_labels: __lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Any = self.get_config() return config, input_values, labels def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def lowerCAmelCase ( self : str , __a : List[Any] , __a : Union[str, Any] , __a : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = ASTModel(config=__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[Any] = config_and_inputs __lowercase : Dict = {"""input_values""": input_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : int = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _A : Any = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) _A : Union[str, Any] = False _A : Dict = False _A : Optional[Any] = False _A : str = False def lowerCAmelCase ( self : List[str] , __a : List[Any] , __a : Dict , __a : List[str] , __a : str , __a : List[Any] ) -> Optional[Any]: """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Tuple = ASTModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : str = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase , __lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : str = [*signature.parameters.keys()] __lowercase : Any = ["""input_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[Any] = ASTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : Optional[int] = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) __lowercase , __lowercase : int = torchaudio.load(__snake_case ) return audio, sampling_rate @require_torch @require_torchaudio class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.default_feature_extractor __lowercase : Any = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(__a ) __lowercase : Dict = self.default_feature_extractor __lowercase , __lowercase : Tuple = prepare_audio() __lowercase : int = audio.squeeze().numpy() __lowercase : Optional[int] = feature_extractor(__a , sampling_rate=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : int = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : Union[str, Any] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
712
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
0
'''simple docstring''' def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =[3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] SCREAMING_SNAKE_CASE__ : List[Any] =6 SCREAMING_SNAKE_CASE__ : Dict =1 SCREAMING_SNAKE_CASE__ : Dict =1_9_0_1 SCREAMING_SNAKE_CASE__ : List[str] =0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 SCREAMING_SNAKE_CASE__ : Any =day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 SCREAMING_SNAKE_CASE__ : str =day - 2_9 else: if day > days_per_month[month - 1]: month += 1 SCREAMING_SNAKE_CASE__ : List[str] =day - days_per_month[month - 2] if month > 1_2: year += 1 SCREAMING_SNAKE_CASE__ : Tuple =1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
296
'''simple docstring''' # Algorithm for the pigeonhole sorting def _a( UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =min(UpperCamelCase__ ) # min() finds the minimum value SCREAMING_SNAKE_CASE__ : int =max(UpperCamelCase__ ) # max() finds the maximum value SCREAMING_SNAKE_CASE__ : List[Any] =max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size SCREAMING_SNAKE_CASE__ : Tuple =[0] * size # Populate the pigeonholes. for x in a: assert isinstance(UpperCamelCase__, UpperCamelCase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. SCREAMING_SNAKE_CASE__ : List[Any] =0 for count in range(UpperCamelCase__ ): while holes[count] > 0: holes[count] -= 1 SCREAMING_SNAKE_CASE__ : Any =count + min_val i += 1 def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =[8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(UpperCamelCase__ ) print('''Sorted order is:''', ''' '''.join(UpperCamelCase__ ) ) if __name__ == "__main__": main()
296
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class a__ ( A__ ): UpperCAmelCase__ = '''roberta-prelayernorm''' def __init__( self :str , _lowerCamelCase :List[Any]=50_265 , _lowerCamelCase :List[Any]=768 , _lowerCamelCase :str=12 , _lowerCamelCase :Optional[Any]=12 , _lowerCamelCase :List[str]=3_072 , _lowerCamelCase :Optional[Any]="gelu" , _lowerCamelCase :Dict=0.1 , _lowerCamelCase :str=0.1 , _lowerCamelCase :str=512 , _lowerCamelCase :List[Any]=2 , _lowerCamelCase :List[Any]=0.02 , _lowerCamelCase :Optional[int]=1E-1_2 , _lowerCamelCase :int=1 , _lowerCamelCase :str=0 , _lowerCamelCase :int=2 , _lowerCamelCase :Optional[Any]="absolute" , _lowerCamelCase :List[str]=True , _lowerCamelCase :str=None , **_lowerCamelCase :Any , ): '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_ : Dict =vocab_size UpperCamelCase_ : str =hidden_size UpperCamelCase_ : Optional[int] =num_hidden_layers UpperCamelCase_ : Optional[int] =num_attention_heads UpperCamelCase_ : List[Any] =hidden_act UpperCamelCase_ : Any =intermediate_size UpperCamelCase_ : Optional[int] =hidden_dropout_prob UpperCamelCase_ : Tuple =attention_probs_dropout_prob UpperCamelCase_ : str =max_position_embeddings UpperCamelCase_ : List[str] =type_vocab_size UpperCamelCase_ : Tuple =initializer_range UpperCamelCase_ : Any =layer_norm_eps UpperCamelCase_ : str =position_embedding_type UpperCamelCase_ : Any =use_cache UpperCamelCase_ : str =classifier_dropout class a__ ( A__ ): @property def lowerCamelCase_ ( self :Optional[int] ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase_ : str ={0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_ : Any ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
395
"""simple docstring""" def A_ ( __lowercase ): if not isinstance(__lowercase , __lowercase ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(__lowercase ) == 0: raise ValueError('Input list must be a non empty list' ) if len(__lowercase ) == 1: return True UpperCamelCase_ : Tuple =series[1] - series[0] for index in range(len(__lowercase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def A_ ( __lowercase ): if not isinstance(__lowercase , __lowercase ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(__lowercase ) == 0: raise ValueError('Input list must be a non empty list' ) UpperCamelCase_ : List[Any] =0 for val in series: answer += val return answer / len(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
395
1
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
437
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class A_(unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): _lowerCamelCase : Any = 'laion/clap-htsat-unfused' _lowerCamelCase : Optional[Any] = tempfile.mkdtemp() def _lowerCAmelCase ( self , **A ): return RobertaTokenizer.from_pretrained(self.checkpoint , **A ) def _lowerCAmelCase ( self , **A ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A ) def _lowerCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = self.get_feature_extractor() _lowerCamelCase : List[str] = ClapProcessor(tokenizer=A , feature_extractor=A ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : str = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCamelCase : str = self.get_feature_extractor(do_normalize=A , padding_value=1.0 ) _lowerCamelCase : List[Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = self.get_feature_extractor() _lowerCamelCase : Optional[int] = self.get_tokenizer() _lowerCamelCase : Any = ClapProcessor(tokenizer=A , feature_extractor=A ) _lowerCamelCase : int = floats_list((3, 1000) ) _lowerCamelCase : str = feature_extractor(A , return_tensors='np' ) _lowerCamelCase : List[str] = processor(audios=A , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCAmelCase ( self ): _lowerCamelCase : Any = self.get_feature_extractor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = ClapProcessor(tokenizer=A , feature_extractor=A ) _lowerCamelCase : List[str] = 'This is a test string' _lowerCamelCase : Any = processor(text=A ) _lowerCamelCase : Optional[int] = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = self.get_feature_extractor() _lowerCamelCase : Union[str, Any] = self.get_tokenizer() _lowerCamelCase : Optional[int] = ClapProcessor(tokenizer=A , feature_extractor=A ) _lowerCamelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : int = processor.batch_decode(A ) _lowerCamelCase : int = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Union[str, Any] = self.get_feature_extractor() _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : int = ClapProcessor(tokenizer=A , feature_extractor=A ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
437
1
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCamelCase_ : Optional[Any] = 5_00_00 lowerCamelCase_ : Optional[int] = 50_00 lowerCamelCase_ , lowerCamelCase_ : int = os.path.split(__file__) lowerCamelCase_ : str = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" for i in range(_UpperCAmelCase ): A_ : Any = dataset[i] @get_duration def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ): A_ : Any = dataset[i : i + batch_size] @get_duration def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" with dataset.formatted_as(type=_UpperCAmelCase ): for i in range(_UpperCAmelCase ): A_ : Optional[Any] = dataset[i] @get_duration def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" with dataset.formatted_as(type=_UpperCAmelCase ): for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): A_ : Optional[Any] = dataset[i : i + batch_size] def UpperCAmelCase__ ( ): """simple docstring""" A_ : Optional[int] = {'num examples': SPEED_TEST_N_EXAMPLES} A_ : Union[str, Any] = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] A_ : Tuple = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) A_ : Optional[Any] = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) A_ : Tuple = generate_example_dataset( os.path.join(_UpperCAmelCase , 'dataset.arrow' ) , _UpperCAmelCase , num_examples=_UpperCAmelCase , seq_shapes={'list': (100,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(_UpperCAmelCase ) ) A_ : Optional[int] = func(_UpperCAmelCase , **_UpperCAmelCase ) print('shuffling dataset' ) A_ : Optional[int] = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(_UpperCAmelCase ) ) A_ : Union[str, Any] = func( _UpperCAmelCase , **_UpperCAmelCase ) with open(_UpperCAmelCase , 'wb' ) as f: f.write(json.dumps(_UpperCAmelCase ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
302
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : '''simple docstring''' lowercase_ : int lowercase_ : int class _UpperCAmelCase : '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" A_ : list[list[Edge]] = [[] for _ in range(snake_case_ )] A_ : Optional[int] = size def __getitem__( self , snake_case_ ): """simple docstring""" return iter(self._graph[vertex] ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self._size def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(snake_case_ , snake_case_ ) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[str] = deque([start_vertex] ) A_ : list[int | None] = [None] * self.size A_ : Optional[Any] = 0 while queue: A_ : Union[str, Any] = queue.popleft() A_ : Tuple = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: A_ : int = current_distance + edge.weight A_ : Union[str, Any] = distances[edge.destination_vertex] if ( isinstance(snake_case_ , snake_case_ ) and new_distance >= dest_vertex_distance ): continue A_ : Union[str, Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
302
1
from __future__ import annotations import math def UpperCAmelCase_ ( _UpperCAmelCase :int ) -> Optional[Any]: '''simple docstring''' if num <= 0: A_ = f'{num}: Invalid input, please enter a positive integer.' raise ValueError(_UpperCAmelCase ) A_ = [True] * (num + 1) A_ = [] A_ = 2 A_ = int(math.sqrt(_UpperCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_UpperCAmelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , _UpperCAmelCase ): if sieve[i] is True: A_ = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_UpperCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
188
_a : str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _a : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _a : Tuple = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
145
0
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __magic_name__ = 'src/transformers' __magic_name__ = 'docs/source/en' __magic_name__ = '.' def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' with open(_A , "r" , encoding="utf-8" , newline="\n") as f: lowerCamelCase_ : Optional[Any] = f.readlines() # Find the start prompt. lowerCamelCase_ : List[str] = 0 while not lines[start_index].startswith(_A): start_index += 1 start_index += 1 lowerCamelCase_ : str = start_index while not lines[end_index].startswith(_A): end_index += 1 end_index -= 1 while len(lines[start_index]) <= 1: start_index += 1 while len(lines[end_index]) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index]), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __magic_name__ = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. __magic_name__ = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') __magic_name__ = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __magic_name__ = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. __magic_name__ = direct_transformers_import(TRANSFORMERS_PATH) def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : List[Any] = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , _A) return [m.group(0) for m in matches] def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Any = 2 if text == "✅" or text == "❌" else len(_A) lowerCamelCase_ : Any = (width - text_length) // 2 lowerCamelCase_ : Tuple = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def __magic_name__ ( ): '''simple docstring''' lowerCamelCase_ : List[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCamelCase_ : Optional[Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowerCamelCase_ : Optional[Any] = {name: config.replace("Config" , "") for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowerCamelCase_ : List[Any] = collections.defaultdict(_A) lowerCamelCase_ : Union[str, Any] = collections.defaultdict(_A) lowerCamelCase_ : Optional[int] = collections.defaultdict(_A) lowerCamelCase_ : Optional[int] = collections.defaultdict(_A) lowerCamelCase_ : Dict = collections.defaultdict(_A) # Let's lookup through all transformers object (once). for attr_name in dir(_A): lowerCamelCase_ : List[str] = None if attr_name.endswith("Tokenizer"): lowerCamelCase_ : str = slow_tokenizers lowerCamelCase_ : Optional[Any] = attr_name[:-9] elif attr_name.endswith("TokenizerFast"): lowerCamelCase_ : str = fast_tokenizers lowerCamelCase_ : Optional[Any] = attr_name[:-13] elif _re_tf_models.match(_A) is not None: lowerCamelCase_ : Tuple = tf_models lowerCamelCase_ : str = _re_tf_models.match(_A).groups()[0] elif _re_flax_models.match(_A) is not None: lowerCamelCase_ : str = flax_models lowerCamelCase_ : Optional[int] = _re_flax_models.match(_A).groups()[0] elif _re_pt_models.match(_A) is not None: lowerCamelCase_ : int = pt_models lowerCamelCase_ : Union[str, Any] = _re_pt_models.match(_A).groups()[0] if lookup_dict is not None: while len(_A) > 0: if attr_name in model_name_to_prefix.values(): lowerCamelCase_ : Optional[Any] = True break # Try again after removing the last word in the name lowerCamelCase_ : Optional[Any] = "".join(camel_case_split(_A)[:-1]) # Let's build that table! lowerCamelCase_ : int = list(model_name_to_config.keys()) model_names.sort(key=str.lower) lowerCamelCase_ : Dict = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowerCamelCase_ : List[Any] = [len(_A) + 2 for c in columns] lowerCamelCase_ : Any = max([len(_A) for name in model_names]) + 2 # Build the table per se lowerCamelCase_ : str = "|" + "|".join([_center_text(_A , _A) for c, w in zip(_A , _A)]) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths]) + "|\n" lowerCamelCase_ : Tuple = {True: "✅", False: "❌"} for name in model_names: lowerCamelCase_ : List[str] = model_name_to_prefix[name] lowerCamelCase_ : str = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(_A , _A) for l, w in zip(_A , _A)]) + "|\n" return table def __magic_name__ ( lowerCAmelCase_=False): '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ : Optional[int] = _find_text_in_file( filename=os.path.join(_A , "index.md") , start_prompt="<!--This table is updated automatically from the auto modules" , end_prompt="<!-- End table-->" , ) lowerCamelCase_ : List[Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(_A , "index.md") , "w" , encoding="utf-8" , newline="\n") as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:]) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.") if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __magic_name__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
708
__magic_name__ = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.602_176_634E-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.35_58_18, } def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCamelCase_ : List[Any] = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(lowerCAmelCase_)}""" ) raise ValueError(lowerCAmelCase_) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
73
0
from math import factorial UpperCamelCase = {str(d): factorial(d) for d in range(10)} def lowerCamelCase_ ( _lowercase ) -> int: return sum(DIGIT_FACTORIAL[d] for d in str(_lowercase ) ) def lowerCamelCase_ ( ) -> int: __A : List[Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _lowercase ) if sum_of_digit_factorial(_lowercase ) == i ) if __name__ == "__main__": print(F'''{solution() = }''')
520
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[int] = logging.get_logger(__name__) __lowercase : Optional[int] = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class __lowercase ( _lowercase ): lowerCamelCase : List[str] = "luke" def __init__(self , A=5_0_2_6_7 , A=5_0_0_0_0_0 , A=7_6_8 , A=2_5_6 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1E-12 , A=True , A=None , A=1 , A=0 , A=2 , **A , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) lowerCamelCase_ : Dict = vocab_size lowerCamelCase_ : List[str] = entity_vocab_size lowerCamelCase_ : Dict = hidden_size lowerCamelCase_ : str = entity_emb_size lowerCamelCase_ : List[str] = num_hidden_layers lowerCamelCase_ : List[Any] = num_attention_heads lowerCamelCase_ : int = hidden_act lowerCamelCase_ : List[str] = intermediate_size lowerCamelCase_ : Tuple = hidden_dropout_prob lowerCamelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase_ : Any = max_position_embeddings lowerCamelCase_ : Any = type_vocab_size lowerCamelCase_ : List[str] = initializer_range lowerCamelCase_ : Any = layer_norm_eps lowerCamelCase_ : Union[str, Any] = use_entity_aware_attention lowerCamelCase_ : Optional[Any] = classifier_dropout
422
0
"""simple docstring""" def snake_case ( lowerCAmelCase_ ) -> List[str]: _snake_case = [] _snake_case = set({'''(''', '''[''', '''{'''} ) _snake_case = set({''')''', ''']''', '''}'''} ) _snake_case = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(lowerCAmelCase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCAmelCase_ ) == 0 or (len(lowerCAmelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCAmelCase_ ) == 0 def snake_case ( ) -> Any: _snake_case = input('''Enter sequence of brackets: ''' ) if is_balanced(lowerCAmelCase_ ): print(lowerCAmelCase_ , '''is balanced''' ) else: print(lowerCAmelCase_ , '''is not balanced''' ) if __name__ == "__main__": main()
404
"""simple docstring""" import math import sys def snake_case ( lowerCAmelCase_ ) -> int: if number != int(lowerCAmelCase_ ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 _snake_case = [-1] * (number + 1) _snake_case = 0 for i in range(1 , number + 1 ): _snake_case = sys.maxsize _snake_case = int(math.sqrt(lowerCAmelCase_ ) ) for j in range(1 , root + 1 ): _snake_case = 1 + answers[i - (j**2)] _snake_case = min(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
404
1
'''simple docstring''' import argparse from collections import defaultdict import yaml lowerCAmelCase_ : Union[str, Any] = 'docs/source/en/_toctree.yml' def _lowerCamelCase ( lowercase : Optional[int] ) -> List[str]: _a = defaultdict(lowerCAmelCase__ ) _a = [] _a = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"local": doc["local"], "title": doc["title"]} ) else: new_doc_list.append(lowerCAmelCase__ ) _a = new_doc_list _a = [key for key, value in counts.items() if value > 1] _a = [] for duplicate_key in duplicates: _a = list({doc["title"] for doc in doc_list if doc["local"] == duplicate_key} ) if len(lowerCAmelCase__ ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if "local" not in counts or counts[doc["local"]] == 1] ) _a = sorted(lowerCAmelCase__ , key=lambda lowercase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCAmelCase__ ) > 1: raise ValueError("{doc_list} has two 'overview' docs which is not allowed." ) overview_doc.extend(lowerCAmelCase__ ) # Sort return overview_doc def _lowerCamelCase ( lowercase : Optional[int]=False ) -> Union[str, Any]: with open(lowerCAmelCase__ , encoding="utf-8" ) as f: _a = yaml.safe_load(f.read() ) # Get to the API doc _a = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a = content[api_idx]["sections"] # Then to the model doc _a = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _a = api_doc[scheduler_idx]["sections"] _a = clean_doc_toc(lowerCAmelCase__ ) _a = False if new_scheduler_doc != scheduler_doc: _a = True if overwrite: _a = new_scheduler_doc if diff: if overwrite: _a = api_doc with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) def _lowerCamelCase ( lowercase : Optional[int]=False ) -> Tuple: with open(lowerCAmelCase__ , encoding="utf-8" ) as f: _a = yaml.safe_load(f.read() ) # Get to the API doc _a = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a = content[api_idx]["sections"] # Then to the model doc _a = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _a = False _a = api_doc[pipeline_idx]["sections"] _a = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _a = pipeline_doc["section"] _a = clean_doc_toc(lowerCAmelCase__ ) if overwrite: _a = new_sub_pipeline_doc new_pipeline_docs.append(lowerCAmelCase__ ) # sort overall pipeline doc _a = clean_doc_toc(lowerCAmelCase__ ) if new_pipeline_docs != pipeline_docs: _a = True if overwrite: _a = new_pipeline_docs if diff: if overwrite: _a = api_doc with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase_ : Union[str, Any] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
692
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig snake_case = logging.get_logger(__name__) snake_case = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class __A ( snake_case__ ): '''simple docstring''' a_ = '''dpt''' def __init__( self , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3072 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1E-1_2 , _snake_case=384 , _snake_case=16 , _snake_case=3 , _snake_case=False , _snake_case=True , _snake_case=[2, 5, 8, 11] , _snake_case="project" , _snake_case=[4, 2, 1, 0.5] , _snake_case=[96, 192, 384, 768] , _snake_case=256 , _snake_case=-1 , _snake_case=False , _snake_case=True , _snake_case=0.4 , _snake_case=255 , _snake_case=0.1 , _snake_case=[1, 1024, 24, 24] , _snake_case=[0, 1] , _snake_case=None , **_snake_case , ): super().__init__(**_snake_case ) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : int = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) _lowerCAmelCase : str = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } _lowerCAmelCase : List[Any] = BitConfig(**_snake_case ) elif isinstance(_snake_case , _snake_case ): logger.info("Initializing the config with a `BiT` backbone." ) _lowerCAmelCase : List[Any] = BitConfig(**_snake_case ) elif isinstance(_snake_case , _snake_case ): _lowerCAmelCase : List[str] = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) _lowerCAmelCase : Union[str, Any] = backbone_featmap_shape _lowerCAmelCase : Optional[int] = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: _lowerCAmelCase : str = None _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : Dict = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Tuple = qkv_bias _lowerCAmelCase : Optional[Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) _lowerCAmelCase : Optional[Any] = readout_type _lowerCAmelCase : Union[str, Any] = reassemble_factors _lowerCAmelCase : Tuple = neck_hidden_sizes _lowerCAmelCase : Union[str, Any] = fusion_hidden_size _lowerCAmelCase : int = head_in_index _lowerCAmelCase : Tuple = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Union[str, Any] = use_auxiliary_head _lowerCAmelCase : str = auxiliary_loss_weight _lowerCAmelCase : Any = semantic_loss_ignore_index _lowerCAmelCase : Dict = semantic_classifier_dropout def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _lowerCAmelCase : Any = self.backbone_config.to_dict() _lowerCAmelCase : str = self.__class__.model_type return output
424
0
"""simple docstring""" from __future__ import annotations class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> None: lowercase__ : Union[str, Any] = data lowercase__ : Dict = None lowercase__ : Dict = None def _lowerCamelCase ( lowerCamelCase__ : Dict ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _lowerCamelCase ( lowerCamelCase__ : List[Any] ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _lowerCamelCase ( lowerCamelCase__ : Tuple ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _lowerCamelCase ( ): # Main function for testing. lowercase__ : Tuple = Node(1 ) lowercase__ : Union[str, Any] = Node(2 ) lowercase__ : Optional[Any] = Node(3 ) lowercase__ : int = Node(4 ) lowercase__ : Optional[int] = Node(5 ) lowercase__ : List[Any] = Node(6 ) lowercase__ : int = Node(7 ) lowercase__ : Optional[int] = Node(8 ) lowercase__ : List[Any] = Node(9 ) print(is_full_binary_tree(SCREAMING_SNAKE_CASE_ ) ) print(depth_of_tree(SCREAMING_SNAKE_CASE_ ) ) print("""Tree is: """ ) display(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
700
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase__( lowerCamelCase__ ) -> Optional[Any]: raise NotImplementedError() @abstractmethod def UpperCAmelCase__( self ) -> Dict: raise NotImplementedError()
128
0
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): if digit_amount > 0: return round(number - int(UpperCamelCase__ ) , UpperCamelCase__ ) return number - int(UpperCamelCase__ ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
407
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :List[str] = XLNetTokenizer lowerCAmelCase :Union[str, Any] = XLNetTokenizerFast lowerCAmelCase :Union[str, Any] = True lowerCAmelCase :int = True def snake_case__ ( self): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Optional[Any] = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = """<s>""" UpperCAmelCase__ : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase) , _lowerCamelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase) , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : int = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<unk>""") self.assertEqual(vocab_keys[1] , """<s>""") self.assertEqual(vocab_keys[-1] , """<eod>""") self.assertEqual(len(_lowerCamelCase) , 1006) def snake_case__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 1000) def snake_case__ ( self): UpperCAmelCase__ : int = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase) UpperCAmelCase__ : str = tokenizer.tokenize("""This is a test""") self.assertListEqual(_lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase) , [285, 46, 10, 170, 382]) UpperCAmelCase__ : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase__ : List[str] = tokenizer.convert_tokens_to_ids(_lowerCamelCase) self.assertListEqual(_lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4]) UpperCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(_lowerCamelCase) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""▁he""", """ll""", """o"""]) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase) UpperCAmelCase__ : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def snake_case__ ( self): UpperCAmelCase__ : List[Any] = XLNetTokenizer.from_pretrained("""xlnet-base-cased""") UpperCAmelCase__ : Dict = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCamelCase) UpperCAmelCase__ : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCamelCase) UpperCAmelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase) UpperCAmelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def snake_case__ ( self): # fmt: off UpperCAmelCase__ : List[Any] = {"""input_ids""": [[17, 2_1442, 270, 17, 10, 1_4645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 2_2018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 1_4431, 13, 5500, 11, 1176, 580, 13, 1_6819, 4797, 23, 17, 10, 1_7135, 658, 19, 457, 7932, 13, 184, 19, 3154, 1_7135, 6468, 19, 1404, 1_2269, 19, 4229, 5356, 1_6264, 46, 19, 17, 2_0545, 1_0395, 9, 9, 9, 11, 28, 6421, 9531, 2_0729, 17, 10, 353, 1_7022, 11, 21, 6421, 9531, 1_6949, 17, 10, 1_1509, 753, 11, 33, 95, 2421, 7385, 956, 1_4431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 2_4738, 19, 1_3203, 658, 218, 787, 21, 430, 1_8482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 2_2178, 27, 1064, 22, 956, 13, 1_1101, 1429, 5854, 2_4313, 1_8953, 40, 422, 2_4366, 68, 1758, 37, 1_0483, 1_4257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 1_3894, 3380, 23, 95, 18, 1_7634, 2288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
407
1
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter _lowercase = logging.get_logger(__name__) _lowercase = {} _lowercase = {} _lowercase = {} def lowerCAmelCase__ ( UpperCamelCase_ : type , UpperCamelCase_ : Optional[str] , UpperCamelCase_ : Optional[List[str]] = None , )-> Any: A__ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) A__ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) A__ = format_type def lowerCAmelCase__ ( UpperCamelCase_ : Exception , UpperCamelCase_ : Optional[str] , UpperCamelCase_ : Optional[List[str]] = None )-> Optional[Any]: A__ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): A__ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: _lowercase = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: _lowercase = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: _lowercase = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[str] )-> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowerCAmelCase__ ( UpperCamelCase_ : Optional[str] , **UpperCamelCase_ : Optional[int] )-> Formatter: A__ = get_format_type_from_alias(UpperCamelCase_ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCamelCase_ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
526
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( A__ ): UpperCamelCase__ = (DDPMScheduler,) def snake_case_ ( self , **a__): A__ = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**a__) return config def snake_case_ ( self): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=a__) def snake_case_ ( self): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=a__ , beta_end=a__) def snake_case_ ( self): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a__) def snake_case_ ( self): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=a__) def snake_case_ ( self): for clip_sample in [True, False]: self.check_over_configs(clip_sample=a__) def snake_case_ ( self): self.check_over_configs(thresholding=a__) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=a__ , prediction_type=a__ , sample_max_value=a__ , ) def snake_case_ ( self): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=a__) def snake_case_ ( self): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=a__) def snake_case_ ( self): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**a__) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7) - 0.0_0_9_7_9)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9) - 0.0_2)) < 1e-5 def snake_case_ ( self): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**a__) A__ = len(a__) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = torch.manual_seed(0) for t in reversed(range(a__)): # 1. predict noise residual A__ = model(a__ , a__) # 2. predict previous mean of sample x_t-1 A__ = scheduler.step(a__ , a__ , a__ , generator=a__).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A__ = pred_prev_sample A__ = torch.sum(torch.abs(a__)) A__ = torch.mean(torch.abs(a__)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1e-3 def snake_case_ ( self): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(prediction_type='''v_prediction''') A__ = scheduler_class(**a__) A__ = len(a__) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = torch.manual_seed(0) for t in reversed(range(a__)): # 1. predict noise residual A__ = model(a__ , a__) # 2. predict previous mean of sample x_t-1 A__ = scheduler.step(a__ , a__ , a__ , generator=a__).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A__ = pred_prev_sample A__ = torch.sum(torch.abs(a__)) A__ = torch.mean(torch.abs(a__)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1e-3 def snake_case_ ( self): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**a__) A__ = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=a__) A__ = scheduler.timesteps for i, timestep in enumerate(a__): if i == len(a__) - 1: A__ = -1 else: A__ = timesteps[i + 1] A__ = scheduler.previous_timestep(a__) A__ = prev_t.item() self.assertEqual(a__ , a__) def snake_case_ ( self): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**a__) A__ = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(a__ , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=a__) def snake_case_ ( self): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**a__) A__ = [1_0_0, 8_7, 5_0, 1, 0] A__ = len(a__) with self.assertRaises(a__ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=a__ , timesteps=a__) def snake_case_ ( self): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**a__) A__ = [scheduler.config.num_train_timesteps] with self.assertRaises( a__ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=a__)
526
1
'''simple docstring''' def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence lowerCAmelCase__ : Dict = gray_code_sequence_string(a_ ) # # convert them to integers for i in range(len(a_ ) ): lowerCAmelCase__ : List[str] = int(sequence[i] , 2 ) return sequence def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowerCAmelCase__ : Union[str, Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowerCAmelCase__ : int = gray_code_sequence_string(bit_count - 1 ) lowerCAmelCase__ : str = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowerCAmelCase__ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(a_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowerCAmelCase__ : Tuple = '''1''' + smaller_sequence[i] sequence.append(a_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
378
"""simple docstring""" def __lowerCamelCase ( a_ : int = 50 ) -> int: __SCREAMING_SNAKE_CASE :List[str] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
498
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a : Dict = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Union[str, Any] = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys __a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
414
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" lowercase = LxmertTokenizer lowercase = LxmertTokenizerFast lowercase = True lowercase = True def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" super().setUp() UpperCamelCase = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = "UNwant\u00E9d,running" UpperCamelCase = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.tokenizer_class(self.vocab_file ) UpperCamelCase = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(SCREAMING_SNAKE_CASE , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , [7, 4, 5, 10, 8, 9] ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = "I was born in 92000, and this is falsé." UpperCamelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = tokenizer.encode(SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.encode(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
414
1
"""simple docstring""" import os import sys import unittest __A : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __A : Optional[Any] = os.path.join(git_repo_path, '''src''', '''transformers''') __A : Optional[Any] = '\n{0} = None\n' __A : Tuple = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' __A : Dict = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class _UpperCAmelCase ( unittest.TestCase ): def A ( self : Tuple ) -> Union[str, Any]: lowercase_ : str = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(lowerCAmelCase__ ) lowercase_ : Dict = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tokenizers''' ) lowercase_ : Dict = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tensorflow_text''' ) lowercase_ : Tuple = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers''' ) lowercase_ : Any = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tensorflow_text''' ) lowercase_ : List[str] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def A ( self : List[str] ) -> Optional[int]: lowercase_ : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCAmelCase__ ) self.assertIn('''tensorflow_text''' , lowerCAmelCase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def A ( self : Optional[Any] ) -> List[Any]: lowercase_ : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , '''\nCONSTANT = None\n''' ) lowercase_ : List[str] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( lowerCAmelCase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) lowercase_ : int = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' lowercase_ : Optional[Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def A ( self : Optional[Any] ) -> Any: lowercase_ : str = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' lowercase_ : List[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , lowerCAmelCase__ )
231
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : str = "text" SCREAMING_SNAKE_CASE__ : str = "summary" @property def __magic_name__( self :Union[str, Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
696
0
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') __UpperCamelCase = {'target_lang': 'fi', 'source_lang': 'en'} __UpperCamelCase = '>>zh<<' __UpperCamelCase = 'Helsinki-NLP/' if is_torch_available(): __UpperCamelCase = 'pt' elif is_tf_available(): __UpperCamelCase = 'tf' else: __UpperCamelCase = 'jax' @require_sentencepiece class lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = MarianTokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : str = True def __A ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] SCREAMING_SNAKE_CASE = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) SCREAMING_SNAKE_CASE = Path(self.tmpdirname ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) SCREAMING_SNAKE_CASE = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self , **lowerCAmelCase__ ) -> Optional[int]: return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __A ( self , lowerCAmelCase__ ) -> Tuple: return ( "This is a test", "This is a test", ) def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = '''</s>''' SCREAMING_SNAKE_CASE = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(UpperCamelCase__ ) , 9 ) def __A ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) SCREAMING_SNAKE_CASE = en_de_tokenizer(['I am a small frog'] , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(UpperCamelCase__ , batch.input_ids[0] ) SCREAMING_SNAKE_CASE = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE = [x.name for x in Path(UpperCamelCase__ ).glob('*' )] self.assertIn('source.spm' , UpperCamelCase__ ) MarianTokenizer.from_pretrained(UpperCamelCase__ ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = tok( ['I am a small frog' * 1_000, 'I am a small frog'] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = tok(['I am a tiny frog', 'I am a small frog'] , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = {'''input_ids''': [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) SCREAMING_SNAKE_CASE = '''Tämä on testi''' SCREAMING_SNAKE_CASE = '''This is a test''' SCREAMING_SNAKE_CASE = [76, 7, 2_047, 2] SCREAMING_SNAKE_CASE = [69, 12, 11, 940, 2] SCREAMING_SNAKE_CASE = tokenizer(UpperCamelCase__ ).input_ids self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer(text_target=UpperCamelCase__ ).input_ids self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
712
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) SCREAMING_SNAKE_CASE_ : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) SCREAMING_SNAKE_CASE_ : ClassVar[Features] = Features({"""labels""": ClassLabel} ) SCREAMING_SNAKE_CASE_ : str = "text" SCREAMING_SNAKE_CASE_ : str = "labels" def __A ( self , lowerCAmelCase__ ) -> Optional[int]: if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) SCREAMING_SNAKE_CASE = copy.deepcopy(self ) SCREAMING_SNAKE_CASE = self.label_schema.copy() SCREAMING_SNAKE_CASE = features[self.label_column] SCREAMING_SNAKE_CASE = label_schema return task_template @property def __A ( self ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
327
0
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __a :Dict = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[str] = 'ernie_m' _lowerCamelCase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : List[str] , UpperCAmelCase : int = 250002 , UpperCAmelCase : int = 768 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 3072 , UpperCAmelCase : str = "gelu" , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : int = 514 , UpperCAmelCase : float = 0.02 , UpperCAmelCase : int = 1 , UpperCAmelCase : float = 1E-05 , UpperCAmelCase : Any=None , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Any=0.0 , **UpperCAmelCase : str , ): super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = initializer_range A_ = layer_norm_eps A_ = classifier_dropout A_ = is_decoder A_ = act_dropout
86
import os _lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : Any = 0 while index < len(snake_case__) - 1: lowerCAmelCase_ : Optional[Any] = SYMBOLS[numerals[index]] lowerCAmelCase_ : int = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = "" lowerCAmelCase_ : Tuple = num // 10_00 numerals += m_count * "M" num %= 10_00 lowerCAmelCase_ : int = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 lowerCAmelCase_ : int = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCamelCase ( snake_case__ = "/p089_roman.txt"): lowerCAmelCase_ : int = 0 with open(os.path.dirname(snake_case__) + roman_numerals_filename) as filea: lowerCAmelCase_ : List[Any] = filea.readlines() for line in lines: lowerCAmelCase_ : Any = line.strip() lowerCAmelCase_ : Tuple = parse_roman_numerals(snake_case__) lowerCAmelCase_ : List[Any] = generate_roman_numerals(snake_case__) savings += len(snake_case__) - len(snake_case__) return savings if __name__ == "__main__": print(f"{solution() = }")
659
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features'] def __init__( self : Union[str, Any] ,lowerCAmelCase__ : List[str]=80 ,lowerCAmelCase__ : Dict=1_60_00 ,lowerCAmelCase__ : Any=1_60 ,lowerCAmelCase__ : Union[str, Any]=30 ,lowerCAmelCase__ : Optional[int]=4_00 ,lowerCAmelCase__ : List[str]=0.0 ,lowerCAmelCase__ : int=False ,**lowerCAmelCase__ : Union[str, Any] ,) -> Any: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : List[str] = n_fft lowerCAmelCase_ : Union[str, Any] = hop_length lowerCAmelCase_ : int = chunk_length lowerCAmelCase_ : List[Any] = chunk_length * sampling_rate lowerCAmelCase_ : Dict = self.n_samples // hop_length lowerCAmelCase_ : List[Any] = sampling_rate lowerCAmelCase_ : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=lowerCAmelCase__ ,min_frequency=0.0 ,max_frequency=8_000.0 ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : np.array ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : str = spectrogram( lowerCAmelCase__ ,window_function(self.n_fft ,"hann" ) ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters ,log_mel="log10" ,) lowerCAmelCase_ : Dict = log_spec[:, :-1] lowerCAmelCase_ : Optional[Any] = np.maximum(lowerCAmelCase__ ,log_spec.max() - 8.0 ) lowerCAmelCase_ : Optional[int] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCAmelCase_ ( lowerCAmelCase__ : List[np.ndarray] ,lowerCAmelCase__ : List[np.ndarray] ,lowerCAmelCase__ : float = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: lowerCAmelCase_ : int = np.array(lowerCAmelCase__ ,np.intaa ) lowerCAmelCase_ : Any = [] for vector, length in zip(lowerCAmelCase__ ,attention_mask.sum(-1 ) ): lowerCAmelCase_ : str = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCAmelCase_ : Tuple = padding_value normed_input_values.append(lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : Optional[int] ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : bool = True ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,lowerCAmelCase__ : Optional[bool] = None ,lowerCAmelCase__ : Optional[str] = "max_length" ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[bool] = None ,**lowerCAmelCase__ : Union[str, Any] ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Any = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : List[Any] = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : Union[str, Any] = [np.asarray([speech] ,dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : List[str] = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray([raw_speech] ).T] lowerCAmelCase_ : int = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding lowerCAmelCase_ : Tuple = self.pad( lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=max_length if max_length else self.n_samples ,truncation=lowerCAmelCase__ ,pad_to_multiple_of=lowerCAmelCase__ ,return_attention_mask=return_attention_mask or do_normalize ,) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase_ : Optional[int] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] ,attention_mask=padded_inputs["attention_mask"] ,padding_value=self.padding_value ,) lowerCAmelCase_ : Tuple = np.stack(padded_inputs["input_features"] ,axis=0 ) # make sure list is in array format lowerCAmelCase_ : int = padded_inputs.get("input_features" ).transpose(2 ,0 ,1 ) lowerCAmelCase_ : str = [self._np_extract_fbank_features(lowerCAmelCase__ ) for waveform in input_features[0]] if isinstance(input_features[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_features] else: lowerCAmelCase_ : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase_ : str = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase_ : Any = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs def UpperCAmelCase_ ( self : List[Any] ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
683
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __UpperCAmelCase = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def _snake_case ( A , A=None , A=None , A=None ) -> Union[str, Any]: lowerCAmelCase__ = True while ask_again: lowerCAmelCase__ = input(A ) try: if default is not None and len(A ) == 0: return default return convert_value(A ) if convert_value is not None else result except Exception: if error_message is not None: print(A ) def _snake_case ( A , A=[] , A=None , A=0 ) -> List[Any]: lowerCAmelCase__ = BulletMenu(A , A ) lowerCAmelCase__ = menu.run(default_choice=A ) return convert_value(A ) if convert_value is not None else result def _snake_case ( A ) -> Tuple: lowerCAmelCase__ = int(A ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def _snake_case ( A ) -> Union[str, Any]: lowerCAmelCase__ = int(A ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def _snake_case ( A ) -> str: lowerCAmelCase__ = int(A ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _snake_case ( A ) -> Tuple: lowerCAmelCase__ = int(A ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def _snake_case ( A ) -> Union[str, Any]: lowerCAmelCase__ = int(A ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def _snake_case ( A ) -> List[str]: return {"yes": True, "no": False}[value.lower()] class a__ ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: lowerCAmelCase__ = super()._format_usage(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
90
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowercase_ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase_ = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: _a = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): _a = True # Deal with multi-line cases elif ( re.search( Rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , _UpperCAmelCase , ) is not None ): _a = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _a = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _a = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] _a = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed _a = True if not attribute_used: _a = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _a = True elif attribute in ["tie_word_embeddings"] and default_value is False: _a = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _a = True elif attribute.endswith('_token_id' ): _a = True # configuration class specific cases if not case_allowed: _a = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _a = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Dict: _a = dict(inspect.signature(config_class.__init__ ).parameters ) _a = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] _a = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _a = {} if len(config_class.attribute_map ) > 0: _a = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _a = inspect.getsourcefile(_UpperCAmelCase ) _a = os.path.dirname(_UpperCAmelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _a = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for fn in os.listdir(_UpperCAmelCase ) if fn.startswith('modeling_' )] # Get the source code strings _a = [] for path in modeling_paths: if os.path.isfile(_UpperCAmelCase ): with open(_UpperCAmelCase ) as fp: modeling_sources.append(fp.read() ) _a = [] for config_param, default_value in zip(_UpperCAmelCase , _UpperCAmelCase ): # `attributes` here is all the variant names for `config_param` _a = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): unused_attributes.append(attributes[0] ) return sorted(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> str: _a = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _a = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _UpperCAmelCase : inspect.isclass(_UpperCAmelCase ) and issubclass(_UpperCAmelCase , _UpperCAmelCase ) and inspect.getmodule(_UpperCAmelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _a = check_config_attributes_being_used(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: _a = unused_attributes if len(_UpperCAmelCase ) > 0: _a = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": check_config_attributes()
562
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : def __init__( self : List[str] , lowercase_ : List[Any] , lowercase_ : List[Any]=13 , lowercase_ : Optional[Any]=32 , lowercase_ : int=3 , lowercase_ : Optional[Any]=4 , lowercase_ : Optional[int]=[10, 20, 30, 40] , lowercase_ : Optional[Any]=[2, 2, 3, 2] , lowercase_ : List[Any]=True , lowercase_ : str=True , lowercase_ : str=37 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : List[str]=10 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : str=["stage2", "stage3", "stage4"] , lowercase_ : Optional[Any]=[2, 3, 4] , lowercase_ : Any=None , ): snake_case_ : Union[str, Any] = parent snake_case_ : List[Any] = batch_size snake_case_ : List[Any] = image_size snake_case_ : List[str] = num_channels snake_case_ : str = num_stages snake_case_ : str = hidden_sizes snake_case_ : Any = depths snake_case_ : int = is_training snake_case_ : Optional[int] = use_labels snake_case_ : Optional[Any] = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : int = num_labels snake_case_ : str = initializer_range snake_case_ : Optional[int] = out_features snake_case_ : int = out_indices snake_case_ : Union[str, Any] = scope def _snake_case ( self : str ): snake_case_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : List[Any] = None if self.use_labels: snake_case_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ : Tuple = self.get_config() return config, pixel_values, labels def _snake_case ( self : Union[str, Any] ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowercase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _snake_case ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Dict ): snake_case_ : Optional[Any] = ConvNextModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Optional[int] = model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self : Union[str, Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] ): snake_case_ : Any = ConvNextForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Optional[int] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : str , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Optional[int] ): snake_case_ : List[str] = ConvNextBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : int = model(lowercase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case_ : Optional[Any] = None snake_case_ : List[Any] = ConvNextBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : str = model(lowercase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _snake_case ( self : Tuple ): snake_case_ : List[str] = self.prepare_config_and_inputs() snake_case_ : List[Any] = config_and_inputs snake_case_ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : List[str] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _lowerCAmelCase : Dict = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase : Any = True _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : List[str] = False def _snake_case ( self : Optional[int] ): snake_case_ : Union[str, Any] = ConvNextModelTester(self ) snake_case_ : Optional[int] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def _snake_case ( self : Optional[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Dict ): return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def _snake_case ( self : List[Any] ): pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def _snake_case ( self : Dict ): pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def _snake_case ( self : str ): pass def _snake_case ( self : Any ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Dict = model_class(lowercase_ ) snake_case_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : int = [*signature.parameters.keys()] snake_case_ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def _snake_case ( self : Union[str, Any] ): snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _snake_case ( self : Tuple ): snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase_ ) def _snake_case ( self : str ): def check_hidden_states_output(lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : int ): snake_case_ : Tuple = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case_ : Tuple = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) snake_case_ : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ : List[Any] = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Dict = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ : Optional[Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def _snake_case ( self : str ): snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def _snake_case ( self : int ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Tuple = ConvNextModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __lowercase ( ): snake_case_ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase): @cached_property def _snake_case ( self : Any ): return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def _snake_case ( self : List[Any] ): snake_case_ : Any = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(lowercase_ ) snake_case_ : Tuple = self.default_image_processor snake_case_ : Optional[Any] = prepare_img() snake_case_ : int = image_processor(images=lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): snake_case_ : Optional[Any] = model(**lowercase_ ) # verify the logits snake_case_ : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) snake_case_ : Optional[Any] = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase , lowerCAmelCase__): _lowerCAmelCase : int = (ConvNextBackbone,) if is_torch_available() else () _lowerCAmelCase : Dict = ConvNextConfig _lowerCAmelCase : int = False def _snake_case ( self : Union[str, Any] ): snake_case_ : int = ConvNextModelTester(self )
719
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Tuple = """linear""" _lowerCAmelCase : Optional[int] = """cosine""" _lowerCAmelCase : Optional[int] = """cosine_with_restarts""" _lowerCAmelCase : Union[str, Any] = """polynomial""" _lowerCAmelCase : Optional[Any] = """constant""" _lowerCAmelCase : Optional[Any] = """constant_with_warmup""" _lowerCAmelCase : Union[str, Any] = """piecewise_constant""" def __lowercase ( _a , _a = -1 ): return LambdaLR(_a , lambda _a : 1 , last_epoch=_a ) def __lowercase ( _a , _a , _a = -1 ): def lr_lambda(_a ): if current_step < num_warmup_steps: return float(_a ) / float(max(1.0 , _a ) ) return 1.0 return LambdaLR(_a , _a , last_epoch=_a ) def __lowercase ( _a , _a , _a = -1 ): snake_case_ : Dict = {} snake_case_ : Optional[Any] = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: snake_case_, snake_case_ : Union[str, Any] = rule_str.split(''':''' ) snake_case_ : Dict = int(_a ) snake_case_ : int = float(_a ) snake_case_ : Any = value snake_case_ : Any = float(rule_list[-1] ) def create_rules_function(_a , _a ): def rule_func(_a ) -> float: snake_case_ : Union[str, Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_a ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func snake_case_ : List[str] = create_rules_function(_a , _a ) return LambdaLR(_a , _a , last_epoch=_a ) def __lowercase ( _a , _a , _a , _a=-1 ): def lr_lambda(_a ): if current_step < num_warmup_steps: return float(_a ) / float(max(1 , _a ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_a , _a , _a ) def __lowercase ( _a , _a , _a , _a = 0.5 , _a = -1 ): def lr_lambda(_a ): if current_step < num_warmup_steps: return float(_a ) / float(max(1 , _a ) ) snake_case_ : str = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_a ) * 2.0 * progress )) ) return LambdaLR(_a , _a , _a ) def __lowercase ( _a , _a , _a , _a = 1 , _a = -1 ): def lr_lambda(_a ): if current_step < num_warmup_steps: return float(_a ) / float(max(1 , _a ) ) snake_case_ : int = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_a ) * progress) % 1.0) )) ) return LambdaLR(_a , _a , _a ) def __lowercase ( _a , _a , _a , _a=1E-7 , _a=1.0 , _a=-1 ): snake_case_ : List[str] = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(_a ): if current_step < num_warmup_steps: return float(_a ) / float(max(1 , _a ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: snake_case_ : Tuple = lr_init - lr_end snake_case_ : List[str] = num_training_steps - num_warmup_steps snake_case_ : str = 1 - (current_step - num_warmup_steps) / decay_steps snake_case_ : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_a , _a , _a ) lowercase__ : Dict = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowercase ( _a , _a , _a = None , _a = None , _a = None , _a = 1 , _a = 1.0 , _a = -1 , ): snake_case_ : Union[str, Any] = SchedulerType(_a ) snake_case_ : Any = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_a , last_epoch=_a ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_a , step_rules=_a , last_epoch=_a ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_a , num_warmup_steps=_a , last_epoch=_a ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _a , num_warmup_steps=_a , num_training_steps=_a , num_cycles=_a , last_epoch=_a , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _a , num_warmup_steps=_a , num_training_steps=_a , power=_a , last_epoch=_a , ) return schedule_func( _a , num_warmup_steps=_a , num_training_steps=_a , last_epoch=_a )
485
0
'''simple docstring''' from jiwer import compute_measures import datasets __lowerCamelCase = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __lowerCamelCase = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' __lowerCamelCase = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def __SCREAMING_SNAKE_CASE ( self : int , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Any=False ): if concatenate_texts: return compute_measures(lowercase_ , lowercase_ )["wer"] else: UpperCAmelCase__ :str = 0 UpperCAmelCase__ :str = 0 for prediction, reference in zip(lowercase_ , lowercase_ ): UpperCAmelCase__ :Optional[int] = compute_measures(lowercase_ , lowercase_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
467
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case = logging.get_logger(__name__) __snake_case = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class _a ( __a ): """simple docstring""" A_ = '''table-transformer''' A_ = ['''past_key_values'''] A_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : str , lowercase_ : str=True , lowercase_ : List[str]=None , lowercase_ : Dict=3 , lowercase_ : Optional[Any]=100 , lowercase_ : Optional[int]=6 , lowercase_ : Optional[Any]=2_048 , lowercase_ : List[Any]=8 , lowercase_ : Optional[Any]=6 , lowercase_ : int=2_048 , lowercase_ : Any=8 , lowercase_ : Optional[Any]=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=True , lowercase_ : int="relu" , lowercase_ : Tuple=256 , lowercase_ : Dict=0.1 , lowercase_ : List[str]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : int=0.0_2 , lowercase_ : List[str]=1.0 , lowercase_ : Optional[int]=False , lowercase_ : List[Any]="sine" , lowercase_ : Optional[int]="resnet50" , lowercase_ : Union[str, Any]=True , lowercase_ : Union[str, Any]=False , lowercase_ : List[str]=1 , lowercase_ : Any=5 , lowercase_ : Optional[int]=2 , lowercase_ : Dict=1 , lowercase_ : Optional[int]=1 , lowercase_ : Dict=5 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[Any]=0.1 , **lowercase_ : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowercase_ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowercase_ = backbone_config.get("""model_type""" ) lowercase_ = CONFIG_MAPPING[backbone_model_type] lowercase_ = config_class.from_dict(lowercase_ ) # set timm attributes to None lowercase_ , lowercase_ , lowercase_ = None, None, None lowercase_ = use_timm_backbone lowercase_ = backbone_config lowercase_ = num_channels lowercase_ = num_queries lowercase_ = d_model lowercase_ = encoder_ffn_dim lowercase_ = encoder_layers lowercase_ = encoder_attention_heads lowercase_ = decoder_ffn_dim lowercase_ = decoder_layers lowercase_ = decoder_attention_heads lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = activation_function lowercase_ = init_std lowercase_ = init_xavier_std lowercase_ = encoder_layerdrop lowercase_ = decoder_layerdrop lowercase_ = encoder_layers lowercase_ = auxiliary_loss lowercase_ = position_embedding_type lowercase_ = backbone lowercase_ = use_pretrained_backbone lowercase_ = dilation # Hungarian matcher lowercase_ = class_cost lowercase_ = bbox_cost lowercase_ = giou_cost # Loss coefficients lowercase_ = mask_loss_coefficient lowercase_ = dice_loss_coefficient lowercase_ = bbox_loss_coefficient lowercase_ = giou_loss_coefficient lowercase_ = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return self.d_model class _a ( __a ): """simple docstring""" A_ = version.parse('''1.11''' ) @property def lowerCamelCase__ ( self : int ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return 1e-5 @property def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 12
451
0
'''simple docstring''' import gc import threading import time import psutil import torch class UpperCamelCase__ : '''simple docstring''' def __init__( self ) -> Optional[int]: __lowerCAmelCase : List[Any] = psutil.Process() __lowerCAmelCase : List[Any] = False def snake_case ( self ) -> int: __lowerCAmelCase : Tuple = -1 while True: __lowerCAmelCase : Any = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def snake_case ( self ) -> int: __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = threading.Thread(target=self.peak_monitor ) __lowerCAmelCase : Dict = True self.thread.start() def snake_case ( self ) -> Optional[int]: __lowerCAmelCase : str = False self.thread.join() return self.cpu_memory_peak A_ = PeakCPUMemory() def A ( ) -> Dict: '''simple docstring''' __lowerCAmelCase : Optional[int] = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCAmelCase : Dict = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowerCAmelCase : Tuple = torch.cuda.memory_allocated(_UpperCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def A ( _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCAmelCase : Optional[Any] = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**2_0 __lowerCAmelCase : int = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**2_0 # GPU mem for i in range(torch.cuda.device_count() ): __lowerCAmelCase : Union[str, Any] = (torch.cuda.memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**2_0 __lowerCAmelCase : Any = (torch.cuda.max_memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**2_0 return measures def A ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' print(F"""{description}:""" ) print(F"""- Time: {measures['time']:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(_UpperCAmelCase )]:.2f}MiB""" ) __lowerCAmelCase : int = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
123
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( a , unittest.TestCase ): '''simple docstring''' _snake_case = OpenAIGPTTokenizer _snake_case = OpenAIGPTTokenizerFast _snake_case = True _snake_case = False def snake_case ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __lowerCAmelCase : Tuple = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] __lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self , SCREAMING_SNAKE_CASE ) -> Any: return "lower newer", "lower newer" def snake_case ( self ) -> List[str]: __lowerCAmelCase : List[str] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __lowerCAmelCase : List[str] = 'lower' __lowerCAmelCase : Union[str, Any] = ['low', 'er</w>'] __lowerCAmelCase : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = tokens + ['<unk>'] __lowerCAmelCase : int = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def snake_case ( self , SCREAMING_SNAKE_CASE=15 ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # Simple input __lowerCAmelCase : Optional[Any] = 'This is a simple input' __lowerCAmelCase : Union[str, Any] = ['This is a simple input 1', 'This is a simple input 2'] __lowerCAmelCase : int = ('This is a simple input', 'This is a pair') __lowerCAmelCase : Optional[Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' , ) def snake_case ( self ) -> int: pass @require_ftfy @require_spacy @require_tokenizers class UpperCamelCase__ ( a ): '''simple docstring''' pass
123
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
91
from dataclasses import dataclass, field from typing import Optional @dataclass class A : _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Model name or path of model to be trained."""} ) _SCREAMING_SNAKE_CASE = field( default="""./""" ,metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" ,metadata={"""help""": """Name or path of training dataset."""} ) _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" ,metadata={"""help""": """Name or path of validation dataset."""} ) _SCREAMING_SNAKE_CASE = field(default=2 ,metadata={"""help""": """Batch size for training."""} ) _SCREAMING_SNAKE_CASE = field(default=2 ,metadata={"""help""": """Batch size for evaluation."""} ) _SCREAMING_SNAKE_CASE = field(default=0.1 ,metadata={"""help""": """Value of weight decay."""} ) _SCREAMING_SNAKE_CASE = field( default=10_000 ,metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) _SCREAMING_SNAKE_CASE = field(default=2E-4 ,metadata={"""help""": """Learning rate fo training."""} ) _SCREAMING_SNAKE_CASE = field(default="""cosine""" ,metadata={"""help""": """Learning rate."""} ) _SCREAMING_SNAKE_CASE = field( default=750 ,metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) _SCREAMING_SNAKE_CASE = field( default=16 ,metadata={"""help""": """Number of gradient accumulation steps."""} ) _SCREAMING_SNAKE_CASE = field( default=__UpperCAmelCase ,metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) _SCREAMING_SNAKE_CASE = field(default=50_000 ,metadata={"""help""": """Maximum number of training steps."""} ) _SCREAMING_SNAKE_CASE = field( default=-1 ,metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) _SCREAMING_SNAKE_CASE = field(default=1_024 ,metadata={"""help""": """Sequence lengths used for training."""} ) _SCREAMING_SNAKE_CASE = field(default=1 ,metadata={"""help""": """Training seed."""} ) _SCREAMING_SNAKE_CASE = field( default=1_024 ,metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} ,) _SCREAMING_SNAKE_CASE = field( default=__UpperCAmelCase ,metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) _SCREAMING_SNAKE_CASE = field(default=__UpperCAmelCase ,metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class A : _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Model name or path of model to be evaluated."""} ) _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" ,metadata={"""help""": """Name or path of validation dataset."""} ) _SCREAMING_SNAKE_CASE = field(default=2 ,metadata={"""help""": """Batch size used for evaluation."""} ) _SCREAMING_SNAKE_CASE = field( default=-1 ,metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) _SCREAMING_SNAKE_CASE = field(default=1_024 ,metadata={"""help""": """Length of sequences to be evaluated."""} ) _SCREAMING_SNAKE_CASE = field(default=1 ,metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class A : _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Model name or path of model to be evaluated."""} ) _SCREAMING_SNAKE_CASE = field(default=__UpperCAmelCase ,metadata={"""help""": """Number of workers used for code evaluation."""} ) _SCREAMING_SNAKE_CASE = field( default=__UpperCAmelCase ,metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} ,) _SCREAMING_SNAKE_CASE = field( default=__UpperCAmelCase ,metadata={"""help""": """Sample from the language model's output distribution."""} ) _SCREAMING_SNAKE_CASE = field(default=0.2 ,metadata={"""help""": """Sampling temperature used for generation."""} ) _SCREAMING_SNAKE_CASE = field(default=256 ,metadata={"""help""": """Maximum number of newly generated tokens."""} ) _SCREAMING_SNAKE_CASE = field(default=0 ,metadata={"""help""": """Top-k parameter used for generation."""} ) _SCREAMING_SNAKE_CASE = field(default=0.9_5 ,metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) _SCREAMING_SNAKE_CASE = field(default=10 ,metadata={"""help""": """Number of generations to run in parallel."""} ) _SCREAMING_SNAKE_CASE = field( default=200 ,metadata={"""help""": """Number of completions to generate for each sample."""} ) _SCREAMING_SNAKE_CASE = field(default=1 ,metadata={"""help""": """Random seed used for evaluation."""} ) _SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" ,metadata={"""help""": """Random seed used for evaluation."""} ) _SCREAMING_SNAKE_CASE = field( default="""0""" ,metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) _SCREAMING_SNAKE_CASE = field( default=-1 ,metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } ,) @dataclass class A : _SCREAMING_SNAKE_CASE = field( default=__UpperCAmelCase ,metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } ,) _SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" ,metadata={"""help""": """Folder or name of dataset to process."""} ) _SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" ,metadata={"""help""": """Folder to save processed processed dataset."""} ) _SCREAMING_SNAKE_CASE = field( default=100_000 ,metadata={"""help""": """Number of files to save per JSON output file."""} ) _SCREAMING_SNAKE_CASE = field(default="""content""" ,metadata={"""help""": """Column containing text data to process."""} ) _SCREAMING_SNAKE_CASE = field( default=1_000 ,metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) _SCREAMING_SNAKE_CASE = field( default=100 ,metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) _SCREAMING_SNAKE_CASE = field( default=0.2_5 ,metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) _SCREAMING_SNAKE_CASE = field( default=1.5 ,metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) _SCREAMING_SNAKE_CASE = field( default=0.7 ,metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Name or path to the tokenizer."""} ,) _SCREAMING_SNAKE_CASE = field( default=__UpperCAmelCase ,metadata={"""help""": """If True, near-duplicate samples are removed."""} ) _SCREAMING_SNAKE_CASE = field( default=0.8_5 ,metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class A : _SCREAMING_SNAKE_CASE = field( default="""gpt2""" ,metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) _SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" ,metadata={"""help""": """Dataset to train tokenizer on."""} ) _SCREAMING_SNAKE_CASE = field(default="""content""" ,metadata={"""help""": """Column containing text data to process."""} ) _SCREAMING_SNAKE_CASE = field(default=200_000 ,metadata={"""help""": """Number of examples to train tokenizer on."""} ) _SCREAMING_SNAKE_CASE = field( default=32_768 ,metadata={"""help""": """Number of examples to train the tokenizer on."""} ) _SCREAMING_SNAKE_CASE = field(default="""codeparrot""" ,metadata={"""help""": """Name of new tokenizer."""} ) _SCREAMING_SNAKE_CASE = field(default=__UpperCAmelCase ,metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class A : _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Name or path to the tokenizer."""} ) _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" ,metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) _SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" ,metadata={"""help""": """Repo name of the pretokenized data."""} ) _SCREAMING_SNAKE_CASE = field(default=__UpperCAmelCase ,metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class A : _SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" ,metadata={"""help""": """Configuration to use for model initialization."""} ) _SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" ,metadata={"""help""": """Tokenizer attached to model."""} ) _SCREAMING_SNAKE_CASE = field(default="""codeparrot""" ,metadata={"""help""": """Name of the created model."""} ) _SCREAMING_SNAKE_CASE = field(default=__UpperCAmelCase ,metadata={"""help""": """Push saved tokenizer to the hub."""} )
326
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ (__lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = StableDiffusionDiffEditPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} lowerCamelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCamelCase__ = frozenset([] ) def __a ( self ) -> str: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_one=_a , ) lowerCAmelCase_ = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_zero=_a , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) lowerCAmelCase_ = CLIPTextModel(_a ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __a ( self , _a , _a=0 ) -> Any: lowerCAmelCase_ = floats_tensor((1, 16, 16) , rng=random.Random(_a ) ).to(_a ) lowerCAmelCase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __a ( self , _a , _a=0 ) -> Optional[Any]: lowerCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(_a ) ).convert("RGB" ) if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __a ( self , _a , _a=0 ) -> List[Any]: lowerCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(_a ) ).convert("RGB" ) if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def __a ( self ) -> Optional[int]: if not hasattr(self.pipeline_class , "_optional_components" ): return lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_a , _a , _a ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = pipe(**_a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_a ) lowerCAmelCase_ = self.pipeline_class.from_pretrained(_a ) pipe_loaded.to(_a ) pipe_loaded.set_progress_bar_config(disable=_a ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_a , _a ) is None , f"`{optional_component}` did not stay set to None after loading." , ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = pipe_loaded(**_a )[0] lowerCAmelCase_ = np.abs(output - output_loaded ).max() self.assertLess(_a , 1E-4 ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "cpu" lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_mask_inputs(_a ) lowerCAmelCase_ = pipe.generate_mask(**_a ) lowerCAmelCase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCAmelCase_ = np.array([0] * 9 ) lowerCAmelCase_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = "cpu" lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inversion_inputs(_a ) lowerCAmelCase_ = pipe.invert(**_a ).images lowerCAmelCase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase_ = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) lowerCAmelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1E-3 ) def __a ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def __a ( self ) -> Tuple: lowerCAmelCase_ = "cpu" lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = {"beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "beta_schedule": "scaled_linear"} lowerCAmelCase_ = DPMSolverMultistepScheduler(**_a ) lowerCAmelCase_ = DPMSolverMultistepInverseScheduler(**_a ) lowerCAmelCase_ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inversion_inputs(_a ) lowerCAmelCase_ = pipe.invert(**_a ).images lowerCAmelCase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase_ = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) lowerCAmelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1E-3 ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): def __a ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __a ( cls ) -> str: lowerCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) lowerCAmelCase_ = raw_image.convert("RGB" ).resize((768, 768) ) lowerCAmelCase_ = raw_image def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=_a , torch_dtype=torch.floataa ) lowerCAmelCase_ = DDIMScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "a bowl of fruit" lowerCAmelCase_ = "a bowl of pears" lowerCAmelCase_ = pipe.generate_mask( image=self.raw_image , source_prompt=_a , target_prompt=_a , generator=_a , ) lowerCAmelCase_ = pipe.invert( prompt=_a , image=self.raw_image , inpaint_strength=0.7 , generator=_a ).latents lowerCAmelCase_ = pipe( prompt=_a , mask_image=_a , image_latents=_a , generator=_a , negative_prompt=_a , inpaint_strength=0.7 , output_type="numpy" , ).images[0] lowerCAmelCase_ = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def __a ( self ) -> Dict: lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=_a , torch_dtype=torch.floataa ) lowerCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "a bowl of fruit" lowerCAmelCase_ = "a bowl of pears" lowerCAmelCase_ = pipe.generate_mask( image=self.raw_image , source_prompt=_a , target_prompt=_a , generator=_a , ) lowerCAmelCase_ = pipe.invert( prompt=_a , image=self.raw_image , inpaint_strength=0.7 , generator=_a , num_inference_steps=25 , ).latents lowerCAmelCase_ = pipe( prompt=_a , mask_image=_a , image_latents=_a , generator=_a , negative_prompt=_a , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] lowerCAmelCase_ = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
226
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
226
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __UpperCamelCase ( a : int , a : int , a : float = 1 / sqrt(2 ) ) ->IIRFilter: snake_case = tau * frequency / samplerate snake_case = sin(a ) snake_case = cos(a ) snake_case = _sin / (2 * q_factor) snake_case = (1 - _cos) / 2 snake_case = 1 - _cos snake_case = 1 + alpha snake_case = -2 * _cos snake_case = 1 - alpha snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCamelCase ( a : int , a : int , a : float = 1 / sqrt(2 ) ) ->IIRFilter: snake_case = tau * frequency / samplerate snake_case = sin(a ) snake_case = cos(a ) snake_case = _sin / (2 * q_factor) snake_case = (1 + _cos) / 2 snake_case = -1 - _cos snake_case = 1 + alpha snake_case = -2 * _cos snake_case = 1 - alpha snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCamelCase ( a : int , a : int , a : float = 1 / sqrt(2 ) ) ->IIRFilter: snake_case = tau * frequency / samplerate snake_case = sin(a ) snake_case = cos(a ) snake_case = _sin / (2 * q_factor) snake_case = _sin / 2 snake_case = 0 snake_case = -ba snake_case = 1 + alpha snake_case = -2 * _cos snake_case = 1 - alpha snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCamelCase ( a : int , a : int , a : float = 1 / sqrt(2 ) ) ->IIRFilter: snake_case = tau * frequency / samplerate snake_case = sin(a ) snake_case = cos(a ) snake_case = _sin / (2 * q_factor) snake_case = 1 - alpha snake_case = -2 * _cos snake_case = 1 + alpha snake_case = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __UpperCamelCase ( a : int , a : int , a : float , a : float = 1 / sqrt(2 ) , ) ->IIRFilter: snake_case = tau * frequency / samplerate snake_case = sin(a ) snake_case = cos(a ) snake_case = _sin / (2 * q_factor) snake_case = 10 ** (gain_db / 40) snake_case = 1 + alpha * big_a snake_case = -2 * _cos snake_case = 1 - alpha * big_a snake_case = 1 + alpha / big_a snake_case = -2 * _cos snake_case = 1 - alpha / big_a snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCamelCase ( a : int , a : int , a : float , a : float = 1 / sqrt(2 ) , ) ->IIRFilter: snake_case = tau * frequency / samplerate snake_case = sin(a ) snake_case = cos(a ) snake_case = _sin / (2 * q_factor) snake_case = 10 ** (gain_db / 40) snake_case = (big_a + 1) - (big_a - 1) * _cos snake_case = (big_a + 1) + (big_a - 1) * _cos snake_case = (big_a - 1) - (big_a + 1) * _cos snake_case = (big_a - 1) + (big_a + 1) * _cos snake_case = 2 * sqrt(a ) * alpha snake_case = big_a * (pmc + aaa) snake_case = 2 * big_a * mpc snake_case = big_a * (pmc - aaa) snake_case = ppmc + aaa snake_case = -2 * pmpc snake_case = ppmc - aaa snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCamelCase ( a : int , a : int , a : float , a : float = 1 / sqrt(2 ) , ) ->IIRFilter: snake_case = tau * frequency / samplerate snake_case = sin(a ) snake_case = cos(a ) snake_case = _sin / (2 * q_factor) snake_case = 10 ** (gain_db / 40) snake_case = (big_a + 1) - (big_a - 1) * _cos snake_case = (big_a + 1) + (big_a - 1) * _cos snake_case = (big_a - 1) - (big_a + 1) * _cos snake_case = (big_a - 1) + (big_a + 1) * _cos snake_case = 2 * sqrt(a ) * alpha snake_case = big_a * (ppmc + aaa) snake_case = -2 * big_a * pmpc snake_case = big_a * (ppmc - aaa) snake_case = pmc + aaa snake_case = 2 * mpc snake_case = pmc - aaa snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
342
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowercase ( unittest.TestCase ): def UpperCamelCase ( self ) -> int: snake_case = 0 def UpperCamelCase ( self ) -> Optional[int]: snake_case = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(A__ , A__ ) def UpperCamelCase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(A__ ) / '''preprocessor_config.json''' snake_case = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) snake_case = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def UpperCamelCase ( self ) -> str: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(A__ ) / '''preprocessor_config.json''' snake_case = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) snake_case = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def UpperCamelCase ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(A__ ) / '''preprocessor_config.json''' snake_case = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(A__ ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case = CLIPImageProcessor(**A__ ) # save in new folder model_config.save_pretrained(A__ ) config.save_pretrained(A__ ) snake_case = AutoImageProcessor.from_pretrained(A__ ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(A__ , A__ ) def UpperCamelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(A__ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) snake_case = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def UpperCamelCase ( self ) -> Optional[int]: with self.assertRaisesRegex( A__ , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case = AutoImageProcessor.from_pretrained('''clip-base''' ) def UpperCamelCase ( self ) -> int: with self.assertRaisesRegex( A__ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case = AutoImageProcessor.from_pretrained(A__ , revision='''aaaaaa''' ) def UpperCamelCase ( self ) -> str: with self.assertRaisesRegex( A__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def UpperCamelCase ( self ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(A__ ): snake_case = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A__ ): snake_case = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) snake_case = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) snake_case = AutoImageProcessor.from_pretrained(A__ , trust_remote_code=A__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def UpperCamelCase ( self ) -> Optional[int]: try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A__ ): AutoImageProcessor.register(A__ , A__ ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(A__ ) / '''preprocessor_config.json''' snake_case = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) snake_case = CustomImageProcessor.from_pretrained(A__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) snake_case = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase ( self ) -> List[Any]: class _lowercase ( __a ): _UpperCAmelCase = True try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(A__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
342
1
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ : Tuple = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : int = 8 , **SCREAMING_SNAKE_CASE_ : List[str] , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = do_rescale lowerCAmelCase_ : Any = rescale_factor lowerCAmelCase_ : List[str] = do_pad lowerCAmelCase_ : Union[str, Any] = pad_size def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] ): return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None ): lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = get_image_size(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = (old_height // size + 1) * size - old_height lowerCAmelCase_ : Any = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : ImageInput , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[float] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : Any , ): lowerCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ : List[Any] = do_pad if do_pad is not None else self.do_pad lowerCAmelCase_ : Any = pad_size if pad_size is not None else self.pad_size lowerCAmelCase_ : Union[str, Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ : Any = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: lowerCAmelCase_ : Dict = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_pad: lowerCAmelCase_ : Any = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] lowerCAmelCase_ : Tuple = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] lowerCAmelCase_ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
317
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCAmelCase__ ) ) def UpperCamelCase_ ( lowerCAmelCase__ : list[list[int]] , lowerCAmelCase__ : int , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ) -> bool: """simple docstring""" if index == len(lowerCAmelCase__ ): return True # Recursive Step for i in range(lowerCAmelCase__ ): if valid_coloring(graph[index] , lowerCAmelCase__ , lowerCAmelCase__ ): # Color current vertex lowerCAmelCase_ : List[str] = i # Validate coloring if util_color(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index + 1 ): return True # Backtrack lowerCAmelCase_ : Dict = -1 return False def UpperCamelCase_ ( lowerCAmelCase__ : list[list[int]] , lowerCAmelCase__ : int ) -> list[int]: """simple docstring""" lowerCAmelCase_ : str = [-1] * len(lowerCAmelCase__ ) if util_color(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , 0 ): return colored_vertices return []
317
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Any , __A : str=13 , __A : str=7 , __A : Union[str, Any]=True , __A : int=True , __A : Optional[int]=False , __A : Tuple=True , __A : Union[str, Any]=99 , __A : List[str]=32 , __A : Tuple=5 , __A : Tuple=4 , __A : Union[str, Any]=37 , __A : int="gelu" , __A : int=0.1 , __A : Dict=0.1 , __A : int=512 , __A : List[str]=16 , __A : Union[str, Any]=2 , __A : Dict=0.0_2 , __A : Dict=3 , __A : str=4 , __A : str=None , ): __A : List[Any] = parent __A : Optional[Any] = batch_size __A : Tuple = seq_length __A : int = is_training __A : str = use_input_mask __A : List[str] = use_token_type_ids __A : Dict = use_labels __A : Optional[int] = vocab_size __A : Dict = hidden_size __A : List[Any] = num_hidden_layers __A : Dict = num_attention_heads __A : Union[str, Any] = intermediate_size __A : Any = hidden_act __A : List[Any] = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Tuple = max_position_embeddings __A : List[str] = type_vocab_size __A : Dict = type_sequence_label_size __A : List[Any] = initializer_range __A : int = num_labels __A : Dict = num_choices __A : Union[str, Any] = scope def lowerCAmelCase_ ( self : List[Any] ): __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : List[Any] = None if self.use_input_mask: __A : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __A : Union[str, Any] = None __A : int = None __A : List[Any] = None if self.use_labels: __A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) __A : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : List[Any] ): return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str , __A : Optional[Any] , __A : str , __A : List[Any] , __A : Any , __A : Tuple ): __A : Any = DistilBertModel(config=__A ) model.to(__A ) model.eval() __A : Optional[Any] = model(__A , __A ) __A : List[str] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __A : Tuple , __A : Optional[int] , __A : Tuple , __A : List[Any] , __A : Any , __A : List[str] ): __A : Optional[int] = DistilBertForMaskedLM(config=__A ) model.to(__A ) model.eval() __A : Optional[int] = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict , __A : Any , __A : Any , __A : Optional[int] , __A : Optional[int] , __A : List[Any] ): __A : List[str] = DistilBertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() __A : int = model( __A , attention_mask=__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : int , __A : Optional[Any] , __A : List[Any] , __A : str , __A : Optional[Any] , __A : Optional[int] , __A : List[Any] ): __A : Dict = self.num_labels __A : Optional[Any] = DistilBertForSequenceClassification(__A ) model.to(__A ) model.eval() __A : Optional[Any] = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : List[str] , __A : str , __A : Any , __A : Tuple , __A : Tuple , __A : Tuple , __A : Any ): __A : Any = self.num_labels __A : Any = DistilBertForTokenClassification(config=__A ) model.to(__A ) model.eval() __A : Dict = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : List[str] , __A : Optional[Any] , __A : Dict , __A : List[Any] , __A : Optional[int] , __A : Tuple , __A : Any ): __A : List[Any] = self.num_choices __A : Any = DistilBertForMultipleChoice(config=__A ) model.to(__A ) model.eval() __A : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : Optional[Any] = model( __A , attention_mask=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] ): __A : Union[str, Any] = self.prepare_config_and_inputs() ((__A) , (__A) , (__A) , (__A) , (__A) , (__A)) : Any = config_and_inputs __A : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( _lowercase , _lowercase , unittest.TestCase ): _lowercase : Union[str, Any] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _lowercase : List[str] = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Dict = True _lowercase : List[Any] = True _lowercase : str = True _lowercase : Dict = True def lowerCAmelCase_ ( self : Optional[Any] ): __A : Optional[int] = DistilBertModelTester(self ) __A : Dict = ConfigTester(self , config_class=__A , dim=37 ) def lowerCAmelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__A ) def lowerCAmelCase_ ( self : Dict ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__A ) def lowerCAmelCase_ ( self : Union[str, Any] ): __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__A ) def lowerCAmelCase_ ( self : Optional[int] ): __A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__A ) def lowerCAmelCase_ ( self : str ): __A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__A ) def lowerCAmelCase_ ( self : str ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__A ) @slow def lowerCAmelCase_ ( self : int ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : Union[str, Any] = DistilBertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def lowerCAmelCase_ ( self : int ): __A , __A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __A : List[str] = True __A : List[str] = model_class(config=__A ) __A : Any = self._prepare_for_class(__A , __A ) __A : Tuple = torch.jit.trace( __A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) ) __A : List[str] = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A ) loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : Optional[int] ): __A : Dict = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __A : Union[str, Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __A : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __A : Tuple = model(__A , attention_mask=__A )[0] __A : int = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) __A : Optional[int] = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4 ) )
17
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __lowercase ( lowercase_ ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : int=7 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : int=True , UpperCamelCase_ : str=False , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Union[str, Any]=99 , UpperCamelCase_ : Any=32 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : Union[str, Any]=64 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=16 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : int=0.02 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : int=None , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : str=4 , UpperCamelCase_ : List[str]=1 , ): """simple docstring""" __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = num_choices __A = scope __A = q_groups __A = k_groups __A = v_groups __A = post_attention_groups __A = intermediate_groups __A = output_groups def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A = ids_tensor([self.batch_size] , self.num_choices ) __A = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Any ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Dict ): """simple docstring""" __A = SqueezeBertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , UpperCamelCase_ ) __A = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] ): """simple docstring""" __A = SqueezeBertForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ): """simple docstring""" __A = SqueezeBertForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ): """simple docstring""" __A = self.num_labels __A = SqueezeBertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int ): """simple docstring""" __A = self.num_labels __A = SqueezeBertForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict ): """simple docstring""" __A = self.num_choices __A = SqueezeBertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : int ): """simple docstring""" __A = self.prepare_config_and_inputs() ((__A) , (__A) , (__A) , (__A) , (__A) , (__A)) = config_and_inputs __A = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = SqueezeBertModelTester(self ) __A = ConfigTester(self , config_class=UpperCamelCase_ , dim=37 ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCamelCase_ ) @slow def lowerCAmelCase_ ( self : int ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = SqueezeBertModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @require_sentencepiece @require_tokenizers @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" __A = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) __A = torch.tensor([[1, 29_414, 232, 328, 740, 1_140, 12_695, 69, 13, 1_588, 2]] ) __A = model(UpperCamelCase_ )[0] __A = torch.Size((1, 3) ) self.assertEqual(output.shape , UpperCamelCase_ ) __A = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-4 ) )
637
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __A ( A_ ): UpperCamelCase :Tuple = '''data2vec-vision''' def __init__(self , __magic_name__=768 , __magic_name__=12 , __magic_name__=12 , __magic_name__=3072 , __magic_name__="gelu" , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.02 , __magic_name__=1E-12 , __magic_name__=224 , __magic_name__=16 , __magic_name__=3 , __magic_name__=False , __magic_name__=False , __magic_name__=False , __magic_name__=False , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=True , __magic_name__=[3, 5, 7, 11] , __magic_name__=[1, 2, 3, 6] , __magic_name__=True , __magic_name__=0.4 , __magic_name__=256 , __magic_name__=1 , __magic_name__=False , __magic_name__=255 , **__magic_name__ , ): super().__init__(**__magic_name__ ) lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : List[str] = attention_probs_dropout_prob lowerCamelCase__ : Tuple = initializer_range lowerCamelCase__ : str = layer_norm_eps lowerCamelCase__ : Any = image_size lowerCamelCase__ : Any = patch_size lowerCamelCase__ : Any = num_channels lowerCamelCase__ : Union[str, Any] = use_mask_token lowerCamelCase__ : Any = use_absolute_position_embeddings lowerCamelCase__ : Any = use_relative_position_bias lowerCamelCase__ : Tuple = use_shared_relative_position_bias lowerCamelCase__ : str = layer_scale_init_value lowerCamelCase__ : Dict = drop_path_rate lowerCamelCase__ : Any = use_mean_pooling # decode head attributes (semantic segmentation) lowerCamelCase__ : Dict = out_indices lowerCamelCase__ : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) lowerCamelCase__ : List[str] = use_auxiliary_head lowerCamelCase__ : Optional[Any] = auxiliary_loss_weight lowerCamelCase__ : int = auxiliary_channels lowerCamelCase__ : List[Any] = auxiliary_num_convs lowerCamelCase__ : int = auxiliary_concat_input lowerCamelCase__ : Dict = semantic_loss_ignore_index class __A ( A_ ): UpperCamelCase :Union[str, Any] = version.parse('''1.11''' ) @property def _snake_case (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case (self ): return 1E-4
96
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __A ( A_ ): def _snake_case (self ): lowerCamelCase__ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__magic_name__ , """width_multiplier""" ) ) class __A : def __init__(self , __magic_name__ , __magic_name__=13 , __magic_name__=64 , __magic_name__=2 , __magic_name__=3 , __magic_name__="swish" , __magic_name__=3 , __magic_name__=32 , __magic_name__=0.1 , __magic_name__=0.02 , __magic_name__=True , __magic_name__=True , __magic_name__=10 , __magic_name__=None , __magic_name__=0.25 , __magic_name__=0.0 , __magic_name__=0.0 , ): lowerCamelCase__ : Optional[Any] = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : Union[str, Any] = patch_size lowerCamelCase__ : Dict = num_channels lowerCamelCase__ : Optional[Any] = make_divisible(512 * width_multiplier , divisor=8 ) lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Union[str, Any] = conv_kernel_size lowerCamelCase__ : int = output_stride lowerCamelCase__ : Tuple = classifier_dropout_prob lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Tuple = is_training lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : str = initializer_range lowerCamelCase__ : Optional[Any] = scope lowerCamelCase__ : Tuple = width_multiplier lowerCamelCase__ : List[Any] = ffn_dropout lowerCamelCase__ : Union[str, Any] = attn_dropout def _snake_case (self ): lowerCamelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : str = None lowerCamelCase__ : List[Any] = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase__ : int = self.get_config() return config, pixel_values, labels, pixel_labels def _snake_case (self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Any = MobileViTVaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCamelCase__ : Optional[Any] = model(__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : Optional[int] = MobileViTVaForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCamelCase__ : Dict = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Dict = self.num_labels lowerCamelCase__ : Any = MobileViTVaForSemanticSegmentation(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCamelCase__ : Optional[int] = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase__ : Dict = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case (self ): lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ : List[str] = config_and_inputs lowerCamelCase__ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A ( A_ , A_ , unittest.TestCase ): UpperCamelCase :Optional[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase :List[Any] = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase :List[Any] = False UpperCamelCase :int = False UpperCamelCase :Optional[int] = False UpperCamelCase :int = False def _snake_case (self ): lowerCamelCase__ : Optional[int] = MobileViTVaModelTester(self ) lowerCamelCase__ : Optional[int] = MobileViTVaConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def _snake_case (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def _snake_case (self ): pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def _snake_case (self ): pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def _snake_case (self ): pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def _snake_case (self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _snake_case (self ): pass def _snake_case (self ): lowerCamelCase__ ,lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[Any] = model_class(__magic_name__ ) lowerCamelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Union[str, Any] = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def _snake_case (self ): def check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Dict = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[int] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) lowerCamelCase__ : str = outputs.hidden_states lowerCamelCase__ : Dict = 5 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCamelCase__ : Dict = 2 for i in range(len(__magic_name__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCamelCase__ ,lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Any = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Tuple = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def _snake_case (self ): lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) @slow def _snake_case (self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = MobileViTVaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _A () ->List[Any]: '''simple docstring''' lowerCamelCase__ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A ( unittest.TestCase ): @cached_property def _snake_case (self ): return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def _snake_case (self ): lowerCamelCase__ : str = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __magic_name__ ) lowerCamelCase__ : Union[str, Any] = self.default_image_processor lowerCamelCase__ : Any = prepare_img() lowerCamelCase__ : Optional[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : List[str] = model(**__magic_name__ ) # verify the logits lowerCamelCase__ : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) lowerCamelCase__ : Optional[Any] = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) ) @slow def _snake_case (self ): lowerCamelCase__ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : Dict = model.to(__magic_name__ ) lowerCamelCase__ : str = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : str = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Dict = model(**__magic_name__ ) lowerCamelCase__ : List[str] = outputs.logits # verify the logits lowerCamelCase__ : Tuple = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __magic_name__ ) lowerCamelCase__ : Any = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ] , device=__magic_name__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __magic_name__ , atol=1E-4 ) ) @slow def _snake_case (self ): lowerCamelCase__ : Union[str, Any] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : List[Any] = model.to(__magic_name__ ) lowerCamelCase__ : Optional[int] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Dict = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : List[str] = model(**__magic_name__ ) lowerCamelCase__ : str = outputs.logits.detach().cpu() lowerCamelCase__ : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ , target_sizes=[(50, 60)] ) lowerCamelCase__ : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __magic_name__ ) lowerCamelCase__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ ) lowerCamelCase__ : int = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __magic_name__ )
96
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : List[str] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase : Union[str, Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def UpperCamelCase_ ( __a , __a , __a ) -> Any: a__ : Union[str, Any] = state_dict.pop(__a ) a__ : List[str] = val def UpperCamelCase_ ( __a ) -> List[str]: a__ : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: a__ : str = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) a__ : Tuple = value else: a__ : List[str] = value return new_state_dict def UpperCamelCase_ ( __a , __a=False ) -> Any: a__ : Tuple = "" if is_panoptic: a__ : List[Any] = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a__ : Optional[Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a__ : Any = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a__ : Tuple = in_proj_weight[:256, :] a__ : Any = in_proj_bias[:256] a__ : Tuple = in_proj_weight[256:512, :] a__ : List[str] = in_proj_bias[256:512] a__ : Any = in_proj_weight[-256:, :] a__ : Optional[int] = in_proj_bias[-256:] def UpperCamelCase_ ( ) -> Tuple: a__ : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" a__ : List[Any] = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( __a , __a ) -> Dict: a__ : Tuple = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: a__ : Tuple = "resnet101" if "dc5" in model_name: a__ : str = True a__ : int = "panoptic" in model_name if is_panoptic: a__ : List[str] = 250 else: a__ : str = 91 a__ : Union[str, Any] = "huggingface/label-files" a__ : int = "coco-detection-id2label.json" a__ : Optional[Any] = json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) a__ : Any = {int(__a ): v for k, v in idalabel.items()} a__ : Union[str, Any] = idalabel a__ : Optional[Any] = {v: k for k, v in idalabel.items()} # load image processor a__ : Dict = "coco_panoptic" if is_panoptic else "coco_detection" a__ : int = ConditionalDetrImageProcessor(format=__a ) # prepare image a__ : Any = prepare_img() a__ : Dict = image_processor(images=__a , return_tensors="pt" ) a__ : List[Any] = encoding["pixel_values"] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub a__ : Optional[Any] = torch.hub.load("DeppMeng/ConditionalDETR" , __a , pretrained=__a ).eval() a__ : List[str] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: a__ : str = "conditional_detr." + src rename_key(__a , __a , __a ) a__ : Tuple = rename_backbone_keys(__a ) # query, key and value matrices need special treatment read_in_q_k_v(__a , is_panoptic=__a ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a__ : str = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): a__ : Any = state_dict.pop(__a ) a__ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a__ : Dict = state_dict.pop(__a ) a__ : Tuple = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: a__ : Optional[Any] = state_dict.pop(__a ) a__ : Dict = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): a__ : str = state_dict.pop(__a ) a__ : Union[str, Any] = val # finally, create HuggingFace model and load state dict a__ : str = ConditionalDetrForSegmentation(__a ) if is_panoptic else ConditionalDetrForObjectDetection(__a ) model.load_state_dict(__a ) model.eval() model.push_to_hub(repo_id=__a , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion a__ : Dict = conditional_detr(__a ) a__ : int = model(__a ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1e-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) UpperCamelCase : Optional[int] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
37
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A__ ( A__ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase__ : Union[str, "sqlalchemy.sql.Selectable"] , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , **lowerCamelCase__ : Optional[int] , ): super().__init__(features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , **lowerCamelCase__ ) a__ : str = Sql( cache_dir=lowerCamelCase__ , features=lowerCamelCase__ , sql=lowerCamelCase__ , con=lowerCamelCase__ , **lowerCamelCase__ , ) def _UpperCamelCase( self : Tuple ): a__ : Optional[Any] = None a__ : Dict = None a__ : Union[str, Any] = None a__ : Union[str, Any] = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , ) # Build dataset for splits a__ : List[str] = self.builder.as_dataset( split="train" , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase__ : Dataset , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Optional[Any] , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) a__ : Any = dataset a__ : str = name a__ : Tuple = con a__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE a__ : Any = num_proc a__ : Tuple = to_sql_kwargs def _UpperCamelCase( self : List[Any] ): a__ : Any = self.to_sql_kwargs.pop("sql" , lowerCamelCase__ ) a__ : int = self.to_sql_kwargs.pop("con" , lowerCamelCase__ ) a__ : int = self.to_sql_kwargs.pop("index" , lowerCamelCase__ ) a__ : int = self._write(index=lowerCamelCase__ , **self.to_sql_kwargs ) return written def _UpperCamelCase( self : Any , lowerCamelCase__ : List[str] ): a__, a__, a__ : Union[str, Any] = args a__ : Any = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs a__ : Tuple = query_table( table=self.dataset.data , key=slice(lowerCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) a__ : str = batch.to_pandas() a__ : List[Any] = df.to_sql(self.name , self.con , index=lowerCamelCase__ , **lowerCamelCase__ ) return num_rows or len(lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): a__ : str = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: a__, a__ : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCamelCase__ , lowerCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
37
1
"""simple docstring""" class _A : """simple docstring""" def __init__( self : Optional[Any] , A_ : Tuple , A_ : List[Any] , A_ : List[Any] ) -> Optional[int]: __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ) -> List[str]: return f"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def lowercase ( self : List[str] ) -> Optional[int]: return self.value def lowercase ( self : Tuple ) -> int: return self.name def lowercase ( self : str ) -> Optional[int]: return self.weight def lowercase ( self : Dict ) -> Optional[Any]: return self.value / self.weight def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): __snake_case = [] for i in range(len(snake_case)): menu.append(Things(name[i], value[i], weight[i])) return menu def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): __snake_case = sorted(snake_case, key=snake_case, reverse=snake_case) __snake_case = [] __snake_case = 0.0, 0.0 for i in range(len(snake_case)): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i]) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def SCREAMING_SNAKE_CASE ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
721
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def SCREAMING_SNAKE_CASE ( snake_case, snake_case = True, snake_case = math.inf, snake_case = -math.inf, snake_case = math.inf, snake_case = -math.inf, snake_case = False, snake_case = 1_00, snake_case = 0.01, snake_case = 1, ): __snake_case = False __snake_case = search_prob __snake_case = start_temperate __snake_case = [] __snake_case = 0 __snake_case = None while not search_end: __snake_case = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case = current_state scores.append(snake_case) iterations += 1 __snake_case = None __snake_case = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case = random.randint(0, len(snake_case) - 1) # picking a random neighbor __snake_case = neighbors.pop(snake_case) __snake_case = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case = picked_neighbor else: __snake_case = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case = picked_neighbor __snake_case = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case = True else: __snake_case = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(snake_case), snake_case) plt.xlabel('''Iterations''') plt.ylabel('''Function values''') plt.show() return best_state if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __lowercase : Dict = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowercase : Union[str, Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) __lowercase : Any = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowercase : int = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return (3 * x**2) - (6 * y) __lowercase : List[str] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowercase : Dict = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" ) __lowercase : Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowercase : Tuple = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" )
93
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __snake_case : '''simple docstring''' def __init__( self , A_ , A_=13 , A_=2 , A_=24 , A_=16 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=None , A_=2 , A_=2 , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = max_length SCREAMING_SNAKE_CASE__ = num_mel_bins SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = frequency_stride SCREAMING_SNAKE_CASE__ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) SCREAMING_SNAKE_CASE__ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 SCREAMING_SNAKE_CASE__ = (self.max_length - self.patch_size) // self.time_stride + 1 SCREAMING_SNAKE_CASE__ = frequency_out_dimension * time_out_dimension SCREAMING_SNAKE_CASE__ = num_patches + 2 def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_values, labels def lowercase_ ( self ): '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def lowercase_ ( self , A_ , A_ , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ASTModel(config=A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''input_values''': input_values} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Union[str, Any] = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Tuple = False def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ASTModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(A_ ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ['''input_values'''] self.assertListEqual(arg_names[:1] , A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = ASTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def __snake_case ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = torchaudio.load(lowerCAmelCase_ ) return audio, sampling_rate @require_torch @require_torchaudio class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase_ ( self ): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.default_feature_extractor SCREAMING_SNAKE_CASE__ = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(A_ ) SCREAMING_SNAKE_CASE__ = self.default_feature_extractor SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = prepare_audio() SCREAMING_SNAKE_CASE__ = audio.squeeze().numpy() SCREAMING_SNAKE_CASE__ = feature_extractor(A_ , sampling_rate=A_ , return_tensors='''pt''' ).to(A_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**A_ ) # verify the logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , A_ ) SCREAMING_SNAKE_CASE__ = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) )
100
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _lowercase = logging.get_logger(__name__) class __A : UpperCamelCase :Union[str, Any] = None @experimental def _A (UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] ) ->List[str]: '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) return _map_with_joblib(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def _A (UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : str ) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__ : Dict = num_proc if num_proc <= len(UpperCamelCase ) else len(UpperCamelCase ) lowerCamelCase__ : List[Any] = [] # We organize the splits ourselve (contiguous splits) for index in range(UpperCamelCase ): lowerCamelCase__ : Optional[Any] = len(UpperCamelCase ) // num_proc lowerCamelCase__ : Optional[int] = len(UpperCamelCase ) % num_proc lowerCamelCase__ : List[str] = div * index + min(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : int = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(UpperCamelCase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"Error dividing inputs iterable among processes. " f"Total number of objects {len(UpperCamelCase )}, " f"length: {sum(len(i[1] ) for i in split_kwds )}" ) logger.info( f"Spawning {num_proc} processes for {len(UpperCamelCase )} objects in slices of {[len(i[1] ) for i in split_kwds]}" ) lowerCamelCase__ ,lowerCamelCase__ : List[str] = None, None if not disable_tqdm: lowerCamelCase__ ,lowerCamelCase__ : List[Any] = (RLock(),), tqdm.set_lock with Pool(UpperCamelCase , initargs=UpperCamelCase , initializer=UpperCamelCase ) as pool: lowerCamelCase__ : List[Any] = pool.map(UpperCamelCase , UpperCamelCase ) logger.info(f"Finished {num_proc} processes" ) lowerCamelCase__ : Any = [obj for proc_res in mapped for obj in proc_res] logger.info(f"Unpacked {len(UpperCamelCase )} objects" ) return mapped def _A (UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[Any] ) ->List[Any]: '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=UpperCamelCase ): return joblib.Parallel()( joblib.delayed(UpperCamelCase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def _A (UpperCamelCase : str ) ->Any: '''simple docstring''' lowerCamelCase__ : str = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowerCamelCase__ : Tuple = None
157
0
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _lowerCAmelCase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Any ) -> Any: _SCREAMING_SNAKE_CASE : Optional[Any] = k_size // 2 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _SCREAMING_SNAKE_CASE : List[Any] = 1 / (2 * pi * sigma) * exp(-(square(lowerCamelCase__ ) + square(lowerCamelCase__ )) / (2 * square(lowerCamelCase__ )) ) return g def _lowerCAmelCase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Any, lowerCamelCase__ : int ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = image.shape[0], image.shape[1] # dst image height and width _SCREAMING_SNAKE_CASE : Union[str, Any] = height - k_size + 1 _SCREAMING_SNAKE_CASE : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _SCREAMING_SNAKE_CASE : int = zeros((dst_height * dst_width, k_size * k_size) ) _SCREAMING_SNAKE_CASE : Dict = 0 for i, j in product(range(lowerCamelCase__ ), range(lowerCamelCase__ ) ): _SCREAMING_SNAKE_CASE : int = ravel(image[i : i + k_size, j : j + k_size] ) _SCREAMING_SNAKE_CASE : List[str] = window row += 1 # turn the kernel into shape(k*k, 1) _SCREAMING_SNAKE_CASE : Union[str, Any] = gen_gaussian_kernel(lowerCamelCase__, lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : int = ravel(lowerCamelCase__ ) # reshape and get the dst image _SCREAMING_SNAKE_CASE : Optional[Any] = dot(lowerCamelCase__, lowerCamelCase__ ).reshape(lowerCamelCase__, lowerCamelCase__ ).astype(lowerCamelCase__ ) return dst if __name__ == "__main__": # read original image lowercase_ : List[str] = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value lowercase_ : int = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size lowercase_ : Optional[Any] = gaussian_filter(gray, 3, sigma=1) lowercase_ : Any = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
295
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _lowerCAmelCase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : Any=1_0_2_4 ) -> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = [], [] _SCREAMING_SNAKE_CASE : Union[str, Any] = list(zip(lowerCamelCase__, lowerCamelCase__ ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = sorted_examples[0] def is_too_big(lowerCamelCase__ : List[Any] ): return tok(lowerCamelCase__, return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): _SCREAMING_SNAKE_CASE : int = new_src + " " + src _SCREAMING_SNAKE_CASE : Union[str, Any] = new_tgt + " " + tgt if is_too_big(lowerCamelCase__ ) or is_too_big(lowerCamelCase__ ): # cant fit, finalize example finished_src.append(lowerCamelCase__ ) finished_tgt.append(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = src, tgt else: # can fit, keep adding _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowerCamelCase__ ) finished_tgt.append(lowerCamelCase__ ) return finished_src, finished_tgt def _lowerCAmelCase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Path, lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = Path(lowerCamelCase__ ) save_path.mkdir(exist_ok=lowerCamelCase__ ) for split in ["train"]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' _SCREAMING_SNAKE_CASE : Any = [x.rstrip() for x in Path(lowerCamelCase__ ).open().readlines()] _SCREAMING_SNAKE_CASE : int = [x.rstrip() for x in Path(lowerCamelCase__ ).open().readlines()] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = pack_examples(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) print(f'''packed {split} split from {len(lowerCamelCase__ )} examples -> {len(lowerCamelCase__ )}.''' ) Path(save_path / f'''{split}.source''' ).open("w" ).write("\n".join(lowerCamelCase__ ) ) Path(save_path / f'''{split}.target''' ).open("w" ).write("\n".join(lowerCamelCase__ ) ) for split in ["val", "test"]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(lowerCamelCase__, save_path / f'''{split}.source''' ) shutil.copyfile(lowerCamelCase__, save_path / f'''{split}.target''' ) def _lowerCAmelCase ( ) -> int: _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--tok_name", type=lowerCamelCase__, help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len", type=lowerCamelCase__, default=1_2_8 ) parser.add_argument("--data_dir", type=lowerCamelCase__ ) parser.add_argument("--save_path", type=lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() _SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(lowerCamelCase__, Path(args.data_dir ), args.max_seq_len, args.save_path ) if __name__ == "__main__": packer_cli()
295
1
'''simple docstring''' from __future__ import annotations _a : Dict = list[tuple[int, int]] _a : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a : int = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _lowercase : def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Node | None , ) -> Optional[int]: __snake_case = pos_x __snake_case = pos_y __snake_case = (pos_y, pos_x) __snake_case = goal_x __snake_case = goal_y __snake_case = g_cost __snake_case = parent __snake_case = self.calculate_heuristic() def a ( self : Tuple ) -> float: __snake_case = abs(self.pos_x - self.goal_x ) __snake_case = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] ) -> bool: return self.f_cost < other.f_cost class _lowercase : def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : tuple[int, int] , SCREAMING_SNAKE_CASE_ : tuple[int, int] ) -> str: __snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE_ ) __snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , SCREAMING_SNAKE_CASE_ ) __snake_case = [self.start] __snake_case = [] __snake_case = False def a ( self : Optional[int] ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __snake_case = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __snake_case = True return self.retrace_path(SCREAMING_SNAKE_CASE_ ) self.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_successors(SCREAMING_SNAKE_CASE_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: # retrieve the best current path __snake_case = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) if not self.reached: return [self.start.pos] return None def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : Node ) -> list[Node]: __snake_case = [] for action in delta: __snake_case = parent.pos_x + action[1] __snake_case = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE_ , ) ) return successors def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Node | None ) -> Path: __snake_case = node __snake_case = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __snake_case = current_node.parent path.reverse() return path if __name__ == "__main__": _a : List[str] = (0, 0) _a : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") _a : int = GreedyBestFirst(init, goal) _a : Optional[Any] = greedy_bf.search() if path: for pos_x, pos_y in path: _a : Union[str, Any] = 2 for elem in grid: print(elem)
56
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = 1_0 __snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Dict ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files _a : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' __snake_case = FILE_CONTENT with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __snake_case = bytes(lowercase__ , 'utf-8' ) with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __snake_case = bytes(lowercase__ , 'utf-8' ) with gzip.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __snake_case = bytes(lowercase__ , 'utf-8' ) with lza.frame.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Tuple ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase__ , 'w' ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Tuple: """simple docstring""" import tarfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" import lzma __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __snake_case = bytes(lowercase__ , 'utf-8' ) with lzma.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" import zipfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __snake_case = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' __snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename _a : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _a : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _a : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _a : Optional[int] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _a : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def _a () -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = datasets.Dataset.from_dict(lowercase__ ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> Dict: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: __snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase__ , 'rb' ) as f: __snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int ) -> int: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase__ , 'wb' ) as f: __snake_case = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) __snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA_DICT_OF_LISTS} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : int ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> List[Any]: """simple docstring""" __snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a () -> int: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _a () -> Optional[int]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
56
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Tuple , *__lowercase : Optional[Any] , **__lowercase : str ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *__lowercase : List[Any] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[Any] , *__lowercase : Union[str, Any] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Dict , *__lowercase : int , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : List[str] , *__lowercase : Optional[int] , **__lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Dict , *__lowercase : str , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[Any] , *__lowercase : List[str] , **__lowercase : Tuple ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : int , *__lowercase : List[Any] , **__lowercase : str ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *__lowercase : Optional[Any] , **__lowercase : int ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : List[Any] , *__lowercase : List[Any] , **__lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : List[Any] , *__lowercase : Any , **__lowercase : Dict ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : int , *__lowercase : List[str] , **__lowercase : str ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : int , *__lowercase : Tuple , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *__lowercase : Dict , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : str , *__lowercase : Tuple , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : List[Any] , *__lowercase : int , **__lowercase : Tuple ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : List[str] , *__lowercase : List[str] , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Any , *__lowercase : Any , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Any , *__lowercase : int , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[Any] , *__lowercase : Any , **__lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Dict , *__lowercase : Dict , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Dict , *__lowercase : Union[str, Any] , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *__lowercase : List[str] , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[Any] , *__lowercase : Optional[int] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : List[Any] , *__lowercase : str , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *__lowercase : List[str] , **__lowercase : str ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Tuple , *__lowercase : int , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[Any] , *__lowercase : List[Any] , **__lowercase : List[str] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *__lowercase : Union[str, Any] , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Tuple , *__lowercase : Union[str, Any] , **__lowercase : List[str] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *__lowercase : str , **__lowercase : Tuple ): """simple docstring""" requires_backends(self , ["sentencepiece"] )
139
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = BertConfig.from_json_file(_A ) print(f"Building PyTorch model from configuration: {config}" ) snake_case_ = BertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_bert(_A , _A , _A ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
139
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''align_text_model''' def __init__( self : Optional[int] , _A : Union[str, Any]=3_0522 , _A : List[str]=768 , _A : List[Any]=12 , _A : int=12 , _A : str=3072 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=0.1 , _A : List[str]=0.1 , _A : List[str]=512 , _A : Union[str, Any]=2 , _A : Optional[int]=0.02 , _A : Optional[int]=1e-12 , _A : List[str]=0 , _A : Optional[Any]="absolute" , _A : Tuple=True , **_A : str , ): """simple docstring""" super().__init__(**_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size __SCREAMING_SNAKE_CASE : Dict = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = hidden_act __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : int = max_position_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type __SCREAMING_SNAKE_CASE : Tuple = use_cache __SCREAMING_SNAKE_CASE : Union[str, Any] = pad_token_id @classmethod def UpperCAmelCase__ ( cls : int , _A : Union[str, os.PathLike] , **_A : Union[str, Any] ): """simple docstring""" cls._set_token_in_kwargs(_A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = cls.get_config_dict(_A , **_A ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __SCREAMING_SNAKE_CASE : str = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_A , **_A ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''align_vision_model''' def __init__( self : Dict , _A : int = 3 , _A : int = 600 , _A : float = 2.0 , _A : float = 3.1 , _A : int = 8 , _A : List[int] = [3, 3, 5, 3, 5, 5, 3] , _A : List[int] = [32, 16, 24, 40, 80, 112, 192] , _A : List[int] = [16, 24, 40, 80, 112, 192, 320] , _A : List[int] = [] , _A : List[int] = [1, 2, 2, 2, 1, 2, 1] , _A : List[int] = [1, 2, 2, 3, 3, 4, 1] , _A : List[int] = [1, 6, 6, 6, 6, 6, 6] , _A : float = 0.25 , _A : str = "swish" , _A : int = 2560 , _A : str = "mean" , _A : float = 0.02 , _A : float = 0.0_01 , _A : float = 0.99 , _A : float = 0.2 , **_A : Optional[Any] , ): """simple docstring""" super().__init__(**_A ) __SCREAMING_SNAKE_CASE : Optional[int] = num_channels __SCREAMING_SNAKE_CASE : Tuple = image_size __SCREAMING_SNAKE_CASE : Any = width_coefficient __SCREAMING_SNAKE_CASE : Union[str, Any] = depth_coefficient __SCREAMING_SNAKE_CASE : Tuple = depth_divisor __SCREAMING_SNAKE_CASE : Any = kernel_sizes __SCREAMING_SNAKE_CASE : Tuple = in_channels __SCREAMING_SNAKE_CASE : str = out_channels __SCREAMING_SNAKE_CASE : str = depthwise_padding __SCREAMING_SNAKE_CASE : List[Any] = strides __SCREAMING_SNAKE_CASE : List[str] = num_block_repeats __SCREAMING_SNAKE_CASE : Union[str, Any] = expand_ratios __SCREAMING_SNAKE_CASE : Union[str, Any] = squeeze_expansion_ratio __SCREAMING_SNAKE_CASE : int = hidden_act __SCREAMING_SNAKE_CASE : str = hidden_dim __SCREAMING_SNAKE_CASE : Union[str, Any] = pooling_type __SCREAMING_SNAKE_CASE : Any = initializer_range __SCREAMING_SNAKE_CASE : int = batch_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = batch_norm_momentum __SCREAMING_SNAKE_CASE : Optional[int] = drop_connect_rate __SCREAMING_SNAKE_CASE : Optional[Any] = sum(_A ) * 4 @classmethod def UpperCAmelCase__ ( cls : Any , _A : Union[str, os.PathLike] , **_A : Optional[Any] ): """simple docstring""" cls._set_token_in_kwargs(_A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __SCREAMING_SNAKE_CASE : List[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_A , **_A ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''align''' lowerCAmelCase_ = True def __init__( self : str , _A : Optional[int]=None , _A : Optional[int]=None , _A : Dict=640 , _A : int=1.0 , _A : Any=0.02 , **_A : int , ): """simple docstring""" super().__init__(**_A ) if text_config is None: __SCREAMING_SNAKE_CASE : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: __SCREAMING_SNAKE_CASE : Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) __SCREAMING_SNAKE_CASE : Tuple = AlignTextConfig(**_A ) __SCREAMING_SNAKE_CASE : int = AlignVisionConfig(**_A ) __SCREAMING_SNAKE_CASE : Optional[int] = projection_dim __SCREAMING_SNAKE_CASE : str = temperature_init_value __SCREAMING_SNAKE_CASE : Any = initializer_range @classmethod def UpperCAmelCase__ ( cls : Dict , _A : AlignTextConfig , _A : AlignVisionConfig , **_A : str ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_A ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.text_config.to_dict() __SCREAMING_SNAKE_CASE : Optional[int] = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE : int = self.__class__.model_type return output
74
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class lowerCAmelCase__ : '''simple docstring''' def __init__( self : int , snake_case__ : int ) -> Any: _lowerCamelCase = [[] for _ in range(snake_case__ )] _lowerCamelCase = size def __getitem__( self : Dict , snake_case__ : int ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self : str ) -> int: return self._size def _snake_case ( self : List[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> Tuple: if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(snake_case__ , snake_case__ ) ) def _snake_case ( self : Dict , snake_case__ : int , snake_case__ : int ) -> int | None: _lowerCamelCase = deque([start_vertex] ) _lowerCamelCase = [None] * self.size _lowerCamelCase = 0 while queue: _lowerCamelCase = queue.popleft() _lowerCamelCase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _lowerCamelCase = current_distance + edge.weight _lowerCamelCase = distances[edge.destination_vertex] if ( isinstance(snake_case__ , snake_case__ ) and new_distance >= dest_vertex_distance ): continue _lowerCamelCase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
544
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): '''simple docstring''' lowerCAmelCase_ = None def lowerCamelCase ( UpperCamelCase : "pyspark.sql.DataFrame" , UpperCamelCase : List[int] , ) -> List[Any]: import pyspark def generate_fn(): _lowerCamelCase = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: _lowerCamelCase = df_with_partition_id.select('*' ).where(F"""part_id = {partition_id}""" ).drop('part_id' ) _lowerCamelCase = partition_df.collect() _lowerCamelCase = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class lowerCAmelCase__ ( _BaseExamplesIterable ): '''simple docstring''' def __init__( self : int , snake_case__ : "pyspark.sql.DataFrame" , snake_case__ : Optional[int]=None , ) -> List[str]: _lowerCamelCase = df _lowerCamelCase = partition_order or range(self.df.rdd.getNumPartitions() ) _lowerCamelCase = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Tuple ) -> Optional[Any]: yield from self.generate_examples_fn() def _snake_case ( self : Dict , snake_case__ : np.random.Generator ) -> "SparkExamplesIterable": _lowerCamelCase = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(snake_case__ ) return SparkExamplesIterable(self.df , partition_order=snake_case__ ) def _snake_case ( self : List[Any] , snake_case__ : int , snake_case__ : int ) -> "SparkExamplesIterable": _lowerCamelCase = self.split_shard_indices_by_worker(snake_case__ , snake_case__ ) return SparkExamplesIterable(self.df , partition_order=snake_case__ ) @property def _snake_case ( self : List[str] ) -> int: return len(self.partition_order ) class lowerCAmelCase__ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCAmelCase_ = SparkConfig def __init__( self : Union[str, Any] , snake_case__ : "pyspark.sql.DataFrame" , snake_case__ : str = None , snake_case__ : str = None , **snake_case__ : Union[str, Any] , ) -> str: import pyspark _lowerCamelCase = pyspark.sql.SparkSession.builder.getOrCreate() _lowerCamelCase = df _lowerCamelCase = working_dir super().__init__( cache_dir=snake_case__ , config_name=str(self.df.semanticHash() ) , **snake_case__ , ) def _snake_case ( self : Union[str, Any] ) -> List[str]: # Returns the path of the created file. def create_cache_and_write_probe(snake_case__ : List[str] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=snake_case__ ) _lowerCamelCase = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(snake_case__ , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowerCamelCase = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(snake_case__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def _snake_case ( self : List[Any] ) -> Union[str, Any]: return datasets.DatasetInfo(features=self.config.features ) def _snake_case ( self : List[Any] , snake_case__ : datasets.download.download_manager.DownloadManager ) -> Optional[int]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _snake_case ( self : Dict , snake_case__ : int ) -> int: import pyspark def get_arrow_batch_size(snake_case__ : List[str] ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) _lowerCamelCase = self.df.count() _lowerCamelCase = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowerCamelCase = ( self.df.limit(snake_case__ ) .repartition(1 ) .mapInArrow(snake_case__ , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowerCamelCase = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowerCamelCase = min(snake_case__ , int(approx_total_size / max_shard_size ) ) _lowerCamelCase = self.df.repartition(snake_case__ ) def _snake_case ( self : Optional[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark _lowerCamelCase = ParquetWriter if file_format == 'parquet' else ArrowWriter _lowerCamelCase = os.path.join(self._working_dir , os.path.basename(snake_case__ ) ) if self._working_dir else fpath _lowerCamelCase = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowerCamelCase = self.config.features _lowerCamelCase = self._writer_batch_size _lowerCamelCase = self._fs.storage_options def write_arrow(snake_case__ : Any ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowerCamelCase = pyspark.TaskContext().taskAttemptId() _lowerCamelCase = next(snake_case__ , snake_case__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) _lowerCamelCase = 0 _lowerCamelCase = writer_class( features=snake_case__ , path=working_fpath.replace('SSSSS' , f"""{shard_id:05d}""" ).replace('TTTTT' , f"""{task_id:05d}""" ) , writer_batch_size=snake_case__ , storage_options=snake_case__ , embed_local_files=snake_case__ , ) _lowerCamelCase = pa.Table.from_batches([first_batch] ) writer.write_table(snake_case__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowerCamelCase , _lowerCamelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 _lowerCamelCase = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f"""{shard_id:05d}""" ).replace('TTTTT' , f"""{task_id:05d}""" ) , writer_batch_size=snake_case__ , storage_options=snake_case__ , embed_local_files=snake_case__ , ) _lowerCamelCase = pa.Table.from_batches([batch] ) writer.write_table(snake_case__ ) if writer._num_bytes > 0: _lowerCamelCase , _lowerCamelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(snake_case__ ) ): _lowerCamelCase = os.path.join(os.path.dirname(snake_case__ ) , os.path.basename(snake_case__ ) ) shutil.move(snake_case__ , snake_case__ ) _lowerCamelCase = ( self.df.mapInArrow(snake_case__ , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _snake_case ( self : Any , snake_case__ : "datasets.SplitGenerator" , snake_case__ : str = "arrow" , snake_case__ : Optional[Union[str, int]] = None , snake_case__ : Optional[int] = None , **snake_case__ : Optional[int] , ) -> Dict: self._validate_cache_dir() _lowerCamelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(snake_case__ ) _lowerCamelCase = not is_remote_filesystem(self._fs ) _lowerCamelCase = os.path.join if is_local else posixpath.join _lowerCamelCase = '-TTTTT-SSSSS-of-NNNNN' _lowerCamelCase = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _lowerCamelCase = path_join(self._output_dir , snake_case__ ) _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = [] _lowerCamelCase = [] for task_id, content in self._prepare_split_single(snake_case__ , snake_case__ , snake_case__ ): ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(snake_case__ ) _lowerCamelCase = total_num_examples _lowerCamelCase = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: _lowerCamelCase = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowerCamelCase = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( snake_case__ : int , snake_case__ : int , snake_case__ : int , ): rename( snake_case__ , fpath.replace('SSSSS' , f"""{shard_id:05d}""" ).replace('TTTTT' , f"""{task_id:05d}""" ) , fpath.replace('TTTTT-SSSSS' , f"""{global_shard_id:05d}""" ).replace('NNNNN' , f"""{total_shards:05d}""" ) , ) _lowerCamelCase = [] _lowerCamelCase = 0 for i in range(len(snake_case__ ) ): _lowerCamelCase , _lowerCamelCase = task_id_and_num_shards[i] for shard_id in range(snake_case__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(snake_case__ , len(snake_case__ ) ).map(lambda snake_case__ : _rename_shard(*snake_case__ ) ).collect() else: # don't use any pattern _lowerCamelCase = 0 _lowerCamelCase = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f"""{shard_id:05d}""" ).replace('TTTTT' , f"""{task_id:05d}""" ) , fpath.replace(snake_case__ , '' ) , ) def _snake_case ( self : List[Any] , snake_case__ : "datasets.SplitGenerator" , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
712
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __lt__( self : Optional[Any] , snake_case__ : Optional[int] ) -> Dict: return self[-1] < other[-1] def __eq__( self : List[str] , snake_case__ : Tuple ) -> Dict: return self[-1] == other[-1] def lowerCamelCase ( UpperCamelCase : list ) -> list: _lowerCamelCase = [] # sort into stacks for element in collection: _lowerCamelCase = Stack([element] ) _lowerCamelCase = bisect_left(UpperCamelCase , UpperCamelCase ) if i != len(UpperCamelCase ): stacks[i].append(UpperCamelCase ) else: stacks.append(UpperCamelCase ) # use a heap-based merge to merge stack efficiently _lowerCamelCase = merge(*(reversed(UpperCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": A = input('Enter numbers separated by a comma:\n').strip() A = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
234
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __UpperCamelCase : Tuple = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
328
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def a_ ( _A , _A ) -> List[Any]: """simple docstring""" snake_case__ = old_name if "patch_embed" in old_name: snake_case__ , snake_case__ , snake_case__ = old_name.split('.' ) if layer == "0": snake_case__ = old_name.replace('0' , 'convolution1' ) elif layer == "1": snake_case__ = old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": snake_case__ = old_name.replace('3' , 'convolution2' ) else: snake_case__ = old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(R'\d\.\d' , _A ): snake_case__ = R'\b\d{2}\b' if bool(re.search(_A , _A ) ): snake_case__ = re.search(R'\d\.\d\d.' , _A ).group() else: snake_case__ = re.search(R'\d\.\d.' , _A ).group() if int(match[0] ) < 6: snake_case__ = old_name.replace(_A , '' ) snake_case__ = trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) snake_case__ = 'intermediate_stages.' + trimmed_name else: snake_case__ = old_name.replace(_A , '' ) if int(match[2] ) < num_meta4D_last_stage: snake_case__ = trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: snake_case__ = str(int(match[2] ) - num_meta4D_last_stage ) snake_case__ = trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: snake_case__ = trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: snake_case__ = trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: snake_case__ = trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: snake_case__ = trimmed_name.replace('fc2' , 'linear_out' ) snake_case__ = 'last_stage.' + trimmed_name elif "network" in old_name and re.search(R'.\d.' , _A ): snake_case__ = old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: snake_case__ = new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): snake_case__ = new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): snake_case__ = new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: snake_case__ = new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: snake_case__ = new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: snake_case__ = new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: snake_case__ = 'efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": snake_case__ = new_name.replace('norm' , 'layernorm' ) snake_case__ = 'efficientformer.' + new_name else: snake_case__ = 'efficientformer.encoder.' + new_name return new_name def a_ ( _A , _A ) -> Optional[Any]: """simple docstring""" for key in checkpoint.copy().keys(): snake_case__ = checkpoint.pop(_A ) snake_case__ = val return checkpoint def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ = Image.open(requests.get(_A , stream=_A ).raw ) return image def a_ ( _A , _A , _A , _A ) -> Optional[Any]: """simple docstring""" snake_case__ = torch.load(_A , map_location='cpu' )['model'] snake_case__ = EfficientFormerConfig.from_json_file(_A ) snake_case__ = EfficientFormerForImageClassificationWithTeacher(_A ) snake_case__ = '_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) snake_case__ = config.depths[-1] - config.num_metaad_blocks + 1 snake_case__ = convert_torch_checkpoint(_A , _A ) model.load_state_dict(_A ) model.eval() snake_case__ = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image snake_case__ = prepare_img() snake_case__ = 256 snake_case__ = 224 snake_case__ = EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) snake_case__ = processor(images=_A , return_tensors='pt' ).pixel_values # original processing pipeline snake_case__ = Compose( [ Resize(_A , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(_A ), ToTensor(), Normalize(_A , _A ), ] ) snake_case__ = image_transforms(_A ).unsqueeze(0 ) assert torch.allclose(_A , _A ) snake_case__ = model(_A ) snake_case__ = outputs.logits snake_case__ = (1, 1000) if "l1" in model_name: snake_case__ = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , _A , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: snake_case__ = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , _A , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: snake_case__ = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(_A ) print(f'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=f'''Bearnardd/{pytorch_dump_path}''' , commit_message='Add model' , use_temp_dir=_A , ) processor.push_to_hub( repo_id=f'''Bearnardd/{pytorch_dump_path}''' , commit_message='Add image processor' , use_temp_dir=_A , ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) __UpperCamelCase : Dict = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
328
1
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging a = logging.get_logger(__name__) def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case: Tuple =os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. snake_case: Optional[int] =json.loads(__UpperCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. snake_case: Dict =os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". snake_case: Dict =json.loads(__UpperCAmelCase ) if not mpi_options.get('sagemaker_mpi_enabled' , __UpperCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class a_ ( snake_case ): UpperCAmelCase : str = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def UpperCamelCase ( self : int ) -> str: super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , a_ , ) @cached_property def UpperCamelCase ( self : int ) -> "torch.device": logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: snake_case: Optional[int] =torch.device('cpu' ) snake_case: str =0 elif is_sagemaker_model_parallel_available(): snake_case: Any =smp.local_rank() snake_case: Optional[int] =torch.device('cuda' , a_ ) snake_case: List[Any] =1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) snake_case: Optional[Any] =int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) snake_case: int =torch.device('cuda' , self.local_rank ) snake_case: List[str] =1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 snake_case: Union[str, Any] =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. snake_case: int =torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) snake_case: Tuple =torch.device('cuda' , self.local_rank ) snake_case: Any =1 if device.type == "cuda": torch.cuda.set_device(a_ ) return device @property def UpperCamelCase ( self : str ) -> List[str]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def UpperCamelCase ( self : Tuple ) -> Union[str, Any]: return False
347
'''simple docstring''' import numpy as np def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: """simple docstring""" snake_case: int =int(np.ceil((x_end - xa) / h ) ) snake_case: Optional[int] =np.zeros((n + 1,) ) snake_case: Optional[int] =ya snake_case: List[str] =xa for k in range(__UpperCAmelCase ): snake_case: Optional[int] =f(__UpperCAmelCase , y[k] ) snake_case: Optional[Any] =f(x + 0.5 * h , y[k] + 0.5 * h * ka ) snake_case: Optional[Any] =f(x + 0.5 * h , y[k] + 0.5 * h * ka ) snake_case: Optional[Any] =f(x + h , y[k] + h * ka ) snake_case: List[Any] =y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
347
1
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=7 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : int=18 , _UpperCAmelCase : Union[str, Any]=30 , _UpperCAmelCase : Optional[Any]=400 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[Any]=[0.5, 0.5, 0.5] , _UpperCAmelCase : List[str]=[0.5, 0.5, 0.5] , ) -> int: """simple docstring""" lowercase__ = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = DPTImageProcessor if is_vision_available() else None def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" lowercase__ = DPTImageProcessingTester(self ) @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """size""" ) ) def lowerCamelCase__ (self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowercase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowercase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowercase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
15
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase = 13 , lowerCamelCase = 64 , lowerCamelCase = 2 , lowerCamelCase = 3 , lowerCamelCase = 3 , lowerCamelCase = True , lowerCamelCase = True , lowerCamelCase = 1_28 , lowerCamelCase=[16, 32, 64, 1_28] , lowerCamelCase = 7 , lowerCamelCase = 4 , lowerCamelCase = 37 , lowerCamelCase = "gelu" , lowerCamelCase = 0.1 , lowerCamelCase = 0.1 , lowerCamelCase = 10 , lowerCamelCase = 0.0_2 , lowerCamelCase = 2 , lowerCamelCase = 1 , lowerCamelCase = 1_28 , lowerCamelCase = [2, 2, 2, 2] , lowerCamelCase = 2 , lowerCamelCase = 2 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = encoder_stride snake_case__ = num_attention_outputs snake_case__ = embed_dim snake_case__ = embed_dim + 1 snake_case__ = resolution snake_case__ = depths snake_case__ = hidden_sizes snake_case__ = dim snake_case__ = mlp_expansion_ratio def A_ ( self ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = self.get_config() return config, pixel_values, labels def A_ ( self ): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): snake_case__ = TFEfficientFormerModel(config=lowerCamelCase ) snake_case__ = model(lowerCamelCase , training=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): snake_case__ = self.type_sequence_label_size snake_case__ = TFEfficientFormerForImageClassification(lowerCamelCase ) snake_case__ = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ = 1 snake_case__ = TFEfficientFormerForImageClassification(lowerCamelCase ) snake_case__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): _A : str = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _A : List[str] = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _A : Optional[Any] = False _A : List[Any] = False _A : Tuple = False _A : List[Any] = False _A : Any = False def A_ ( self ): snake_case__ = TFEfficientFormerModelTester(self ) snake_case__ = ConfigTester( self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def A_ ( self ): pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def A_ ( self ): pass def A_ ( self ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(lowerCamelCase ) snake_case__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def A_ ( self ): def check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ): snake_case__ = model_class(lowerCamelCase ) snake_case__ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) , training=lowerCamelCase ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) if hasattr(self.model_tester , "encoder_seq_length" ): snake_case__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: snake_case__ = seq_length * self.model_tester.chunk_length else: snake_case__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: snake_case__ = outputs.decoder_hidden_states self.asseretIsInstance(lowerCamelCase , (list, tuple) ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) snake_case__ = getattr(self.model_tester , "seq_length" , lowerCamelCase ) snake_case__ = getattr(self.model_tester , "decoder_seq_length" , lowerCamelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): snake_case__ = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def A_ ( self ): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = TFEfficientFormerModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def A_ ( self ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = True snake_case__ = getattr(self.model_tester , "seq_length" , lowerCamelCase ) snake_case__ = getattr(self.model_tester , "encoder_seq_length" , lowerCamelCase ) snake_case__ = getattr(self.model_tester , "key_length" , lowerCamelCase ) snake_case__ = getattr(self.model_tester , "chunk_length" , lowerCamelCase ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): snake_case__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: snake_case__ = True snake_case__ = False snake_case__ = True snake_case__ = model_class(lowerCamelCase ) snake_case__ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) , training=lowerCamelCase ) snake_case__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case__ = True snake_case__ = model_class(lowerCamelCase ) snake_case__ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) , training=lowerCamelCase ) snake_case__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def A_ ( self ): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model snake_case__ = model_class(lowerCamelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes snake_case__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCamelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } snake_case__ = model(lowerCamelCase ) self.assertTrue(outputs_dict is not None ) def SCREAMING_SNAKE_CASE__ ( ): snake_case__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def A_ ( self ): return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def A_ ( self ): snake_case__ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=lowerCamelCase , return_tensors="tf" ) # forward pass snake_case__ = model(**lowerCamelCase , training=lowerCamelCase ) # verify the logits snake_case__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) snake_case__ = tf.constant([-0.0_5_5_5, 0.4_8_2_5, -0.0_8_5_2] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def A_ ( self ): snake_case__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=lowerCamelCase , return_tensors="tf" ) # forward pass snake_case__ = model(**lowerCamelCase , training=lowerCamelCase ) # verify the logits snake_case__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) snake_case__ = tf.constant([-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) )
276
0
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def lowerCamelCase__ ( UpperCamelCase__ : int ) -> List[Any]: '''simple docstring''' random.seed(_SCREAMING_SNAKE_CASE ) np.random.seed(_SCREAMING_SNAKE_CASE ) torch.manual_seed(_SCREAMING_SNAKE_CASE ) torch.cuda.manual_seed_all(_SCREAMING_SNAKE_CASE ) # ^^ safe to call this function even if cuda is not available class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 0.99_99 , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 0 , lowerCAmelCase_ = False , lowerCAmelCase_ = 1.0 , lowerCAmelCase_ = 2 / 3 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> Tuple: if isinstance(__UpperCamelCase , torch.nn.Module ): _snake_case = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , __UpperCamelCase , standard_warn=__UpperCamelCase , ) _snake_case = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _snake_case = True if kwargs.get('max_value' , __UpperCamelCase ) is not None: _snake_case = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _snake_case = kwargs['max_value'] if kwargs.get('min_value' , __UpperCamelCase ) is not None: _snake_case = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _snake_case = kwargs['min_value'] _snake_case = list(__UpperCamelCase ) _snake_case = [p.clone().detach() for p in parameters] if kwargs.get('device' , __UpperCamelCase ) is not None: _snake_case = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , __UpperCamelCase , standard_warn=__UpperCamelCase ) self.to(device=kwargs['device'] ) _snake_case = None _snake_case = decay _snake_case = min_decay _snake_case = update_after_step _snake_case = use_ema_warmup _snake_case = inv_gamma _snake_case = power _snake_case = 0 _snake_case = None # set in `step()` _snake_case = model_cls _snake_case = model_config @classmethod def lowerCAmelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ ) -> "EMAModel": _snake_case , _snake_case = model_cls.load_config(__UpperCamelCase , return_unused_kwargs=__UpperCamelCase ) _snake_case = model_cls.from_pretrained(__UpperCamelCase ) _snake_case = cls(model.parameters() , model_cls=__UpperCamelCase , model_config=model.config ) ema_model.load_state_dict(__UpperCamelCase ) return ema_model def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) _snake_case = self.model_cls.from_config(self.model_config ) _snake_case = self.state_dict() state_dict.pop('shadow_params' , __UpperCamelCase ) model.register_to_config(**__UpperCamelCase ) self.copy_to(model.parameters() ) model.save_pretrained(__UpperCamelCase ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> float: _snake_case = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _snake_case = 1 - (1 + step / self.inv_gamma) ** -self.power else: _snake_case = (1 + step) / (10 + step) _snake_case = min(__UpperCamelCase , self.decay ) # make sure decay is not smaller than min_decay _snake_case = max(__UpperCamelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: if isinstance(__UpperCamelCase , torch.nn.Module ): _snake_case = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , __UpperCamelCase , standard_warn=__UpperCamelCase , ) _snake_case = parameters.parameters() _snake_case = list(__UpperCamelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _snake_case = self.get_decay(self.optimization_step ) _snake_case = decay _snake_case = 1 - decay _snake_case = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __UpperCamelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _snake_case = deepspeed.zero.GatheredParameters(__UpperCamelCase , modifier_rank=__UpperCamelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__UpperCamelCase ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> None: _snake_case = list(__UpperCamelCase ) for s_param, param in zip(self.shadow_params , __UpperCamelCase ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> None: _snake_case = [ p.to(device=__UpperCamelCase , dtype=__UpperCamelCase ) if p.is_floating_point() else p.to(device=__UpperCamelCase ) for p in self.shadow_params ] def lowerCAmelCase ( self ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase ( self , lowerCAmelCase_ ) -> None: _snake_case = [param.detach().cpu().clone() for param in parameters] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> None: if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , __UpperCamelCase ): param.data.copy_(c_param.data ) # Better memory-wise. _snake_case = None def lowerCAmelCase ( self , lowerCAmelCase_ ) -> None: _snake_case = copy.deepcopy(__UpperCamelCase ) _snake_case = state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) _snake_case = state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , __UpperCamelCase ): raise ValueError('Invalid min_decay' ) _snake_case = state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , __UpperCamelCase ): raise ValueError('Invalid optimization_step' ) _snake_case = state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , __UpperCamelCase ): raise ValueError('Invalid update_after_step' ) _snake_case = state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , __UpperCamelCase ): raise ValueError('Invalid use_ema_warmup' ) _snake_case = state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) _snake_case = state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) _snake_case = state_dict.get('shadow_params' , __UpperCamelCase ) if shadow_params is not None: _snake_case = shadow_params if not isinstance(self.shadow_params , __UpperCamelCase ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(__UpperCamelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
707
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class UpperCamelCase_ ( unittest.TestCase ): def lowerCAmelCase ( self ) -> List[Any]: debug_launcher(test_script.main ) def lowerCAmelCase ( self ) -> Optional[Any]: debug_launcher(test_ops.main )
541
0
"""simple docstring""" import os import sys import unittest lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowercase_ = os.path.join(git_repo_path, "src", "transformers") lowercase_ = '\n{0} = None\n' lowercase_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' lowercase_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def a ( self : Any )-> Tuple: """simple docstring""" UpperCAmelCase_ : Tuple = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(__a ) UpperCAmelCase_ : Tuple = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(__a , """tokenizers""" ) UpperCAmelCase_ : Tuple = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(__a , """tensorflow_text""" ) UpperCAmelCase_ : Tuple = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(__a , """sentencepiece_and_tokenizers""" ) UpperCAmelCase_ : List[str] = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(__a , """sentencepiece_and_tensorflow_text""" ) UpperCAmelCase_ : Dict = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(__a , """sentencepiece_and_tokenizers_and_vision""" ) def a ( self : List[Any] )-> Any: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , __a ) self.assertIn("""tensorflow_text""" , __a ) self.assertIn("""sentencepiece_and_tokenizers""" , __a ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertModel""" , objects["""tf"""] ) self.assertIn("""FlaxBertModel""" , objects["""flax"""] ) self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] ) def a ( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(__a , """\nCONSTANT = None\n""" ) UpperCAmelCase_ : Tuple = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( __a , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) UpperCAmelCase_ : Dict = """\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n""" UpperCAmelCase_ : List[str] = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(__a , __a ) def a ( self : Dict )-> Dict: """simple docstring""" UpperCAmelCase_ : Optional[int] = """# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n""" UpperCAmelCase_ : int = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , __a )
470
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" snake_case_ = OpenAIGPTTokenizer snake_case_ = OpenAIGPTTokenizerFast snake_case_ = True snake_case_ = False def _UpperCamelCase ( self : List[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowerCamelCase__ = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) lowerCamelCase__ = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_lowerCamelCase ) ) def _UpperCamelCase ( self : str , a_ : Tuple ): """simple docstring""" return "lower newer", "lower newer" def _UpperCamelCase ( self : Any ): """simple docstring""" lowerCamelCase__ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowerCamelCase__ = """lower""" lowerCamelCase__ = ["""low""", """er</w>"""] lowerCamelCase__ = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ = tokens + ["""<unk>"""] lowerCamelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _UpperCamelCase ( self : Tuple , a_ : str=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # Simple input lowerCamelCase__ = """This is a simple input""" lowerCamelCase__ = ["""This is a simple input 1""", """This is a simple input 2"""] lowerCamelCase__ = ("""This is a simple input""", """This is a pair""") lowerCamelCase__ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Simple input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Simple input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Pair input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) def _UpperCamelCase ( self : str ): """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class lowercase ( lowerCAmelCase__ ): """simple docstring""" pass
712
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase ( UpperCAmelCase_ ): """simple docstring""" def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" lowerCamelCase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a_ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(a_ , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(a_ , """num_attention_heads""" ) ) class lowercase : """simple docstring""" def __init__( self : Optional[int] , a_ : Dict , a_ : Tuple=13 , a_ : Any=32 , a_ : Optional[int]=2 , a_ : Optional[int]=3 , a_ : List[Any]=6_40 , a_ : Optional[int]=4 , a_ : Dict="silu" , a_ : List[Any]=3 , a_ : Union[str, Any]=32 , a_ : Optional[int]=0.1 , a_ : Any=0.1 , a_ : List[str]=0.1 , a_ : str=0.0_2 , a_ : str=True , a_ : Optional[int]=True , a_ : List[Any]=10 , a_ : Tuple=None , ): """simple docstring""" lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = last_hidden_size lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = conv_kernel_size lowerCamelCase__ = output_stride lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = classifier_dropout_prob lowerCamelCase__ = use_labels lowerCamelCase__ = is_training lowerCamelCase__ = num_labels lowerCamelCase__ = initializer_range lowerCamelCase__ = scope def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCamelCase ( self : Any ): """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Tuple , a_ : Dict , a_ : Dict , a_ : Dict , a_ : str ): """simple docstring""" lowerCamelCase__ = MobileViTModel(config=a_ ) model.to(a_ ) model.eval() lowerCamelCase__ = model(a_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _UpperCamelCase ( self : str , a_ : Tuple , a_ : int , a_ : str , a_ : Tuple ): """simple docstring""" lowerCamelCase__ = self.num_labels lowerCamelCase__ = MobileViTForImageClassification(a_ ) model.to(a_ ) model.eval() lowerCamelCase__ = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Optional[Any] , a_ : List[Any] , a_ : str , a_ : List[str] , a_ : int ): """simple docstring""" lowerCamelCase__ = self.num_labels lowerCamelCase__ = MobileViTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() lowerCamelCase__ = model(a_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase__ = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" snake_case_ = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) snake_case_ = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def _UpperCamelCase ( self : Tuple ): """simple docstring""" lowerCamelCase__ = MobileViTModelTester(self ) lowerCamelCase__ = MobileViTConfigTester(self , config_class=a_ , has_text_modality=a_ ) def _UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def _UpperCamelCase ( self : List[Any] ): """simple docstring""" pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def _UpperCamelCase ( self : str ): """simple docstring""" pass def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(a_ ) lowerCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a_ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _UpperCamelCase ( self : List[Any] ): """simple docstring""" pass def _UpperCamelCase ( self : Any ): """simple docstring""" lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def _UpperCamelCase ( self : List[Any] ): """simple docstring""" def check_hidden_states_output(a_ : Any , a_ : List[str] , a_ : str ): lowerCamelCase__ = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCamelCase__ = model(**self._prepare_for_class(a_ , a_ ) ) lowerCamelCase__ = outputs.hidden_states lowerCamelCase__ = 5 self.assertEqual(len(a_ ) , a_ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCamelCase__ = 2 for i in range(len(a_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ = True check_hidden_states_output(a_ , a_ , a_ ) def _UpperCamelCase ( self : List[Any] ): """simple docstring""" lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) def _UpperCamelCase ( self : List[Any] ): """simple docstring""" lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @slow def _UpperCamelCase ( self : List[Any] ): """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = MobileViTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def snake_case (): '''simple docstring''' lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def _UpperCamelCase ( self : List[str] ): """simple docstring""" lowerCamelCase__ = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(a_ ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=a_ , return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): lowerCamelCase__ = model(**a_ ) # verify the logits lowerCamelCase__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a_ ) lowerCamelCase__ = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : List[str] ): """simple docstring""" lowerCamelCase__ = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) lowerCamelCase__ = model.to(a_ ) lowerCamelCase__ = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=a_ , return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): lowerCamelCase__ = model(**a_ ) lowerCamelCase__ = outputs.logits # verify the logits lowerCamelCase__ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , a_ ) lowerCamelCase__ = torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ] , device=a_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : List[str] ): """simple docstring""" lowerCamelCase__ = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) lowerCamelCase__ = model.to(a_ ) lowerCamelCase__ = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=a_ , return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): lowerCamelCase__ = model(**a_ ) lowerCamelCase__ = outputs.logits.detach().cpu() lowerCamelCase__ = image_processor.post_process_semantic_segmentation(outputs=a_ , target_sizes=[(50, 60)] ) lowerCamelCase__ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , a_ ) lowerCamelCase__ = image_processor.post_process_semantic_segmentation(outputs=a_ ) lowerCamelCase__ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , a_ )
235
0
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" return number | (1 << position) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" return number & ~(1 << position) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" return number ^ (1 << position) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" return ((number >> position) & 1) == 1 def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
93
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCamelCase__ = '''src/diffusers''' # Matches is_xxx_available() lowerCamelCase__ = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla lowerCamelCase__ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') lowerCamelCase__ = ''' {0} = None ''' lowerCamelCase__ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' lowerCamelCase__ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def lowercase_ ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" snake_case__ : Tuple =_re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowercase_ ( ): """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ : int =f.readlines() # Get to the point we do the actual imports for type checking snake_case__ : Optional[Any] =0 snake_case__ : Any ={} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block snake_case__ : List[str] =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 snake_case__ : List[Any] =[] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: snake_case__ : List[str] =lines[line_index] snake_case__ : Any =_re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: snake_case__ : List[Any] =objects else: line_index += 1 return backend_specific_objects def lowercase_ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowercase_ ( SCREAMING_SNAKE_CASE : str=None ): """simple docstring""" if backend_specific_objects is None: snake_case__ : int =read_init() # For special correspondence backend to module name as used in the function requires_modulename snake_case__ : Dict ={} for backend, objects in backend_specific_objects.items(): snake_case__ : str ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' snake_case__ : List[Any] ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) snake_case__ : int =dummy_file return dummy_files def lowercase_ ( SCREAMING_SNAKE_CASE : Optional[int]=False ): """simple docstring""" snake_case__ : Dict =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py snake_case__ : int ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. snake_case__ : List[Any] =os.path.join(SCREAMING_SNAKE_CASE , '''utils''' ) snake_case__ : str ={ backend: os.path.join(SCREAMING_SNAKE_CASE , F'''dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py''' ) for backend in dummy_files.keys() } snake_case__ : Tuple ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ : Optional[int] =f.read() else: snake_case__ : Union[str, Any] ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'''diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCamelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
381
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } lowerCamelCase__ = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } lowerCamelCase__ = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class lowerCAmelCase__ ( UpperCamelCase_ ): UpperCamelCase_ : Any = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : int = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : str = SqueezeBertTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ) -> int: '''simple docstring''' super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) _UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCamelCase__ ) != tokenize_chinese_chars ): _UpperCamelCase = getattr(UpperCamelCase__ , normalizer_state.pop("""type""" ) ) _UpperCamelCase = do_lower_case _UpperCamelCase = strip_accents _UpperCamelCase = tokenize_chinese_chars _UpperCamelCase = normalizer_class(**UpperCamelCase__ ) _UpperCamelCase = do_lower_case def A_ ( self , a , a=None ) -> int: '''simple docstring''' _UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self , a , a = None ) -> List[Any]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self , a , a = None ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
712
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) def __A(lowerCAmelCase , lowerCAmelCase ) -> List[str]: """simple docstring""" _UpperCamelCase = nn.functional.normalize(lowerCAmelCase ) _UpperCamelCase = nn.functional.normalize(lowerCAmelCase ) return torch.mm(lowerCAmelCase , normalized_text_embeds.t() ) class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : Tuple = CLIPConfig UpperCamelCase_ : str = ["CLIPEncoderLayer"] def __init__( self , a ) -> Optional[Any]: '''simple docstring''' super().__init__(a ) _UpperCamelCase = CLIPVisionModel(config.vision_config ) _UpperCamelCase = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=a ) _UpperCamelCase = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=a ) _UpperCamelCase = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=a ) _UpperCamelCase = nn.Parameter(torch.ones(17 ) , requires_grad=a ) _UpperCamelCase = nn.Parameter(torch.ones(3 ) , requires_grad=a ) @torch.no_grad() def A_ ( self , a , a ) -> str: '''simple docstring''' _UpperCamelCase = self.vision_model(a )[1] # pooled_output _UpperCamelCase = self.visual_projection(a ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _UpperCamelCase = cosine_distance(a , self.special_care_embeds ).cpu().float().numpy() _UpperCamelCase = cosine_distance(a , self.concept_embeds ).cpu().float().numpy() _UpperCamelCase = [] _UpperCamelCase = image_embeds.shape[0] for i in range(a ): _UpperCamelCase = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _UpperCamelCase = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _UpperCamelCase = special_cos_dist[i][concept_idx] _UpperCamelCase = self.special_care_embeds_weights[concept_idx].item() _UpperCamelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) _UpperCamelCase = 0.01 for concept_idx in range(len(cos_dist[0] ) ): _UpperCamelCase = cos_dist[i][concept_idx] _UpperCamelCase = self.concept_embeds_weights[concept_idx].item() _UpperCamelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(a ) result.append(a ) _UpperCamelCase = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def A_ ( self , a , a ) -> Any: '''simple docstring''' _UpperCamelCase = self.vision_model(a )[1] # pooled_output _UpperCamelCase = self.visual_projection(a ) _UpperCamelCase = cosine_distance(a , self.special_care_embeds ) _UpperCamelCase = cosine_distance(a , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _UpperCamelCase = 0.0 _UpperCamelCase = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _UpperCamelCase = torch.any(special_scores > 0 , dim=1 ) _UpperCamelCase = special_care * 0.01 _UpperCamelCase = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _UpperCamelCase = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _UpperCamelCase = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
202
0
from __future__ import annotations import os from typing import Any import requests _lowerCamelCase : Any = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user _lowerCamelCase : str = BASE_URL + '''/user''' # https://github.com/settings/tokens _lowerCamelCase : Union[str, Any] = os.environ.get('''USER_TOKEN''', '''''') def A__ ( __A : str ) ->dict[Any, Any]: __A ={ '''Authorization''': F'''token {auth_token}''', '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(__A , headers=__A ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"""{key}: {value}""") else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
184
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _lowerCamelCase : Dict = logging.get_logger(__name__) class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = ["""pixel_values"""] def __init__( self , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = 1 / 2_5_5 , lowercase__ = True , lowercase__ = None , lowercase__ = True , **lowercase__ , ): '''simple docstring''' super().__init__(**lowercase__ ) __A =size if size is not None else {'''shortest_edge''': 2_2_4} __A =get_size_dict(lowercase__ , default_to_square=lowercase__ ) __A =crop_size if crop_size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} __A =get_size_dict(lowercase__ , param_name='''crop_size''' ) __A =do_resize __A =size __A =resample __A =do_rescale __A =rescale_factor __A =do_center_crop __A =crop_size __A =do_flip_channel_order def __UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ = PIL.Image.BILINEAR , lowercase__ = None , **lowercase__ , ): '''simple docstring''' __A =get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) __A =get_resize_output_image_size(lowercase__ , size=size['''shortest_edge'''] , default_to_square=lowercase__ ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): '''simple docstring''' __A =get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(lowercase__ , size=(size['''height'''], size['''width''']) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): '''simple docstring''' return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ): '''simple docstring''' return flip_channel_order(lowercase__ , data_format=lowercase__ ) def __UpperCamelCase ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): '''simple docstring''' __A =do_resize if do_resize is not None else self.do_resize __A =resample if resample is not None else self.resample __A =do_rescale if do_rescale is not None else self.do_rescale __A =rescale_factor if rescale_factor is not None else self.rescale_factor __A =do_center_crop if do_center_crop is not None else self.do_center_crop __A =( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) __A =size if size is not None else self.size __A =get_size_dict(lowercase__ , default_to_square=lowercase__ ) __A =crop_size if crop_size is not None else self.crop_size __A =get_size_dict(lowercase__ , param_name='''crop_size''' ) __A =make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. __A =[to_numpy_array(lowercase__ ) for image in images] if do_resize: __A =[self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: __A =[self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: __A =[self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: __A =[self.flip_channel_order(image=lowercase__ ) for image in images] __A =[to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __A ={'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ ) def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ): '''simple docstring''' __A =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase__ ) != len(lowercase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase__ ): __A =target_sizes.numpy() __A =[] for idx in range(len(lowercase__ ) ): __A =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase__ ) __A =resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase__ ) else: __A =logits.argmax(dim=1 ) __A =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
184
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def UpperCAmelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Any=1_024 ): '''simple docstring''' SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = [], [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(zip(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = sorted_examples[0] def is_too_big(_lowerCamelCase : int ): return tok(_lowerCamelCase , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): SCREAMING_SNAKE_CASE__ : int = new_src + " " + src SCREAMING_SNAKE_CASE__ : str = new_tgt + " " + tgt if is_too_big(_lowerCamelCase ) or is_too_big(_lowerCamelCase ): # cant fit, finalize example finished_src.append(_lowerCamelCase ) finished_tgt.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = src, tgt else: # can fit, keep adding SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[Any] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_lowerCamelCase ) finished_tgt.append(_lowerCamelCase ) return finished_src, finished_tgt def UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Path , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = Path(_lowerCamelCase ) save_path.mkdir(exist_ok=_lowerCamelCase ) for split in ["train"]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[Any] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" SCREAMING_SNAKE_CASE__ : str = [x.rstrip() for x in Path(_lowerCamelCase ).open().readlines()] SCREAMING_SNAKE_CASE__ : Optional[Any] = [x.rstrip() for x in Path(_lowerCamelCase ).open().readlines()] SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : int = pack_examples(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) print(f"""packed {split} split from {len(_lowerCamelCase )} examples -> {len(_lowerCamelCase )}.""" ) Path(save_path / f"""{split}.source""" ).open("w" ).write("\n".join(_lowerCamelCase ) ) Path(save_path / f"""{split}.target""" ).open("w" ).write("\n".join(_lowerCamelCase ) ) for split in ["val", "test"]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[str] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(_lowerCamelCase , save_path / f"""{split}.source""" ) shutil.copyfile(_lowerCamelCase , save_path / f"""{split}.target""" ) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=_lowerCamelCase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=_lowerCamelCase , default=128 ) parser.add_argument("--data_dir" , type=_lowerCamelCase ) parser.add_argument("--save_path" , type=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE__ : int = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_lowerCamelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
26
from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : str = 11 SCREAMING_SNAKE_CASE__ : Any = int("1" + "0" * digit_len ) for num in range(_lowerCamelCase , _lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCamelCase , _lowerCamelCase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 SCREAMING_SNAKE_CASE__ : str = 10 return solutions def UpperCAmelCase ( _lowerCamelCase : int = 2 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = 1.0 for fraction in fraction_list(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Any = Fraction(_lowerCamelCase ) result *= frac.denominator / frac.numerator return int(_lowerCamelCase ) if __name__ == "__main__": print(solution())
26
1
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str ): __lowercase : Union[str, Any] = k_size // 2 __lowercase , __lowercase : List[Any] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __lowercase : Union[str, Any] = 1 / (2 * pi * sigma) * exp(-(square(lowerCAmelCase_ ) + square(lowerCAmelCase_ )) / (2 * square(lowerCAmelCase_ )) ) return g def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] ): __lowercase , __lowercase : str = image.shape[0], image.shape[1] # dst image height and width __lowercase : Optional[int] = height - k_size + 1 __lowercase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __lowercase : str = zeros((dst_height * dst_width, k_size * k_size) ) __lowercase : Union[str, Any] = 0 for i, j in product(range(lowerCAmelCase_ ) , range(lowerCAmelCase_ ) ): __lowercase : List[str] = ravel(image[i : i + k_size, j : j + k_size] ) __lowercase : str = window row += 1 # turn the kernel into shape(k*k, 1) __lowercase : List[Any] = gen_gaussian_kernel(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Any = ravel(lowerCAmelCase_ ) # reshape and get the dst image __lowercase : List[str] = dot(lowerCAmelCase_ , lowerCAmelCase_ ).reshape(lowerCAmelCase_ , lowerCAmelCase_ ).astype(lowerCAmelCase_ ) return dst if __name__ == "__main__": # read original image lowerCamelCase : str = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value lowerCamelCase : List[str] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size lowerCamelCase : Tuple = gaussian_filter(gray, 3, sigma=1) lowerCamelCase : int = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
149
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowerCamelCase : str = None lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase : Optional[Any] = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } lowerCamelCase : List[Any] = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } lowerCamelCase : Union[str, Any] = '''▁''' # Segments (not really needed) lowerCamelCase : Optional[Any] = 0 lowerCamelCase : Optional[Any] = 1 lowerCamelCase : List[Any] = 2 lowerCamelCase : List[Any] = 3 lowerCamelCase : Dict = 4 class lowerCAmelCase ( __a ): '''simple docstring''' _A : Union[str, Any] = VOCAB_FILES_NAMES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Any = '''left''' _A : List[str] = XLNetTokenizer def __init__( self : int , __a : Union[str, Any]=None , __a : Optional[int]=None , __a : List[Any]=False , __a : Tuple=True , __a : Tuple=False , __a : List[str]="<s>" , __a : int="</s>" , __a : Optional[int]="<unk>" , __a : Any="<sep>" , __a : Dict="<pad>" , __a : str="<cls>" , __a : List[str]="<mask>" , __a : Optional[int]=["<eop>", "<eod>"] , **__a : Any , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( vocab_file=__a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , additional_special_tokens=__a , **__a , ) __lowercase : str = 3 __lowercase : Optional[Any] = do_lower_case __lowercase : Union[str, Any] = remove_space __lowercase : List[str] = keep_accents __lowercase : Optional[Any] = vocab_file __lowercase : Union[str, Any] = False if not self.vocab_file else True def lowerCAmelCase ( self : Union[str, Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase : Union[str, Any] = [self.sep_token_id] __lowercase : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase ( self : Any , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase : Dict = [self.sep_token_id] __lowercase : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase ( self : Optional[int] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : List[Any] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
149
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase_ ( __a , __a , __a , __a , __a = None , __a = None , __a = None , ) -> Any: """simple docstring""" if config_name_or_path is None: lowerCamelCase__: List[str] ="facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: lowerCamelCase__: List[Any] =generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase__: Optional[Any] =question_encoder_name_or_path lowerCamelCase__: Optional[Any] =RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. lowerCamelCase__: str =RagConfig.from_pretrained(_A ) lowerCamelCase__: Tuple =AutoConfig.from_pretrained(_A ) lowerCamelCase__: Tuple =AutoConfig.from_pretrained(_A ) lowerCamelCase__: Dict =gen_config lowerCamelCase__: Dict =question_encoder_config lowerCamelCase__: List[Any] =model_class.from_pretrained_question_encoder_generator( _A , _A , config=_A ) rag_model.save_pretrained(_A ) # Sanity check. model_class.from_pretrained(_A ) # Save tokenizers. lowerCamelCase__: Any =AutoTokenizer.from_pretrained(_A ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) lowerCamelCase__: List[str] =AutoTokenizer.from_pretrained(_A ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) __A = parser.parse_args() __A = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
705
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = TextToVideoSDPipeline lowercase_ = TEXT_TO_IMAGE_PARAMS lowercase_ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowercase_ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[str]: '''simple docstring''' torch.manual_seed(0) lowerCamelCase__: Optional[int] =UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) lowerCamelCase__: Union[str, Any] =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0) lowerCamelCase__: List[str] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) lowerCamelCase__: Optional[int] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) lowerCamelCase__: Optional[Any] =CLIPTextModel(UpperCAmelCase_) lowerCamelCase__: Dict =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") lowerCamelCase__: Tuple ={ "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]=0) ->Union[str, Any]: '''simple docstring''' if str(UpperCAmelCase_).startswith("mps"): lowerCamelCase__: Optional[int] =torch.manual_seed(UpperCAmelCase_) else: lowerCamelCase__: Any =torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) lowerCamelCase__: List[Any] ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: Optional[Any] =self.get_dummy_components() lowerCamelCase__: List[Any] =TextToVideoSDPipeline(**UpperCAmelCase_) lowerCamelCase__: int =sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: Any =self.get_dummy_inputs(UpperCAmelCase_) lowerCamelCase__: List[Any] ="np" lowerCamelCase__: Optional[int] =sd_pipe(**UpperCAmelCase_).frames lowerCamelCase__: Dict =frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowerCamelCase__: Optional[int] =np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->str: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.") def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->str: '''simple docstring''' pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.") def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline.") def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Any: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: Dict =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy") lowerCamelCase__: Optional[int] =TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b") lowerCamelCase__: str =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCamelCase__: Tuple =pipe.to("cuda") lowerCamelCase__: List[Any] ="Spiderman is surfing" lowerCamelCase__: Dict =torch.Generator(device="cpu").manual_seed(0) lowerCamelCase__: Optional[int] =pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="pt").frames lowerCamelCase__: str =video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5E-2 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy") lowerCamelCase__: List[str] =TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b") lowerCamelCase__: Any =pipe.to("cuda") lowerCamelCase__: Dict ="Spiderman is surfing" lowerCamelCase__: Dict =torch.Generator(device="cpu").manual_seed(0) lowerCamelCase__: Optional[int] =pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="pt").frames lowerCamelCase__: List[Any] =video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5E-2
437
0
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging lowercase__ : Union[str, Any] = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) lowercase__ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowerCAmelCase ( ) -> int: __A : List[Any] = 'https://pypi.org/pypi/diffusers/json' __A : int = json.loads(request.urlopen(SCREAMING_SNAKE_CASE__ ).read() )['releases'].keys() return sorted(SCREAMING_SNAKE_CASE__ , key=lambda __snake_case : version.Version(SCREAMING_SNAKE_CASE__ ) ) def _lowerCAmelCase ( ) -> Optional[Any]: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) __A : int = Path(SCREAMING_SNAKE_CASE__ ) / '__init__.py' if not init_path.exists(): init_path.touch() def _lowerCAmelCase ( __snake_case : Union[str, os.PathLike] ) -> str: init_hf_modules() __A : str = Path(SCREAMING_SNAKE_CASE__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) __A : Dict = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def _lowerCAmelCase ( __snake_case : int ) -> List[Any]: with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f: __A : Dict = f.read() # Imports of the form `import .xxx` __A : Optional[int] = re.findall('^\s*import\s+\.(\S+)\s*$' , SCREAMING_SNAKE_CASE__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , SCREAMING_SNAKE_CASE__ , flags=re.MULTILINE ) # Unique-ify return list(set(SCREAMING_SNAKE_CASE__ ) ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Dict: __A : Optional[int] = False __A : List[str] = [module_file] __A : Union[str, Any] = [] # Let's recurse through all relative imports while not no_change: __A : List[Any] = [] for f in files_to_check: new_imports.extend(get_relative_imports(SCREAMING_SNAKE_CASE__ ) ) __A : Tuple = Path(SCREAMING_SNAKE_CASE__ ).parent __A : Optional[Any] = [str(module_path / m ) for m in new_imports] __A : Optional[int] = [f for f in new_import_files if f not in all_relative_imports] __A : List[str] = [f'{f}.py' for f in new_import_files] __A : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) == 0 all_relative_imports.extend(SCREAMING_SNAKE_CASE__ ) return all_relative_imports def _lowerCAmelCase ( __snake_case : Any ) -> int: with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f: __A : List[str] = f.read() # Imports of the form `import xxx` __A : int = re.findall('^\s*import\s+(\S+)\s*$' , SCREAMING_SNAKE_CASE__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , SCREAMING_SNAKE_CASE__ , flags=re.MULTILINE ) # Only keep the top-level module __A : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all __A : List[Any] = list(set(SCREAMING_SNAKE_CASE__ ) ) __A : int = [] for imp in imports: try: importlib.import_module(SCREAMING_SNAKE_CASE__ ) except ImportError: missing_packages.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' f'{", ".join(SCREAMING_SNAKE_CASE__ )}. Run `pip install {" ".join(SCREAMING_SNAKE_CASE__ )}`' ) return get_relative_imports(SCREAMING_SNAKE_CASE__ ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[int]: __A : Union[str, Any] = module_path.replace(os.path.sep , '.' ) __A : Any = importlib.import_module(SCREAMING_SNAKE_CASE__ ) if class_name is None: return find_pipeline_class(SCREAMING_SNAKE_CASE__ ) return getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Dict: from ..pipelines import DiffusionPipeline __A : Optional[int] = dict(inspect.getmembers(SCREAMING_SNAKE_CASE__ , inspect.isclass ) ) __A : Any = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , SCREAMING_SNAKE_CASE__ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' f' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' f' {loaded_module}.' ) __A : Any = cls return pipeline_class def _lowerCAmelCase ( __snake_case : Union[str, os.PathLike] , __snake_case : str , __snake_case : Optional[Union[str, os.PathLike]] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[Dict[str, str]] = None , __snake_case : Optional[Union[bool, str]] = None , __snake_case : Optional[str] = None , __snake_case : bool = False , ) -> List[Any]: __A : int = str(SCREAMING_SNAKE_CASE__ ) __A : str = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): __A : Optional[Any] = module_file_or_url __A : Any = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: __A : Dict = get_diffusers_versions() # cut ".dev0" __A : Any = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: __A : List[str] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(f'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: __A : Tuple = f'v{revision}' elif revision == "main": __A : str = revision else: raise ValueError( f'`custom_revision`: {revision} does not exist. Please make sure to choose one of' f' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub __A : List[str] = COMMUNITY_PIPELINES_URL.format(revision=SCREAMING_SNAKE_CASE__ , pipeline=SCREAMING_SNAKE_CASE__ ) try: __A : List[str] = cached_download( SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , ) __A : Optional[Any] = 'git' __A : Dict = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached __A : Optional[int] = hf_hub_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , ) __A : List[Any] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment __A : Optional[int] = check_imports(SCREAMING_SNAKE_CASE__ ) # Now we move the module inside our cached dynamic modules. __A : List[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(SCREAMING_SNAKE_CASE__ ) __A : List[Any] = Path(SCREAMING_SNAKE_CASE__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(SCREAMING_SNAKE_CASE__ , submodule_path / module_file ) for module_needed in modules_needed: __A : List[Any] = f'{module_needed}.py' shutil.copy(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __A : Dict = use_auth_token elif use_auth_token is True: __A : Tuple = HfFolder.get_token() else: __A : str = None __A : List[Any] = model_info(SCREAMING_SNAKE_CASE__ , revision=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __A : str = submodule_path / commit_hash __A : int = full_submodule + os.path.sep + commit_hash create_dynamic_module(SCREAMING_SNAKE_CASE__ ) if not (submodule_path / module_file).exists(): shutil.copy(SCREAMING_SNAKE_CASE__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( SCREAMING_SNAKE_CASE__ , f'{module_needed}.py' , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , revision=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , ) return os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _lowerCAmelCase ( __snake_case : Union[str, os.PathLike] , __snake_case : str , __snake_case : Optional[str] = None , __snake_case : Optional[Union[str, os.PathLike]] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[Dict[str, str]] = None , __snake_case : Optional[Union[bool, str]] = None , __snake_case : Optional[str] = None , __snake_case : bool = False , **__snake_case : Tuple , ) -> Union[str, Any]: __A : List[str] = get_cached_module_file( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , revision=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , ) return get_class_in_module(SCREAMING_SNAKE_CASE__ , final_module.replace('.py' , '' ) )
8
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Optional[Any], SCREAMING_SNAKE_CASE__: Tuple, SCREAMING_SNAKE_CASE__: Dict ) -> List[Any]: """simple docstring""" # Initialise PyTorch model __a = RemBertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print('Building PyTorch model from configuration: {}'.format(str(SCREAMING_SNAKE_CASE__ ) ) ) __a = RemBertModel(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print('Save PyTorch model to {}'.format(SCREAMING_SNAKE_CASE__ ) ) torch.save(model.state_dict(), SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : List[str] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
448
0
import math def _lowerCamelCase ( A_ : int ) -> bool: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCamelCase__ : Optional[Any] =range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCamelCase ( A_ : Tuple , A_ : Union[str, Any]=1 , **A_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Tuple =factor * value UpperCamelCase__ : List[str] =value while not is_prime(SCREAMING_SNAKE_CASE_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE_ ) return value
702
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = ['''image_processor''', '''tokenizer'''] snake_case__ = '''CLIPImageProcessor''' snake_case__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] =None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Dict =kwargs.pop("feature_extractor") UpperCamelCase__ : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE) -> int: """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: UpperCamelCase__ : Optional[int] =self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) if images is not None: UpperCamelCase__ : int =self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) if text is not None and images is not None: UpperCamelCase__ : str =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__SCREAMING_SNAKE_CASE) , tensor_type=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) @property def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" UpperCamelCase__ : Dict =self.tokenizer.model_input_names UpperCamelCase__ : List[Any] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def UpperCAmelCase ( self) -> List[str]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> Any: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __SCREAMING_SNAKE_CASE , ) return self.image_processor
582
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable A_ : int =list[list[float | int]] def SCREAMING_SNAKE_CASE_ ( snake_case : Tuple , snake_case : Tuple )-> Matrix: _lowerCamelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCamelCase = [[0 for _ in range(size + 1 )] for _ in range(_SCREAMING_SNAKE_CASE )] _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 for row in range(_SCREAMING_SNAKE_CASE ): for col in range(_SCREAMING_SNAKE_CASE ): _lowerCamelCase = matrix[row][col] _lowerCamelCase = vector[row][0] _lowerCamelCase = 0 _lowerCamelCase = 0 while row < size and col < size: # pivoting _lowerCamelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCamelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _SCREAMING_SNAKE_CASE ): _lowerCamelCase = augmented[rowa][col] / augmented[row][col] _lowerCamelCase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _SCREAMING_SNAKE_CASE ): for row in range(_SCREAMING_SNAKE_CASE ): _lowerCamelCase = augmented[row][col] / augmented[col][col] for cola in range(_SCREAMING_SNAKE_CASE , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_SCREAMING_SNAKE_CASE ) ] def SCREAMING_SNAKE_CASE_ ( snake_case : List[Any] )-> Callable[[int], int]: _lowerCamelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCamelCase = [[0 for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] _lowerCamelCase = [[0] for _ in range(_SCREAMING_SNAKE_CASE )] _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 for x_val, y_val in enumerate(_SCREAMING_SNAKE_CASE ): for col in range(_SCREAMING_SNAKE_CASE ): _lowerCamelCase = (x_val + 1) ** (size - col - 1) _lowerCamelCase = y_val _lowerCamelCase = solve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def interpolated_func(snake_case : Optional[Any] ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_SCREAMING_SNAKE_CASE ) ) return interpolated_func def SCREAMING_SNAKE_CASE_ ( snake_case : List[Any] )-> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def SCREAMING_SNAKE_CASE_ ( snake_case : List[Any] = question_function , snake_case : Any = 10 )-> int: _lowerCamelCase = [func(_SCREAMING_SNAKE_CASE ) for x_val in range(1 , order + 1 )] _lowerCamelCase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCamelCase = 0 _lowerCamelCase = 42 _lowerCamelCase = 42 for poly in polynomials: _lowerCamelCase = 1 while func(_SCREAMING_SNAKE_CASE ) == poly(_SCREAMING_SNAKE_CASE ): x_val += 1 ret += poly(_SCREAMING_SNAKE_CASE ) return ret if __name__ == "__main__": print(f'{solution() = }')
650
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict[Optional[str], Type[Formatter]] = {} SCREAMING_SNAKE_CASE__ : Dict[Optional[str], str] = {} SCREAMING_SNAKE_CASE__ : Dict[Optional[str], Exception] = {} def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,) -> str: lowerCamelCase : List[str] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) lowerCamelCase : Tuple = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) lowerCamelCase : Dict = format_type def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple: lowerCamelCase : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowerCamelCase : str = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: SCREAMING_SNAKE_CASE__ : str = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: SCREAMING_SNAKE_CASE__ : str = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: SCREAMING_SNAKE_CASE__ : Tuple = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def A ( _SCREAMING_SNAKE_CASE ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def A ( _SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Formatter: lowerCamelCase : Tuple = get_format_type_from_alias(_SCREAMING_SNAKE_CASE ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_SCREAMING_SNAKE_CASE ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
311
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Optional[int] = logging.get_logger(__name__) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : int = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase_ : Optional[int] = 192 lowerCamelCase_ : Optional[Any] = 768 lowerCamelCase_ : Union[str, Any] = 12 lowerCamelCase_ : Optional[Any] = 3 lowerCamelCase_ : Any = [800, 1333] lowerCamelCase_ : List[str] = False elif yolos_name == "yolos_s_dWr": lowerCamelCase_ : List[str] = 330 lowerCamelCase_ : Tuple = 14 lowerCamelCase_ : Any = 6 lowerCamelCase_ : Any = 1320 elif "yolos_s" in yolos_name: lowerCamelCase_ : Union[str, Any] = 384 lowerCamelCase_ : Union[str, Any] = 1536 lowerCamelCase_ : str = 12 lowerCamelCase_ : Tuple = 6 elif "yolos_b" in yolos_name: lowerCamelCase_ : Any = [800, 1344] lowerCamelCase_ : Optional[int] = 91 lowerCamelCase_ : Dict = '''huggingface/label-files''' lowerCamelCase_ : int = '''coco-detection-id2label.json''' lowerCamelCase_ : str = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ : List[Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} lowerCamelCase_ : Optional[Any] = idalabel lowerCamelCase_ : Dict = {v: k for k, v in idalabel.items()} return config def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase_ : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ : str = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ : List[str] = in_proj_bias[: config.hidden_size] lowerCamelCase_ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ : Optional[int] = in_proj_weight[-config.hidden_size :, :] lowerCamelCase_ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def __snake_case (__UpperCAmelCase ): """simple docstring""" if "backbone" in name: lowerCamelCase_ : List[Any] = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: lowerCamelCase_ : List[Any] = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: lowerCamelCase_ : Tuple = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: lowerCamelCase_ : Union[str, Any] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: lowerCamelCase_ : int = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowerCamelCase_ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: lowerCamelCase_ : Tuple = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: lowerCamelCase_ : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCamelCase_ : Any = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCamelCase_ : Optional[int] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCamelCase_ : List[str] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCamelCase_ : Any = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCamelCase_ : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: lowerCamelCase_ : Tuple = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: lowerCamelCase_ : List[Any] = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: lowerCamelCase_ : Optional[Any] = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase_ : Tuple = orig_state_dict.pop(__UpperCamelCase ) if "qkv" in key: lowerCamelCase_ : Union[str, Any] = key.split('''.''' ) lowerCamelCase_ : Any = int(key_split[2] ) lowerCamelCase_ : Any = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase_ : Optional[Any] = val[:dim, :] lowerCamelCase_ : int = val[ dim : dim * 2, : ] lowerCamelCase_ : Any = val[-dim:, :] else: lowerCamelCase_ : List[Any] = val[:dim] lowerCamelCase_ : Tuple = val[dim : dim * 2] lowerCamelCase_ : Optional[int] = val[-dim:] else: lowerCamelCase_ : Optional[Any] = val return orig_state_dict def __snake_case (): """simple docstring""" lowerCamelCase_ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : int = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): """simple docstring""" lowerCamelCase_ : Optional[int] = get_yolos_config(__UpperCamelCase ) # load original state_dict lowerCamelCase_ : Union[str, Any] = torch.load(__UpperCamelCase , map_location='''cpu''' )['''model'''] # load 🤗 model lowerCamelCase_ : Tuple = YolosForObjectDetection(__UpperCamelCase ) model.eval() lowerCamelCase_ : int = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase_ : Optional[Any] = 800 if yolos_name != '''yolos_ti''' else 512 lowerCamelCase_ : Dict = YolosImageProcessor(format='''coco_detection''' , size=__UpperCamelCase ) lowerCamelCase_ : str = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ : List[str] = model(**__UpperCamelCase ) lowerCamelCase_ , lowerCamelCase_ : Dict = outputs.logits, outputs.pred_boxes lowerCamelCase_ , lowerCamelCase_ : str = None, None if yolos_name == "yolos_ti": lowerCamelCase_ : int = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) lowerCamelCase_ : Optional[int] = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase_ : Union[str, Any] = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) lowerCamelCase_ : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase_ : str = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) lowerCamelCase_ : Any = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase_ : Dict = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) lowerCamelCase_ : Union[str, Any] = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": lowerCamelCase_ : Dict = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) lowerCamelCase_ : Dict = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __UpperCamelCase , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: lowerCamelCase_ : Union[str, Any] = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) lowerCamelCase_ : str = model_mapping[yolos_name] image_processor.push_to_hub(__UpperCamelCase , organization='''hustvl''' ) model.push_to_hub(__UpperCamelCase , organization='''hustvl''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',""" """ \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowerCamelCase : Any = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
708
'''simple docstring''' def __snake_case (__UpperCAmelCase = 3 , __UpperCAmelCase = 7 , __UpperCAmelCase = 1000000 ): """simple docstring""" lowerCamelCase_ : Any = 0 lowerCamelCase_ : Tuple = 1 for current_denominator in range(1 , limit + 1 ): lowerCamelCase_ : str = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: lowerCamelCase_ : Any = current_numerator lowerCamelCase_ : Dict = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
418
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ : Union[str, Any] = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Union[str, Any] = ['''OwlViTFeatureExtractor'''] lowerCamelCase__ : List[Any] = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
238
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class _UpperCAmelCase ( __a): __a : int = """data2vec-vision""" def __init__( self , _A=7_68 , _A=12 , _A=12 , _A=30_72 , _A="gelu" , _A=0.0 , _A=0.0 , _A=0.02 , _A=1e-12 , _A=2_24 , _A=16 , _A=3 , _A=False , _A=False , _A=False , _A=False , _A=0.1 , _A=0.1 , _A=True , _A=[3, 5, 7, 11] , _A=[1, 2, 3, 6] , _A=True , _A=0.4 , _A=2_56 , _A=1 , _A=False , _A=2_55 , **_A , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_A ) _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : str = initializer_range _UpperCAmelCase : Any = layer_norm_eps _UpperCAmelCase : str = image_size _UpperCAmelCase : List[str] = patch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Tuple = use_mask_token _UpperCAmelCase : Union[str, Any] = use_absolute_position_embeddings _UpperCAmelCase : Dict = use_relative_position_bias _UpperCAmelCase : Tuple = use_shared_relative_position_bias _UpperCAmelCase : List[Any] = layer_scale_init_value _UpperCAmelCase : Tuple = drop_path_rate _UpperCAmelCase : Optional[Any] = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase : Union[str, Any] = out_indices _UpperCAmelCase : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase : Optional[int] = use_auxiliary_head _UpperCAmelCase : List[Any] = auxiliary_loss_weight _UpperCAmelCase : List[Any] = auxiliary_channels _UpperCAmelCase : Tuple = auxiliary_num_convs _UpperCAmelCase : Union[str, Any] = auxiliary_concat_input _UpperCAmelCase : Optional[int] = semantic_loss_ignore_index class _UpperCAmelCase ( __a): __a : Tuple = version.parse("""1.11""") @property def __snake_case ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __snake_case ( self ) -> float: '''simple docstring''' return 1e-4
238
1
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCamelCase = False class lowercase__ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe.dual_guided( prompt="first prompt" , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = VersatileDiffusionPipeline.from_pretrained(_UpperCAmelCase , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = generator.manual_seed(0 ) UpperCAmelCase_ = pipe.dual_guided( prompt="first prompt" , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "cyberpunk 2077" UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe.dual_guided( prompt=_UpperCAmelCase , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images UpperCAmelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCAmelCase_ = "A painting of a squirrel eating a burger " UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe.text_to_image( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images UpperCAmelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCAmelCase_ = pipe.image_variation(_UpperCAmelCase , generator=_UpperCAmelCase , output_type="numpy" ).images UpperCAmelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''convbert''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = embedding_size UpperCAmelCase_ = head_ratio UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = num_groups UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
14
0