code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def snake_case ( *__a , **__a ): pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] =MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = ObjectDetectionPipeline(model=__a , image_processor=__a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case ( self , __a , __a ): __lowerCAmelCase = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) import datasets __lowerCAmelCase = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) __lowerCAmelCase = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] __lowerCAmelCase = object_detector(__a , threshold=0.0 ) self.assertEqual(len(__a ) , len(__a ) ) for outputs in batch_outputs: self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def snake_case ( self ): pass @require_torch def snake_case ( self ): __lowerCAmelCase = "hf-internal-testing/tiny-detr-mobilenetsv3" __lowerCAmelCase = AutoModelForObjectDetection.from_pretrained(__a ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__a ) __lowerCAmelCase = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) __lowerCAmelCase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ] , ) __lowerCAmelCase = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ], [ {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ], ] , ) @require_torch @slow def snake_case ( self ): __lowerCAmelCase = "facebook/detr-resnet-50" __lowerCAmelCase = AutoModelForObjectDetection.from_pretrained(__a ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__a ) __lowerCAmelCase = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) __lowerCAmelCase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) __lowerCAmelCase = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], ] , ) @require_torch @slow def snake_case ( self ): __lowerCAmelCase = "facebook/detr-resnet-50" __lowerCAmelCase = pipeline("object-detection" , model=__a ) __lowerCAmelCase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) __lowerCAmelCase = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], ] , ) @require_torch @slow def snake_case ( self ): __lowerCAmelCase = 0.9_9_8_5 __lowerCAmelCase = "facebook/detr-resnet-50" __lowerCAmelCase = pipeline("object-detection" , model=__a ) __lowerCAmelCase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__a ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) @require_torch @require_pytesseract @slow def snake_case ( self ): __lowerCAmelCase = "Narsil/layoutlmv3-finetuned-funsd" __lowerCAmelCase = 0.9_9_9_3 __lowerCAmelCase = pipeline("object-detection" , model=__a , threshold=__a ) __lowerCAmelCase = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.9_9_9_3, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}}, {"score": 0.9_9_9_3, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}}, ] , )
636
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) __lowerCAmelCase = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__a ) , torch_builtin(__a ) ) ) self.assertFalse(torch.allclose(gelu_python(__a ) , gelu_new(__a ) ) ) def snake_case ( self ): __lowerCAmelCase = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) __lowerCAmelCase = get_activation("gelu" ) __lowerCAmelCase = get_activation("gelu_10" ) __lowerCAmelCase = torch_builtin(__a ) __lowerCAmelCase = geluaa(__a ) __lowerCAmelCase = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__a ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def snake_case ( self ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__a ): get_activation("bogus" ) with self.assertRaises(__a ): get_activation(__a ) def snake_case ( self ): __lowerCAmelCase = get_activation("gelu" ) __lowerCAmelCase = 1 __lowerCAmelCase = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__a ): __lowerCAmelCase = acta.a
636
1
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase=1000 ): """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd A_ : List[Any] = n - 1 A_ : Dict = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) A_ : Optional[Any] = 0 while count < prec: A_ : Optional[int] = random.randint(2 , n - 1 ) A_ : Any = bin_exp_mod(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if b != 1: A_ : Dict = True for _ in range(_UpperCAmelCase ): if b == n - 1: A_ : Optional[int] = False break A_ : Any = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : List[str] = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
361
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) _lowerCamelCase : Optional[Any] = parser.parse_args() _lowerCamelCase : Optional[Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
361
1
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
237
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( a_ ,unittest.TestCase ): __lowerCAmelCase = RobertaTokenizer __lowerCAmelCase = RobertaTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = {"cls_token": "<s>"} def snake_case_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] a_ : str = dict(zip(a_ , range(len(a_ ) ) ) ) a_ : Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] a_ : List[str] = {"unk_token": "<unk>"} a_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def snake_case_ ( self , **a_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) def snake_case_ ( self , **a_ ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def snake_case_ ( self , a_ ): a_ : str = "lower newer" a_ : int = "lower newer" return input_text, output_text def snake_case_ ( self ): a_ : List[str] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : Dict = "lower newer" a_ : str = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] a_ : Dict = tokenizer.tokenize(a_ ) # , add_prefix_space=True) self.assertListEqual(a_ , a_ ) a_ : List[Any] = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def snake_case_ ( self ): a_ : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=a_ ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=a_ ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def snake_case_ ( self ): a_ : Dict = self.tokenizer_class.from_pretrained("roberta-base" ) a_ : Optional[Any] = tokenizer.encode("sequence builders" , add_special_tokens=a_ ) a_ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=a_ ) a_ : List[Any] = tokenizer.encode( "sequence builders" , add_special_tokens=a_ , add_prefix_space=a_ ) a_ : Tuple = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=a_ , add_prefix_space=a_ ) a_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(a_ ) a_ : Tuple = tokenizer.build_inputs_with_special_tokens(a_ , a_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def snake_case_ ( self ): a_ : List[str] = self.get_tokenizer() a_ : str = "Encode this sequence." a_ : str = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ ) a_ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(a_ , a_ ) a_ : Dict = tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ ) a_ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(a_ , a_ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) a_ : int = tokenizer.encode(a_ , add_special_tokens=a_ ) a_ : List[str] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(a_ , a_ ) # Testing spaces after special tokens a_ : Optional[int] = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(a_ , lstrip=a_ , rstrip=a_ )} ) # mask token has a left space a_ : str = tokenizer.convert_tokens_to_ids(a_ ) a_ : Union[str, Any] = "Encode <mask> sequence" a_ : Union[str, Any] = "Encode <mask>sequence" a_ : int = tokenizer.encode(a_ ) a_ : Union[str, Any] = encoded.index(a_ ) a_ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(a_ , a_ ) a_ : str = tokenizer.encode(a_ ) a_ : List[str] = encoded.index(a_ ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(a_ , a_ ) def snake_case_ ( self ): pass def snake_case_ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a_ : str = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) a_ : List[Any] = self.tokenizer_class.from_pretrained(a_ , **a_ ) a_ : List[Any] = "A, <mask> AllenNLP sentence." a_ : Optional[int] = tokenizer_r.encode_plus(a_ , add_special_tokens=a_ , return_token_type_ids=a_ ) a_ : int = tokenizer_p.encode_plus(a_ , add_special_tokens=a_ , return_token_type_ids=a_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) a_ : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) a_ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( a_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( a_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def snake_case_ ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) a_ : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , a_ ) self.assertEqual(post_processor_state["add_prefix_space"] , a_ ) self.assertEqual(post_processor_state["trim_offsets"] , a_ ) def snake_case_ ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a_ : List[Any] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` a_ : Tuple = F"""{text_of_1_token} {text_of_1_token}""" a_ : Dict = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) a_ : Dict = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )) , ) a_ : List[str] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) a_ : Optional[int] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )) , ) a_ : Dict = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) a_ : str = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ), len(a_ ) + 1 + len(a_ )) , ) a_ : str = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) a_ : Dict = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ), len(a_ ) + 1 + len(a_ )) , ) a_ : Union[str, Any] = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) a_ : List[str] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )) , ) a_ : str = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) a_ : Dict = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ), 1 + len(a_ ) + 1 + len(a_ )) , ) a_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) a_ : Optional[Any] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ), 1 + len(a_ ) + 1 + len(a_ )) , )
237
1
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A=1_00 , A=13 , A=30 , A=2 , A=3 , A=True , A=True , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=10 , A=0.02 , A=3 , ) -> Dict: '''simple docstring''' __magic_name__ = parent __magic_name__ = vocab_size __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ = (image_size // patch_size) ** 2 __magic_name__ = num_patches + 1 def __A ( self ) -> str: '''simple docstring''' __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values, labels def __A ( self , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = FlaxBeitModel(config=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = FlaxBeitForMaskedImageModeling(config=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __A ( self , A , A , A ) -> List[str]: '''simple docstring''' __magic_name__ = self.type_sequence_label_size __magic_name__ = FlaxBeitForImageClassification(config=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ = 1 __magic_name__ = FlaxBeitForImageClassification(A ) __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(A ) def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def __A ( self ) -> None: '''simple docstring''' __magic_name__ = FlaxBeitModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(A ) __magic_name__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def __A ( self ) -> Any: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __magic_name__ = self._prepare_for_class(A , A ) __magic_name__ = model_class(A ) @jax.jit def model_jitted(A , **A ): return model(pixel_values=A , **A ) with self.subTest('''JIT Enabled''' ): __magic_name__ = model_jitted(**A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __magic_name__ = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def __A ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __magic_name__ = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) __magic_name__ = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(A ) def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self ) -> List[Any]: '''simple docstring''' return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=A , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos __magic_name__ = np.ones((1, 1_96) , dtype=A ) # forward pass __magic_name__ = model(pixel_values=A , bool_masked_pos=A ) __magic_name__ = outputs.logits # verify the logits __magic_name__ = (1, 1_96, 81_92) self.assertEqual(logits.shape , A ) __magic_name__ = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , A , atol=1E-2 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=A , return_tensors='''np''' ) # forward pass __magic_name__ = model(**A ) __magic_name__ = outputs.logits # verify the logits __magic_name__ = (1, 10_00) self.assertEqual(logits.shape , A ) __magic_name__ = np.array([-1.23_85, -1.09_87, -1.01_08] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1E-4 ) ) __magic_name__ = 2_81 self.assertEqual(logits.argmax(-1 ).item() , A ) @slow def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=A , return_tensors='''np''' ) # forward pass __magic_name__ = model(**A ) __magic_name__ = outputs.logits # verify the logits __magic_name__ = (1, 2_18_41) self.assertEqual(logits.shape , A ) __magic_name__ = np.array([1.68_81, -0.27_87, 0.59_01] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1E-4 ) ) __magic_name__ = 23_96 self.assertEqual(logits.argmax(-1 ).item() , A )
678
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[list[int]] , snake_case_ : int , snake_case_ : int , snake_case_ : set ): __magic_name__ , __magic_name__ = len(snake_case_ ), len(grid[0] ) if ( min(snake_case_ , snake_case_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __magic_name__ = 0 count += depth_first_search(snake_case_ , row + 1 , snake_case_ , snake_case_ ) count += depth_first_search(snake_case_ , row - 1 , snake_case_ , snake_case_ ) count += depth_first_search(snake_case_ , snake_case_ , col + 1 , snake_case_ ) count += depth_first_search(snake_case_ , snake_case_ , col - 1 , snake_case_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
678
1
"""simple docstring""" lowerCamelCase = 9.80_665 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = g ): if fluid_density <= 0: raise ValueError("Impossible fluid density" ) if volume < 0: raise ValueError("Impossible Object volume" ) if gravity <= 0: raise ValueError("Impossible Gravity" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
82
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _UpperCAmelCase = TypeVar('T') class snake_case_ ( Generic[T] ): def __init__( self : str , _snake_case : bool = True )->None: '''simple docstring''' __lowerCAmelCase : dict[T, list[T]] = {} # dictionary of lists __lowerCAmelCase : List[str] = directed def UpperCAmelCase__ ( self : Union[str, Any] , _snake_case : T , _snake_case : T )->GraphAdjacencyList[T]: '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) self.adj_list[destination_vertex].append(_snake_case ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) __lowerCAmelCase : Optional[Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_snake_case ) __lowerCAmelCase : List[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: __lowerCAmelCase : Any = [destination_vertex] __lowerCAmelCase : Optional[Any] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) __lowerCAmelCase : Optional[int] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: __lowerCAmelCase : Optional[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: __lowerCAmelCase : Union[str, Any] = [destination_vertex] __lowerCAmelCase : List[str] = [] return self def __repr__( self : Union[str, Any] )->str: '''simple docstring''' return pformat(self.adj_list )
504
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __snake_case , unittest.TestCase ): a: Any = LEDTokenizer a: Optional[int] = LEDTokenizerFast a: Tuple = True def _A ( self: Union[str, Any] ): super().setUp() _a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _a = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def _A ( self: Union[str, Any] , **__UpperCamelCase: Tuple ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def _A ( self: int , **__UpperCamelCase: Union[str, Any] ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def _A ( self: Optional[Any] , __UpperCamelCase: Tuple ): return "lower newer", "lower newer" @cached_property def _A ( self: str ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def _A ( self: List[Any] ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def _A ( self: Optional[int] ): _a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _a = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(__UpperCamelCase , max_length=len(__UpperCamelCase ) , padding=__UpperCamelCase , return_tensors='''pt''' ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _a = batch.input_ids.tolist()[0] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) @require_torch def _A ( self: Union[str, Any] ): _a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __UpperCamelCase ) self.assertIn('''attention_mask''' , __UpperCamelCase ) self.assertNotIn('''labels''' , __UpperCamelCase ) self.assertNotIn('''decoder_attention_mask''' , __UpperCamelCase ) @require_torch def _A ( self: Any ): _a = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(text_target=__UpperCamelCase , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def _A ( self: Any ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors='''pt''' ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def _A ( self: int ): _a = ['''A long paragraph for summarization.'''] _a = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(__UpperCamelCase , return_tensors='''pt''' ) _a = tokenizer(text_target=__UpperCamelCase , return_tensors='''pt''' ) _a = inputs['''input_ids'''] _a = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _A ( self: int ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = ['''Summary of the text.''', '''Another summary.'''] _a = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _a = tokenizer(__UpperCamelCase , padding=__UpperCamelCase ) _a = [[0] * len(__UpperCamelCase ) for x in encoded_output['''input_ids''']] _a = tokenizer.pad(__UpperCamelCase ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __UpperCamelCase ) def _A ( self: Union[str, Any] ): pass def _A ( self: Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _a = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) _a = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) _a = '''A, <mask> AllenNLP sentence.''' _a = tokenizer_r.encode_plus(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) _a = tokenizer_p.encode_plus(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __UpperCamelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __UpperCamelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
346
import csv import tweepy # Twitter API credentials lowerCamelCase :Optional[int] = '' lowerCamelCase :Tuple = '' lowerCamelCase :Tuple = '' lowerCamelCase :Optional[Any] = '' def __snake_case ( _UpperCamelCase ) -> None: # authorize twitter, initialize tweepy _a = tweepy.OAuthHandler(_UpperCamelCase , _UpperCamelCase ) auth.set_access_token(_UpperCamelCase , _UpperCamelCase ) _a = tweepy.API(_UpperCamelCase ) # initialize a list to hold all the tweepy Tweets _a = [] # make initial request for most recent tweets (200 is the maximum allowed count) _a = api.user_timeline(screen_name=_UpperCamelCase , count=2_00 ) # save most recent tweets alltweets.extend(_UpperCamelCase ) # save the id of the oldest tweet less one _a = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_UpperCamelCase ) > 0: print(f"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates _a = api.user_timeline( screen_name=_UpperCamelCase , count=2_00 , max_id=_UpperCamelCase ) # save most recent tweets alltweets.extend(_UpperCamelCase ) # update the id of the oldest tweet less one _a = alltweets[-1].id - 1 print(f"...{len(_UpperCamelCase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv _a = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"new_{screen_name}_tweets.csv" , '''w''' ) as f: _a = csv.writer(_UpperCamelCase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(_UpperCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
346
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : Dict , __A : List[str]=3 , __A : List[Any]=32 , __A : int=3 , __A : str=10 , __A : List[Any]=[10, 20, 30, 40] , __A : Union[str, Any]=[1, 1, 2, 1] , __A : Any=True , __A : Optional[int]=True , __A : int="relu" , __A : Dict=3 , __A : Dict=None , ): __A : Tuple = parent __A : int = batch_size __A : List[str] = image_size __A : Tuple = num_channels __A : Tuple = embeddings_size __A : Optional[Any] = hidden_sizes __A : str = depths __A : Optional[int] = is_training __A : Tuple = use_labels __A : Optional[int] = hidden_act __A : Tuple = num_labels __A : Optional[int] = scope __A : List[Any] = len(__A ) def lowerCAmelCase_ ( self : Dict ): __A : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : Optional[Any] = None if self.use_labels: __A : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __A : int = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : int ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowerCAmelCase_ ( self : str , __A : Optional[Any] , __A : Tuple , __A : List[str] ): __A : List[Any] = TFRegNetModel(config=__A ) __A : int = model(__A , training=__A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase_ ( self : Dict , __A : str , __A : Tuple , __A : List[Any] ): __A : Optional[Any] = self.num_labels __A : Optional[int] = TFRegNetForImageClassification(__A ) __A : List[Any] = model(__A , labels=__A , training=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : str ): __A : int = self.prepare_config_and_inputs() __A , __A , __A : List[Any] = config_and_inputs __A : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( _lowercase , _lowercase , unittest.TestCase ): _lowercase : Optional[Any] = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () _lowercase : Tuple = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : Optional[int] = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False def lowerCAmelCase_ ( self : Dict ): __A : Tuple = TFRegNetModelTester(self ) __A : int = ConfigTester(self , config_class=__A , has_text_modality=__A ) def lowerCAmelCase_ ( self : List[str] ): return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : List[Any] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def lowerCAmelCase_ ( self : Dict ): super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCAmelCase_ ( self : Optional[int] ): pass def lowerCAmelCase_ ( self : str ): __A , __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Dict = model_class(__A ) __A : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Optional[int] = [*signature.parameters.keys()] __A : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __A ) def lowerCAmelCase_ ( self : Any ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCAmelCase_ ( self : List[str] ): def check_hidden_states_output(__A : Optional[int] , __A : str , __A : str ): __A : Tuple = model_class(__A ) __A : List[str] = model(**self._prepare_for_class(__A , __A ) , training=__A ) __A : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __A : int = self.model_tester.num_stages self.assertEqual(len(__A ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __A , __A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __A : List[Any] = layer_type __A : Optional[int] = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : str = True check_hidden_states_output(__A , __A , __A ) def lowerCAmelCase_ ( self : Dict ): __A , __A : Any = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__A : int , __A : Any , __A : List[Any] , __A : Any={} ): __A : List[str] = model(__A , return_dict=__A , **__A ) __A : Tuple = model(__A , return_dict=__A , **__A ).to_tuple() def recursive_check(__A : Dict , __A : int ): if isinstance(__A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__A , __A ): recursive_check(__A , __A ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__A , __A ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(__A , __A ) for model_class in self.all_model_classes: __A : Optional[int] = model_class(__A ) __A : Optional[Any] = self._prepare_for_class(__A , __A ) __A : Tuple = self._prepare_for_class(__A , __A ) check_equivalence(__A , __A , __A ) __A : Dict = self._prepare_for_class(__A , __A , return_labels=__A ) __A : List[Any] = self._prepare_for_class(__A , __A , return_labels=__A ) check_equivalence(__A , __A , __A ) __A : int = self._prepare_for_class(__A , __A ) __A : Optional[int] = self._prepare_for_class(__A , __A ) check_equivalence(__A , __A , __A , {"""output_hidden_states""": True} ) __A : int = self._prepare_for_class(__A , __A , return_labels=__A ) __A : List[Any] = self._prepare_for_class(__A , __A , return_labels=__A ) check_equivalence(__A , __A , __A , {"""output_hidden_states""": True} ) def lowerCAmelCase_ ( self : List[str] ): __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def lowerCAmelCase_ ( self : int ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[str] = TFRegNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self : Union[str, Any] ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : str ): __A : Union[str, Any] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __A : Tuple = self.default_image_processor __A : str = prepare_img() __A : Optional[int] = image_processor(images=__A , return_tensors="""tf""" ) # forward pass __A : Any = model(**__A , training=__A ) # verify the logits __A : List[str] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __A ) __A : List[Any] = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , __A , atol=1e-4 )
17
"""simple docstring""" import numpy as np def _UpperCAmelCase ( __lowerCamelCase : np.ndarray , __lowerCamelCase : np.ndarray , __lowerCamelCase : float = 1E-1_2 , __lowerCamelCase : int = 1_00 , ) -> tuple[float, np.ndarray]: assert np.shape(__lowerCamelCase )[0] == np.shape(__lowerCamelCase )[1] # Ensure proper dimensionality. assert np.shape(__lowerCamelCase )[0] == np.shape(__lowerCamelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__lowerCamelCase ) == np.iscomplexobj(__lowerCamelCase ) _snake_case = np.iscomplexobj(__lowerCamelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__lowerCamelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = 1E1_2 while not convergence: # Multiple matrix by the vector. _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) # Normalize the resulting output vector. _snake_case = w / np.linalg.norm(__lowerCamelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _snake_case = vector.conj().T if is_complex else vector.T _snake_case = np.dot(__lowerCamelCase , np.dot(__lowerCamelCase , __lowerCamelCase ) ) # Check convergence. _snake_case = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _snake_case = True _snake_case = lambda_ if is_complex: _snake_case = np.real(lambda_ ) return lambda_, vector def _UpperCAmelCase ( ) -> None: _snake_case = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _snake_case = np.array([41, 4, 20] ) _snake_case = real_input_matrix.astype(np.complexaaa ) _snake_case = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _snake_case = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _snake_case = real_input_matrix _snake_case = real_vector elif problem_type == "complex": _snake_case = complex_input_matrix _snake_case = complex_vector # Our implementation. _snake_case , _snake_case = power_iteration(__lowerCamelCase , __lowerCamelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _snake_case , _snake_case = np.linalg.eigh(__lowerCamelCase ) # Last eigenvalue is the maximum one. _snake_case = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _snake_case = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__lowerCamelCase ) - np.abs(__lowerCamelCase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
224
0
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger UpperCAmelCase_ : Any = get_logger(__name__) UpperCAmelCase_ : Tuple = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class lowerCAmelCase__ : '''simple docstring''' @add_start_docstrings(A_) def __call__( self : Any , lowercase_ : Tuple , lowercase_ : List[str]): '''simple docstring''' raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.') class lowerCAmelCase__ : '''simple docstring''' @add_start_docstrings(A_) def __call__( self : Any , lowercase_ : int , lowercase_ : Tuple): '''simple docstring''' raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.') class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @add_start_docstrings(A_) def __call__( self : Union[str, Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : List[str] , **lowercase_ : Union[str, Any]): '''simple docstring''' for processor in self: SCREAMING_SNAKE_CASE_ : Union[str, Any] = inspect.signature(processor.__call__).parameters if len(A_) > 3: if not all(arg in kwargs for arg in list(function_args.keys())[2:]): raise ValueError( F'Make sure that all the required parameters: {list(function_args.keys())} for ' F'{processor.__class__} are passed to the logits processor.') SCREAMING_SNAKE_CASE_ : Any = processor(A_ , A_ , A_ , **A_) else: SCREAMING_SNAKE_CASE_ : Dict = processor(A_ , A_ , A_) return scores class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int , lowercase_ : Tuple): '''simple docstring''' if not isinstance(A_ , A_) or not (temperature > 0): raise ValueError(F'`temperature` has to be a strictly positive float, but is {temperature}') SCREAMING_SNAKE_CASE_ : int = temperature def __call__( self : int , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = scores / self.temperature return scores class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : List[str] , lowercase_ : str = -float('''Inf''') , lowercase_ : Union[str, Any] = 1): '''simple docstring''' if not isinstance(A_ , A_) or (top_p < 0 or top_p > 1.0): raise ValueError(F'`top_p` has to be a float > 0 and < 1, but is {top_p}') if not isinstance(A_ , A_) or (min_tokens_to_keep < 1): raise ValueError(F'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}') SCREAMING_SNAKE_CASE_ : Optional[int] = top_p SCREAMING_SNAKE_CASE_ : int = filter_value SCREAMING_SNAKE_CASE_ : List[Any] = min_tokens_to_keep def __call__( self : int , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = lax.top_k(A_ , scores.shape[-1]) SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.full_like(A_ , self.filter_value) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jax.nn.softmax(A_ , axis=-1).cumsum(axis=-1) SCREAMING_SNAKE_CASE_ : Tuple = cumulative_probs < self.top_p # include the token that is higher than top_p as well SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.roll(A_ , 1) score_mask |= score_mask.at[:, 0].set(A_) # min tokens to keep SCREAMING_SNAKE_CASE_ : List[Any] = score_mask.at[:, : self.min_tokens_to_keep].set(A_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.where(A_ , A_ , A_) SCREAMING_SNAKE_CASE_ : List[Any] = jax.lax.sort_key_val(A_ , A_)[-1] return next_scores class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] = -float('''Inf''') , lowercase_ : Tuple = 1): '''simple docstring''' if not isinstance(A_ , A_) or top_k <= 0: raise ValueError(F'`top_k` has to be a strictly positive integer, but is {top_k}') SCREAMING_SNAKE_CASE_ : int = max(A_ , A_) SCREAMING_SNAKE_CASE_ : List[str] = filter_value def __call__( self : Any , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = scores.shape SCREAMING_SNAKE_CASE_ : Tuple = jnp.full(batch_size * vocab_size , self.filter_value) SCREAMING_SNAKE_CASE_ : int = min(self.top_k , scores.shape[-1]) # Safety check SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = lax.top_k(A_ , A_) SCREAMING_SNAKE_CASE_ : Tuple = jnp.broadcast_to((jnp.arange(A_) * vocab_size)[:, None] , (batch_size, topk)).flatten() SCREAMING_SNAKE_CASE_ : Any = topk_scores.flatten() SCREAMING_SNAKE_CASE_ : List[Any] = topk_indices.flatten() + shift SCREAMING_SNAKE_CASE_ : Optional[Any] = next_scores_flat.at[topk_indices_flat].set(A_) SCREAMING_SNAKE_CASE_ : Dict = next_scores_flat.reshape(A_ , A_) return next_scores class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = bos_token_id def __call__( self : Union[str, Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = jnp.full(scores.shape , -float('''inf''')) SCREAMING_SNAKE_CASE_ : Optional[int] = 1 - jnp.bool_(cur_len - 1) SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.where(A_ , new_scores.at[:, self.bos_token_id].set(0) , A_) return scores class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = max_length SCREAMING_SNAKE_CASE_ : Optional[Any] = eos_token_id def __call__( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = jnp.full(scores.shape , -float('''inf''')) SCREAMING_SNAKE_CASE_ : Dict = 1 - jnp.bool_(cur_len - self.max_length + 1) SCREAMING_SNAKE_CASE_ : List[str] = jnp.where(A_ , new_scores.at[:, self.eos_token_id].set(0) , A_) return scores class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : Tuple , lowercase_ : int): '''simple docstring''' if not isinstance(A_ , A_) or min_length < 0: raise ValueError(F'`min_length` has to be a positive integer, but is {min_length}') if not isinstance(A_ , A_) or eos_token_id < 0: raise ValueError(F'`eos_token_id` has to be a positive integer, but is {eos_token_id}') SCREAMING_SNAKE_CASE_ : str = min_length SCREAMING_SNAKE_CASE_ : Tuple = eos_token_id def __call__( self : Optional[Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1) SCREAMING_SNAKE_CASE_ : str = jnp.where(A_ , scores.at[:, self.eos_token_id].set(-float('''inf''')) , A_) return scores class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Any , lowercase_ : Optional[Any] , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = list(A_) SCREAMING_SNAKE_CASE_ : Optional[int] = begin_index def __call__( self : List[Any] , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = 1 - jnp.bool_(cur_len - self.begin_index) SCREAMING_SNAKE_CASE_ : List[str] = jnp.where(A_ , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''')) , A_) return scores class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = list(A_) def __call__( self : List[Any] , lowercase_ : str , lowercase_ : str , lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = scores.at[..., self.suppress_tokens].set(-float('''inf''')) return scores class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(A_) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. SCREAMING_SNAKE_CASE_ : int = jnp.ones((max(force_token_map.keys()) + 1) , dtype=jnp.intaa) * -1 for index, token in force_token_map.items(): if token is not None: SCREAMING_SNAKE_CASE_ : List[Any] = force_token_array.at[index].set(A_) SCREAMING_SNAKE_CASE_ : str = jnp.intaa(A_) def __call__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : str): '''simple docstring''' def _force_token(lowercase_ : Any): SCREAMING_SNAKE_CASE_ : Dict = scores.shape[0] SCREAMING_SNAKE_CASE_ : Any = self.force_token_array[generation_idx] SCREAMING_SNAKE_CASE_ : Dict = jnp.ones_like(A_ , dtype=scores.dtype) * -float('''inf''') SCREAMING_SNAKE_CASE_ : List[Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype) SCREAMING_SNAKE_CASE_ : List[Any] = lax.dynamic_update_slice(A_ , A_ , (0, current_token)) return new_scores SCREAMING_SNAKE_CASE_ : str = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(A_) , lambda: scores , ) , ) return scores class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = generate_config.eos_token_id SCREAMING_SNAKE_CASE_ : Tuple = generate_config.no_timestamps_token_id SCREAMING_SNAKE_CASE_ : Optional[int] = generate_config.no_timestamps_token_id + 1 SCREAMING_SNAKE_CASE_ : Tuple = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(A_ , '''max_initial_timestamp_index'''): SCREAMING_SNAKE_CASE_ : int = generate_config.max_initial_timestamp_index else: SCREAMING_SNAKE_CASE_ : Tuple = model_config.vocab_size if self.max_initial_timestamp_index is None: SCREAMING_SNAKE_CASE_ : List[Any] = model_config.vocab_size def __call__( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''')) def handle_pairs(lowercase_ : Tuple , lowercase_ : Optional[int]): SCREAMING_SNAKE_CASE_ : List[str] = jnp.where((cur_len - self.begin_index) >= 1 , A_ , A_) SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , A_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.where((cur_len - self.begin_index) < 2 , A_ , A_) SCREAMING_SNAKE_CASE_ : Dict = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , A_ , A_ , ) return jnp.where( A_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''')) , scores_k.at[: self.eos_token_id].set(-float('''inf''')) , ) , A_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = jax.vmap(A_)(A_ , A_) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.where(cur_len == self.begin_index , A_ , A_) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , A_ , ) SCREAMING_SNAKE_CASE_ : Any = self.timestamp_begin + self.max_initial_timestamp_index SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.where( A_ , scores.at[:, last_allowed + 1 :].set(-float('''inf''')) , A_ , ) # if sum of probability over timestamps is above any other token, sample timestamp SCREAMING_SNAKE_CASE_ : Dict = jax.nn.log_softmax(A_ , axis=-1) def handle_cumulative_probs(lowercase_ : Optional[int] , lowercase_ : int): SCREAMING_SNAKE_CASE_ : Any = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1) SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.max(logprobs_k[: self.timestamp_begin]) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''')) , A_ , ) SCREAMING_SNAKE_CASE_ : Dict = jax.vmap(A_)(A_ , A_) return scores
703
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _A (__a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = {} SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(example['''content'''] , truncation=__a )['''input_ids'''] SCREAMING_SNAKE_CASE_ : List[Any] = len(example['''content'''] ) / len(output['''input_ids'''] ) return output UpperCAmelCase_ : Tuple = HfArgumentParser(PretokenizationArguments) UpperCAmelCase_ : Tuple = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : Tuple = multiprocessing.cpu_count() UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : List[Any] = load_dataset(args.dataset_name, split="""train""") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase_ : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
176
0
def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : Optional[Any] = len(set_a.intersection(UpperCamelCase__ ) ) if alternative_union: UpperCamelCase__ : Optional[int] = len(UpperCamelCase__ ) + len(UpperCamelCase__ ) else: UpperCamelCase__ : int = len(set_a.union(UpperCamelCase__ ) ) return intersection / union if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(UpperCamelCase__ , (list, tuple) ): UpperCamelCase__ : Optional[Any] = [element for element in set_a if element in set_b] if alternative_union: UpperCamelCase__ : Union[str, Any] = len(UpperCamelCase__ ) + len(UpperCamelCase__ ) return len(UpperCamelCase__ ) / union else: UpperCamelCase__ : Tuple = set_a + [element for element in set_b if element not in set_a] return len(UpperCamelCase__ ) / len(UpperCamelCase__ ) return len(UpperCamelCase__ ) / len(UpperCamelCase__ ) return None if __name__ == "__main__": lowerCamelCase ={"a", "b", "c", "d", "e"} lowerCamelCase ={"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
285
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase =logging.get_logger(__name__) lowerCamelCase ={ "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = '''distilbert''' SCREAMING_SNAKE_CASE_ = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , __SCREAMING_SNAKE_CASE=3_0_5_2_2 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=4 * 7_6_8 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.2 , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = vocab_size UpperCamelCase__ : Dict = max_position_embeddings UpperCamelCase__ : Any = sinusoidal_pos_embds UpperCamelCase__ : Dict = n_layers UpperCamelCase__ : List[Any] = n_heads UpperCamelCase__ : Dict = dim UpperCamelCase__ : Dict = hidden_dim UpperCamelCase__ : Optional[int] = dropout UpperCamelCase__ : Optional[Any] = attention_dropout UpperCamelCase__ : Tuple = activation UpperCamelCase__ : Optional[int] = initializer_range UpperCamelCase__ : Optional[int] = qa_dropout UpperCamelCase__ : str = seq_classif_dropout super().__init__(**__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE ) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase__ : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase__ : int = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
285
1
def _A ( __magic_name__ = 1000 ): lowercase__ = 2**power lowercase__ = 0 while n: lowercase__ , lowercase__ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
611
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=1024 ): lowercase__ , lowercase__ = [], [] lowercase__ = list(zip(__magic_name__ , __magic_name__ ) ) lowercase__ , lowercase__ = sorted_examples[0] def is_too_big(__magic_name__ ): return tok(__magic_name__ , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): lowercase__ = new_src + " " + src lowercase__ = new_tgt + " " + tgt if is_too_big(__magic_name__ ) or is_too_big(__magic_name__ ): # cant fit, finalize example finished_src.append(__magic_name__ ) finished_tgt.append(__magic_name__ ) lowercase__ , lowercase__ = src, tgt else: # can fit, keep adding lowercase__ , lowercase__ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__magic_name__ ) finished_tgt.append(__magic_name__ ) return finished_src, finished_tgt def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = Path(__magic_name__ ) save_path.mkdir(exist_ok=__magic_name__ ) for split in ["train"]: lowercase__ , lowercase__ = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' lowercase__ = [x.rstrip() for x in Path(__magic_name__ ).open().readlines()] lowercase__ = [x.rstrip() for x in Path(__magic_name__ ).open().readlines()] lowercase__ , lowercase__ = pack_examples(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) print(f'''packed {split} split from {len(__magic_name__ )} examples -> {len(__magic_name__ )}.''' ) Path(save_path / f'''{split}.source''' ).open("w" ).write("\n".join(__magic_name__ ) ) Path(save_path / f'''{split}.target''' ).open("w" ).write("\n".join(__magic_name__ ) ) for split in ["val", "test"]: lowercase__ , lowercase__ = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(__magic_name__ , save_path / f'''{split}.source''' ) shutil.copyfile(__magic_name__ , save_path / f'''{split}.target''' ) def _A ( ): lowercase__ = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=__magic_name__ , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=__magic_name__ , default=128 ) parser.add_argument("--data_dir" , type=__magic_name__ ) parser.add_argument("--save_path" , type=__magic_name__ ) lowercase__ = parser.parse_args() lowercase__ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__magic_name__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
611
1
'''simple docstring''' UpperCamelCase__: Any = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
127
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['''vqvae'''] def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,) -> Dict: """simple docstring""" super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ,mel=SCREAMING_SNAKE_CASE__ ,vqvae=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler ,SCREAMING_SNAKE_CASE__ ) else 10_00 @torch.no_grad() def __call__( self ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__=True ,) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = steps or self.get_default_steps() self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __SCREAMING_SNAKE_CASE :Any = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __SCREAMING_SNAKE_CASE :int = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=SCREAMING_SNAKE_CASE__ ,device=self.device ,) __SCREAMING_SNAKE_CASE :int = noise __SCREAMING_SNAKE_CASE :str = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = self.mel.audio_slice_to_image(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = np.frombuffer(input_image.tobytes() ,dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) __SCREAMING_SNAKE_CASE :Dict = (input_image / 2_55) * 2 - 1 __SCREAMING_SNAKE_CASE :Optional[int] = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: __SCREAMING_SNAKE_CASE :Optional[Any] = self.vqvae.encode(torch.unsqueeze(SCREAMING_SNAKE_CASE__ ,0 ) ).latent_dist.sample( generator=SCREAMING_SNAKE_CASE__ )[0] __SCREAMING_SNAKE_CASE :Dict = self.vqvae.config.scaling_factor * input_images if start_step > 0: __SCREAMING_SNAKE_CASE :Optional[int] = self.scheduler.add_noise(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.scheduler.timesteps[start_step - 1] ) __SCREAMING_SNAKE_CASE :List[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __SCREAMING_SNAKE_CASE :List[Any] = int(mask_start_secs * pixels_per_second ) __SCREAMING_SNAKE_CASE :List[str] = int(mask_end_secs * pixels_per_second ) __SCREAMING_SNAKE_CASE :List[Any] = self.scheduler.add_noise(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Dict = self.unet(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )['''sample'''] else: __SCREAMING_SNAKE_CASE :Dict = self.unet(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )['''sample'''] if isinstance(self.scheduler ,SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Union[str, Any] = self.scheduler.step( model_output=SCREAMING_SNAKE_CASE__ ,timestep=SCREAMING_SNAKE_CASE__ ,sample=SCREAMING_SNAKE_CASE__ ,eta=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,)['''prev_sample'''] else: __SCREAMING_SNAKE_CASE :Optional[Any] = self.scheduler.step( model_output=SCREAMING_SNAKE_CASE__ ,timestep=SCREAMING_SNAKE_CASE__ ,sample=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,)['''prev_sample'''] if mask is not None: if mask_start > 0: __SCREAMING_SNAKE_CASE :Any = mask[:, step, :, :mask_start] if mask_end > 0: __SCREAMING_SNAKE_CASE :int = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __SCREAMING_SNAKE_CASE :Any = 1 / self.vqvae.config.scaling_factor * images __SCREAMING_SNAKE_CASE :Any = self.vqvae.decode(SCREAMING_SNAKE_CASE__ )['''sample'''] __SCREAMING_SNAKE_CASE :Dict = (images / 2 + 0.5).clamp(0 ,1 ) __SCREAMING_SNAKE_CASE :Union[str, Any] = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() __SCREAMING_SNAKE_CASE :Dict = (images * 2_55).round().astype('''uint8''' ) __SCREAMING_SNAKE_CASE :str = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(SCREAMING_SNAKE_CASE__ ,mode='''RGB''' ).convert('''L''' ) for _ in images) ) __SCREAMING_SNAKE_CASE :Union[str, Any] = [self.mel.image_to_audio(SCREAMING_SNAKE_CASE__ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(SCREAMING_SNAKE_CASE__ )[:, np.newaxis, :] ) ,**ImagePipelineOutput(SCREAMING_SNAKE_CASE__ ) ) @torch.no_grad() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler ,SCREAMING_SNAKE_CASE__ ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = np.array( [np.frombuffer(image.tobytes() ,dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) __SCREAMING_SNAKE_CASE :List[Any] = (sample / 2_55) * 2 - 1 __SCREAMING_SNAKE_CASE :Optional[int] = torch.Tensor(SCREAMING_SNAKE_CASE__ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): __SCREAMING_SNAKE_CASE :Optional[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __SCREAMING_SNAKE_CASE :Union[str, Any] = self.scheduler.alphas_cumprod[t] __SCREAMING_SNAKE_CASE :Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE :int = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE :str = self.unet(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )['''sample'''] __SCREAMING_SNAKE_CASE :Any = (1 - alpha_prod_t_prev) ** 0.5 * model_output __SCREAMING_SNAKE_CASE :Optional[int] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __SCREAMING_SNAKE_CASE :str = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> torch.Tensor: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = acos(torch.dot(torch.flatten(SCREAMING_SNAKE_CASE__ ) ,torch.flatten(SCREAMING_SNAKE_CASE__ ) ) / torch.norm(SCREAMING_SNAKE_CASE__ ) / torch.norm(SCREAMING_SNAKE_CASE__ ) ) return sin((1 - alpha) * theta ) * xa / sin(SCREAMING_SNAKE_CASE__ ) + sin(alpha * theta ) * xa / sin(SCREAMING_SNAKE_CASE__ )
498
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Optional[int]): # A mock response for an HTTP head request to emulate server down __lowerCamelCase : int = mock.Mock() __lowerCamelCase : Dict = 5_0_0 __lowerCamelCase : List[str] = {} __lowerCamelCase : Any = HTTPError __lowerCamelCase : List[Any] = {} # Download this model to make sure it's in the cache. __lowerCamelCase : Any = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=SCREAMING_SNAKE_CASE__) as mock_head: __lowerCamelCase : List[Any] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase ( self : Dict): # A mock response for an HTTP head request to emulate server down __lowerCamelCase : Union[str, Any] = mock.Mock() __lowerCamelCase : Dict = 5_0_0 __lowerCamelCase : Any = {} __lowerCamelCase : Dict = HTTPError __lowerCamelCase : Optional[int] = {} # Download this model to make sure it's in the cache. __lowerCamelCase : Optional[int] = GPTaTokenizerFast.from_pretrained('gpt2') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=SCREAMING_SNAKE_CASE__) as mock_head: __lowerCamelCase : Dict = GPTaTokenizerFast.from_pretrained('gpt2') # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Optional[Any]): # This test is for deprecated behavior and can be removed in v5 try: __lowerCamelCase : str = tempfile.mktemp() with open(SCREAMING_SNAKE_CASE__ ,'wb') as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = AlbertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__) finally: os.remove(SCREAMING_SNAKE_CASE__) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json'): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb') as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_0_0_0) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json') def lowerCAmelCase ( self : str): # This test is for deprecated behavior and can be removed in v5 __lowerCamelCase : Optional[int] = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model') @is_staging_test class A_ ( unittest.TestCase ): _UpperCAmelCase : List[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def lowerCAmelCase ( cls : Any): __lowerCamelCase : List[str] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE__) @classmethod def lowerCAmelCase ( cls : int): try: delete_repo(token=cls._token ,repo_id='test-tokenizer') except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org') except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer') except HTTPError: pass def lowerCAmelCase ( self : Optional[Any]): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,'vocab.txt') with open(SCREAMING_SNAKE_CASE__ ,'w' ,encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __lowerCamelCase : Optional[int] = BertTokenizer(SCREAMING_SNAKE_CASE__) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token) __lowerCamelCase : Any = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer") self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ,repo_id='test-tokenizer' ,push_to_hub=SCREAMING_SNAKE_CASE__ ,use_auth_token=self._token) __lowerCamelCase : List[str] = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer") self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab) def lowerCAmelCase ( self : Dict): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,'vocab.txt') with open(SCREAMING_SNAKE_CASE__ ,'w' ,encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __lowerCamelCase : Tuple = BertTokenizer(SCREAMING_SNAKE_CASE__) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token) __lowerCamelCase : str = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( SCREAMING_SNAKE_CASE__ ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=SCREAMING_SNAKE_CASE__ ,use_auth_token=self._token) __lowerCamelCase : Any = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab) @require_tokenizers def lowerCAmelCase ( self : Optional[Any]): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,'vocab.txt') with open(SCREAMING_SNAKE_CASE__ ,'w' ,encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __lowerCamelCase : str = CustomTokenizer(SCREAMING_SNAKE_CASE__) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token) __lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" ,trust_remote_code=SCREAMING_SNAKE_CASE__) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer') # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,'vocab.txt') with open(SCREAMING_SNAKE_CASE__ ,'w' ,encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __lowerCamelCase : Optional[Any] = BertTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__) bert_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = CustomTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token) __lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" ,trust_remote_code=SCREAMING_SNAKE_CASE__) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast') __lowerCamelCase : int = AutoTokenizer.from_pretrained( F"{USER}/test-dynamic-tokenizer" ,use_fast=SCREAMING_SNAKE_CASE__ ,trust_remote_code=SCREAMING_SNAKE_CASE__) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer') class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Optional[int] = Trie() trie.add('Hello 友達') self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}}) trie.add('Hello') trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}}) def lowerCAmelCase ( self : Any): __lowerCamelCase : Optional[int] = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100') ,['[CLS] This is a extra_id_100']) trie.add('[CLS]') trie.add('extra_id_1') trie.add('extra_id_100') self.assertEqual(trie.split('[CLS] This is a extra_id_100') ,['[CLS]', ' This is a ', 'extra_id_100']) def lowerCAmelCase ( self : int): __lowerCamelCase : Any = Trie() trie.add('A') self.assertEqual(trie.split('ABC') ,['A', 'BC']) self.assertEqual(trie.split('BCA') ,['BC', 'A']) def lowerCAmelCase ( self : Dict): __lowerCamelCase : Optional[Any] = Trie() trie.add('TOKEN]') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') ,['This is something ', '[SPECIAL_TOKEN]']) def lowerCAmelCase ( self : Any): __lowerCamelCase : int = Trie() trie.add('A') trie.add('P') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') ,['This is something ', '[SPECIAL_TOKEN]']) def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : str = Trie() trie.add('AB') trie.add('B') trie.add('C') self.assertEqual(trie.split('ABC') ,['AB', 'C']) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Tuple = Trie() trie.add('ABC') trie.add('B') trie.add('CD') self.assertEqual(trie.split('ABCD') ,['ABC', 'D']) def lowerCAmelCase ( self : str): # Even if the offsets are wrong, we necessarily output correct string # parts. __lowerCamelCase : Optional[Any] = Trie() __lowerCamelCase : List[Any] = trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3]) self.assertEqual(SCREAMING_SNAKE_CASE__ ,['AB', 'C'])
337
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a ={ """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
337
1
import requests snake_case_ : int = """YOUR API KEY""" def __a ( __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] = giphy_api_key ) -> Any: """simple docstring""" lowerCamelCase_ : List[str] = "+".join(query.split() ) lowerCamelCase_ : Optional[int] = f"https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}" lowerCamelCase_ : List[str] = requests.get(SCREAMING_SNAKE_CASE__ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
488
'''simple docstring''' import math def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return math.pow(SCREAMING_SNAKE_CASE__ , 2 ) - a def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return 2 * x def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = 2.0 while start <= a: _snake_case = math.pow(SCREAMING_SNAKE_CASE__ , 2 ) return start def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 99_99 , SCREAMING_SNAKE_CASE__ = 0.00000000000001 ): '''simple docstring''' if a < 0: raise ValueError("math domain error" ) _snake_case = get_initial_point(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): _snake_case = value _snake_case = value - fx(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / fx_derivative(SCREAMING_SNAKE_CASE__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
672
0
'''simple docstring''' from __future__ import annotations def lowercase_ ( lowercase__ , lowercase__ = None , lowercase__ = None ) ->Optional[int]: if start is None: _snake_case: Union[str, Any] = 0 if end is None: _snake_case: Optional[int] = len(_lowerCamelCase ) - 1 if start >= end: return _snake_case: str = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: _snake_case: Optional[int] = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
717
'''simple docstring''' A : List[str] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] A : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
273
0
'''simple docstring''' import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _a : int = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : List[Any] ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__A ) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): from transformers.testing_utils import pytest_terminal_summary_main UpperCAmelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(__A , id=__A )
447
'''simple docstring''' import functools def _UpperCAmelCase ( __A : list[int] , __A : list[int] ): # Validation if not isinstance(__A , __A ) or not all(isinstance(__A , __A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__A ) != 3 or not all(isinstance(__A , __A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__A ) == 0: return 0 if min(__A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) a_ : List[Any] = set(__A ) @functools.cache def dynamic_programming(__A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
466
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __lowercase :Optional[Any] = ShapEPipeline __lowercase :Optional[int] = ["prompt"] __lowercase :str = ["prompt"] __lowercase :Tuple = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __lowercase :Tuple = False @property def _lowerCAmelCase ( self ) -> Dict: '''simple docstring''' return 32 @property def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return 32 @property def _lowerCAmelCase ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCAmelCase ( self ) -> Dict: '''simple docstring''' return 8 @property def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowerCamelCase_ = PriorTransformer(**UpperCamelCase__ ) return model @property def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowerCamelCase_ = ShapERenderer(**UpperCamelCase__ ) return model def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.dummy_prior lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = self.dummy_tokenizer lowerCamelCase_ = self.dummy_renderer lowerCamelCase_ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase__ , clip_sample=UpperCamelCase__ , clip_sample_range=1.0 , ) lowerCamelCase_ = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Dict: '''simple docstring''' if str(UpperCamelCase__ ).startswith('''mps''' ): lowerCamelCase_ = torch.manual_seed(UpperCamelCase__ ) else: lowerCamelCase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowerCamelCase_ = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' lowerCamelCase_ = '''cpu''' lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**UpperCamelCase__ ) lowerCamelCase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase_ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = torch_device == '''cpu''' lowerCamelCase_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , ) def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**UpperCamelCase__ ) lowerCamelCase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase_ = 1 lowerCamelCase_ = 2 lowerCamelCase_ = self.get_dummy_inputs(UpperCamelCase__ ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase_ = batch_size * [inputs[key]] lowerCamelCase_ = pipe(**UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) lowerCamelCase_ = ShapEPipeline.from_pretrained('''openai/shap-e''' ) lowerCamelCase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) lowerCamelCase_ = pipe( '''a shark''' , generator=UpperCamelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
66
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class lowerCAmelCase : """simple docstring""" def __init__( self , UpperCamelCase__ ) -> str: '''simple docstring''' lowerCamelCase_ = str(id_ ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = [] lowerCamelCase_ = {} # {vertex:distance} def __lt__( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.key < other.key def __repr__( self ) -> Union[str, Any]: '''simple docstring''' return self.id def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' self.neighbors.append(UpperCamelCase__ ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' lowerCamelCase_ = weight def lowerCamelCase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Dict ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _lowerCamelCase ) graph[b - 1].add_edge(graph[a - 1] , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : list , _lowerCamelCase : Vertex ): lowerCamelCase_ = [] for u in graph: lowerCamelCase_ = math.inf lowerCamelCase_ = None lowerCamelCase_ = 0 lowerCamelCase_ = graph[:] while q: lowerCamelCase_ = min(_lowerCamelCase ) q.remove(_lowerCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowerCamelCase_ = u lowerCamelCase_ = u.edges[v.id] for i in range(1 , len(_lowerCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowerCamelCase_ ( _lowerCamelCase : list , _lowerCamelCase : Vertex ): for u in graph: lowerCamelCase_ = math.inf lowerCamelCase_ = None lowerCamelCase_ = 0 lowerCamelCase_ = list(_lowerCamelCase ) hq.heapify(_lowerCamelCase ) while h: lowerCamelCase_ = hq.heappop(_lowerCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowerCamelCase_ = u lowerCamelCase_ = u.edges[v.id] hq.heapify(_lowerCamelCase ) for i in range(1 , len(_lowerCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowerCamelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
66
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
253
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '▁' UpperCamelCase__ = {'vocab_file': 'spiece.model'} UpperCamelCase__ = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } UpperCamelCase__ = { 'google/reformer-crime-and-punishment': 5_2_4_2_8_8, } class A ( UpperCAmelCase_ ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : str = ['input_ids', 'attention_mask'] def __init__(self : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple="</s>" , __UpperCAmelCase : List[Any]="<unk>" , __UpperCAmelCase : Union[str, Any]=[] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Union[str, Any] , ) -> None: """simple docstring""" UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) UpperCAmelCase__ = vocab_file UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def lowercase_ (self : Tuple ) -> Dict: """simple docstring""" return self.sp_model.get_piece_size() def lowercase_ (self : Dict ) -> Dict[str, int]: """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None return state def __setstate__(self : Dict , __UpperCAmelCase : Any ) -> Tuple: """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ (self : int , __UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" return self.sp_model.piece_to_id(__UpperCAmelCase ) def lowercase_ (self : Tuple , __UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if index < self.sp_model.get_piece_size(): UpperCAmelCase__ = self.sp_model.IdToPiece(__UpperCAmelCase ) return token def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCAmelCase ) + token UpperCAmelCase__ = [] else: current_sub_tokens.append(__UpperCAmelCase ) out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def lowercase_ (self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , "wb" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
486
0
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__UpperCamelCase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
215
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class snake_case : '''simple docstring''' A_ : Tuple = PegasusConfig A_ : Optional[Any] = {} A_ : Any = "gelu" def __init__( self : Optional[int], _lowerCamelCase : Union[str, Any], _lowerCamelCase : str=13, _lowerCamelCase : Optional[Any]=7, _lowerCamelCase : Union[str, Any]=True, _lowerCamelCase : int=False, _lowerCamelCase : str=99, _lowerCamelCase : Union[str, Any]=32, _lowerCamelCase : str=2, _lowerCamelCase : List[Any]=4, _lowerCamelCase : Optional[Any]=37, _lowerCamelCase : Union[str, Any]=0.1, _lowerCamelCase : Optional[int]=0.1, _lowerCamelCase : Optional[Any]=40, _lowerCamelCase : List[str]=2, _lowerCamelCase : Dict=1, _lowerCamelCase : Any=0, ): '''simple docstring''' __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = eos_token_id __A = pad_token_id __A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) __A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) __A = tf.concat([input_ids, eos_tensor], axis=1 ) __A = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __A = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) __A = prepare_pegasus_inputs_dict(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Tuple, _lowerCamelCase : Union[str, Any], _lowerCamelCase : Tuple ): '''simple docstring''' __A = TFPegasusModel(config=_lowerCamelCase ).get_decoder() __A = inputs_dict['''input_ids'''] __A = input_ids[:1, :] __A = inputs_dict['''attention_mask'''][:1, :] __A = inputs_dict['''head_mask'''] __A = 1 # first forward pass __A = model(_lowerCamelCase, attention_mask=_lowerCamelCase, head_mask=_lowerCamelCase, use_cache=_lowerCamelCase ) __A , __A = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __A = ids_tensor((self.batch_size, 3), config.vocab_size ) __A = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and __A = tf.concat([input_ids, next_tokens], axis=-1 ) __A = tf.concat([attention_mask, next_attn_mask], axis=-1 ) __A = model(_lowerCamelCase, attention_mask=_lowerCamelCase )[0] __A = model(_lowerCamelCase, attention_mask=_lowerCamelCase, past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice __A = int(ids_tensor((1,), output_from_past.shape[-1] ) ) __A = output_from_no_past[:, -3:, random_slice_idx] __A = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase, _lowerCamelCase, rtol=1e-3 ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ): """simple docstring""" if attention_mask is None: __A = tf.cast(tf.math.not_equal(__UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __A = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __A = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class snake_case ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : str = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () A_ : Optional[Any] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () A_ : Optional[int] = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) A_ : Tuple = True A_ : Union[str, Any] = False A_ : str = False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = TFPegasusModelTester(self ) __A = ConfigTester(self, config_class=_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class snake_case ( unittest.TestCase ): '''simple docstring''' A_ : List[str] = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] A_ : str = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers A_ : Union[str, Any] = "google/pegasus-xsum" @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _SCREAMING_SNAKE_CASE ( self : str, **_lowerCamelCase : str ): '''simple docstring''' __A = self.translate_src_text(**_lowerCamelCase ) assert self.expected_text == generated_words def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], **_lowerCamelCase : Tuple ): '''simple docstring''' __A = self.tokenizer(self.src_text, **_lowerCamelCase, padding=_lowerCamelCase, return_tensors='''tf''' ) __A = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=_lowerCamelCase, ) __A = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=_lowerCamelCase ) return generated_words @slow def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' self._assert_generated_batch_equal_expected()
215
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" lowercase__ = len(A ) while cur > 1: # Find the maximum number in arr lowercase__ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowercase__ = arr[mi::-1] + arr[mi + 1 : len(A )] # Reverse whole list lowercase__ = arr[cur - 1 :: -1] + arr[cur : len(A )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase : Tuple = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : str = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
460
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _SCREAMING_SNAKE_CASE (A , A , A=1E-12 ) -> str: """simple docstring""" lowercase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A , axis=1 ) , a_min=A ) ).T lowercase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A , axis=1 ) , a_min=A ) ).T return jnp.matmul(A , norm_emb_a.T ) class __lowerCAmelCase (nn.Module ): '''simple docstring''' lowerCAmelCase__ : CLIPConfig lowerCAmelCase__ : jnp.dtype = jnp.floataa def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = FlaxCLIPVisionModule(self.config.vision_config ) lowercase__ = nn.Dense(self.config.projection_dim , use_bias=UpperCamelCase , dtype=self.dtype ) lowercase__ = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) lowercase__ = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowercase__ = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) lowercase__ = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__(self : Union[str, Any] , UpperCamelCase : Tuple ): '''simple docstring''' lowercase__ = self.vision_model(UpperCamelCase )[1] lowercase__ = self.visual_projection(UpperCamelCase ) lowercase__ = jax_cosine_distance(UpperCamelCase , self.special_care_embeds ) lowercase__ = jax_cosine_distance(UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowercase__ = 0.0 lowercase__ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowercase__ = jnp.round(UpperCamelCase , 3 ) lowercase__ = jnp.any(special_scores > 0 , axis=1 , keepdims=UpperCamelCase ) # Use a lower threshold if an image has any special care concept lowercase__ = is_special_care * 0.01 lowercase__ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowercase__ = jnp.round(UpperCamelCase , 3 ) lowercase__ = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = CLIPConfig lowerCAmelCase__ : Optional[int] = """clip_input""" lowerCAmelCase__ : Any = FlaxStableDiffusionSafetyCheckerModule def __init__(self : Optional[int] , UpperCamelCase : CLIPConfig , UpperCamelCase : Optional[Tuple] = None , UpperCamelCase : int = 0 , UpperCamelCase : jnp.dtype = jnp.floataa , UpperCamelCase : bool = True , **UpperCamelCase : List[Any] , ): '''simple docstring''' if input_shape is None: lowercase__ = (1, 224, 224, 3) lowercase__ = self.module_class(config=UpperCamelCase , dtype=UpperCamelCase , **UpperCamelCase ) super().__init__(UpperCamelCase , UpperCamelCase , input_shape=UpperCamelCase , seed=UpperCamelCase , dtype=UpperCamelCase , _do_init=_do_init ) def UpperCamelCase__ (self : Any , UpperCamelCase : jax.random.KeyArray , UpperCamelCase : Tuple , UpperCamelCase : FrozenDict = None ): '''simple docstring''' lowercase__ = jax.random.normal(UpperCamelCase , UpperCamelCase ) lowercase__ ,lowercase__ = jax.random.split(UpperCamelCase ) lowercase__ = {'''params''': params_rng, '''dropout''': dropout_rng} lowercase__ = self.module.init(UpperCamelCase , UpperCamelCase )['''params'''] return random_params def __call__(self : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : dict = None , ): '''simple docstring''' lowercase__ = jnp.transpose(UpperCamelCase , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(UpperCamelCase , dtype=jnp.floataa ) , rngs={} , )
460
1
'''simple docstring''' import mpmath # for roots of unity import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None ): # Input as list __lowerCAmelCase = list(poly_a or [0] )[:] __lowerCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __lowerCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __lowerCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __lowerCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __lowerCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __lowerCAmelCase = self.__multiply() def _snake_case (self , __lowercase ): __lowerCAmelCase = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(__A ) <= 1: return dft[0] # __lowerCAmelCase = self.c_max_length // 2 while next_ncol > 0: __lowerCAmelCase = [[] for i in range(__A )] __lowerCAmelCase = self.root**next_ncol # First half of next step __lowerCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__A ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __lowerCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__A ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __lowerCAmelCase = new_dft __lowerCAmelCase = next_ncol // 2 return dft[0] def _snake_case (self ): __lowerCAmelCase = self.__dft('''A''' ) __lowerCAmelCase = self.__dft('''B''' ) __lowerCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __lowerCAmelCase = 2 while next_ncol <= self.c_max_length: __lowerCAmelCase = [[] for i in range(__A )] __lowerCAmelCase = self.root ** (next_ncol // 2) __lowerCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __lowerCAmelCase = new_inverse_c next_ncol *= 2 # Unpack __lowerCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__(self ): __lowerCAmelCase = "A = " + " + ".join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) __lowerCAmelCase = "B = " + " + ".join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) __lowerCAmelCase = "A*B = " + " + ".join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return F"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' def __magic_name__( ): return [ a * b * (1_0_0_0 - a - b) for a in range(1, 9_9_9) for b in range(lowerCamelCase, 9_9_9) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
474
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: UpperCamelCase : Dict = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str=7 , lowerCamelCase__ : Union[str, Any]=3 , lowerCamelCase__ : Optional[int]=18 , lowerCamelCase__ : str=30 , lowerCamelCase__ : List[str]=400 , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : Dict=True , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[Any]=None , ): a__ : Dict = size if size is not None else {"height": 20, "width": 20} a__ : Optional[int] = parent a__ : Tuple = batch_size a__ : int = num_channels a__ : Any = image_size a__ : Tuple = min_resolution a__ : Tuple = max_resolution a__ : Union[str, Any] = size a__ : str = do_normalize a__ : List[Any] = do_convert_rgb a__ : str = [512, 1_024, 2_048, 4_096] a__ : str = patch_size if patch_size is not None else {"height": 16, "width": 16} def _UpperCamelCase( self : Dict ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _UpperCamelCase( self : int ): a__ : Union[str, Any] = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" a__ : Tuple = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = PixaStructImageProcessor if is_vision_available() else None def _UpperCamelCase( self : Dict ): a__ : Optional[int] = PixaStructImageProcessingTester(self ) @property def _UpperCamelCase( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase( self : int ): a__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "do_convert_rgb" ) ) def _UpperCamelCase( self : List[Any] ): a__ : List[str] = self.image_processor_tester.prepare_dummy_image() a__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) a__ : Union[str, Any] = 2_048 a__ : int = image_processor(lowerCamelCase__ , return_tensors="pt" , max_patches=lowerCamelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def _UpperCamelCase( self : List[Any] ): # Initialize image_processor a__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input a__ : Optional[int] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a__ : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a__ : Tuple = image_processor( lowerCamelCase__ , return_tensors="pt" , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _UpperCamelCase( self : Any ): # Initialize image_processor a__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input a__ : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 a__ : int = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCamelCase__ ): a__ : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCamelCase__ ).flattened_patches a__ : List[Any] = "Hello" a__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCamelCase__ , header_text=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a__ : str = image_processor( lowerCamelCase__ , return_tensors="pt" , max_patches=lowerCamelCase__ , header_text=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _UpperCamelCase( self : Optional[Any] ): # Initialize image_processor a__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) a__ : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a__ : Optional[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a__ : Optional[int] = image_processor( lowerCamelCase__ , return_tensors="pt" , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _UpperCamelCase( self : Tuple ): # Initialize image_processor a__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input a__ : Optional[Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a__ : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a__ : List[str] = image_processor( lowerCamelCase__ , return_tensors="pt" , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = PixaStructImageProcessor if is_vision_available() else None def _UpperCamelCase( self : Union[str, Any] ): a__ : List[str] = PixaStructImageProcessingTester(self , num_channels=4 ) a__ : List[str] = 3 @property def _UpperCamelCase( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase( self : Optional[Any] ): a__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "do_convert_rgb" ) ) def _UpperCamelCase( self : str ): # Initialize image_processor a__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input a__ : Optional[Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a__ : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a__ : str = image_processor( lowerCamelCase__ , return_tensors="pt" , max_patches=lowerCamelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
37
import numpy as np import datasets _UpperCamelCase = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _UpperCamelCase = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _UpperCamelCase = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' __snake_case : List[str] = np.array(UpperCAmelCase ) __snake_case : Tuple = np.array(UpperCAmelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __snake_case : int = X - np.mean(UpperCAmelCase ) __snake_case : List[str] = np.cov(reference_distribution.T ) try: __snake_case : List[Any] = np.linalg.inv(UpperCAmelCase ) except np.linalg.LinAlgError: __snake_case : Dict = np.linalg.pinv(UpperCAmelCase ) __snake_case : int = np.dot(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = np.dot(UpperCAmelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
243
0
from __future__ import annotations import math def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> float: """simple docstring""" A : str = u for i in range(1 , _lowerCAmelCase ): A : str = temp * (u - i) return temp def __UpperCamelCase ( ) -> None: """simple docstring""" A : Dict = int(input("""enter the numbers of values: """ ) ) A : list[list[float]] = [] for _ in range(_lowerCAmelCase ): y.append([] ) for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): y[i].append(_lowerCAmelCase ) A : Optional[Any] = 0 print("""enter the values of parameters in a list: """ ) A : Tuple = list(map(_lowerCAmelCase , input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(_lowerCAmelCase ): A : Optional[int] = float(input() ) A : List[Any] = int(input("""enter the value to interpolate: """ ) ) A : Union[str, Any] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _lowerCAmelCase ): for j in range(n - i ): A : Optional[Any] = y[j + 1][i - 1] - y[j][i - 1] A : Optional[Any] = y[0][0] for i in range(1 , _lowerCAmelCase ): summ += (ucal(_lowerCAmelCase , _lowerCAmelCase ) * y[0][i]) / math.factorial(_lowerCAmelCase ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
520
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" A : Union[str, Any] = old_name if "patch_embed" in old_name: A , A , A : Optional[Any] = old_name.split(""".""" ) if layer == "0": A : Optional[int] = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": A : List[str] = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": A : Optional[int] = old_name.replace("""3""" , """convolution2""" ) else: A : List[Any] = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(R"""\d\.\d""" , _lowerCAmelCase ): A : Union[str, Any] = R"""\b\d{2}\b""" if bool(re.search(_lowerCAmelCase , _lowerCAmelCase ) ): A : int = re.search(R"""\d\.\d\d.""" , _lowerCAmelCase ).group() else: A : int = re.search(R"""\d\.\d.""" , _lowerCAmelCase ).group() if int(match[0] ) < 6: A : Any = old_name.replace(_lowerCAmelCase , """""" ) A : Dict = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) A : int = """intermediate_stages.""" + trimmed_name else: A : Tuple = old_name.replace(_lowerCAmelCase , """""" ) if int(match[2] ) < num_meta4D_last_stage: A : Optional[Any] = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: A : int = str(int(match[2] ) - num_meta4D_last_stage ) A : Optional[Any] = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: A : Optional[Any] = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: A : Optional[int] = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: A : Dict = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: A : Optional[Any] = trimmed_name.replace("""fc2""" , """linear_out""" ) A : Dict = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(R""".\d.""" , _lowerCAmelCase ): A : Union[str, Any] = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: A : Any = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): A : Union[str, Any] = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): A : Tuple = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: A : Tuple = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: A : int = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: A : Dict = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: A : int = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": A : Any = new_name.replace("""norm""" , """layernorm""" ) A : int = """efficientformer.""" + new_name else: A : int = """efficientformer.encoder.""" + new_name return new_name def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> str: """simple docstring""" for key in checkpoint.copy().keys(): A : Union[str, Any] = checkpoint.pop(_lowerCAmelCase ) A : Optional[Any] = val return checkpoint def __UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" A : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" A : int = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return image def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: """simple docstring""" A : int = torch.load(_lowerCAmelCase , map_location="""cpu""" )["""model"""] A : Tuple = EfficientFormerConfig.from_json_file(_lowerCAmelCase ) A : Optional[int] = EfficientFormerForImageClassificationWithTeacher(_lowerCAmelCase ) A : int = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) A : Optional[int] = config.depths[-1] - config.num_metaad_blocks + 1 A : Dict = convert_torch_checkpoint(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() A : Dict = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image A : str = prepare_img() A : int = 256 A : Any = 224 A : List[str] = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) A : int = processor(images=_lowerCAmelCase , return_tensors="""pt""" ).pixel_values # original processing pipeline A : Dict = Compose( [ Resize(_lowerCAmelCase , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(_lowerCAmelCase ), ToTensor(), Normalize(_lowerCAmelCase , _lowerCAmelCase ), ] ) A : Any = image_transforms(_lowerCAmelCase ).unsqueeze(0 ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) A : Any = model(_lowerCAmelCase ) A : Any = outputs.logits A : Any = (1, 1000) if "l1" in model_name: A : Tuple = torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , _lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: A : List[Any] = torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , _lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: A : str = torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( f'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(_lowerCAmelCase ) print(f'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=f'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add model""" , use_temp_dir=_lowerCAmelCase , ) processor.push_to_hub( repo_id=f'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add image processor""" , use_temp_dir=_lowerCAmelCase , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) SCREAMING_SNAKE_CASE_:Union[str, Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
520
1
import math from numpy import inf from scipy.integrate import quad def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" if num <= 0: raise ValueError('math domain error' ) return quad(UpperCAmelCase__ ,0 ,UpperCAmelCase__ ,args=(UpperCAmelCase__) )[0] def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ,UpperCAmelCase__ ): """simple docstring""" return math.pow(UpperCAmelCase__ ,z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
605
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): """simple docstring""" _SCREAMING_SNAKE_CASE = HfArgumentParser(UpperCAmelCase__ ) _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()[0] _SCREAMING_SNAKE_CASE = TensorFlowBenchmark(args=UpperCAmelCase__ ) try: _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()[0] except ValueError as e: _SCREAMING_SNAKE_CASE = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' _SCREAMING_SNAKE_CASE = ' '.join(str(UpperCAmelCase__ ).split(' ' )[:-1] ) _SCREAMING_SNAKE_CASE = '' _SCREAMING_SNAKE_CASE = eval(str(UpperCAmelCase__ ).split(' ' )[-1] ) _SCREAMING_SNAKE_CASE = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: _SCREAMING_SNAKE_CASE = full_error_msg + begin_error_msg + str(UpperCAmelCase__ ) raise ValueError(UpperCAmelCase__ ) benchmark.run() if __name__ == "__main__": main()
605
1
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort _UpperCamelCase : Dict ="1" _UpperCamelCase : Any ="0" _UpperCamelCase : int ="1" _UpperCamelCase : Optional[int] =ort.SessionOptions() _UpperCamelCase : List[str] =ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("Create inference session...") _UpperCamelCase : List[str] =["TensorrtExecutionProvider", "CUDAExecutionProvider"] _UpperCamelCase : List[str] =ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider) _UpperCamelCase : int =ort.RunOptions() _UpperCamelCase : int =1_28 _UpperCamelCase : Optional[Any] =1 _UpperCamelCase : Optional[int] =np.ones((batch, sequence), dtype=np.intaa) _UpperCamelCase : Dict =np.ones((batch, sequence), dtype=np.intaa) _UpperCamelCase : Union[str, Any] =np.ones((batch, sequence), dtype=np.intaa) print("Warm up phase...") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Start inference...") _UpperCamelCase : Union[str, Any] =time.time() _UpperCamelCase : Optional[int] =20_00 _UpperCamelCase : List[str] ={} for iter in range(max_iters): _UpperCamelCase : Dict =sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 10_00 / max_iters))
575
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC _UpperCamelCase : Any =parse(importlib.metadata.version("torch")) def lowerCamelCase_ ( A_ , A_ , A_ ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) __lowerCamelCase = STR_OPERATION_TO_FUNC[operation] if isinstance(A_ , A_ ): __lowerCamelCase = parse(importlib.metadata.version(A_ ) ) return operation(A_ , parse(A_ ) ) def lowerCamelCase_ ( A_ , A_ ): return compare_versions(A_ , A_ , A_ )
575
1
def lowerCamelCase ( ) -> int: return 1 def lowerCamelCase ( a_ ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( a_ ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(a_ ) def lowerCamelCase ( a_ ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(a_ ) def lowerCamelCase ( a_ ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(a_ ) def lowerCamelCase ( a_ ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(a_ ) def lowerCamelCase ( a_ ) -> int: return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(a_ ) def lowerCamelCase ( a_ ) -> int: return 0 if x < 0 else two_pound(x - 200 ) + one_pound(a_ ) def lowerCamelCase ( a_ = 200 ) -> int: return two_pound(a_ ) if __name__ == "__main__": print(solution(int(input().strip())))
318
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def lowerCamelCase ( a_=None ) -> List[str]: if subparsers is not None: lowerCAmelCase_ = subparsers.add_parser('test' ) else: lowerCAmelCase_ = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=a_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCAmelCase_ = script_name else: lowerCAmelCase_ = F'''--config_file={args.config_file} {script_name}''' lowerCAmelCase_ = ['accelerate-launch'] + test_args.split() lowerCAmelCase_ = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def lowerCamelCase ( ) -> Optional[Any]: lowerCAmelCase_ = test_command_parser() lowerCAmelCase_ = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
318
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = "deit" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int]=768 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[Any]=12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_072 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=0.0 , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : str=1e-1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=224 , SCREAMING_SNAKE_CASE__ : int=16 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : List[Any]=16 , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> List[Any]: super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = qkv_bias lowerCAmelCase__ = encoder_stride class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = version.parse("1.11" ) @property def a ( self : Any ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def a ( self : List[Any] ) -> float: return 1e-4
718
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=-1 ) -> str: # in NER datasets, the last column is usually reserved for NER label lowerCAmelCase__ = label_idx def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[Split, str] ) -> List[InputExample]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = mode.value lowerCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , f'{mode}.txt' ) lowerCAmelCase__ = 1 lowerCAmelCase__ = [] with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f: lowerCAmelCase__ = [] lowerCAmelCase__ = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) guid_index += 1 lowerCAmelCase__ = [] lowerCAmelCase__ = [] else: lowerCAmelCase__ = line.split(" " ) words.append(splits[0] ) if len(SCREAMING_SNAKE_CASE__ ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) return examples def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : List ) -> Dict: lowerCAmelCase__ = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(SCREAMING_SNAKE_CASE__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCAmelCase__ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(SCREAMING_SNAKE_CASE__ ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: lowerCAmelCase__ = f.read().splitlines() if "O" not in labels: lowerCAmelCase__ = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Dict ) -> List[str]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def a ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: lowerCAmelCase__ = f.read().splitlines() if "O" not in labels: lowerCAmelCase__ = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[Split, str] ) -> List[InputExample]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = mode.value lowerCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , f'{mode}.txt' ) lowerCAmelCase__ = 1 lowerCAmelCase__ = [] with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f: for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = [] lowerCAmelCase__ = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) guid_index += 1 return examples def a ( self : int , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : List ) -> int: lowerCAmelCase__ = 0 for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = preds_list[example_id] lowerCAmelCase__ = "" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(SCREAMING_SNAKE_CASE__ ) example_id += 1 def a ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
125
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a =logging.get_logger(__name__) a ={ 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class __UpperCAmelCase ( lowercase__ ): A__ : Optional[int] = '''swinv2''' A__ : Union[str, Any] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowerCamelCase=224 , _lowerCamelCase=4 , _lowerCamelCase=3 , _lowerCamelCase=96 , _lowerCamelCase=[2, 2, 6, 2] , _lowerCamelCase=[3, 6, 12, 24] , _lowerCamelCase=7 , _lowerCamelCase=4.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=0.0_2 , _lowerCamelCase=1E-5 , _lowerCamelCase=32 , **_lowerCamelCase , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ =image_size lowerCamelCase__ =patch_size lowerCamelCase__ =num_channels lowerCamelCase__ =embed_dim lowerCamelCase__ =depths lowerCamelCase__ =len(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ =num_heads lowerCamelCase__ =window_size lowerCamelCase__ =mlp_ratio lowerCamelCase__ =qkv_bias lowerCamelCase__ =hidden_dropout_prob lowerCamelCase__ =attention_probs_dropout_prob lowerCamelCase__ =drop_path_rate lowerCamelCase__ =hidden_act lowerCamelCase__ =use_absolute_embeddings lowerCamelCase__ =layer_norm_eps lowerCamelCase__ =initializer_range lowerCamelCase__ =encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ =int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) lowerCamelCase__ =(0, 0, 0, 0)
530
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig UpperCAmelCase_ : Tuple = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Any = '''maskformer''' snake_case__ : List[str] = {'''hidden_size''': '''mask_feature_size'''} snake_case__ : Tuple = ['''resnet''', '''swin'''] snake_case__ : Any = ['''detr'''] def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int = 2_5_6 , SCREAMING_SNAKE_CASE__ : int = 2_5_6 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[Dict] = None , SCREAMING_SNAKE_CASE__ : Optional[Dict] = None , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : float = 20.0 , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Union[str, Any]: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k a_ : Union[str, Any] = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Tuple = backbone_config.pop('model_type' ) a_ : Dict = CONFIG_MAPPING[backbone_model_type] a_ : int = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 a_ : List[str] = DetrConfig() else: # verify that the decoder is supported a_ : Dict = ( decoder_config.pop('model_type' ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"""Transformer Decoder {decoder_type} not supported, please use one of""" F""" {",".join(self.decoders_supported )}""" ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Dict = CONFIG_MAPPING[decoder_type] a_ : str = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) a_ : int = backbone_config a_ : Tuple = decoder_config # main feature dimension for the model a_ : str = fpn_feature_size a_ : List[str] = mask_feature_size # initializer a_ : Optional[int] = init_std a_ : Any = init_xavier_std # Hungarian matcher && loss a_ : List[str] = cross_entropy_weight a_ : Optional[int] = dice_weight a_ : int = mask_weight a_ : str = use_auxiliary_loss a_ : str = no_object_weight a_ : int = output_auxiliary_logits a_ : str = self.decoder_config.encoder_attention_heads a_ : Union[str, Any] = self.decoder_config.num_hidden_layers super().__init__(**SCREAMING_SNAKE_CASE__ ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] , SCREAMING_SNAKE_CASE__ : PretrainedConfig , SCREAMING_SNAKE_CASE__ : PretrainedConfig , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: return cls( backbone_config=SCREAMING_SNAKE_CASE__ , decoder_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict[str, any]: a_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) a_ : Dict = self.backbone_config.to_dict() a_ : Optional[Any] = self.decoder_config.to_dict() a_ : List[Any] = self.__class__.model_type return output
570
0
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : str = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowerCAmelCase: """simple docstring""" lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_a)}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''}) lowerCamelCase__ = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCamelCase__ = field( default=1_28 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) lowerCamelCase__ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) lowerCamelCase__ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''}) lowerCamelCase__ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''}) lowerCamelCase__ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''}) lowerCamelCase__ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) lowerCamelCase__ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''}) class _lowerCAmelCase( _a): """simple docstring""" lowerCamelCase__ = '''train''' lowerCamelCase__ = '''dev''' class _lowerCAmelCase( _a): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = Split.train , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "pt" , )-> Optional[Any]: __A = args __A = is_language_sensitive __A = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(UpperCAmelCase , UpperCAmelCase ): try: __A = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) __A = mode # Load data features from cache or dataset file __A = '''v2''' if args.version_2_with_negative else '''v1''' __A = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __A = cached_features_file + '''.lock''' with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not args.overwrite_cache: __A = time.time() __A = torch.load(UpperCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __A = self.old_features['''features'''] __A = self.old_features.get('''dataset''' , UpperCAmelCase ) __A = self.old_features.get('''examples''' , UpperCAmelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" ''' future run''' ) else: if mode == Split.dev: __A = self.processor.get_dev_examples(args.data_dir ) else: __A = self.processor.get_train_examples(args.data_dir ) __A , __A = squad_convert_examples_to_features( examples=self.examples , tokenizer=UpperCAmelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=UpperCAmelCase , ) __A = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , UpperCAmelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self )-> Union[str, Any]: return len(self.features ) def __getitem__( self , UpperCAmelCase )-> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset __A = self.features[i] __A = torch.tensor(feature.input_ids , dtype=torch.long ) __A = torch.tensor(feature.attention_mask , dtype=torch.long ) __A = torch.tensor(feature.token_type_ids , dtype=torch.long ) __A = torch.tensor(feature.cls_index , dtype=torch.long ) __A = torch.tensor(feature.p_mask , dtype=torch.float ) __A = torch.tensor(feature.is_impossible , dtype=torch.float ) __A = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __A = torch.tensor(feature.start_position , dtype=torch.long ) __A = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
341
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( snake_case ) -> Dict: '''simple docstring''' __A = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( snake_case , snake_case ) -> List[str]: '''simple docstring''' __A = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( snake_case ) -> Any: '''simple docstring''' __A = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", '''stage2.cls_token''') ) return token def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' __A = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCamelCase ( snake_case , snake_case , snake_case , snake_case ) -> List[Any]: '''simple docstring''' __A = '''imagenet-1k-id2label.json''' __A = 1_0_0_0 __A = '''huggingface/label-files''' __A = num_labels __A = json.load(open(cached_download(hf_hub_url(snake_case , snake_case , repo_type='''dataset''' ) ) , '''r''' ) ) __A = {int(snake_case ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = __A = CvtConfig(num_labels=snake_case , idalabel=snake_case , labelaid=snake_case ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __A = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __A = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __A = [2, 2, 2_0] __A = [3, 1_2, 1_6] __A = [1_9_2, 7_6_8, 1_0_2_4] __A = CvtForImageClassification(snake_case ) __A = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __A = image_size __A = torch.load(snake_case , map_location=torch.device('''cpu''' ) ) __A = OrderedDict() __A = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __A = list_of_state_dict + cls_token(snake_case ) __A = list_of_state_dict + embeddings(snake_case ) for cnt in range(config.depth[idx] ): __A = list_of_state_dict + attention(snake_case , snake_case ) __A = list_of_state_dict + final() for gg in list_of_state_dict: print(snake_case ) for i in range(len(snake_case ) ): __A = original_weights[list_of_state_dict[i][1]] model.load_state_dict(snake_case ) model.save_pretrained(snake_case ) image_processor.save_pretrained(snake_case ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_8_4, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=r"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCamelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
341
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name __lowercase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class a__( A__ ): '''simple docstring''' UpperCAmelCase_ : Dict = 4_2 class a__( A__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" super().__init__() self.register_modules( prior=__lowerCAmelCase , image_encoder=__lowerCAmelCase , image_processor=__lowerCAmelCase , scheduler=__lowerCAmelCase , renderer=__lowerCAmelCase , ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" if latents is None: lowerCAmelCase = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") lowerCAmelCase = latents.to(__lowerCAmelCase) lowerCAmelCase = latents * scheduler.init_noise_sigma return latents def a_ ( self , __lowerCAmelCase=0): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""") lowerCAmelCase = torch.device(f"cuda:{gpu_id}") lowerCAmelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase , __lowerCAmelCase) @property def a_ ( self): """simple docstring""" if self.device != torch.device("""meta""") or not hasattr(self.image_encoder , """_hf_hook"""): return self.device for module in self.image_encoder.modules(): if ( hasattr(__lowerCAmelCase , """_hf_hook""") and hasattr(module._hf_hook , """execution_device""") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase) and isinstance(image[0] , torch.Tensor): lowerCAmelCase = torch.cat(__lowerCAmelCase , axis=0) if image[0].ndim == 4 else torch.stack(__lowerCAmelCase , axis=0) if not isinstance(__lowerCAmelCase , torch.Tensor): lowerCAmelCase = self.image_processor(__lowerCAmelCase , return_tensors="""pt""").pixel_values[0].unsqueeze(0) lowerCAmelCase = image.to(dtype=self.image_encoder.dtype , device=__lowerCAmelCase) lowerCAmelCase = self.image_encoder(__lowerCAmelCase)["""last_hidden_state"""] lowerCAmelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCAmelCase = image_embeds.repeat_interleave(__lowerCAmelCase , dim=0) if do_classifier_free_guidance: lowerCAmelCase = torch.zeros_like(__lowerCAmelCase) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase = torch.cat([negative_image_embeds, image_embeds]) return image_embeds @torch.no_grad() @replace_example_docstring(__lowerCAmelCase) def __call__( self , __lowerCAmelCase , __lowerCAmelCase = 1 , __lowerCAmelCase = 25 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 4.0 , __lowerCAmelCase = 64 , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , ): """simple docstring""" if isinstance(__lowerCAmelCase , PIL.Image.Image): lowerCAmelCase = 1 elif isinstance(__lowerCAmelCase , torch.Tensor): lowerCAmelCase = image.shape[0] elif isinstance(__lowerCAmelCase , __lowerCAmelCase) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image)): lowerCAmelCase = len(__lowerCAmelCase) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__lowerCAmelCase)}") lowerCAmelCase = self._execution_device lowerCAmelCase = batch_size * num_images_per_prompt lowerCAmelCase = guidance_scale > 1.0 lowerCAmelCase = self._encode_image(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) # prior self.scheduler.set_timesteps(__lowerCAmelCase , device=__lowerCAmelCase) lowerCAmelCase = self.scheduler.timesteps lowerCAmelCase = self.prior.config.num_embeddings lowerCAmelCase = self.prior.config.embedding_dim lowerCAmelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCAmelCase = latents.reshape(latents.shape[0] , __lowerCAmelCase , __lowerCAmelCase) for i, t in enumerate(self.progress_bar(__lowerCAmelCase)): # expand the latents if we are doing classifier free guidance lowerCAmelCase = torch.cat([latents] * 2) if do_classifier_free_guidance else latents lowerCAmelCase = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = self.prior( __lowerCAmelCase , timestep=__lowerCAmelCase , proj_embedding=__lowerCAmelCase , ).predicted_image_embedding # remove the variance lowerCAmelCase , lowerCAmelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCAmelCase , lowerCAmelCase = noise_pred.chunk(2) lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCAmelCase = self.scheduler.step( __lowerCAmelCase , timestep=__lowerCAmelCase , sample=__lowerCAmelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__lowerCAmelCase) lowerCAmelCase = [] for i, latent in enumerate(__lowerCAmelCase): print() lowerCAmelCase = self.renderer.decode( latent[None, :] , __lowerCAmelCase , size=__lowerCAmelCase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(__lowerCAmelCase) lowerCAmelCase = torch.stack(__lowerCAmelCase) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}") lowerCAmelCase = images.cpu().numpy() if output_type == "pil": lowerCAmelCase = [self.numpy_to_pil(__lowerCAmelCase) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__lowerCAmelCase)
370
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any], lowerCamelCase : Dict, lowerCamelCase : Dict=13, lowerCamelCase : Optional[int]=7, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : List[Any]=99, lowerCamelCase : Any=32, lowerCamelCase : List[str]=5, lowerCamelCase : Union[str, Any]=4, lowerCamelCase : Union[str, Any]=37, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : Tuple=0.1, lowerCamelCase : List[str]=0.1, lowerCamelCase : Optional[Any]=512, lowerCamelCase : int=16, lowerCamelCase : str=2, lowerCamelCase : int=0.02, lowerCamelCase : int=4, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = RobertaPreLayerNormConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = True lowercase__ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''', from_pt=lowerCamelCase ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''', from_pt=lowerCamelCase ) lowercase__ = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]], dtype=jnp.intaa ) lowercase__ = model(lowerCamelCase )[0] lowercase__ = [1, 11, 50_265] self.assertEqual(list(output.shape ), lowerCamelCase ) # compare the actual values for a slice. lowercase__ = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], lowerCamelCase, atol=1E-4 ) ) @slow def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''', from_pt=lowerCamelCase ) lowercase__ = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]], dtype=jnp.intaa ) lowercase__ = model(lowerCamelCase )[0] # compare the actual values for a slice. lowercase__ = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], lowerCamelCase, atol=1E-4 ) )
183
0
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class lowerCAmelCase ( __UpperCAmelCase ): a : Optional[int] = ["""image_processor"""] a : Tuple = """SamImageProcessor""" def __init__( self , UpperCamelCase ): super().__init__(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.image_processor _SCREAMING_SNAKE_CASE = -10 _SCREAMING_SNAKE_CASE = self.image_processor.size["longest_edge"] def __call__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase = None , **UpperCamelCase , ): _SCREAMING_SNAKE_CASE = self.image_processor( UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # pop arguments that are not used in the foward but used nevertheless _SCREAMING_SNAKE_CASE = encoding_image_processor["original_sizes"] if hasattr(UpperCamelCase , "numpy" ): # Checks if Torch or TF tensor _SCREAMING_SNAKE_CASE = original_sizes.numpy() _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self._check_and_preprocess_points( input_points=UpperCamelCase , input_labels=UpperCamelCase , input_boxes=UpperCamelCase , ) _SCREAMING_SNAKE_CASE = self._normalize_and_convert( UpperCamelCase , UpperCamelCase , input_points=UpperCamelCase , input_labels=UpperCamelCase , input_boxes=UpperCamelCase , return_tensors=UpperCamelCase , ) return encoding_image_processor def lowercase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase="pt" , ): if input_points is not None: if len(UpperCamelCase ) != len(UpperCamelCase ): _SCREAMING_SNAKE_CASE = [ self._normalize_coordinates(self.target_size , UpperCamelCase , original_sizes[0] ) for point in input_points ] else: _SCREAMING_SNAKE_CASE = [ self._normalize_coordinates(self.target_size , UpperCamelCase , UpperCamelCase ) for point, original_size in zip(UpperCamelCase , UpperCamelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self._pad_points_and_labels(UpperCamelCase , UpperCamelCase ) _SCREAMING_SNAKE_CASE = np.array(UpperCamelCase ) if input_labels is not None: _SCREAMING_SNAKE_CASE = np.array(UpperCamelCase ) if input_boxes is not None: if len(UpperCamelCase ) != len(UpperCamelCase ): _SCREAMING_SNAKE_CASE = [ self._normalize_coordinates(self.target_size , UpperCamelCase , original_sizes[0] , is_bounding_box=UpperCamelCase ) for box in input_boxes ] else: _SCREAMING_SNAKE_CASE = [ self._normalize_coordinates(self.target_size , UpperCamelCase , UpperCamelCase , is_bounding_box=UpperCamelCase ) for box, original_size in zip(UpperCamelCase , UpperCamelCase ) ] _SCREAMING_SNAKE_CASE = np.array(UpperCamelCase ) if input_boxes is not None: if return_tensors == "pt": _SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCamelCase ) # boxes batch size of 1 by default _SCREAMING_SNAKE_CASE = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _SCREAMING_SNAKE_CASE = tf.convert_to_tensor(UpperCamelCase ) # boxes batch size of 1 by default _SCREAMING_SNAKE_CASE = tf.expand_dims(UpperCamelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": _SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCamelCase ) # point batch size of 1 by default _SCREAMING_SNAKE_CASE = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _SCREAMING_SNAKE_CASE = tf.convert_to_tensor(UpperCamelCase ) # point batch size of 1 by default _SCREAMING_SNAKE_CASE = tf.expand_dims(UpperCamelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": _SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCamelCase ) # point batch size of 1 by default _SCREAMING_SNAKE_CASE = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _SCREAMING_SNAKE_CASE = tf.convert_to_tensor(UpperCamelCase ) # point batch size of 1 by default _SCREAMING_SNAKE_CASE = tf.expand_dims(UpperCamelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def lowercase ( self , UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = max([point.shape[0] for point in input_points] ) _SCREAMING_SNAKE_CASE = [] for i, point in enumerate(UpperCamelCase ): if point.shape[0] != expected_nb_points: _SCREAMING_SNAKE_CASE = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _SCREAMING_SNAKE_CASE = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(UpperCamelCase ) _SCREAMING_SNAKE_CASE = processed_input_points return input_points, input_labels def lowercase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = original_size _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor._get_preprocess_shape(UpperCamelCase , longest_edge=UpperCamelCase ) _SCREAMING_SNAKE_CASE = deepcopy(UpperCamelCase ).astype(UpperCamelCase ) if is_bounding_box: _SCREAMING_SNAKE_CASE = coords.reshape(-1 , 2 , 2 ) _SCREAMING_SNAKE_CASE = coords[..., 0] * (new_w / old_w) _SCREAMING_SNAKE_CASE = coords[..., 1] * (new_h / old_h) if is_bounding_box: _SCREAMING_SNAKE_CASE = coords.reshape(-1 , 4 ) return coords def lowercase ( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , ): if input_points is not None: if hasattr(UpperCamelCase , "numpy" ): # Checks for TF or Torch tensor _SCREAMING_SNAKE_CASE = input_points.numpy().tolist() if not isinstance(UpperCamelCase , UpperCamelCase ) or not isinstance(input_points[0] , UpperCamelCase ): raise ValueError("Input points must be a list of list of floating points." ) _SCREAMING_SNAKE_CASE = [np.array(UpperCamelCase ) for input_point in input_points] else: _SCREAMING_SNAKE_CASE = None if input_labels is not None: if hasattr(UpperCamelCase , "numpy" ): _SCREAMING_SNAKE_CASE = input_labels.numpy().tolist() if not isinstance(UpperCamelCase , UpperCamelCase ) or not isinstance(input_labels[0] , UpperCamelCase ): raise ValueError("Input labels must be a list of list integers." ) _SCREAMING_SNAKE_CASE = [np.array(UpperCamelCase ) for label in input_labels] else: _SCREAMING_SNAKE_CASE = None if input_boxes is not None: if hasattr(UpperCamelCase , "numpy" ): _SCREAMING_SNAKE_CASE = input_boxes.numpy().tolist() if ( not isinstance(UpperCamelCase , UpperCamelCase ) or not isinstance(input_boxes[0] , UpperCamelCase ) or not isinstance(input_boxes[0][0] , UpperCamelCase ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) _SCREAMING_SNAKE_CASE = [np.array(UpperCamelCase ).astype(np.floataa ) for box in input_boxes] else: _SCREAMING_SNAKE_CASE = None return input_points, input_labels, input_boxes @property def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(UpperCamelCase ) ) def lowercase ( self , *UpperCamelCase , **UpperCamelCase ): return self.image_processor.post_process_masks(*UpperCamelCase , **UpperCamelCase )
493
'''simple docstring''' def _a ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] ): # Check if the input is valid if not len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = equationa _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = equationa # Calculate the determinants of the matrices _SCREAMING_SNAKE_CASE = aa * ba - aa * ba _SCREAMING_SNAKE_CASE = ca * ba - ca * ba _SCREAMING_SNAKE_CASE = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _SCREAMING_SNAKE_CASE = determinant_x / determinant _SCREAMING_SNAKE_CASE = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
493
1
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _snake_case = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } _snake_case = { """Salesforce/codegen-350M-mono""": 2048, } class lowerCAmelCase ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ['input_ids', 'attention_mask'] __lowerCamelCase = CodeGenTokenizer def __init__( self :int , _lowercase :str=None , _lowercase :Optional[int]=None , _lowercase :List[Any]=None , _lowercase :List[str]="<|endoftext|>" , _lowercase :str="<|endoftext|>" , _lowercase :List[Any]="<|endoftext|>" , _lowercase :List[str]=False , **_lowercase :Tuple , ): '''simple docstring''' super().__init__( a__ , a__ , tokenizer_file=a__ , unk_token=a__ , bos_token=a__ , eos_token=a__ , add_prefix_space=a__ , **a__ , ) if kwargs.pop("add_bos_token" , a__ ): lowercase__ = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' f'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a__ ) != add_prefix_space: lowercase__ = getattr(a__ , pre_tok_state.pop("type" ) ) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**a__ ) lowercase__ = add_prefix_space def UpperCAmelCase ( self :Dict , *_lowercase :Any , **_lowercase :Any ): '''simple docstring''' lowercase__ = kwargs.get("is_split_into_words" , a__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a__ , **a__ ) def UpperCAmelCase ( self :Dict , *_lowercase :List[Any] , **_lowercase :Any ): '''simple docstring''' lowercase__ = kwargs.get("is_split_into_words" , a__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*a__ , **a__ ) def UpperCAmelCase ( self :Optional[int] , _lowercase :Optional[Any] , _lowercase :Tuple = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def UpperCAmelCase ( self :Any , _lowercase :Dict , _lowercase :Optional[int] = False , _lowercase :Tuple = None , _lowercase :Union[str, Any] = None , **_lowercase :Optional[int] , ): '''simple docstring''' lowercase__ = super().decode( token_ids=a__ , skip_special_tokens=a__ , clean_up_tokenization_spaces=a__ , **a__ , ) if truncate_before_pattern is not None and len(a__ ) > 0: lowercase__ = self.truncate(a__ , a__ ) return decoded_text def UpperCAmelCase ( self :Any , _lowercase :Dict , _lowercase :Optional[int] ): '''simple docstring''' def find_re(_lowercase :Optional[int] , _lowercase :Dict , _lowercase :Optional[Any] ): lowercase__ = pattern.search(a__ , a__ ) return m.start() if m else -1 lowercase__ = [re.compile(a__ , re.MULTILINE ) for pattern in truncate_before_pattern] lowercase__ = list(re.finditer("^print" , a__ , re.MULTILINE ) ) if len(a__ ) > 1: lowercase__ = completion[: prints[1].start()] lowercase__ = list(re.finditer("^def" , a__ , re.MULTILINE ) ) if len(a__ ) > 1: lowercase__ = completion[: defs[1].start()] lowercase__ = 0 lowercase__ = [ pos for pos in [find_re(a__ , a__ , a__ ) for terminal in terminals] if pos != -1 ] if len(a__ ) > 0: return completion[: min(a__ )] else: return completion
655
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _lowerCAmelCase = """sshleifer/bart-tiny-random""" _lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class _UpperCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): return AutoConfig.from_pretrained(a__ ) def _lowerCamelCase ( self ): A_ , *A_ : Optional[Any] = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _lowerCamelCase ( self ): A_ , *A_ : Tuple = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=a__ ) def _lowerCamelCase ( self ): A_ , *A_ : int = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=a__ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _lowerCamelCase ( self ): A_ , *A_ : Tuple = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _lowerCamelCase ( self ): with self.assertRaises(a__ ): create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=a__ , d=a__ )
569
0
"""simple docstring""" def _A ( _a : int = 1_0_0_0_0_0_0 ): """simple docstring""" A = limit + 1 A = [0] * limit for first_term in range(1 , _a ): for n in range(_a , _a , _a ): A = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a A = sum(1 for x in frequency[1:limit] if x == 1_0 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
255
"""simple docstring""" def _A ( _a : float , _a : float , _a : float , _a : float , _a : float , ): """simple docstring""" A = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: A = 1 - (matter_density + radiation_density + dark_energy) A = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) A = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCAmelCase =0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
255
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Dict = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Tuple = 'imagegpt' __lowerCAmelCase : Tuple = ['past_key_values'] __lowerCAmelCase : str = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=5_12 + 1 , SCREAMING_SNAKE_CASE_=32 * 32 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="quick_gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Any = vocab_size lowercase__ : Optional[Any] = n_positions lowercase__ : List[str] = n_embd lowercase__ : Tuple = n_layer lowercase__ : Optional[Any] = n_head lowercase__ : List[str] = n_inner lowercase__ : Union[str, Any] = activation_function lowercase__ : Union[str, Any] = resid_pdrop lowercase__ : Optional[int] = embd_pdrop lowercase__ : int = attn_pdrop lowercase__ : str = layer_norm_epsilon lowercase__ : Optional[Any] = initializer_range lowercase__ : Any = scale_attn_weights lowercase__ : str = use_cache lowercase__ : str = scale_attn_by_inverse_layer_idx lowercase__ : Optional[int] = reorder_and_upcast_attn lowercase__ : Union[str, Any] = tie_word_embeddings super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ]) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 32 , ): '''simple docstring''' lowercase__ : List[Any] = self._generate_dummy_images(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = dict(preprocessor(images=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_)) return inputs
12
import numpy as np lowercase__ : Tuple = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class lowercase_ : """simple docstring""" def __init__( self ) ->None: lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray: lowerCAmelCase , lowerCAmelCase = np.where(letter == self.SQUARE ) lowerCAmelCase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->str: lowerCAmelCase = self.SQUARE[indexa - 1, indexa - 1] return letter def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str: lowerCAmelCase = message.lower() lowerCAmelCase = message.replace(''' ''' , '''''' ) lowerCAmelCase = message.replace('''j''' , '''i''' ) lowerCAmelCase = np.empty((2, len(__SCREAMING_SNAKE_CASE )) ) for letter_index in range(len(__SCREAMING_SNAKE_CASE ) ): lowerCAmelCase = self.letter_to_numbers(message[letter_index] ) lowerCAmelCase = numbers[0] lowerCAmelCase = numbers[1] lowerCAmelCase = first_step.reshape(2 * len(__SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = '''''' for numbers_index in range(len(__SCREAMING_SNAKE_CASE ) ): lowerCAmelCase = int(second_step[numbers_index * 2] ) lowerCAmelCase = int(second_step[(numbers_index * 2) + 1] ) lowerCAmelCase = self.numbers_to_letter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = encoded_message + letter return encoded_message def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str: lowerCAmelCase = message.lower() message.replace(''' ''' , '''''' ) lowerCAmelCase = np.empty(2 * len(__SCREAMING_SNAKE_CASE ) ) for letter_index in range(len(__SCREAMING_SNAKE_CASE ) ): lowerCAmelCase = self.letter_to_numbers(message[letter_index] ) lowerCAmelCase = numbers[0] lowerCAmelCase = numbers[1] lowerCAmelCase = first_step.reshape((2, len(__SCREAMING_SNAKE_CASE )) ) lowerCAmelCase = '''''' for numbers_index in range(len(__SCREAMING_SNAKE_CASE ) ): lowerCAmelCase = int(second_step[0, numbers_index] ) lowerCAmelCase = int(second_step[1, numbers_index] ) lowerCAmelCase = self.numbers_to_letter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = decoded_message + letter return decoded_message
312
0
import os import sys import unittest SCREAMING_SNAKE_CASE__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE__ = os.path.join(git_repo_path, '''src''', '''diffusers''') class _UpperCamelCase( unittest.TestCase ): def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : Any = find_backend(' if not is_torch_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __a : Optional[Any] = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __a : Union[str, Any] = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'torch_and_transformers_and_onnx' ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' __a : str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE__ ) self.assertIn('torch_and_transformers' , SCREAMING_SNAKE_CASE__ ) self.assertIn('flax_and_transformers' , SCREAMING_SNAKE_CASE__ ) self.assertIn('torch_and_transformers_and_onnx' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] ) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : Optional[Any] = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '\nCONSTANT = None\n' ) __a : Tuple = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) __a : Tuple = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' __a : Union[str, Any] = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' __a : Optional[int] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' __a : int = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE__ )
577
def UpperCAmelCase__ ( lowerCamelCase_ : int ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
577
1
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : int ) -> None: '''simple docstring''' warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
246
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' @slow @require_torch def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) lowerCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) lowerCamelCase = bertabert.config.encoder.vocab_size lowerCamelCase = tokenizer.sep_token_id lowerCamelCase = tokenizer.cls_token_id lowerCamelCase = 128 lowerCamelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) lowerCamelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) lowerCamelCase = train_dataset.select(range(32 ) ) lowerCamelCase = val_dataset.select(range(16 ) ) lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(__snake_case : List[str] ): # Tokenizer will automatically set [BOS] <text> [EOS] lowerCamelCase = tokenizer(batch['article'] , padding='max_length' , truncation=__snake_case , max_length=512 ) lowerCamelCase = tokenizer(batch['highlights'] , padding='max_length' , truncation=__snake_case , max_length=128 ) lowerCamelCase = inputs.input_ids lowerCamelCase = inputs.attention_mask lowerCamelCase = outputs.input_ids lowerCamelCase = outputs.input_ids.copy() lowerCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] lowerCamelCase = outputs.attention_mask assert all(len(__snake_case ) == 512 for x in inputs.input_ids ) assert all(len(__snake_case ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__snake_case : int ): lowerCamelCase = pred.label_ids lowerCamelCase = pred.predictions # all unnecessary tokens are removed lowerCamelCase = tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) lowerCamelCase = tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__snake_case ) )] ) / len(__snake_case ) return {"accuracy": accuracy} # map train dataset lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__snake_case , batch_size=__snake_case , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__snake_case , batch_size=__snake_case , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) lowerCamelCase = self.get_auto_remove_tmp_dir() lowerCamelCase = SeqaSeqTrainingArguments( output_dir=__snake_case , per_device_train_batch_size=__snake_case , per_device_eval_batch_size=__snake_case , predict_with_generate=__snake_case , evaluation_strategy='steps' , do_train=__snake_case , do_eval=__snake_case , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowerCamelCase = SeqaSeqTrainer( model=__snake_case , args=__snake_case , compute_metrics=_compute_metrics , train_dataset=__snake_case , eval_dataset=__snake_case , tokenizer=__snake_case , ) # start training trainer.train()
246
1
"""simple docstring""" def lowercase__ ( lowerCAmelCase__ : int ) -> int: '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def lowercase__ ( lowerCAmelCase__ : int ) -> bool: '''simple docstring''' a__ : Optional[int] = 0 a__ : List[str] = number while duplicate > 0: a__ , a__ : Optional[Any] = divmod(lowerCAmelCase__ , 1_0 ) fact_sum += factorial(lowerCAmelCase__ ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') __UpperCAmelCase = int(input('''Enter number: ''').strip()) print( f"{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number." )
251
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCAmelCase = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } __UpperCAmelCase = { '''facebook/m2m100_418M''': 1024, } # fmt: off __UpperCAmelCase = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class __UpperCAmelCase ( _UpperCamelCase ): __lowerCamelCase : str = VOCAB_FILES_NAMES __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = ["input_ids", "attention_mask"] __lowerCamelCase : List[int] = [] __lowerCamelCase : List[int] = [] def __init__( self : Any , a_ : Any , a_ : int , a_ : int=None , a_ : Union[str, Any]=None , a_ : Optional[Any]="<s>" , a_ : Tuple="</s>" , a_ : int="</s>" , a_ : Optional[int]="<pad>" , a_ : List[Any]="<unk>" , a_ : Tuple="m2m100" , a_ : Optional[Dict[str, Any]] = None , a_ : Optional[Any]=8 , **a_ : Union[str, Any] , ) -> None: '''simple docstring''' a__ : int = {} if sp_model_kwargs is None else sp_model_kwargs a__ : List[str] = language_codes a__ : int = FAIRSEQ_LANGUAGE_CODES[language_codes] a__ : Tuple = {lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code} a__ : Optional[Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(a_ ) for lang_code in fairseq_language_code if self.get_lang_token(a_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=a_ , tgt_lang=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , unk_token=a_ , pad_token=a_ , language_codes=a_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=a_ , **a_ , ) a__ : List[str] = vocab_file a__ : Optional[int] = load_json(a_ ) a__ : List[Any] = {v: k for k, v in self.encoder.items()} a__ : List[Any] = spm_file a__ : Any = load_spm(a_ , self.sp_model_kwargs ) a__ : Tuple = len(self.encoder ) a__ : Any = { self.get_lang_token(a_ ): self.encoder_size + i for i, lang_code in enumerate(a_ ) } a__ : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(a_ )} a__ : Any = {v: k for k, v in self.lang_token_to_id.items()} a__ : Union[str, Any] = src_lang if src_lang is not None else "en" a__ : Union[str, Any] = tgt_lang a__ : List[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) a__ : Optional[int] = num_madeup_words @property def UpperCAmelCase ( self : Dict ) -> int: '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCAmelCase ( self : Any ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def UpperCAmelCase ( self : List[Any] , a_ : str ) -> None: '''simple docstring''' a__ : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase ( self : Tuple , a_ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(a_ , out_type=a_ ) def UpperCAmelCase ( self : List[Any] , a_ : Optional[int] ) -> Any: '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(a_ , self.encoder[self.unk_token] ) def UpperCAmelCase ( self : str , a_ : int ) -> str: '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(a_ , self.unk_token ) def UpperCAmelCase ( self : Dict , a_ : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : Optional[Any] = [] a__ : Optional[int] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a_ ) + token a__ : List[str] = [] else: current_sub_tokens.append(a_ ) out_string += self.sp_model.decode(a_ ) return out_string.strip() def UpperCAmelCase ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) a__ : Any = [1] * len(self.prefix_tokens ) a__ : Optional[int] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(a_ )) + suffix_ones return prefix_ones + ([0] * len(a_ )) + ([0] * len(a_ )) + suffix_ones def UpperCAmelCase ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase ( self : str ) -> Dict: '''simple docstring''' a__ : int = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Dict: '''simple docstring''' a__ : Tuple = self.__dict__.copy() a__ : Optional[int] = None return state def __setstate__( self : List[str] , a_ : Dict ) -> None: '''simple docstring''' a__ : Tuple = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__ : List[Any] = {} a__ : Optional[int] = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCAmelCase ( self : List[Any] , a_ : str , a_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' a__ : Dict = Path(a_ ) if not save_dir.is_dir(): raise OSError(F"{save_directory} should be a directory" ) a__ : Union[str, Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) a__ : Tuple = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , a_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(a_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , a_ ) elif not os.path.isfile(self.spm_file ): with open(a_ , "wb" ) as fi: a__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(a_ ) return (str(a_ ), str(a_ )) def UpperCAmelCase ( self : Any , a_ : List[str] , a_ : str = "en" , a_ : Optional[List[str]] = None , a_ : str = "ro" , **a_ : Dict , ) -> BatchEncoding: '''simple docstring''' a__ : str = src_lang a__ : Any = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def UpperCAmelCase ( self : Optional[Any] , a_ : Dict , a_ : Optional[str] , a_ : Optional[str] , **a_ : Tuple ) -> str: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) a__ : List[Any] = src_lang a__ : Optional[int] = self(a_ , add_special_tokens=a_ , **a_ ) a__ : Any = self.get_lang_id(a_ ) a__ : int = tgt_lang_id return inputs def UpperCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase ( self : Union[str, Any] , a_ : str ) -> None: '''simple docstring''' a__ : Optional[int] = self.get_lang_token(a_ ) a__ : Tuple = self.lang_token_to_id[lang_token] a__ : List[str] = [self.cur_lang_id] a__ : Optional[int] = [self.eos_token_id] def UpperCAmelCase ( self : List[str] , a_ : str ) -> None: '''simple docstring''' a__ : Optional[int] = self.get_lang_token(a_ ) a__ : int = self.lang_token_to_id[lang_token] a__ : Tuple = [self.cur_lang_id] a__ : Optional[int] = [self.eos_token_id] def UpperCAmelCase ( self : Any , a_ : str ) -> str: '''simple docstring''' return self.lang_code_to_token[lang] def UpperCAmelCase ( self : List[str] , a_ : str ) -> int: '''simple docstring''' a__ : List[str] = self.get_lang_token(a_ ) return self.lang_token_to_id[lang_token] def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' a__ : Any = sentencepiece.SentencePieceProcessor(**lowerCAmelCase__ ) spm.Load(str(lowerCAmelCase__ ) ) return spm def lowercase__ ( lowerCAmelCase__ : str ) -> Union[Dict, List]: '''simple docstring''' with open(lowerCAmelCase__ , "r" ) as f: return json.load(lowerCAmelCase__ ) def lowercase__ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ) -> None: '''simple docstring''' with open(lowerCAmelCase__ , "w" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , indent=2 )
251
1
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase_ = datasets.utils.logging.get_logger(__name__) class __lowerCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ): lowerCamelCase_ : bool = None lowerCamelCase_ : bool = None class __lowerCAmelCase ( folder_based_builder.FolderBasedBuilder ): lowerCamelCase_ : Dict = datasets.Audio() lowerCamelCase_ : Tuple = '''audio''' lowerCamelCase_ : Tuple = AudioFolderConfig lowerCamelCase_ : List[str] # definition at the bottom of the script lowerCamelCase_ : Any = AudioClassification(audio_column='''audio''', label_column='''label''' ) lowerCAmelCase_ = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase_ = AUDIO_EXTENSIONS
60
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __snake_case : List[Any] = get_logger(__name__) class lowerCamelCase : '''simple docstring''' __snake_case = 'dummy_data' __snake_case = 'datasets' __snake_case = False def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[Version, str] , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[List[Callable]] = None , ) -> str: '''simple docstring''' A__ : List[str] =0 A__ : int =dataset_name A__ : Optional[int] =cache_dir A__ : Optional[int] =use_local_dummy_data A__ : Optional[Any] =config # download_callbacks take a single url as input A__ : List[Callable] =download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root A__ : Any =load_existing_dummy_data # TODO(PVP, QL) might need to make this more general A__ : List[str] =str(lowerCAmelCase_ ) # to be downloaded A__ : Union[str, Any] =None A__ : List[str] =None @property def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' if self._dummy_file is None: A__ : Tuple =self.download_dummy_data() return self._dummy_file @property def lowercase__ ( self : str ) -> int: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple =( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) A__ : List[str] =cached_path( lowerCAmelCase_ , cache_dir=self.cache_dir , extract_compressed_file=lowerCAmelCase_ , force_extract=lowerCAmelCase_ ) return os.path.join(lowerCAmelCase_ , self.dummy_file_name ) @property def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' if self._bucket_url is None: A__ : Any =hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Tuple ) -> List[str]: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested A__ : int =self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned A__ : Optional[int] =self.dummy_file_name # special case when data_url is a dict if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return self.create_dummy_data_dict(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , (list, tuple) ): return self.create_dummy_data_list(lowerCAmelCase_ , lowerCAmelCase_ ) else: return self.create_dummy_data_single(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , *lowerCAmelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' return self.download_and_extract(lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return self.download_and_extract(lowerCAmelCase_ ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Any ) -> Tuple: '''simple docstring''' return path def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' return {} def lowercase__ ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Union[str, Any] ={} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): for single_url in single_urls: download_callback(lowerCAmelCase_ ) else: A__ : str =single_urls download_callback(lowerCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Dict =[os.path.join(lowerCAmelCase_ , urllib.parse.quote_plus(Path(lowerCAmelCase_ ).name ) ) for x in single_urls] else: A__ : List[str] =single_urls A__ : Optional[int] =os.path.join(lowerCAmelCase_ , urllib.parse.quote_plus(Path(lowerCAmelCase_ ).name ) ) A__ : Tuple =value # make sure that values are unique if all(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique A__ : int ={key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =[] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one A__ : str =all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , lowerCAmelCase_ ) ) for url in data_url ) A__ : List[Any] =all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): A__ : List[str] =[data_url[0]] * len(lowerCAmelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowerCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus A__ : Optional[int] =os.path.join(lowerCAmelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(lowerCAmelCase_ ) return dummy_data_list def lowercase__ ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : int ) -> Optional[int]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(lowerCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus A__ : List[Any] =os.path.join(lowerCAmelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(lowerCAmelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' pass def lowercase__ ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' def _iter_archive_members(lowerCAmelCase_ : int ): # this preserves the order of the members inside the ZIP archive A__ : Dict =Path(self.dummy_file ).parent A__ : List[str] =path.relative_to(lowerCAmelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: A__ : int =zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowerCAmelCase_ ) A__ : Dict =Path(lowerCAmelCase_ ) A__ : Union[str, Any] =_iter_archive_members(lowerCAmelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(lowerCAmelCase_ ).as_posix(), file_path.open("""rb""" ) def lowercase__ ( self : int , lowerCAmelCase_ : List[str] ) -> Union[str, Any]: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : str =[paths] for path in paths: if os.path.isfile(lowerCAmelCase_ ): if os.path.basename(lowerCAmelCase_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowerCAmelCase_ ): if os.path.basename(lowerCAmelCase_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(lowerCAmelCase_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )
215
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Tuple = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = ["""DeiTFeatureExtractor"""] UpperCAmelCase_ : str = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
716
"""simple docstring""" from __future__ import annotations def _A (__a , __a , __a ) -> int | float: """simple docstring""" if len(__a ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(__a ) or left < -len(__a ) or right >= len(__a ) or right < -len(__a ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] SCREAMING_SNAKE_CASE_ : str = (left + right) >> 1 # the middle SCREAMING_SNAKE_CASE_ : int = find_max(__a , __a , __a ) # find max in range[left, mid] SCREAMING_SNAKE_CASE_ : str = find_max(__a , mid + 1 , __a ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
176
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Tuple=10 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Union[str, Any]=32 * 8 , _lowerCAmelCase : Dict=32 * 8 , _lowerCAmelCase : Optional[Any]=4 , _lowerCAmelCase : List[str]=64 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_auxiliary_loss SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = min_size SCREAMING_SNAKE_CASE_ = max_size SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = hidden_dim def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCAmelCase ) > 0.5 ).float() SCREAMING_SNAKE_CASE_ = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCAmelCase ) > 0.5).long() SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) SCREAMING_SNAKE_CASE_ = self.num_queries SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = [1, 1, 1, 1] SCREAMING_SNAKE_CASE_ = self.num_channels SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = self.hidden_dim SCREAMING_SNAKE_CASE_ = self.hidden_dim SCREAMING_SNAKE_CASE_ = self.hidden_dim return config def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = output.encoder_hidden_states SCREAMING_SNAKE_CASE_ = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , config.decoder_layers ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple=False ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ = MaskaFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() def comm_check_on_output(_lowerCAmelCase : Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model( pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowercase_ = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowerCAmelCase_ ( self : int ): pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowerCAmelCase_ ( self : Optional[int] ): pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowerCAmelCase_ ( self : Optional[int] ): pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowerCAmelCase_ ( self : int ): pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowerCAmelCase_ ( self : Optional[int] ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self : List[Any] ): pass def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: SCREAMING_SNAKE_CASE_ = MaskaFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_lowerCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_lowerCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_lowerCAmelCase ).long(), } SCREAMING_SNAKE_CASE_ = self.model_tester.get_config() SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation(_lowerCAmelCase ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase_ ( self : Tuple ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ = self.all_model_classes[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ).loss loss.backward() def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.all_model_classes[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase__ : List[Any] = 1E-4 def UpperCAmelCase_ ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Any ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase_ ( self : int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) # masks_queries_logits SCREAMING_SNAKE_CASE_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) SCREAMING_SNAKE_CASE_ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits SCREAMING_SNAKE_CASE_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [el.to(_lowerCAmelCase ) for el in inputs['mask_labels']] SCREAMING_SNAKE_CASE_ = [el.to(_lowerCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
31
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "funnel" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
31
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A : Any = 'pt' elif is_tf_available(): __A : List[str] = 'tf' else: __A : Union[str, Any] = 'jax' class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE:str = PerceiverTokenizer SCREAMING_SNAKE_CASE:Optional[int] = False def lowercase__ ( self ): """simple docstring""" super().setUp() a__ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self ): """simple docstring""" return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase__ ( self , **_a ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_a ) def lowercase__ ( self , _a , _a=False , _a=20 , _a=5 ): """simple docstring""" # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. a__ = [] for i in range(len(_a ) ): try: a__ = tokenizer.decode([i] , clean_up_tokenization_spaces=_a ) except UnicodeDecodeError: pass toks.append((i, tok) ) a__ = list(filter(lambda _a : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _a ) ) a__ = list(filter(lambda _a : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_a ) , _a ) ) if max_length is not None and len(_a ) > max_length: a__ = toks[:max_length] if min_length is not None and len(_a ) < min_length and len(_a ) > 0: while len(_a ) < min_length: a__ = toks + toks # toks_str = [t[1] for t in toks] a__ = [t[0] for t in toks] # Ensure consistency a__ = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) if " " not in output_txt and len(_a ) > 1: a__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_a ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_a ) ) if with_prefix_space: a__ = ' ' + output_txt a__ = tokenizer.encode(_a , add_special_tokens=_a ) return output_txt, output_ids def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer a__ = 'Unicode €.' a__ = tokenizer(_a ) a__ = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _a ) # decoding a__ = tokenizer.decode(_a ) self.assertEqual(_a , '[CLS]Unicode €.[SEP]' ) a__ = tokenizer('e è é ê ë' ) a__ = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _a ) # decoding a__ = tokenizer.decode(_a ) self.assertEqual(_a , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer a__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off a__ = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on a__ = tokenizer(_a , padding=_a , return_tensors=_a ) self.assertIsInstance(_a , _a ) if FRAMEWORK != "jax": a__ = list(batch.input_ids.numpy()[0] ) else: a__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_a , _a ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer a__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] a__ = tokenizer(_a , padding=_a , return_tensors=_a ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _a ) self.assertIn('attention_mask' , _a ) self.assertNotIn('decoder_input_ids' , _a ) self.assertNotIn('decoder_attention_mask' , _a ) def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer a__ = [ 'Summary of the text.', 'Another summary.', ] a__ = tokenizer( text_target=_a , max_length=32 , padding='max_length' , truncation=_a , return_tensors=_a ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase__ ( self ): """simple docstring""" # safety check on max_len default value so we are sure the test works a__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test a__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a__ = tempfile.mkdtemp() a__ = ' He is very happy, UNwant\u00E9d,running' a__ = tokenizer.encode(_a , add_special_tokens=_a ) tokenizer.save_pretrained(_a ) a__ = tokenizer.__class__.from_pretrained(_a ) a__ = after_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) shutil.rmtree(_a ) a__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a__ = tempfile.mkdtemp() a__ = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) a__ = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) a__ = tokenizer.encode(_a , add_special_tokens=_a ) tokenizer.save_pretrained(_a ) a__ = tokenizer.__class__.from_pretrained(_a ) a__ = after_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) a__ = tokenizer.__class__.from_pretrained(_a , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_a ) def lowercase__ ( self ): """simple docstring""" a__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_a ) with open(os.path.join(_a , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: a__ = json.load(_a ) with open(os.path.join(_a , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: a__ = json.load(_a ) a__ = [F'''<extra_id_{i}>''' for i in range(125 )] a__ = added_tokens_extra_ids + [ 'an_additional_special_token' ] a__ = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_a , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_a , _a ) with open(os.path.join(_a , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_a , _a ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files a__ = tokenizer_class.from_pretrained( _a , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained a__ = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_a )] a__ = tokenizer_class.from_pretrained( _a , additional_special_tokens=_a , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens a__ = self.get_tokenizers(fast=_a , do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a__ = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] a__ = tokenizer.convert_tokens_to_string(_a ) self.assertIsInstance(_a , _a )
126
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , _a , _a , _a = None , _a = None ): """simple docstring""" super().__init__() a__ = pad_token_id a__ = max_length a__ = vocab a__ = merges a__ = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def lowercase__ ( cls , _a , *_a , **_a ): """simple docstring""" a__ = [' '.join(_a ) for m in tokenizer.bpe_ranks.keys()] a__ = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def lowercase__ ( cls , _a , *_a , **_a ): """simple docstring""" a__ = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def lowercase__ ( cls , _a ): """simple docstring""" return cls(**_a ) def lowercase__ ( self ): """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase__ ( self , _a , _a = None ): """simple docstring""" a__ = self.tf_tokenizer(_a ) a__ = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length a__ = max_length if max_length is not None else self.max_length if max_length is not None: a__ , a__ = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
126
1
import random from .binary_exp_mod import bin_exp_mod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=1000 ) -> str: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _a = n - 1 _a = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _a = 0 while count < prec: _a = random.randint(2 , n - 1 ) _a = bin_exp_mod(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if b != 1: _a = True for _ in range(_UpperCAmelCase ): if b == n - 1: _a = False break _a = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowercase_ = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
562
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A = "naver-clova-ix/donut-base-finetuned-docvqa" _A = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) _A = "document_qa" _A = AutoProcessor _A = VisionEncoderDecoderModel _A = ["image", "text"] _A = ["text"] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : str ): if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : "Image" , SCREAMING_SNAKE_CASE_ : str ): _a = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' _a = task_prompt.replace('{user_input}' , SCREAMING_SNAKE_CASE_ ) _a = self.pre_processor.tokenizer( SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).input_ids _a = self.pre_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _UpperCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ): return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=SCREAMING_SNAKE_CASE_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=SCREAMING_SNAKE_CASE_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=SCREAMING_SNAKE_CASE_ , ).sequences def _UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): _a = self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE_ )[0] _a = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) _a = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) _a = re.sub(R'<.*?>' , '' , SCREAMING_SNAKE_CASE_ , count=1 ).strip() # remove first task start token _a = self.pre_processor.tokenajson(SCREAMING_SNAKE_CASE_ ) return sequence["answer"]
562
1
'''simple docstring''' from math import pi, sqrt, tan def UpperCAmelCase ( UpperCAmelCase__ : List[str]): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values') return 6 * side_length**2 def UpperCAmelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values') return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase ( UpperCAmelCase__ : List[Any]): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values') return 4 * pi * radius**2 def UpperCAmelCase ( UpperCAmelCase__ : Tuple): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values') return 3 * pi * radius**2 def UpperCAmelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values') return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int]): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values') lowerCamelCase : Tuple = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any]): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values') return 2 * pi * radius * (height + radius) def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values') if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori') return 4 * pow(_lowerCAmelCase , 2) * torus_radius * tube_radius def UpperCAmelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str]): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values') return length * width def UpperCAmelCase ( UpperCAmelCase__ : Tuple): if side_length < 0: raise ValueError('area_square() only accepts non-negative values') return side_length**2 def UpperCAmelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int]): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values') return (base * height) / 2 def UpperCAmelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values') elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle') lowerCamelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCamelCase : List[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def UpperCAmelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : str): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values') return base * height def UpperCAmelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values') return 1 / 2 * (basea + basea) * height def UpperCAmelCase ( UpperCAmelCase__ : Optional[Any]): if radius < 0: raise ValueError('area_circle() only accepts non-negative values') return pi * radius**2 def UpperCAmelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values') return pi * radius_x * radius_y def UpperCAmelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values') return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple): if not isinstance(_lowerCAmelCase , _lowerCAmelCase) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \\nequal to three as number of sides') elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \\nlength of a side') return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f"""Rectangle: {area_rectangle(10, 20) = }""") print(f"""Square: {area_square(10) = }""") print(f"""Triangle: {area_triangle(10, 10) = }""") print(f"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(f"""Parallelogram: {area_parallelogram(10, 20) = }""") print(f"""Rhombus: {area_rhombus(10, 20) = }""") print(f"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(f"""Circle: {area_circle(20) = }""") print(f"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(f"""Cube: {surface_area_cube(20) = }""") print(f"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(f"""Sphere: {surface_area_sphere(20) = }""") print(f"""Hemisphere: {surface_area_hemisphere(20) = }""") print(f"""Cone: {surface_area_cone(10, 20) = }""") print(f"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(f"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(f"""Torus: {surface_area_torus(20, 10) = }""") print(f"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(f"""Square: {area_reg_polygon(4, 10) = }""") print(f"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
701
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a__): _lowerCAmelCase = (DPMSolverSinglestepScheduler,) _lowerCAmelCase = (('''num_inference_steps''', 25),) def UpperCAmelCase_ ( self, **A ): """simple docstring""" lowerCamelCase : List[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**A ) return config def UpperCAmelCase_ ( self, A=0, **A ): """simple docstring""" lowerCamelCase : List[str] = dict(self.forward_default_kwargs ) lowerCamelCase : Optional[Any] = kwargs.pop('num_inference_steps', A ) lowerCamelCase : Union[str, Any] = self.dummy_sample lowerCamelCase : Dict = 0.1 * sample lowerCamelCase : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase : Optional[Any] = self.get_scheduler_config(**A ) lowerCamelCase : Dict = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals lowerCamelCase : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) lowerCamelCase : List[Any] = scheduler_class.from_pretrained(A ) new_scheduler.set_timesteps(A ) # copy over dummy past residuals lowerCamelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase , lowerCamelCase : Optional[int] = sample, sample for t in range(A, time_step + scheduler.config.solver_order + 1 ): lowerCamelCase : Dict = scheduler.step(A, A, A, **A ).prev_sample lowerCamelCase : Optional[int] = new_scheduler.step(A, A, A, **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self ): """simple docstring""" pass def UpperCAmelCase_ ( self, A=0, **A ): """simple docstring""" lowerCamelCase : List[str] = dict(self.forward_default_kwargs ) lowerCamelCase : str = kwargs.pop('num_inference_steps', A ) lowerCamelCase : Union[str, Any] = self.dummy_sample lowerCamelCase : List[str] = 0.1 * sample lowerCamelCase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase : Tuple = self.get_scheduler_config() lowerCamelCase : Optional[Any] = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals (must be after setting timesteps) lowerCamelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) lowerCamelCase : Tuple = scheduler_class.from_pretrained(A ) # copy over dummy past residuals new_scheduler.set_timesteps(A ) # copy over dummy past residual (must be after setting timesteps) lowerCamelCase : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase : int = scheduler.step(A, A, A, **A ).prev_sample lowerCamelCase : Dict = new_scheduler.step(A, A, A, **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self, A=None, **A ): """simple docstring""" if scheduler is None: lowerCamelCase : Any = self.scheduler_classes[0] lowerCamelCase : Optional[Any] = self.get_scheduler_config(**A ) lowerCamelCase : Optional[int] = scheduler_class(**A ) lowerCamelCase : List[Any] = self.scheduler_classes[0] lowerCamelCase : Optional[Any] = self.get_scheduler_config(**A ) lowerCamelCase : Optional[int] = scheduler_class(**A ) lowerCamelCase : Any = 10 lowerCamelCase : Dict = self.dummy_model() lowerCamelCase : Any = self.dummy_sample_deter scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase : Dict = model(A, A ) lowerCamelCase : List[str] = scheduler.step(A, A, A ).prev_sample return sample def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Dict = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCamelCase : Dict = 50 lowerCamelCase : Tuple = self.dummy_model() lowerCamelCase : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(A ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowerCamelCase : Any = model(A, A ) lowerCamelCase : Optional[int] = scheduler.step(A, A, A ).prev_sample lowerCamelCase : Any = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2574 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Dict = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCamelCase : str = self.full_loop(scheduler=A ) lowerCamelCase : Optional[int] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 lowerCamelCase : Dict = DEISMultistepScheduler.from_config(scheduler.config ) lowerCamelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCamelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCamelCase : Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCamelCase : str = self.full_loop(scheduler=A ) lowerCamelCase : Optional[int] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" self.check_over_configs(thresholding=A ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=A, prediction_type=A, sample_max_value=A, algorithm_type='dpmsolver++', solver_order=A, solver_type=A, ) def UpperCAmelCase_ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def UpperCAmelCase_ ( self ): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=A, solver_type=A, prediction_type=A, algorithm_type=A, ) lowerCamelCase : Optional[Any] = self.full_loop( solver_order=A, solver_type=A, prediction_type=A, algorithm_type=A, ) assert not torch.isnan(A ).any(), "Samples have nan numbers" def UpperCAmelCase_ ( self ): """simple docstring""" self.check_over_configs(lower_order_final=A ) self.check_over_configs(lower_order_final=A ) def UpperCAmelCase_ ( self ): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase_ ( self ): """simple docstring""" self.check_over_configs(variance_type=A ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase_ ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=A, time_step=0 ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.full_loop() lowerCamelCase : str = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.full_loop(use_karras_sigmas=A ) lowerCamelCase : Tuple = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2248 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.full_loop(prediction_type='v_prediction' ) lowerCamelCase : Dict = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.1453 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.full_loop(prediction_type='v_prediction', use_karras_sigmas=A ) lowerCamelCase : Optional[Any] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.0649 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.scheduler_classes[0] lowerCamelCase : Dict = self.get_scheduler_config(thresholding=A, dynamic_thresholding_ratio=0 ) lowerCamelCase : str = scheduler_class(**A ) lowerCamelCase : List[Any] = 10 lowerCamelCase : List[str] = self.dummy_model() lowerCamelCase : int = self.dummy_sample_deter.half() scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase : str = model(A, A ) lowerCamelCase : Tuple = scheduler.step(A, A, A ).prev_sample assert sample.dtype == torch.floataa
449
0
"""simple docstring""" def lowercase__ ( snake_case_ :dict ): __UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCAmelCase = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
49
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class __lowerCAmelCase ( _a ): lowerCamelCase_ : Tuple = '''owlvit_text_model''' def __init__(self , __magic_name__=4_9408 , __magic_name__=512 , __magic_name__=2048 , __magic_name__=12 , __magic_name__=8 , __magic_name__=16 , __magic_name__="quick_gelu" , __magic_name__=1e-5 , __magic_name__=0.0 , __magic_name__=0.02 , __magic_name__=1.0 , __magic_name__=0 , __magic_name__=4_9406 , __magic_name__=4_9407 , **__magic_name__ , ) -> str: '''simple docstring''' super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) snake_case_ : int = vocab_size snake_case_ : str = hidden_size snake_case_ : List[Any] = intermediate_size snake_case_ : str = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : str = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Dict = attention_dropout snake_case_ : Union[str, Any] = initializer_range snake_case_ : int = initializer_factor @classmethod def lowerCamelCase (cls , __magic_name__ , **__magic_name__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__magic_name__ ) snake_case_ , snake_case_ : str = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": snake_case_ : str = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class __lowerCAmelCase ( _a ): lowerCamelCase_ : int = '''owlvit_vision_model''' def __init__(self , __magic_name__=768 , __magic_name__=3072 , __magic_name__=12 , __magic_name__=12 , __magic_name__=3 , __magic_name__=768 , __magic_name__=32 , __magic_name__="quick_gelu" , __magic_name__=1e-5 , __magic_name__=0.0 , __magic_name__=0.02 , __magic_name__=1.0 , **__magic_name__ , ) -> int: '''simple docstring''' super().__init__(**__magic_name__ ) snake_case_ : Optional[Any] = hidden_size snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : List[Any] = num_channels snake_case_ : Union[str, Any] = image_size snake_case_ : Dict = patch_size snake_case_ : List[Any] = hidden_act snake_case_ : Tuple = layer_norm_eps snake_case_ : Dict = attention_dropout snake_case_ : List[str] = initializer_range snake_case_ : List[Any] = initializer_factor @classmethod def lowerCamelCase (cls , __magic_name__ , **__magic_name__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__magic_name__ ) snake_case_ , snake_case_ : int = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": snake_case_ : str = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class __lowerCAmelCase ( _a ): lowerCamelCase_ : int = '''owlvit''' lowerCamelCase_ : Optional[int] = True def __init__(self , __magic_name__=None , __magic_name__=None , __magic_name__=512 , __magic_name__=2.6_592 , __magic_name__=True , **__magic_name__ , ) -> int: '''simple docstring''' super().__init__(**__magic_name__ ) if text_config is None: snake_case_ : Tuple = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: snake_case_ : str = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) snake_case_ : str = OwlViTTextConfig(**__magic_name__ ) snake_case_ : Union[str, Any] = OwlViTVisionConfig(**__magic_name__ ) snake_case_ : Any = projection_dim snake_case_ : Union[str, Any] = logit_scale_init_value snake_case_ : str = return_dict snake_case_ : Any = 1.0 @classmethod def lowerCamelCase (cls , __magic_name__ , **__magic_name__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__magic_name__ ) snake_case_ , snake_case_ : Optional[Any] = cls.get_config_dict(__magic_name__ , **__magic_name__ ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) @classmethod def lowerCamelCase (cls , __magic_name__ , __magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' snake_case_ : Optional[int] = {} snake_case_ : Union[str, Any] = text_config snake_case_ : Optional[Any] = vision_config return cls.from_dict(__magic_name__ , **__magic_name__ ) def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : List[Any] = self.text_config.to_dict() snake_case_ : List[Any] = self.vision_config.to_dict() snake_case_ : Tuple = self.__class__.model_type return output class __lowerCAmelCase ( _a ): @property def lowerCamelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def lowerCamelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def lowerCamelCase (self ) -> float: '''simple docstring''' return 1e-4 def lowerCamelCase (self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ : Dict = super().generate_dummy_inputs( processor.tokenizer , batch_size=__magic_name__ , seq_length=__magic_name__ , framework=__magic_name__ ) snake_case_ : List[str] = super().generate_dummy_inputs( processor.image_processor , batch_size=__magic_name__ , framework=__magic_name__ ) return {**text_input_dict, **image_input_dict} @property def lowerCamelCase (self ) -> int: '''simple docstring''' return 14
60
0
"""simple docstring""" import math def snake_case__ ( _snake_case : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case__ ( _snake_case : float = 0.1 ): """simple docstring""" UpperCamelCase__ = 3 UpperCamelCase__ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
702
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
304
0
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version snake_case = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize snake_case = """\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } """ snake_case = """\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. """ snake_case = """ Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: 'meteor': meteor score. Examples: >>> meteor = datasets.load_metric('meteor') >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"] >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results[\"meteor\"], 4)) 0.6944 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _A ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def _A ( self : Any , UpperCAmelCase_ : Dict ): import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def _A ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any]=0.9 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=0.5 ): if NLTK_VERSION >= version.Version("3.6.5" ): SCREAMING_SNAKE_CASE : Dict = [ meteor_score.single_meteor_score( word_tokenize(UpperCAmelCase_ ) , word_tokenize(UpperCAmelCase_ ) , alpha=UpperCAmelCase_ , beta=UpperCAmelCase_ , gamma=UpperCAmelCase_ ) for ref, pred in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ] else: SCREAMING_SNAKE_CASE : List[Any] = [ meteor_score.single_meteor_score(UpperCAmelCase_ , UpperCAmelCase_ , alpha=UpperCAmelCase_ , beta=UpperCAmelCase_ , gamma=UpperCAmelCase_ ) for ref, pred in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ] return {"meteor": np.mean(UpperCAmelCase_ )}
62
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : List[str] = KandinskyVaaPipeline UpperCamelCase_ : List[Any] = [ '''image_embeds''', '''negative_image_embeds''', ] UpperCamelCase_ : Tuple = ['''image_embeds''', '''negative_image_embeds'''] UpperCamelCase_ : Any = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase_ : List[str] = False @property def _A ( self : List[Any] ): return 32 @property def _A ( self : List[Any] ): return 32 @property def _A ( self : Any ): return self.time_input_dim @property def _A ( self : Union[str, Any] ): return self.time_input_dim * 4 @property def _A ( self : Tuple ): return 100 @property def _A ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } SCREAMING_SNAKE_CASE : str = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def _A ( self : int ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _A ( self : Any ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : List[str] = self.dummy_unet SCREAMING_SNAKE_CASE : str = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="epsilon" , thresholding=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Optional[int] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _A ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any]=0 ): SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith("mps" ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Any = "cpu" SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Tuple = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array( [0.6_237_976, 1.0, 0.36_441_332, 1.0, 0.70_639_634, 0.29_877_186, 0.85_652_125, 0.5_216_843, 0.54_454_046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : str ): SCREAMING_SNAKE_CASE : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) SCREAMING_SNAKE_CASE : int = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Tuple = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = "red cat, 4k photo" SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device="cuda" ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device="cuda" ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipeline( image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
62
1
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( _lowercase ) -> list[int]: '''simple docstring''' if num <= 0: lowerCamelCase_ : List[Any] = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(_lowercase ) lowerCamelCase_ : Dict = [True] * (num + 1) lowerCamelCase_ : Dict = [] lowerCamelCase_ : Optional[Any] = 2 lowerCamelCase_ : Dict = int(math.sqrt(_lowercase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_lowercase ) # Set multiples of start be False for i in range(start * start , num + 1 , _lowercase ): if sieve[i] is True: lowerCamelCase_ : Optional[Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_lowercase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
713
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __lowercase : def __init__(self , A , ): lowerCamelCase_ : int = parent lowerCamelCase_ : Dict = 1_3 lowerCamelCase_ : Any = 7 lowerCamelCase_ : Dict = 3_0 lowerCamelCase_ : Optional[Any] = self.seq_length + self.mem_len lowerCamelCase_ : Tuple = 1_5 lowerCamelCase_ : Tuple = True lowerCamelCase_ : List[Any] = True lowerCamelCase_ : Dict = 9_9 lowerCamelCase_ : Any = [1_0, 5_0, 8_0] lowerCamelCase_ : List[str] = 3_2 lowerCamelCase_ : Tuple = 3_2 lowerCamelCase_ : Optional[Any] = 4 lowerCamelCase_ : Union[str, Any] = 8 lowerCamelCase_ : Dict = 1_2_8 lowerCamelCase_ : Dict = 2 lowerCamelCase_ : Tuple = 2 lowerCamelCase_ : Any = None lowerCamelCase_ : Optional[Any] = 1 lowerCamelCase_ : Union[str, Any] = 0 lowerCamelCase_ : str = 3 lowerCamelCase_ : Dict = self.vocab_size - 1 lowerCamelCase_ : Dict = 0.01 def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Union[str, Any] = None if self.use_labels: lowerCamelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : str = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCAmelCase__ (self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCAmelCase__ (self , A , A , A , A ): lowerCamelCase_ : int = TFTransfoXLModel(A ) lowerCamelCase_, lowerCamelCase_ : Tuple = model(A ).to_tuple() lowerCamelCase_ : Union[str, Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a} lowerCamelCase_, lowerCamelCase_ : Any = model(A ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCAmelCase__ (self , A , A , A , A ): lowerCamelCase_ : List[Any] = TFTransfoXLLMHeadModel(A ) lowerCamelCase_, lowerCamelCase_ : List[Any] = model(A ).to_tuple() lowerCamelCase_ : Optional[int] = {'''input_ids''': input_ids_a, '''labels''': lm_labels} lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = model(A ).to_tuple() lowerCamelCase_, lowerCamelCase_ : Tuple = model([input_ids_a, mems_a] ).to_tuple() lowerCamelCase_ : List[str] = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} lowerCamelCase_, lowerCamelCase_ : str = model(A ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCAmelCase__ (self , A , A , A , A ): lowerCamelCase_ : Dict = TFTransfoXLForSequenceClassification(A ) lowerCamelCase_ : Optional[int] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = self.prepare_config_and_inputs() ((lowerCamelCase_), (lowerCamelCase_), (lowerCamelCase_), (lowerCamelCase_)) : List[Any] = config_and_inputs lowerCamelCase_ : Tuple = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class __lowercase ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase : Any = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) lowerCamelCase : Tuple = () if is_tf_available() else () lowerCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented lowerCamelCase : str = False lowerCamelCase : Optional[int] = False lowerCamelCase : Dict = False lowerCamelCase : Optional[int] = False def UpperCAmelCase__ (self , A , A , A , A , A ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = TFTransfoXLModelTester(self ) lowerCamelCase_ : Optional[Any] = ConfigTester(self , config_class=A , d_embed=3_7 ) def UpperCAmelCase__ (self ): self.config_tester.run_common_tests() def UpperCAmelCase__ (self ): self.model_tester.set_seed() lowerCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*A ) def UpperCAmelCase__ (self ): self.model_tester.set_seed() lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowerCamelCase_ : Optional[Any] = model_class(A ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowerCamelCase_ : str = model.get_output_embeddings() assert isinstance(A , tf.keras.layers.Layer ) lowerCamelCase_ : int = model.get_bias() assert name is None else: lowerCamelCase_ : Tuple = model.get_output_embeddings() assert x is None lowerCamelCase_ : int = model.get_bias() assert name is None def UpperCAmelCase__ (self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def UpperCAmelCase__ (self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : Optional[Any] = TFTransfoXLModel.from_pretrained(A ) self.assertIsNotNone(A ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def UpperCAmelCase__ (self ): pass @require_tf class __lowercase ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off lowerCamelCase_ : Optional[Any] = tf.convert_to_tensor([[3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowerCamelCase_ : Union[str, Any] = [3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0,3_3,1,1_8_5_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_8,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowerCamelCase_ : Optional[Any] = model.generate(A , max_length=2_0_0 , do_sample=A ) self.assertListEqual(output_ids[0].numpy().tolist() , A )
357
0
def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): __UpperCAmelCase : Optional[Any] = """""" for i in table: res += inp[i - 1] return res def lowerCamelCase__ ( __lowerCamelCase : Tuple ): return data[1:] + data[0] def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): __UpperCAmelCase : str = """""" for i in range(len(__lowerCamelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int ): __UpperCAmelCase : Optional[Any] = int("""0b""" + data[0] + data[-1] , 2 ) __UpperCAmelCase : str = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ): __UpperCAmelCase : List[str] = message[:4] __UpperCAmelCase : Optional[int] = message[4:] __UpperCAmelCase : List[Any] = apply_table(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = xor(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = apply_sbox(__lowerCamelCase , temp[:4] ) # noqa: E741 __UpperCAmelCase : str = apply_sbox(__lowerCamelCase , temp[4:] ) __UpperCAmelCase : Optional[Any] = """0""" * (2 - len(__lowerCamelCase )) + l # noqa: E741 __UpperCAmelCase : Optional[Any] = """0""" * (2 - len(__lowerCamelCase )) + r __UpperCAmelCase : Tuple = apply_table(l + r , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = xor(__lowerCamelCase , __lowerCamelCase ) return temp + right if __name__ == "__main__": a : Dict = input("Enter 10 bit key: ") a : Tuple = input("Enter 8 bit message: ") a : Optional[Any] = [6, 3, 7, 4, 8, 5, 10, 9] a : Tuple = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] a : Dict = [2, 4, 3, 1] a : Union[str, Any] = [2, 6, 3, 1, 4, 8, 5, 7] a : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] a : Union[str, Any] = [4, 1, 2, 3, 2, 3, 4, 1] a : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] a : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation a : Union[str, Any] = apply_table(key, paa_table) a : Any = temp[:5] a : Optional[Any] = temp[5:] a : Optional[int] = left_shift(left) a : int = left_shift(right) a : List[str] = apply_table(left + right, pa_table) a : List[Any] = left_shift(left) a : int = left_shift(right) a : Optional[Any] = left_shift(left) a : str = left_shift(right) a : Union[str, Any] = apply_table(left + right, pa_table) # encryption a : Optional[int] = apply_table(message, IP) a : Union[str, Any] = function(expansion, sa, sa, keya, temp) a : Union[str, Any] = temp[4:] + temp[:4] a : str = function(expansion, sa, sa, keya, temp) a : Dict = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption a : Any = apply_table(CT, IP) a : Optional[int] = function(expansion, sa, sa, keya, temp) a : List[Any] = temp[4:] + temp[:4] a : List[str] = function(expansion, sa, sa, keya, temp) a : Any = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
63
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset UpperCAmelCase_ = random.Random() def lowerCAmelCase_ ( __UpperCAmelCase: List[str] , __UpperCAmelCase: Dict=1.0 , __UpperCAmelCase: str=None , __UpperCAmelCase: Tuple=None ) -> int: if rng is None: UpperCamelCase__ : List[Any] = global_rng UpperCamelCase__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__=7, __magic_name__=400, __magic_name__=2000, __magic_name__=2048, __magic_name__=128, __magic_name__=1, __magic_name__=512, __magic_name__=30, __magic_name__=44100, ) -> str: """simple docstring""" UpperCamelCase__ : Union[str, Any] = parent UpperCamelCase__ : str = batch_size UpperCamelCase__ : Dict = min_seq_length UpperCamelCase__ : Dict = max_seq_length UpperCamelCase__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ : Optional[int] = spectrogram_length UpperCamelCase__ : Union[str, Any] = feature_size UpperCamelCase__ : int = num_audio_channels UpperCamelCase__ : List[Any] = hop_length UpperCamelCase__ : Union[str, Any] = chunk_length UpperCamelCase__ : Any = sampling_rate def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCamelCase__ ( self, __magic_name__=False, __magic_name__=False ) -> Tuple: """simple docstring""" def _flatten(__magic_name__ ): return list(itertools.chain(*__magic_name__ ) ) if equal_length: UpperCamelCase__ : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ : Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ : Tuple = [np.asarray(__magic_name__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase__ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : str = TvltFeatureExtractor def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : str = TvltFeatureExtractionTester(self ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__magic_name__, '''spectrogram_length''' ) ) self.assertTrue(hasattr(__magic_name__, '''feature_size''' ) ) self.assertTrue(hasattr(__magic_name__, '''num_audio_channels''' ) ) self.assertTrue(hasattr(__magic_name__, '''hop_length''' ) ) self.assertTrue(hasattr(__magic_name__, '''chunk_length''' ) ) self.assertTrue(hasattr(__magic_name__, '''sampling_rate''' ) ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : str = feat_extract_first.save_pretrained(__magic_name__ )[0] check_json_file_has_correct_format(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(__magic_name__ ) UpperCamelCase__ : List[str] = feat_extract_first.to_dict() UpperCamelCase__ : Union[str, Any] = feat_extract_second.to_dict() UpperCamelCase__ : str = dict_first.pop('''mel_filters''' ) UpperCamelCase__ : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__magic_name__, __magic_name__ ) ) self.assertEqual(__magic_name__, __magic_name__ ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Tuple = os.path.join(__magic_name__, '''feat_extract.json''' ) feat_extract_first.to_json_file(__magic_name__ ) UpperCamelCase__ : List[Any] = self.feature_extraction_class.from_json_file(__magic_name__ ) UpperCamelCase__ : List[Any] = feat_extract_first.to_dict() UpperCamelCase__ : Tuple = feat_extract_second.to_dict() UpperCamelCase__ : Any = dict_first.pop('''mel_filters''' ) UpperCamelCase__ : Union[str, Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__magic_name__, __magic_name__ ) ) self.assertEqual(__magic_name__, __magic_name__ ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" # Initialize feature_extractor UpperCamelCase__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ : int = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ : List[str] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase__ : int = feature_extractor(np_speech_inputs[0], return_tensors='''np''', sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched UpperCamelCase__ : Union[str, Any] = feature_extractor(__magic_name__, return_tensors='''np''', sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking UpperCamelCase__ : Optional[int] = feature_extractor( __magic_name__, return_tensors='''np''', sampling_rate=44100, mask_audio=__magic_name__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. UpperCamelCase__ : Optional[int] = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ : Tuple = np.asarray(__magic_name__ ) UpperCamelCase__ : int = feature_extractor(__magic_name__, return_tensors='''np''', sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" UpperCamelCase__ : Optional[int] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) # automatic decoding with librispeech UpperCamelCase__ : Optional[int] = ds.sort('''id''' ).select(range(__magic_name__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : str = self._load_datasamples(1 ) UpperCamelCase__ : Any = TvltFeatureExtractor() UpperCamelCase__ : Tuple = feature_extractor(__magic_name__, return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape, (1, 1, 192, 128) ) UpperCamelCase__ : Any = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2], __magic_name__, atol=1E-4 ) )
253
0
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('''Enter image url: ''').strip() print(f'''Downloading image from {url} ...''') SCREAMING_SNAKE_CASE_ = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image SCREAMING_SNAKE_CASE_ = soup.find('''meta''', {'''property''': '''og:image'''})['content'] SCREAMING_SNAKE_CASE_ = requests.get(image_url).content SCREAMING_SNAKE_CASE_ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, '''wb''') as fp: fp.write(image_data) print(f'''Done. Image saved to disk as {file_name}.''')
720
"""simple docstring""" import requests SCREAMING_SNAKE_CASE_ = '''''' # <-- Put your OpenWeatherMap appid here! SCREAMING_SNAKE_CASE_ = '''https://api.openweathermap.org/data/2.5/''' def A__ ( A__ = "Chicago" , A__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + "weather" , params=locals() ).json() def A__ ( A__ = "Kolkata, India" , A__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + "forecast" , params=locals() ).json() def A__ ( A__ = 55.68 , A__ = 12.57 , A__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + "onecall" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: SCREAMING_SNAKE_CASE_ = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
579
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowercase__( A , A , A , A ): snake_case__ : Any = s.rsplit(A , A ) return new.join(A ) def lowercase__( A ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowercase__( A ): snake_case__ : str = {} snake_case__ : Optional[int] = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: snake_case__ : Optional[int] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: snake_case__ : Union[str, Any] = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): snake_case__ : Tuple = rreplace(A , '.w' , '.weight' , 1 ) if key.endswith('.b' ): snake_case__ : Union[str, Any] = rreplace(A , '.b' , '.bias' , 1 ) snake_case__ : Tuple = value.float() return upgrade @torch.no_grad() def lowercase__( A , A , A=None , A=True ): from dall_e import Encoder snake_case__ : Optional[int] = Encoder() if os.path.exists(A ): snake_case__ : str = torch.load(A ) else: snake_case__ : Any = torch.hub.load_state_dict_from_url(A ) if isinstance(A , A ): snake_case__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(A ) if config_path is not None: snake_case__ : Tuple = FlavaImageCodebookConfig.from_pretrained(A ) else: snake_case__ : Optional[int] = FlavaImageCodebookConfig() snake_case__ : Tuple = FlavaImageCodebook(A ).eval() snake_case__ : Any = encoder.state_dict() snake_case__ : str = upgrade_state_dict(A ) hf_model.load_state_dict(A ) snake_case__ : Union[str, Any] = hf_model.state_dict() snake_case__ : str = count_parameters(A ) snake_case__ : Any = count_parameters(A ) assert torch.allclose(A , A , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(A ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowerCamelCase : List[Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
170
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this lowerCamelCase : Dict = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class snake_case__ ( UpperCamelCase_ ): _lowerCAmelCase ='esm' def __init__( self : str , _lowerCamelCase : Any=None , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : List[str]=7_6_8 , _lowerCamelCase : Optional[int]=1_2 , _lowerCamelCase : Optional[int]=1_2 , _lowerCamelCase : Union[str, Any]=3_0_7_2 , _lowerCamelCase : List[str]=0.1 , _lowerCamelCase : str=0.1 , _lowerCamelCase : List[Any]=1_0_2_6 , _lowerCamelCase : Tuple=0.02 , _lowerCamelCase : int=1E-12 , _lowerCamelCase : Union[str, Any]="absolute" , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : str=False , _lowerCamelCase : Any=False , _lowerCamelCase : str=None , _lowerCamelCase : Union[str, Any]=None , **_lowerCamelCase : Dict , ): super().__init__(pad_token_id=_lowerCamelCase , mask_token_id=_lowerCamelCase , **_lowerCamelCase ) snake_case__ : Any = vocab_size snake_case__ : Any = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : Optional[int] = intermediate_size snake_case__ : int = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : Dict = initializer_range snake_case__ : int = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Union[str, Any] = use_cache snake_case__ : int = emb_layer_norm_before snake_case__ : Dict = token_dropout snake_case__ : List[Any] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) snake_case__ : Optional[int] = EsmFoldConfig() elif isinstance(_lowerCamelCase , _lowerCamelCase ): snake_case__ : List[str] = EsmFoldConfig(**_lowerCamelCase ) snake_case__ : int = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) snake_case__ : Tuple = get_default_vocab_list() else: snake_case__ : List[Any] = vocab_list else: snake_case__ : List[str] = None snake_case__ : int = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , _lowerCamelCase ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def UpperCAmelCase__ ( self : int ): snake_case__ : int = super().to_dict() if isinstance(self.esmfold_config , _lowerCamelCase ): snake_case__ : List[str] = self.esmfold_config.to_dict() return output @dataclass class snake_case__ : _lowerCAmelCase =None _lowerCAmelCase =True _lowerCAmelCase =False _lowerCAmelCase =False _lowerCAmelCase =False _lowerCAmelCase =0 _lowerCAmelCase =True _lowerCAmelCase =False _lowerCAmelCase =128 _lowerCAmelCase =None def UpperCAmelCase__ ( self : Optional[Any] ): if self.trunk is None: snake_case__ : int = TrunkConfig() elif isinstance(self.trunk , _lowerCamelCase ): snake_case__ : Tuple = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Union[str, Any] ): snake_case__ : Optional[Any] = asdict(self ) snake_case__ : Union[str, Any] = self.trunk.to_dict() return output @dataclass class snake_case__ : _lowerCAmelCase =48 _lowerCAmelCase =1024 _lowerCAmelCase =128 _lowerCAmelCase =32 _lowerCAmelCase =32 _lowerCAmelCase =32 _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =False _lowerCAmelCase =4 _lowerCAmelCase =128 _lowerCAmelCase =None def UpperCAmelCase__ ( self : Union[str, Any] ): if self.structure_module is None: snake_case__ : Optional[Any] = StructureModuleConfig() elif isinstance(self.structure_module , _lowerCamelCase ): snake_case__ : int = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) snake_case__ : Union[str, Any] = self.sequence_state_dim // self.sequence_head_width snake_case__ : Union[str, Any] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self : Optional[Any] ): snake_case__ : Optional[Any] = asdict(self ) snake_case__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class snake_case__ : _lowerCAmelCase =384 _lowerCAmelCase =128 _lowerCAmelCase =16 _lowerCAmelCase =128 _lowerCAmelCase =12 _lowerCAmelCase =4 _lowerCAmelCase =8 _lowerCAmelCase =0.1 _lowerCAmelCase =8 _lowerCAmelCase =1 _lowerCAmelCase =2 _lowerCAmelCase =7 _lowerCAmelCase =10 _lowerCAmelCase =1E-8 _lowerCAmelCase =1E5 def UpperCAmelCase__ ( self : Union[str, Any] ): return asdict(self ) def lowercase__( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
170
1
"""simple docstring""" from math import isclose, sqrt def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float ): __UpperCAmelCase = point_y / 4 / point_x __UpperCAmelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __UpperCAmelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __UpperCAmelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __UpperCAmelCase = outgoing_gradient**2 + 4 __UpperCAmelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __UpperCAmelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 __UpperCAmelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __UpperCAmelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __UpperCAmelCase = x_minus if isclose(snake_case_ , snake_case_ ) else x_plus __UpperCAmelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowercase__ ( snake_case_ :float = 1.4 , snake_case_ :float = -9.6 ): __UpperCAmelCase = 0 __UpperCAmelCase = first_x_coord __UpperCAmelCase = first_y_coord __UpperCAmelCase = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = next_point(snake_case_ , snake_case_ , snake_case_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
715
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowercase : int = logging.get_logger(__name__) _lowercase : Any = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = "codegen" a__ : Tuple = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , _lowercase : Optional[int]=5_04_00 , _lowercase : List[str]=20_48 , _lowercase : Optional[int]=20_48 , _lowercase : Tuple=40_96 , _lowercase : Optional[Any]=28 , _lowercase : Tuple=16 , _lowercase : str=64 , _lowercase : Dict=None , _lowercase : Any="gelu_new" , _lowercase : Any=0.0 , _lowercase : Dict=0.0 , _lowercase : Dict=0.0 , _lowercase : str=1E-5 , _lowercase : Union[str, Any]=0.02 , _lowercase : List[str]=True , _lowercase : Dict=5_02_56 , _lowercase : str=5_02_56 , _lowercase : Any=False , **_lowercase : Optional[Any] , ): __UpperCAmelCase = vocab_size __UpperCAmelCase = n_ctx __UpperCAmelCase = n_positions __UpperCAmelCase = n_embd __UpperCAmelCase = n_layer __UpperCAmelCase = n_head __UpperCAmelCase = n_inner __UpperCAmelCase = rotary_dim __UpperCAmelCase = activation_function __UpperCAmelCase = resid_pdrop __UpperCAmelCase = embd_pdrop __UpperCAmelCase = attn_pdrop __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_range __UpperCAmelCase = use_cache __UpperCAmelCase = bos_token_id __UpperCAmelCase = eos_token_id super().__init__( bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase ) class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : int , _lowercase : PretrainedConfig , _lowercase : str = "default" , _lowercase : List[PatchingSpec] = None , _lowercase : bool = False , ): super().__init__(_lowercase , task=_lowercase , patching_specs=_lowercase , use_past=_lowercase ) if not getattr(self._config , '''pad_token_id''' , _lowercase ): # TODO: how to do that better? __UpperCAmelCase = 0 @property def a ( self : Optional[Any] ): __UpperCAmelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_lowercase , direction='''inputs''' ) __UpperCAmelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a ( self : Dict ): return self._config.n_layer @property def a ( self : Tuple ): return self._config.n_head def a ( self : Tuple , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): __UpperCAmelCase = super(_lowercase , self ).generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) # We need to order the input in the way they appears in the forward() __UpperCAmelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase = seqlen + 2 __UpperCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCAmelCase = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(self.num_layers ) ] __UpperCAmelCase = common_inputs['''attention_mask'''] if self.use_past: __UpperCAmelCase = ordered_inputs['''attention_mask'''].dtype __UpperCAmelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) return ordered_inputs @property def a ( self : Any ): return 13
397
0
"""simple docstring""" class A_ : """simple docstring""" def __init__( self :str , lowerCamelCase_ :list[int] ): """simple docstring""" lowerCamelCase__ : Optional[Any] =len(lowerCamelCase_ ) lowerCamelCase__ : Dict =[0] * len_array if len_array > 0: lowerCamelCase__ : List[str] =array[0] for i in range(1 , lowerCamelCase_ ): lowerCamelCase__ : Optional[Any] =self.prefix_sum[i - 1] + array[i] def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :int , lowerCamelCase_ :int ): """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :int ): """simple docstring""" lowerCamelCase__ : Any ={0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
174
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase = 16 lowerCAmelCase = 32 def lowerCAmelCase_ ( snake_case_ : Accelerator , snake_case_ : DatasetDict , snake_case_ : List[int] , snake_case_ : List[int] , snake_case_ : int = 1_6 ) ->List[str]: lowerCamelCase__ : Union[str, Any] =AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Dict =DatasetDict( { 'train': dataset['train'].select(snake_case_ ), 'validation': dataset['train'].select(snake_case_ ), 'test': dataset['validation'], } ) def tokenize_function(snake_case_ : str ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase__ : Tuple =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase__ : List[str] =datasets.map( snake_case_ , batched=snake_case_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase__ : Dict =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case_ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase__ : int =1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase__ : str =1_6 elif accelerator.mixed_precision != "no": lowerCamelCase__ : Union[str, Any] =8 else: lowerCamelCase__ : int =None return tokenizer.pad( snake_case_ , padding='longest' , max_length=snake_case_ , pad_to_multiple_of=snake_case_ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCamelCase__ : Optional[int] =DataLoader( tokenized_datasets['train'] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) lowerCamelCase__ : int =DataLoader( tokenized_datasets['validation'] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) lowerCamelCase__ : List[Any] =DataLoader( tokenized_datasets['test'] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader, test_dataloader def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : List[Any] ) ->Union[str, Any]: # New Code # lowerCamelCase__ : Optional[int] =[] # Download the dataset lowerCamelCase__ : Optional[int] =load_dataset('glue' , 'mrpc' ) # Create our splits lowerCamelCase__ : List[Any] =StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowerCamelCase__ : List[str] =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ : Any =config['lr'] lowerCamelCase__ : List[str] =int(config['num_epochs'] ) lowerCamelCase__ : List[Any] =int(config['seed'] ) lowerCamelCase__ : Tuple =int(config['batch_size'] ) lowerCamelCase__ : List[str] =evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowerCamelCase__ : int =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase__ : Union[str, Any] =batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase__ : Any =MAX_GPU_BATCH_SIZE set_seed(snake_case_ ) # New Code # # Create our folds: lowerCamelCase__ : Tuple =kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) lowerCamelCase__ : List[str] =[] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(snake_case_ ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] =get_fold_dataloaders( snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ : Optional[int] =AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase__ : int =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase__ : Tuple =AdamW(params=model.parameters() , lr=snake_case_ ) # Instantiate scheduler lowerCamelCase__ : str =get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=1_0_0 , num_training_steps=(len(snake_case_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase__ : Dict =model(**snake_case_ ) lowerCamelCase__ : str =outputs.loss lowerCamelCase__ : Optional[int] =loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ : List[Any] =model(**snake_case_ ) lowerCamelCase__ : Dict =outputs.logits.argmax(dim=-1 ) lowerCamelCase__ , lowerCamelCase__ : Tuple =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=snake_case_ , references=snake_case_ , ) lowerCamelCase__ : Dict =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , snake_case_ ) # New Code # # We also run predictions on the test set at the very end lowerCamelCase__ : Any =[] for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] =model(**snake_case_ ) lowerCamelCase__ : List[Any] =outputs.logits lowerCamelCase__ , lowerCamelCase__ : str =accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(snake_case_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowerCamelCase__ : Dict =torch.cat(snake_case_ , dim=0 ) lowerCamelCase__ : str =torch.stack(snake_case_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowerCamelCase__ : int =metric.compute(predictions=snake_case_ , references=snake_case_ ) accelerator.print('Average test metrics from all folds:' , snake_case_ ) def lowerCAmelCase_ ( ) ->str: lowerCamelCase__ : Tuple =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=snake_case_ , default=snake_case_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=snake_case_ , default=3 , help='The number of splits to perform across the dataset' ) lowerCamelCase__ : Tuple =parser.parse_args() lowerCamelCase__ : Optional[Any] ={'lr': 2E-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
174
1
"""simple docstring""" lowercase_ : Dict = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowercase_ : Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowercase_ : str = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def _lowerCAmelCase ( lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : int ) -> str: assert len(str(lowerCamelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: _SCREAMING_SNAKE_CASE : Optional[int] = year // 1_0_0 _SCREAMING_SNAKE_CASE : Optional[Any] = (5 * (century % 4) + 2) % 7 _SCREAMING_SNAKE_CASE : List[str] = year % 1_0_0 _SCREAMING_SNAKE_CASE : str = centurian % 1_2 _SCREAMING_SNAKE_CASE : Optional[Any] = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _SCREAMING_SNAKE_CASE : str = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
295
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def _lowerCAmelCase ( lowerCamelCase__ : str ) -> Optional[int]: def decorator(lowerCamelCase__ : int ): _SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowerCamelCase__, "handle_key", [] ) handle += [key] setattr(lowerCamelCase__, "handle_key", lowerCamelCase__ ) return func return decorator def _lowerCAmelCase ( *lowerCamelCase__ : List[str] ) -> Tuple: def decorator(lowerCamelCase__ : Dict ): _SCREAMING_SNAKE_CASE : List[Any] = getattr(lowerCamelCase__, "handle_key", [] ) handle += keys setattr(lowerCamelCase__, "handle_key", lowerCamelCase__ ) return func return decorator class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __new__( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = super().__new__(cls , snake_case__ , snake_case__ , snake_case__ ) if not hasattr(snake_case__ , "key_handler" ): setattr(snake_case__ , "key_handler" , {} ) setattr(snake_case__ , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): _SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(snake_case__ , "handle_key" , [] ) for key in handled_keys: _SCREAMING_SNAKE_CASE : Tuple = value return new_cls @staticmethod def __SCREAMING_SNAKE_CASE ( cls ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = get_character() if char != KEYMAP["undefined"]: _SCREAMING_SNAKE_CASE : Dict = ord(snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = cls.key_handler.get(snake_case__ ) if handler: _SCREAMING_SNAKE_CASE : Optional[int] = char return handler(cls ) else: return None def _lowerCAmelCase ( cls : List[Any] ) -> str: return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
295
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __SCREAMING_SNAKE_CASE = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : str ,lowerCAmelCase_ : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =state_dict.pop(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] =val def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE_ : Dict =key.replace('backbone.0.body' ,'backbone.conv_encoder.model' ) SCREAMING_SNAKE_CASE_ : List[str] =value else: SCREAMING_SNAKE_CASE_ : List[str] =value return new_state_dict def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] ='' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ : str =state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) SCREAMING_SNAKE_CASE_ : Any =state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ : Optional[Any] =in_proj_weight[:256, :] SCREAMING_SNAKE_CASE_ : str =in_proj_bias[:256] SCREAMING_SNAKE_CASE_ : Dict =in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE_ : List[Any] =in_proj_bias[256:512] SCREAMING_SNAKE_CASE_ : Union[str, Any] =in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE_ : List[str] =in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE_ : str =state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ : Tuple =in_proj_weight[:256, :] SCREAMING_SNAKE_CASE_ : Tuple =in_proj_bias[:256] SCREAMING_SNAKE_CASE_ : Optional[Any] =in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE_ : Optional[Any] =in_proj_bias[256:512] SCREAMING_SNAKE_CASE_ : Union[str, Any] =in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE_ : str =in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention SCREAMING_SNAKE_CASE_ : int =state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) SCREAMING_SNAKE_CASE_ : int =state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict SCREAMING_SNAKE_CASE_ : List[str] =in_proj_weight_cross_attn[:256, :] SCREAMING_SNAKE_CASE_ : Optional[int] =in_proj_bias_cross_attn[:256] SCREAMING_SNAKE_CASE_ : Optional[int] =in_proj_weight_cross_attn[256:512, :] SCREAMING_SNAKE_CASE_ : int =in_proj_bias_cross_attn[256:512] SCREAMING_SNAKE_CASE_ : List[str] =in_proj_weight_cross_attn[-256:, :] SCREAMING_SNAKE_CASE_ : Any =in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Union[str, Any] ,lowerCAmelCase_ : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =image.size SCREAMING_SNAKE_CASE_ : List[Any] =max(lowerCAmelCase_ ,lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] =800 if 'detection' in checkpoint_url else 1000 SCREAMING_SNAKE_CASE_ : Any =target_max_size / current_max_size SCREAMING_SNAKE_CASE_ : List[Any] =image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] =F.to_tensor(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] =F.normalize(lowerCAmelCase_ ,mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" logger.info('Converting model...' ) # load original state dict SCREAMING_SNAKE_CASE_ : Optional[int] =torch.hub.load_state_dict_from_url(lowerCAmelCase_ ,map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : str =rename_backbone_keys(lowerCAmelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCAmelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE_ : Tuple ='model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): SCREAMING_SNAKE_CASE_ : List[str] =state_dict.pop(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] =val # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE_ : Union[str, Any] =TableTransformerConfig( backbone='resnet18' ,mask_loss_coefficient=1 ,dice_loss_coefficient=1 ,ce_loss_coefficient=1 ,bbox_loss_coefficient=5 ,giou_loss_coefficient=2 ,eos_coefficient=0.4 ,class_cost=1 ,bbox_cost=5 ,giou_cost=2 ,) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE_ : Optional[int] =15 SCREAMING_SNAKE_CASE_ : Tuple =2 SCREAMING_SNAKE_CASE_ : Tuple ={0: 'table', 1: 'table rotated'} SCREAMING_SNAKE_CASE_ : Any =idalabel SCREAMING_SNAKE_CASE_ : List[str] ={v: k for k, v in idalabel.items()} else: SCREAMING_SNAKE_CASE_ : Dict =125 SCREAMING_SNAKE_CASE_ : Union[str, Any] =6 SCREAMING_SNAKE_CASE_ : Optional[int] ={ 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } SCREAMING_SNAKE_CASE_ : List[str] =idalabel SCREAMING_SNAKE_CASE_ : Optional[Any] ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Tuple =DetrImageProcessor( format='coco_detection' ,max_size=800 if 'detection' in checkpoint_url else 1000 ) SCREAMING_SNAKE_CASE_ : Optional[Any] =TableTransformerForObjectDetection(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() # verify our conversion SCREAMING_SNAKE_CASE_ : List[Any] ='example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' SCREAMING_SNAKE_CASE_ : Any =hf_hub_download(repo_id='nielsr/example-pdf' ,repo_type='dataset' ,filename=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Any =Image.open(lowerCAmelCase_ ).convert('RGB' ) SCREAMING_SNAKE_CASE_ : List[Any] =normalize(resize(lowerCAmelCase_ ,lowerCAmelCase_ ) ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : str =model(lowerCAmelCase_ ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE_ : List[str] =(1, 15, 3) SCREAMING_SNAKE_CASE_ : Tuple =torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: SCREAMING_SNAKE_CASE_ : Any =(1, 125, 7) SCREAMING_SNAKE_CASE_ : Tuple =torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) SCREAMING_SNAKE_CASE_ : int =torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] ,lowerCAmelCase_ ,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] ,lowerCAmelCase_ ,atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) SCREAMING_SNAKE_CASE_ : Optional[int] =( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(lowerCAmelCase_ ) image_processor.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
220
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __SCREAMING_SNAKE_CASE = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = 'ernie_m' _lowercase = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , __UpperCAmelCase = 250_002 , __UpperCAmelCase = 768 , __UpperCAmelCase = 12 , __UpperCAmelCase = 12 , __UpperCAmelCase = 3_072 , __UpperCAmelCase = "gelu" , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 514 , __UpperCAmelCase = 0.02 , __UpperCAmelCase = 1 , __UpperCAmelCase = 1E-05 , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=0.0 , **__UpperCAmelCase , ): super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : str =vocab_size SCREAMING_SNAKE_CASE_ : str =hidden_size SCREAMING_SNAKE_CASE_ : Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_ : int =num_attention_heads SCREAMING_SNAKE_CASE_ : str =intermediate_size SCREAMING_SNAKE_CASE_ : List[Any] =hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] =max_position_embeddings SCREAMING_SNAKE_CASE_ : int =initializer_range SCREAMING_SNAKE_CASE_ : List[Any] =layer_norm_eps SCREAMING_SNAKE_CASE_ : List[Any] =classifier_dropout SCREAMING_SNAKE_CASE_ : List[str] =is_decoder SCREAMING_SNAKE_CASE_ : Tuple =act_dropout
220
1
"""simple docstring""" import argparse import datetime def snake_case_ ( A_ : str ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } _lowerCamelCase : List[Any] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(A_ ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 85_00: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation _lowerCamelCase : Dict = datetime.date(int(A_ ), int(A_ ), int(A_ ) ) # Start math if m <= 2: _lowerCamelCase : Tuple = y - 1 _lowerCamelCase : Dict = m + 12 # maths var _lowerCamelCase : int = int(str(A_ )[:2] ) _lowerCamelCase : int = int(str(A_ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.39 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response _lowerCamelCase : str = F'''Your date {date_input}, is a {days[str(A_ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) lowerCAmelCase__ = parser.parse_args() zeller(args.date_input)
706
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : dict[int, int] = {} _lowerCamelCase : Optional[Any] = 2 while True: _lowerCamelCase : Union[str, Any] = factor_map.pop(A_, A_ ) if factor: _lowerCamelCase : Tuple = factor + prime while x in factor_map: x += factor _lowerCamelCase : Union[str, Any] = factor else: _lowerCamelCase : Any = prime yield prime prime += 1 def snake_case_ ( A_ : float = 1E10 ): '''simple docstring''' _lowerCamelCase : List[str] = sieve() _lowerCamelCase : Dict = 1 while True: _lowerCamelCase : Union[str, Any] = next(A_ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(A_ ) n += 2 if __name__ == "__main__": print(solution())
598
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase( __UpperCamelCase : Any ,__UpperCamelCase : List[Any]=0.9_9_9 ,__UpperCamelCase : Optional[int]="cosine" ,): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : Dict ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : int ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowerCAmelCase_ : Tuple = [] for i in range(__UpperCamelCase ): lowerCAmelCase_ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase_ : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) ) return torch.tensor(__UpperCamelCase ,dtype=torch.floataa ) class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ): _a = [e.name for e in KarrasDiffusionSchedulers] _a = 2 @register_to_config def __init__( self : Optional[int] , A_ : int = 1_0_0_0 , A_ : float = 0.0_0085 , A_ : float = 0.012 , A_ : str = "linear" , A_ : Optional[Union[np.ndarray, List[float]]] = None , A_ : str = "epsilon" , A_ : str = "linspace" , A_ : int = 0 , ): if trained_betas is not None: lowerCAmelCase_ : Any = torch.tensor(A_ , dtype=torch.floataa) elif beta_schedule == "linear": lowerCAmelCase_ : Optional[int] = torch.linspace(A_ , A_ , A_ , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase_ : int = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A_ , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase_ : Dict = betas_for_alpha_bar(A_) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""") lowerCAmelCase_ : List[Any] = 1.0 - self.betas lowerCAmelCase_ : str = torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(A_ , A_ , A_) def UpperCAmelCase__ ( self : List[str] , A_ : List[Any] , A_ : List[Any]=None): if schedule_timesteps is None: lowerCAmelCase_ : Optional[int] = self.timesteps lowerCAmelCase_ : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: lowerCAmelCase_ : Union[str, Any] = 1 if len(A_) > 1 else 0 else: lowerCAmelCase_ : Optional[int] = timestep.cpu().item() if torch.is_tensor(A_) else timestep lowerCAmelCase_ : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCAmelCase__ ( self : Any): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCAmelCase__ ( self : Any , A_ : torch.FloatTensor , A_ : Union[float, torch.FloatTensor] , ): lowerCAmelCase_ : Tuple = self.index_for_timestep(A_) if self.state_in_first_order: lowerCAmelCase_ : Union[str, Any] = self.sigmas[step_index] else: lowerCAmelCase_ : int = self.sigmas_interpol[step_index] lowerCAmelCase_ : Dict = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCAmelCase__ ( self : List[str] , A_ : int , A_ : Union[str, torch.device] = None , A_ : Optional[int] = None , ): lowerCAmelCase_ : Any = num_inference_steps lowerCAmelCase_ : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase_ : str = np.linspace(0 , num_train_timesteps - 1 , A_ , dtype=A_)[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase_ : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase_ : str = (np.arange(0 , A_) * step_ratio).round()[::-1].copy().astype(A_) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase_ : Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase_ : Dict = (np.arange(A_ , 0 , -step_ratio)).round().copy().astype(A_) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""") lowerCAmelCase_ : Any = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) lowerCAmelCase_ : List[Any] = torch.from_numpy(np.log(A_)).to(A_) lowerCAmelCase_ : Any = np.interp(A_ , np.arange(0 , len(A_)) , A_) lowerCAmelCase_ : str = np.concatenate([sigmas, [0.0]]).astype(np.floataa) lowerCAmelCase_ : str = torch.from_numpy(A_).to(device=A_) # interpolate sigmas lowerCAmelCase_ : Optional[Any] = sigmas.log().lerp(sigmas.roll(1).log() , 0.5).exp() lowerCAmelCase_ : List[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) lowerCAmelCase_ : Dict = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]) if str(A_).startswith('''mps'''): # mps does not support float64 lowerCAmelCase_ : List[str] = torch.from_numpy(A_).to(A_ , dtype=torch.floataa) else: lowerCAmelCase_ : List[str] = torch.from_numpy(A_).to(A_) # interpolate timesteps lowerCAmelCase_ : Dict = self.sigma_to_t(A_).to(A_ , dtype=timesteps.dtype) lowerCAmelCase_ : Dict = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1).flatten() lowerCAmelCase_ : Dict = torch.cat([timesteps[:1], interleaved_timesteps]) lowerCAmelCase_ : List[str] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase_ : Union[str, Any] = defaultdict(A_) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Any): # get log sigma lowerCAmelCase_ : List[str] = sigma.log() # get distribution lowerCAmelCase_ : Union[str, Any] = log_sigma - self.log_sigmas[:, None] # get sigmas range lowerCAmelCase_ : int = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) lowerCAmelCase_ : str = low_idx + 1 lowerCAmelCase_ : int = self.log_sigmas[low_idx] lowerCAmelCase_ : Optional[Any] = self.log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase_ : List[str] = (low - log_sigma) / (low - high) lowerCAmelCase_ : Any = w.clamp(0 , 1) # transform interpolation to time range lowerCAmelCase_ : Tuple = (1 - w) * low_idx + w * high_idx lowerCAmelCase_ : Tuple = t.view(sigma.shape) return t @property def UpperCAmelCase__ ( self : int): return self.sample is None def UpperCAmelCase__ ( self : Dict , A_ : Union[torch.FloatTensor, np.ndarray] , A_ : Union[float, torch.FloatTensor] , A_ : Union[torch.FloatTensor, np.ndarray] , A_ : bool = True , ): lowerCAmelCase_ : Tuple = self.index_for_timestep(A_) # advance index counter by 1 lowerCAmelCase_ : Any = timestep.cpu().item() if torch.is_tensor(A_) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase_ : str = self.sigmas[step_index] lowerCAmelCase_ : str = self.sigmas_interpol[step_index + 1] lowerCAmelCase_ : Optional[Any] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowerCAmelCase_ : Optional[int] = self.sigmas[step_index - 1] lowerCAmelCase_ : List[str] = self.sigmas_interpol[step_index] lowerCAmelCase_ : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Optional[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase_ : str = sigma_hat if self.state_in_first_order else sigma_interpol lowerCAmelCase_ : Union[str, Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase_ : Optional[int] = sigma_hat if self.state_in_first_order else sigma_interpol lowerCAmelCase_ : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''') else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""") if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase_ : Dict = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase_ : Any = sigma_interpol - sigma_hat # store for 2nd order step lowerCAmelCase_ : Any = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowerCAmelCase_ : Dict = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowerCAmelCase_ : List[str] = sigma_next - sigma_hat lowerCAmelCase_ : Optional[Any] = self.sample lowerCAmelCase_ : Union[str, Any] = None lowerCAmelCase_ : int = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : torch.FloatTensor , A_ : torch.FloatTensor , A_ : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples lowerCAmelCase_ : int = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(A_): # mps does not support float64 lowerCAmelCase_ : str = self.timesteps.to(original_samples.device , dtype=torch.floataa) lowerCAmelCase_ : str = timesteps.to(original_samples.device , dtype=torch.floataa) else: lowerCAmelCase_ : Tuple = self.timesteps.to(original_samples.device) lowerCAmelCase_ : List[str] = timesteps.to(original_samples.device) lowerCAmelCase_ : Any = [self.index_for_timestep(A_ , A_) for t in timesteps] lowerCAmelCase_ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): lowerCAmelCase_ : Tuple = sigma.unsqueeze(-1) lowerCAmelCase_ : int = original_samples + noise * sigma return noisy_samples def __len__( self : Union[str, Any]): return self.config.num_train_timesteps
171
def UpperCamelCase( __UpperCamelCase : int = 10**12 ): lowerCAmelCase_ : Tuple = 1 lowerCAmelCase_ : str = 0 lowerCAmelCase_ : Tuple = 1 lowerCAmelCase_ : Dict = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'''{solution() = }''')
171
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = 42 __snake_case = 42 def __init__( self , _lowercase , _lowercase ) -> List[Any]: super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self , _lowercase = 1 , _lowercase = 50 , _lowercase = None , _lowercase = "pil" , _lowercase = True , **_lowercase , ) -> Union[Tuple, ImagePipelineOutput]: _lowerCamelCase : List[str] = self.unet.config.sample_size _lowerCamelCase : int = (batch_size, 3, img_size, img_size) _lowerCamelCase : Optional[int] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _lowerCamelCase : Any = randn_tensor(_lowercase , generator=_lowercase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _lowerCamelCase : List[Any] = self.scheduler.schedule[t] _lowerCamelCase : str = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _lowerCamelCase, _lowerCamelCase : List[Any] = self.scheduler.add_noise_to_input(_lowercase , _lowercase , generator=_lowercase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _lowerCamelCase : int = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _lowerCamelCase : Union[str, Any] = self.scheduler.step(_lowercase , _lowercase , _lowercase , _lowercase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _lowerCamelCase : Optional[int] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _lowerCamelCase : List[str] = self.scheduler.step_correct( _lowercase , _lowercase , _lowercase , _lowercase , step_output.prev_sample , step_output['''derivative'''] , ) _lowerCamelCase : Tuple = step_output.prev_sample _lowerCamelCase : str = (sample / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCamelCase : Dict = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
558
"""simple docstring""" def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->str: _lowerCamelCase : int = len(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : int = len(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCamelCase : list = [] for char_count in range(SCREAMING_SNAKE_CASE_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(alternative_string_arrange('AB', 'XYZ'), end=' ')
558
1
'''simple docstring''' from collections import defaultdict def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Optional[int] ) -> int: """simple docstring""" __a = 1 __a = True for v in tree[start]: if v not in visited: ret += dfs(SCREAMING_SNAKE_CASE__ ) if ret % 2 == 0: cuts.append(SCREAMING_SNAKE_CASE__ ) return ret def __UpperCAmelCase ( ) -> int: """simple docstring""" dfs(1 ) if __name__ == "__main__": __UpperCamelCase : int = 10, 9 __UpperCamelCase : List[str] = defaultdict(list) __UpperCamelCase : dict[int, bool] = {} __UpperCamelCase : list[int] = [] __UpperCamelCase : Dict = 0 __UpperCamelCase : List[Any] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
448
import os import re import shutil import sys import tempfile import unittest import black lowercase : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowercase : List[str] = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir ,"""schedulers/""" ) ) lowercase : Any = self.diffusers_dir shutil.copy( os.path.join(snake_case ,"""src/diffusers/schedulers/scheduling_ddpm.py""" ) ,os.path.join(self.diffusers_dir ,"""schedulers/scheduling_ddpm.py""" ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Optional[int] = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: lowercase : Optional[Any] = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result lowercase : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ) lowercase : int = black.format_str(snake_case ,mode=snake_case ) lowercase : int = os.path.join(self.diffusers_dir ,"""new_code.py""" ) with open(snake_case ,"""w""" ,newline="""\n""" ) as f: f.write(snake_case ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=snake_case ) with open(snake_case ,"""r""" ) as f: self.assertTrue(f.read() ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,REFERENCE_CODE + """\n""" ,) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,snake_case ,) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,re.sub("""DDPM""" ,"""Test""" ,snake_case ) ,) # Copy consistency with a really long name lowercase : Dict = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" ,f"{long_class_name}SchedulerOutput" ,re.sub("""Bert""" ,snake_case ,snake_case ) ,) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,snake_case ,overwrite_result=re.sub("""DDPM""" ,"""Test""" ,snake_case ) ,)
336
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Any =logging.get_logger(__name__) _UpperCAmelCase : List[Any] ={ """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = """speech_to_text_2""" SCREAMING_SNAKE_CASE__ : int = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Any = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __lowercase=1_0_0_0_0 , __lowercase=6 , __lowercase=2_0_4_8 , __lowercase=4 , __lowercase=0.0 , __lowercase=True , __lowercase="relu" , __lowercase=2_5_6 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.02 , __lowercase=2 , __lowercase=True , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase=1_0_2_4 , **__lowercase , ) -> str: lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : List[Any] = d_model lowerCAmelCase_ : Any = decoder_ffn_dim lowerCAmelCase_ : Any = decoder_layers lowerCAmelCase_ : str = decoder_attention_heads lowerCAmelCase_ : Any = dropout lowerCAmelCase_ : Union[str, Any] = attention_dropout lowerCAmelCase_ : Optional[int] = activation_dropout lowerCAmelCase_ : Dict = activation_function lowerCAmelCase_ : str = init_std lowerCAmelCase_ : Tuple = decoder_layerdrop lowerCAmelCase_ : Union[str, Any] = use_cache lowerCAmelCase_ : Tuple = decoder_layers lowerCAmelCase_ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase_ : List[str] = max_target_positions super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , decoder_start_token_id=__lowercase , **__lowercase , )
619
import math import qiskit def lowerCAmelCase ( lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 )-> qiskit.result.counts.Counts: if ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(lowerCAmelCase_ ) != input_a) or (math.floor(lowerCAmelCase_ ) != input_a) or (math.floor(lowerCAmelCase_ ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers lowerCAmelCase_ : str = qiskit.QuantumRegister(4 , '''qr''' ) lowerCAmelCase_ : str = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries lowerCAmelCase_ : Any = [input_a, input_a, carry_in] lowerCAmelCase_ : int = qiskit.QuantumCircuit(lowerCAmelCase_ , lowerCAmelCase_ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowerCAmelCase_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowerCAmelCase_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowerCAmelCase_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowerCAmelCase_ ) # measure the last two qbits lowerCAmelCase_ : Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) lowerCAmelCase_ : Union[str, Any] = qiskit.execute(lowerCAmelCase_ , lowerCAmelCase_ , shots=1_000 ) return job.result().get_counts(lowerCAmelCase_ ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
619
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : List[Any] = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A_ : Dict = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : List[Any]=None , __magic_name__ : List[str]=None , __magic_name__ : List[str]=None ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = True while ask_again: snake_case__ : Optional[Any] = input(__magic_name__ ) try: if default is not None and len(__magic_name__ ) == 0: return default return convert_value(__magic_name__ ) if convert_value is not None else result except Exception: if error_message is not None: print(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Any=[] , __magic_name__ : Optional[int]=None , __magic_name__ : int=0 ) -> Optional[int]: '''simple docstring''' snake_case__ : Union[str, Any] = BulletMenu(__magic_name__ , __magic_name__ ) snake_case__ : Optional[Any] = menu.run(default_choice=__magic_name__ ) return convert_value(__magic_name__ ) if convert_value is not None else result def UpperCamelCase__ ( __magic_name__ : Any ) -> int: '''simple docstring''' snake_case__ : Tuple = int(__magic_name__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase__ ( __magic_name__ : str ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = int(__magic_name__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase__ ( __magic_name__ : List[str] ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = int(__magic_name__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[Any] = int(__magic_name__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ : Optional[Any] = int(__magic_name__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> Tuple: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class __snake_case ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : str = usage.replace("""<command> [<args>] """ , """""" ) return usage
38
0
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) __UpperCAmelCase = _symbol_database.Default() __UpperCAmelCase = _descriptor_pool.Default().AddSerializedFile( B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) __UpperCAmelCase = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: __UpperCAmelCase = None __UpperCAmelCase = B"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" __UpperCAmelCase = 45 __UpperCAmelCase = 15_81 __UpperCAmelCase = 15_17 __UpperCAmelCase = 15_70 __UpperCAmelCase = 15_84 __UpperCAmelCase = 17_93 __UpperCAmelCase = 17_95 __UpperCAmelCase = 19_16 __UpperCAmelCase = 18_64 __UpperCAmelCase = 19_05 __UpperCAmelCase = 19_19 __UpperCAmelCase = 24_29 __UpperCAmelCase = 22_08 __UpperCAmelCase = 24_18 __UpperCAmelCase = 23_23 __UpperCAmelCase = 24_07 # @@protoc_insertion_point(module_scope)
705
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __UpperCAmelCase = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def A__ ( __lowerCamelCase ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model SCREAMING_SNAKE_CASE_ = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ = r'''.*/layers_(\d+)''' SCREAMING_SNAKE_CASE_ = key if re.match(__lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = re.sub(r'''layers_(\d+)''', r'''block/\1/layer''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = r'''(encoder|decoder)\/''' if re.match(__lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = re.match(__lowerCamelCase, __lowerCamelCase ).groups() if groups[0] == "encoder": SCREAMING_SNAKE_CASE_ = re.sub(r'''/mlp/''', r'''/1/mlp/''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = re.sub(r'''/pre_mlp_layer_norm/''', r'''/1/layer_norm/''', __lowerCamelCase ) elif groups[0] == "decoder": SCREAMING_SNAKE_CASE_ = re.sub(r'''/mlp/''', r'''/2/mlp/''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = re.sub(r'''/pre_mlp_layer_norm/''', r'''/2/layer_norm/''', __lowerCamelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: SCREAMING_SNAKE_CASE_ = new_key.replace(__lowerCamelCase, __lowerCamelCase ) print(F'''{key} -> {new_key}''' ) SCREAMING_SNAKE_CASE_ = s_dict.pop(__lowerCamelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: SCREAMING_SNAKE_CASE_ = s_dict[key].shape[0] SCREAMING_SNAKE_CASE_ = s_dict[key] for idx in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(__lowerCamelCase ) return s_dict __UpperCAmelCase = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def A__ ( __lowerCamelCase, __lowerCamelCase ): # Convert a google style config to the hugging face fromat import regex as re with open(__lowerCamelCase, '''r''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() SCREAMING_SNAKE_CASE_ = re.findall(r'''(.*) = ([0-9.]*)''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": SCREAMING_SNAKE_CASE_ = float(__lowerCamelCase ) if '''.''' in value else int(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = re.findall(r'''(.*activations) = \(\'(.*)\',\)''', __lowerCamelCase )[0] SCREAMING_SNAKE_CASE_ = str(activation[1] ) SCREAMING_SNAKE_CASE_ = num_experts SCREAMING_SNAKE_CASE_ = SwitchTransformersConfig(**__lowerCamelCase ) return config def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase="./", __lowerCamelCase=8 ): # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) SCREAMING_SNAKE_CASE_ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) if gin_file is not None: SCREAMING_SNAKE_CASE_ = convert_gin_to_config(__lowerCamelCase, __lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = SwitchTransformersConfig.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = SwitchTransformersForConditionalGeneration(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = flax_params['''target'''] SCREAMING_SNAKE_CASE_ = flatten_dict(__lowerCamelCase, sep='''/''' ) SCREAMING_SNAKE_CASE_ = rename_keys(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = unflatten_dict(__lowerCamelCase, sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__lowerCamelCase, __lowerCamelCase ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") __UpperCAmelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
597
0
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "num_attention_heads" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : int=13 , _UpperCAmelCase : Union[str, Any]=64 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Dict=[128, 256, 384] , _UpperCAmelCase : int=[4, 6, 8] , _UpperCAmelCase : Dict=[2, 3, 4] , _UpperCAmelCase : Union[str, Any]=[16, 16, 16] , _UpperCAmelCase : int=0 , _UpperCAmelCase : Tuple=[2, 2, 2] , _UpperCAmelCase : Tuple=[2, 2, 2] , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=2 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = LevitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ = image_size[0], image_size[1] for _ in range(4 ): UpperCAmelCase_ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCAmelCase_ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = LevitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = LevitModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' return @unittest.skip(reason="Levit does not use inputs_embeds" ) def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="Levit does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = len(self.model_tester.depths ) + 1 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) UpperCAmelCase_ = (self.model_tester.image_size, self.model_tester.image_size) UpperCAmelCase_ , UpperCAmelCase_ = image_size[0], image_size[1] for _ in range(4 ): UpperCAmelCase_ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCAmelCase_ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' pass def lowercase__ ( self : str , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple=False ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ = False UpperCAmelCase_ = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): UpperCAmelCase_ = problem_type["title"] UpperCAmelCase_ = problem_type["num_labels"] UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if problem_type["num_labels"] > 1: UpperCAmelCase_ = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) UpperCAmelCase_ = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_UpperCAmelCase ) as warning_list: UpperCAmelCase_ = model(**_UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = LevitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([1.0448, -0.3745, -1.8317] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
82
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=4 , ) -> str: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCAmelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" lowercase = True lowercase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = FlaxRobertaModelTester(self ) @slow def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained("roberta-base" , from_pt=SCREAMING_SNAKE_CASE ) UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE )
606
0
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __snake_case ( _UpperCamelCase ) -> str: return getitem, k def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> Tuple: return setitem, k, v def __snake_case ( _UpperCamelCase ) -> Optional[Any]: return delitem, k def __snake_case ( _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) -> Dict: try: return fun(_UpperCamelCase , *_UpperCamelCase ), None except Exception as e: return None, e lowerCamelCase :Union[str, Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCamelCase :str = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCamelCase :str = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCamelCase :int = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCamelCase :Union[str, Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCamelCase :List[str] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def __snake_case ( _UpperCamelCase ) -> str: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(_UpperCamelCase ): _a , _a = _run_operation(_UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) _a , _a = _run_operation(_UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) assert my_res == py_res assert str(_UpperCamelCase ) == str(_UpperCamelCase ) assert set(_UpperCamelCase ) == set(_UpperCamelCase ) assert len(_UpperCamelCase ) == len(_UpperCamelCase ) assert set(my.items() ) == set(py.items() ) def __snake_case ( ) -> str: def is_public(_UpperCamelCase ) -> bool: return not name.startswith('''_''' ) _a = {name for name in dir({} ) if is_public(_UpperCamelCase )} _a = {name for name in dir(HashMap() ) if is_public(_UpperCamelCase )} assert dict_public_names > hash_public_names
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase :List[Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :str = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCamelCase :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
346
0
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class _UpperCAmelCase( __UpperCAmelCase ): lowercase__ = 0 lowercase__ = False lowercase__ = 3.0 class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {}) self.assertDictEqual(MockClass(a=2).to_kwargs() , {'''a''': 2}) self.assertDictEqual(MockClass(a=2 , b=snake_case__).to_kwargs() , {'''a''': 2, '''b''': True}) self.assertDictEqual(MockClass(a=2 , c=2.25).to_kwargs() , {'''a''': 2, '''c''': 2.25}) @require_cuda def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = GradScalerKwargs(init_scale=10_24 , growth_factor=2) AcceleratorState._reset_state() _UpperCamelCase = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler]) print(accelerator.use_fpaa) _UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0) self.assertEqual(scaler._growth_factor , 2.0) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5) self.assertEqual(scaler._growth_interval , 20_00) self.assertEqual(scaler._enabled , snake_case__) @require_multi_gpu def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] execute_subprocess_async(snake_case__ , env=os.environ.copy()) if __name__ == "__main__": _a = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _a = Accelerator(kwargs_handlers=[ddp_scaler]) _a = torch.nn.Linear(100, 200) _a = accelerator.prepare(model) # Check the values changed in kwargs _a = """""" _a = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
19
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets UpperCAmelCase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' UpperCAmelCase = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' UpperCAmelCase = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def __snake_case ( self : int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def __snake_case ( self : List[Any] , snake_case__ : str , snake_case__ : int , snake_case__ : str=None , snake_case__ : List[Any]="uniform_average" , snake_case__ : Dict=True ): '''simple docstring''' lowercase :Dict = mean_squared_error( snake_case__ , snake_case__ , sample_weight=snake_case__ , multioutput=snake_case__ , squared=snake_case__ ) return {"mse": mse}
677
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase__ : int = logging.get_logger(__name__) @add_end_docstrings(a__ ) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__=None ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = {} if top_k is not None: SCREAMING_SNAKE_CASE__ : List[str] = top_k return {}, {}, postprocess_params def __call__(self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = load_image(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework ) return model_inputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model(**SCREAMING_SNAKE_CASE__ ) return model_outputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=5 ) -> Optional[Any]: """simple docstring""" if top_k > self.model.config.num_labels: SCREAMING_SNAKE_CASE__ : int = self.model.config.num_labels if self.framework == "pt": SCREAMING_SNAKE_CASE__ : Optional[int] = model_outputs.logits.softmax(-1 )[0] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = probs.topk(SCREAMING_SNAKE_CASE__ ) elif self.framework == "tf": SCREAMING_SNAKE_CASE__ : Dict = stable_softmax(model_outputs.logits , axis=-1 )[0] SCREAMING_SNAKE_CASE__ : Tuple = tf.math.top_k(SCREAMING_SNAKE_CASE__ , k=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = scores.tolist() SCREAMING_SNAKE_CASE__ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )]
545
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowerCAmelCase_ : """simple docstring""" @staticmethod def __magic_name__ (*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" pass def lowercase_ ( _snake_case ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. UpperCAmelCase__ : str = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = pipeline( """document-question-answering""" , model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = INVOICE_URL SCREAMING_SNAKE_CASE__ : Optional[Any] = list(zip(*apply_tesseract(load_image(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , """""" ) ) ) SCREAMING_SNAKE_CASE__ : Any = """What is the placebo?""" SCREAMING_SNAKE_CASE__ : Dict = [ { """image""": load_image(SCREAMING_SNAKE_CASE__ ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = dqa_pipeline(SCREAMING_SNAKE_CASE__ , top_k=2 ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ [ {"""score""": ANY(SCREAMING_SNAKE_CASE__ ), """answer""": ANY(SCREAMING_SNAKE_CASE__ ), """start""": ANY(SCREAMING_SNAKE_CASE__ ), """end""": ANY(SCREAMING_SNAKE_CASE__ )}, {"""score""": ANY(SCREAMING_SNAKE_CASE__ ), """answer""": ANY(SCREAMING_SNAKE_CASE__ ), """start""": ANY(SCREAMING_SNAKE_CASE__ ), """end""": ANY(SCREAMING_SNAKE_CASE__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) SCREAMING_SNAKE_CASE__ : str = INVOICE_URL SCREAMING_SNAKE_CASE__ : Any = """How many cats are there?""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [ {"""score""": 0.0001, """answer""": """oy 2312/2019""", """start""": 38, """end""": 39}, {"""score""": 0.0001, """answer""": """oy 2312/2019 DUE""", """start""": 38, """end""": 40}, ] SCREAMING_SNAKE_CASE__ : Any = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ , question=SCREAMING_SNAKE_CASE__ , top_k=2 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , SCREAMING_SNAKE_CASE__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE__ : Optional[int] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" SCREAMING_SNAKE_CASE__ : List[str] = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ , question=SCREAMING_SNAKE_CASE__ , top_k=2 ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE__ : Tuple = """./tests/fixtures/tests_samples/COCO/000000039769.png""" SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : Dict = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ , question=SCREAMING_SNAKE_CASE__ , words=SCREAMING_SNAKE_CASE__ , boxes=SCREAMING_SNAKE_CASE__ , top_k=2 ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) SCREAMING_SNAKE_CASE__ : str = INVOICE_URL SCREAMING_SNAKE_CASE__ : Optional[int] = """What is the invoice number?""" SCREAMING_SNAKE_CASE__ : List[str] = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ , question=SCREAMING_SNAKE_CASE__ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) SCREAMING_SNAKE_CASE__ : Tuple = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) SCREAMING_SNAKE_CASE__ : Optional[int] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = INVOICE_URL SCREAMING_SNAKE_CASE__ : Union[str, Any] = """What is the invoice number?""" SCREAMING_SNAKE_CASE__ : int = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ , question=SCREAMING_SNAKE_CASE__ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) SCREAMING_SNAKE_CASE__ : str = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) SCREAMING_SNAKE_CASE__ : List[str] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=SCREAMING_SNAKE_CASE__ , revision="""3dc6de3""" , ) SCREAMING_SNAKE_CASE__ : List[str] = INVOICE_URL SCREAMING_SNAKE_CASE__ : Any = """What is the invoice number?""" SCREAMING_SNAKE_CASE__ : int = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ , question=SCREAMING_SNAKE_CASE__ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) SCREAMING_SNAKE_CASE__ : str = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) SCREAMING_SNAKE_CASE__ : Dict = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = list(zip(*apply_tesseract(load_image(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , """""" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE__ : Dict = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=SCREAMING_SNAKE_CASE__ , revision="""3dc6de3""" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE__ : str = INVOICE_URL SCREAMING_SNAKE_CASE__ : Dict = """What is the invoice number?""" SCREAMING_SNAKE_CASE__ : Optional[int] = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ , question=SCREAMING_SNAKE_CASE__ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE__ : Any = list(zip(*apply_tesseract(load_image(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , """""" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE__ : List[Any] = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) @slow @require_torch def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = INVOICE_URL SCREAMING_SNAKE_CASE__ : List[Any] = """What is the invoice number?""" SCREAMING_SNAKE_CASE__ : int = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ , question=SCREAMING_SNAKE_CASE__ , top_k=2 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def __magic_name__ (self ) -> int: """simple docstring""" pass
545
1
'''simple docstring''' from __future__ import annotations from typing import TypedDict class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str _snake_case : int def a__ ( lowercase : str ) -> list[str]: """simple docstring""" if not isinstance(lowercase, lowercase ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(lowercase ) )] def a__ ( lowercase : str ) -> BWTTransformDict: """simple docstring""" if not isinstance(lowercase, lowercase ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) _UpperCamelCase = all_rotations(lowercase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _UpperCamelCase = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(lowercase ), } return response def a__ ( lowercase : str, lowercase : int ) -> str: """simple docstring""" if not isinstance(lowercase, lowercase ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: _UpperCamelCase = int(lowercase ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(lowercase ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) _UpperCamelCase = [''''''] * len(lowercase ) for _ in range(len(lowercase ) ): for i in range(len(lowercase ) ): _UpperCamelCase = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowercase__ : List[str] = 'Provide a string that I will generate its BWT transform: ' lowercase__ : Optional[int] = input(entry_msg).strip() lowercase__ : Dict = bwt_transform(s) print( F"""Burrows Wheeler transform for string '{s}' results """ F"""in '{result['bwt_string']}'""" ) lowercase__ : Optional[Any] = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( F"""Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' """ F"""we get original string '{original_string}'""" )
98
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCamelCase = 'bert-base-cased' _lowerCamelCase = 'fp16' _lowerCamelCase = 'bf16' _lowerCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = f'''{i + 1}''' SCREAMING_SNAKE_CASE__ = strategy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _snake_case ( self :int ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = prefetch_policy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _snake_case ( self :List[str] ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = state_dict_type with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _snake_case ( self :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A ) for policy in FSDP_AUTO_WRAP_POLICY: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = policy if policy == "TRANSFORMER_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """BertLayer""" elif policy == "SIZE_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """2000""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """T5Layer""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() with self.assertRaises(__A ) as cm: fsdp_plugin.set_auto_wrap_policy(__A ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """0""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _snake_case ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = mp_dtype with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = Accelerator() if mp_dtype == "fp16": SCREAMING_SNAKE_CASE__ = torch.floataa elif mp_dtype == "bf16": SCREAMING_SNAKE_CASE__ = torch.bfloataa SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__A ) def _snake_case ( self :str ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = str(__A ).lower() with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) ) @require_fsdp @require_multi_gpu @slow class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Any ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = 0.8_2 SCREAMING_SNAKE_CASE__ = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] SCREAMING_SNAKE_CASE__ = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def _snake_case ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" ) SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: SCREAMING_SNAKE_CASE__ = cmd.copy() for i, strategy in enumerate(__A ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue SCREAMING_SNAKE_CASE__ = len(__A ) for state_dict_type in FSDP_STATE_DICT_TYPE: SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) SCREAMING_SNAKE_CASE__ = cmd_config[:-1] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): SCREAMING_SNAKE_CASE__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__A ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
6
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCamelCase = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
706
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self): """simple docstring""" super().tearDown() gc.collect() def __snake_case ( self): """simple docstring""" _lowerCamelCase, _lowerCamelCase : Tuple = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=a__ , dtype=jnp.bfloataa) _lowerCamelCase, _lowerCamelCase : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=a__ , from_pt=a__ , dtype=jnp.bfloataa) _lowerCamelCase : Union[str, Any] = controlnet_params _lowerCamelCase : str = '''bird''' _lowerCamelCase : Union[str, Any] = jax.device_count() _lowerCamelCase : Dict = pipe.prepare_text_inputs([prompts] * num_samples) _lowerCamelCase : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''') _lowerCamelCase : Tuple = pipe.prepare_image_inputs([canny_image] * num_samples) _lowerCamelCase : Union[str, Any] = jax.random.PRNGKey(0) _lowerCamelCase : Tuple = jax.random.split(a__ , jax.device_count()) _lowerCamelCase : Dict = replicate(a__) _lowerCamelCase : Tuple = shard(a__) _lowerCamelCase : Union[str, Any] = shard(a__) _lowerCamelCase : Optional[Any] = pipe( prompt_ids=a__ , image=a__ , params=a__ , prng_seed=a__ , num_inference_steps=50 , jit=a__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _lowerCamelCase : Optional[int] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) _lowerCamelCase : List[Any] = images[0, 253:256, 253:256, -1] _lowerCamelCase : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten())) _lowerCamelCase : Optional[int] = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078]) print(F"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def __snake_case ( self): """simple docstring""" _lowerCamelCase, _lowerCamelCase : Any = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=a__ , dtype=jnp.bfloataa) _lowerCamelCase, _lowerCamelCase : Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=a__ , from_pt=a__ , dtype=jnp.bfloataa) _lowerCamelCase : Optional[Any] = controlnet_params _lowerCamelCase : Optional[Any] = '''Chef in the kitchen''' _lowerCamelCase : int = jax.device_count() _lowerCamelCase : Dict = pipe.prepare_text_inputs([prompts] * num_samples) _lowerCamelCase : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''') _lowerCamelCase : str = pipe.prepare_image_inputs([pose_image] * num_samples) _lowerCamelCase : Optional[Any] = jax.random.PRNGKey(0) _lowerCamelCase : List[str] = jax.random.split(a__ , jax.device_count()) _lowerCamelCase : str = replicate(a__) _lowerCamelCase : Union[str, Any] = shard(a__) _lowerCamelCase : List[Any] = shard(a__) _lowerCamelCase : Any = pipe( prompt_ids=a__ , image=a__ , params=a__ , prng_seed=a__ , num_inference_steps=50 , jit=a__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _lowerCamelCase : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) _lowerCamelCase : Dict = images[0, 253:256, 253:256, -1] _lowerCamelCase : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten())) _lowerCamelCase : Optional[int] = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]]) print(F"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
613
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _SCREAMING_SNAKE_CASE = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" _SCREAMING_SNAKE_CASE = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __snake_case ( self : Union[str, Any]) -> Any: if version.parse(scb.__version__) < version.parse('1.4.12'): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Sequence(datasets.Value('string' , id='sequence') , id='references'), }) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __snake_case ( self : Dict , _lowercase : Optional[Any] , _lowercase : Any , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , ) -> List[Any]: A_ = len(references[0]) if any(len(_lowercase) != references_per_prediction for refs in references): raise ValueError('Sacrebleu requires the same number of references for each prediction') A_ = [[refs[i] for refs in references] for i in range(_lowercase)] A_ = TER( normalized=_lowercase , no_punct=_lowercase , asian_support=_lowercase , case_sensitive=_lowercase , ) A_ = sb_ter.corpus_score(_lowercase , _lowercase) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
366
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' _UpperCamelCase = ["""image_processor""", """tokenizer"""] _UpperCamelCase = """BlipImageProcessor""" _UpperCamelCase = """AutoTokenizer""" def __init__( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : List[str]) -> Union[str, Any]: super().__init__(_lowercase , _lowercase) # add QFormer tokenizer A_ = qformer_tokenizer def __call__( self : Optional[int] , _lowercase : ImageInput = None , _lowercase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowercase : bool = True , _lowercase : Union[bool, str, PaddingStrategy] = False , _lowercase : Union[bool, str, TruncationStrategy] = None , _lowercase : Optional[int] = None , _lowercase : int = 0 , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = True , _lowercase : Optional[Union[str, TensorType]] = None , **_lowercase : List[Any] , ) -> BatchFeature: if images is None and text is None: raise ValueError('You have to specify at least images or text.') A_ = BatchFeature() if text is not None: A_ = self.tokenizer( text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_token_type_ids=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , ) encoding.update(_lowercase) A_ = self.qformer_tokenizer( text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_token_type_ids=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , ) A_ = qformer_text_encoding.pop('input_ids') A_ = qformer_text_encoding.pop('attention_mask') if images is not None: A_ = self.image_processor(_lowercase , return_tensors=_lowercase) encoding.update(_lowercase) return encoding def __snake_case ( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : List[Any]) -> Union[str, Any]: return self.tokenizer.batch_decode(*_lowercase , **_lowercase) def __snake_case ( self : Optional[int] , *_lowercase : List[Any] , **_lowercase : List[str]) -> str: return self.tokenizer.decode(*_lowercase , **_lowercase) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __snake_case ( self : Any) -> Optional[int]: A_ = self.tokenizer.model_input_names A_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def __snake_case ( self : Optional[Any] , _lowercase : Optional[int] , **_lowercase : int) -> Tuple: if os.path.isfile(_lowercase): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file') os.makedirs(_lowercase , exist_ok=_lowercase) A_ = os.path.join(_lowercase , 'qformer_tokenizer') self.qformer_tokenizer.save_pretrained(_lowercase) return super().save_pretrained(_lowercase , **_lowercase) @classmethod def __snake_case ( cls : Dict , _lowercase : Dict , **_lowercase : int) -> Any: A_ = AutoTokenizer.from_pretrained(_lowercase , subfolder='qformer_tokenizer') A_ = cls._get_arguments_from_pretrained(_lowercase , **_lowercase) args.append(_lowercase) return cls(*_lowercase)
366
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if isinstance(SCREAMING_SNAKE_CASE , collections.abc.Iterable ): return x return (x, x) @require_flax class _lowerCamelCase : """simple docstring""" def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' pass def _snake_case ( self )->Optional[int]: '''simple docstring''' pass def _snake_case ( self )->Dict: '''simple docstring''' pass def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : Dict = np.abs((a - b) ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = FlaxVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE ) A_ : int = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' A_ , A_ : List[str] = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = {'''vision_model''': vision_model, '''text_model''': text_model} A_ : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE ) A_ : int = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ , A_ : List[str] = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = {'''vision_model''': vision_model, '''text_model''': text_model} A_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE ) A_ : Any = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) A_ : Dict = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : str = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) A_ : Tuple = after_output[0] A_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' A_ , A_ : Optional[Any] = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = {'''vision_model''': vision_model, '''text_model''': text_model} A_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE ) A_ : List[str] = model( input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) A_ : Any = output.vision_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : List[str] = to_atuple(vision_model.config.image_size ) A_ : Any = to_atuple(vision_model.config.patch_size ) A_ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A_ : Any = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A_ : Any = output.text_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' pt_model.to(_SCREAMING_SNAKE_CASE ) pt_model.eval() # prepare inputs A_ : str = inputs_dict A_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): A_ : List[Any] = pt_model(**_SCREAMING_SNAKE_CASE ).to_tuple() A_ : List[str] = fx_model(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(_SCREAMING_SNAKE_CASE , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ : int = FlaxVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) A_ : str = fx_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(_SCREAMING_SNAKE_CASE , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ : str = VisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_flax=_SCREAMING_SNAKE_CASE ) pt_model_loaded.to(_SCREAMING_SNAKE_CASE ) pt_model_loaded.eval() with torch.no_grad(): A_ : Optional[Any] = pt_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(_SCREAMING_SNAKE_CASE , pt_output_loaded.numpy() , 4e-2 ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' A_ : str = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = VisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = FlaxVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE ) A_ : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _SCREAMING_SNAKE_CASE ) A_ : int = fx_state self.check_pt_flax_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' A_ : str = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Dict = VisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = FlaxVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , fx_model.params ) self.check_pt_flax_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Tuple = self.prepare_config_and_inputs() self.check_save_load(**_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_SCREAMING_SNAKE_CASE ) @is_pt_flax_cross_test def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Optional[int] = self.prepare_config_and_inputs() A_ : List[Any] = config_inputs_dict.pop('''vision_config''' ) A_ : int = config_inputs_dict.pop('''text_config''' ) A_ : List[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.check_equivalence_flax_to_pt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ , A_ : List[str] = self.get_pretrained_model_and_inputs() A_ : str = model_a(**_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Any = FlaxVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = model_a(**_SCREAMING_SNAKE_CASE ) A_ : List[Any] = after_outputs[0] A_ : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-5 ) @require_flax class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=_SCREAMING_SNAKE_CASE , text_from_pt=_SCREAMING_SNAKE_CASE , ) A_ : Optional[int] = 13 A_ : List[str] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) A_ : Optional[int] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) A_ : str = random_attention_mask([batch_size, 4] ) A_ : Tuple = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' A_ : Any = FlaxViTModel(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = FlaxBertModel(_SCREAMING_SNAKE_CASE ) return vision_model, text_model def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : str = FlaxViTModelTester(self ) A_ : List[str] = FlaxBertModelTester(self ) A_ : int = vit_model_tester.prepare_config_and_inputs() A_ : Dict = bert_model_tester.prepare_config_and_inputs() A_ , A_ : Dict = vision_config_and_inputs A_ , A_ , A_ , A_ : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" def _snake_case ( self )->str: '''simple docstring''' A_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=_SCREAMING_SNAKE_CASE , text_from_pt=_SCREAMING_SNAKE_CASE , ) A_ : Dict = 13 A_ : Tuple = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) A_ : List[Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) A_ : Any = random_attention_mask([batch_size, 4] ) A_ : Optional[int] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->str: '''simple docstring''' A_ : int = FlaxCLIPVisionModel(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = FlaxBertModel(_SCREAMING_SNAKE_CASE ) return vision_model, text_model def _snake_case ( self )->Dict: '''simple docstring''' A_ : List[str] = FlaxCLIPVisionModelTester(self ) A_ : Optional[int] = FlaxBertModelTester(self ) A_ : Optional[int] = clip_model_tester.prepare_config_and_inputs() A_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() A_ , A_ : Union[str, Any] = vision_config_and_inputs A_ , A_ , A_ , A_ : Dict = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Any = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) A_ : List[str] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) A_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) A_ : Any = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) A_ : List[str] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A_ : Union[str, Any] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
152
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = DiTPipeline snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS snake_case = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS snake_case = False def _snake_case ( self )->Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ : str = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) A_ : Union[str, Any] = AutoencoderKL() A_ : Optional[Any] = DDIMScheduler() A_ : str = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )->Union[str, Any]: '''simple docstring''' if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ : Any = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Optional[int] = '''cpu''' A_ : Any = self.get_dummy_components() A_ : Optional[Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ : str = pipe(**_SCREAMING_SNAKE_CASE ).images A_ : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) A_ : Tuple = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) A_ : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self )->int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Optional[int] = torch.manual_seed(0 ) A_ : int = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) A_ : Any = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] A_ : Any = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) A_ : List[str] = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : List[Any] = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _snake_case ( self )->str: '''simple docstring''' A_ : Tuple = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) A_ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) A_ : List[str] = ['''vase''', '''umbrella'''] A_ : List[Any] = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = torch.manual_seed(0 ) A_ : Tuple = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
152
1
'''simple docstring''' __A = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 10: "a", 11: "b", 12: "c", 13: "d", 14: "e", 15: "f", } def _A ( lowercase__ ): assert type(__SCREAMING_SNAKE_CASE ) in (int, float) and decimal == int(__SCREAMING_SNAKE_CASE ) lowercase__ = int(__SCREAMING_SNAKE_CASE ) lowercase__ = """""" lowercase__ = False if decimal < 0: lowercase__ = True decimal *= -1 while decimal > 0: lowercase__ , lowercase__ = divmod(__SCREAMING_SNAKE_CASE , 16 ) lowercase__ = values[remainder] + hexadecimal lowercase__ = """0x""" + hexadecimal if negative: lowercase__ = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
325
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase = get_logger(__name__) class A_ : '''simple docstring''' _UpperCamelCase : Dict = """dummy_data""" _UpperCamelCase : Optional[int] = """datasets""" _UpperCamelCase : Tuple = False def __init__( self , snake_case , snake_case , snake_case , snake_case = None , snake_case = False , snake_case = True , snake_case = None , ): lowercase = 0 lowercase = dataset_name lowercase = cache_dir lowercase = use_local_dummy_data lowercase = config # download_callbacks take a single url as input lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase = str(snake_case ) # to be downloaded lowercase = None lowercase = None @property def SCREAMING_SNAKE_CASE__ ( self ): if self._dummy_file is None: lowercase = self.download_dummy_data() return self._dummy_file @property def SCREAMING_SNAKE_CASE__ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def SCREAMING_SNAKE_CASE__ ( self ): return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase = cached_path( snake_case , cache_dir=self.cache_dir , extract_compressed_file=snake_case , force_extract=snake_case ) return os.path.join(snake_case , self.dummy_file_name ) @property def SCREAMING_SNAKE_CASE__ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def SCREAMING_SNAKE_CASE__ ( self ): if self._bucket_url is None: lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def SCREAMING_SNAKE_CASE__ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , *snake_case ): if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(snake_case , snake_case ): return self.create_dummy_data_dict(snake_case , snake_case ) elif isinstance(snake_case , (list, tuple) ): return self.create_dummy_data_list(snake_case , snake_case ) else: return self.create_dummy_data_single(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , *snake_case ): return self.download_and_extract(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): return self.download_and_extract(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , *snake_case , **snake_case ): return path def SCREAMING_SNAKE_CASE__ ( self ): return {} def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(snake_case , snake_case ): for single_url in single_urls: download_callback(snake_case ) else: lowercase = single_urls download_callback(snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(snake_case , snake_case ): lowercase = [os.path.join(snake_case , urllib.parse.quote_plus(Path(snake_case ).name ) ) for x in single_urls] else: lowercase = single_urls lowercase = os.path.join(snake_case , urllib.parse.quote_plus(Path(snake_case ).name ) ) lowercase = value # make sure that values are unique if all(isinstance(snake_case , snake_case ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , snake_case ) ) for url in data_url ) lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase = [data_url[0]] * len(snake_case ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase = os.path.join(snake_case , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(snake_case ) return dummy_data_list def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): for download_callback in self.download_callbacks: download_callback(snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase = os.path.join(snake_case , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(snake_case ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self , snake_case ): def _iter_archive_members(snake_case ): # this preserves the order of the members inside the ZIP archive lowercase = Path(self.dummy_file ).parent lowercase = path.relative_to(snake_case ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(snake_case ) lowercase = Path(snake_case ) lowercase = _iter_archive_members(snake_case ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(snake_case ).as_posix(), file_path.open('rb' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if not isinstance(snake_case , snake_case ): lowercase = [paths] for path in paths: if os.path.isfile(snake_case ): if os.path.basename(snake_case ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(snake_case ): if os.path.basename(snake_case ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(snake_case ): if filename.startswith(('.', '__') ): continue yield os.path.join(snake_case , snake_case )
84
0
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = StableDiffusionPanoramaPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) SCREAMING_SNAKE_CASE_ : Optional[int] = DDIMScheduler() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE_ : Dict = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = { 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = sd_pipe(**lowerCAmelCase__ ).images SCREAMING_SNAKE_CASE_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE_ : Optional[int] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = 'french fries' SCREAMING_SNAKE_CASE_ : str = sd_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = output.images SCREAMING_SNAKE_CASE_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE_ : str = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : str = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = sd_pipe(**lowerCAmelCase__ , view_batch_size=2 ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE_ : List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : int = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Tuple = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' ) SCREAMING_SNAKE_CASE_ : Dict = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = sd_pipe(**lowerCAmelCase__ ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE_ : List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : int = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : int = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , skip_prk_steps=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = sd_pipe(**lowerCAmelCase__ ).images SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE_ : Dict = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self , lowerCAmelCase__=0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = torch.manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = { 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 'stabilityai/stable-diffusion-2-base' SCREAMING_SNAKE_CASE_ : int = DDIMScheduler.from_pretrained(lowerCAmelCase__ , subfolder='scheduler' ) SCREAMING_SNAKE_CASE_ : int = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_inputs() SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowerCAmelCase__ ).images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 2_0_4_8, 3) SCREAMING_SNAKE_CASE_ : List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_inputs() SCREAMING_SNAKE_CASE_ : Any = pipe(**lowerCAmelCase__ ).images SCREAMING_SNAKE_CASE_ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 2_0_4_8, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 0 def callback_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE_ : Any = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE_ : Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 2_5_6) SCREAMING_SNAKE_CASE_ : str = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : List[Any] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: SCREAMING_SNAKE_CASE_ : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 2_5_6) SCREAMING_SNAKE_CASE_ : Union[str, Any] = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : int = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : Any = 'stabilityai/stable-diffusion-2-base' SCREAMING_SNAKE_CASE_ : int = DDIMScheduler.from_pretrained(lowerCAmelCase__ , subfolder='scheduler' ) SCREAMING_SNAKE_CASE_ : int = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_inputs() pipe(**lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCamelCase__ ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE_ : int = 'stabilityai/stable-diffusion-2-base' SCREAMING_SNAKE_CASE_ : Union[str, Any] = DDIMScheduler.from_pretrained(lowerCAmelCase__ , subfolder='scheduler' ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_inputs() SCREAMING_SNAKE_CASE_ : int = pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 1_0**9
101
def a__ ( A__, A__ ): def get_matched_characters(A__, A__ ) -> str: SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Any = min(len(_stra ), len(_stra ) ) // 2 for i, l in enumerate(_stra ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(max(0, i - limit ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(min(i + limit + 1, len(_stra ) ) ) if l in _stra[left:right]: matched.append(A__ ) SCREAMING_SNAKE_CASE_ : List[str] = F'''{_stra[0:_stra.index(A__ )]} {_stra[_stra.index(A__ ) + 1:]}''' return "".join(A__ ) # matching characters SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_matched_characters(A__, A__ ) SCREAMING_SNAKE_CASE_ : int = get_matched_characters(A__, A__ ) SCREAMING_SNAKE_CASE_ : Any = len(A__ ) # transposition SCREAMING_SNAKE_CASE_ : Optional[int] = ( len([(ca, ca) for ca, ca in zip(A__, A__ ) if ca != ca] ) // 2 ) if not match_count: SCREAMING_SNAKE_CASE_ : Dict = 0.0 else: SCREAMING_SNAKE_CASE_ : Optional[Any] = ( 1 / 3 * ( match_count / len(A__ ) + match_count / len(A__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters SCREAMING_SNAKE_CASE_ : List[Any] = 0 for ca, ca in zip(stra[:4], stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
101
1
'''simple docstring''' import qiskit def UpperCAmelCase_ ( A = 2 ): '''simple docstring''' _a : Union[str, Any] = qubits # Using Aer's simulator _a : str = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register _a : Tuple = qiskit.QuantumCircuit(A , A ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , A ): # Adding CX (CNOT) gate circuit.cx(i - 1 , A ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(A ) ) , list(range(A ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator _a : Optional[int] = qiskit.execute(A , A , shots=1_0_0_0 ) return job.result().get_counts(A ) if __name__ == "__main__": print(f'''Total count for various states are: {quantum_entanglement(3)}''')
424
'''simple docstring''' import math def UpperCAmelCase_ ( A , A ): '''simple docstring''' if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_6_0: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(A ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
424
1
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="resnet50" , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , ) -> int: _snake_case = parent _snake_case = out_indices if out_indices is not None else [4] _snake_case = stage_names _snake_case = out_features _snake_case = backbone _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = use_pretrained_backbone _snake_case = is_training def lowercase (self ) -> Optional[int]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = self.get_config() return config, pixel_values def lowercase (self ) -> Optional[Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _snake_case = TimmBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase (self ) -> Any: _snake_case = self.prepare_config_and_inputs() _snake_case, _snake_case = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class _lowerCAmelCase ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (TimmBackbone,) if is_torch_available() else () lowerCAmelCase_ = {"feature-extraction": TimmBackbone} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Tuple: _snake_case = TimmBackboneModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> Dict: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase (self ) -> str: _snake_case = """resnet18""" _snake_case = """microsoft/resnet-18""" _snake_case = AutoBackbone.from_pretrained(UpperCAmelCase , use_timm_backbone=UpperCAmelCase ) _snake_case = AutoBackbone.from_pretrained(UpperCAmelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _snake_case = AutoBackbone.from_pretrained(UpperCAmelCase , use_timm_backbone=UpperCAmelCase , out_indices=[1, 2, 3] ) _snake_case = AutoBackbone.from_pretrained(UpperCAmelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowercase (self ) -> Dict: pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowercase (self ) -> Tuple: pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowercase (self ) -> Union[str, Any]: pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowercase (self ) -> Tuple: pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowercase (self ) -> List[Any]: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowercase (self ) -> Any: pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowercase (self ) -> Optional[int]: pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowercase (self ) -> Optional[int]: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowercase (self ) -> Dict: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowercase (self ) -> Union[str, Any]: pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowercase (self ) -> List[Any]: pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowercase (self ) -> Union[str, Any]: pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowercase (self ) -> Optional[int]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> Optional[Any]: pass def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True _snake_case = self.has_attentions # no need to test all models as different heads yield the same functionality _snake_case = self.all_model_classes[0] _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) _snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ) _snake_case = outputs[0][-1] # Encoder-/Decoder-only models _snake_case = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _snake_case = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase (self ) -> Any: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(**UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _snake_case = copy.deepcopy(UpperCAmelCase ) _snake_case = None _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(**UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _snake_case = copy.deepcopy(UpperCAmelCase ) _snake_case = False _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(**UpperCAmelCase )
585
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __lowerCAmelCase = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( ): _snake_case = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=_SCREAMING_SNAKE_CASE , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=_SCREAMING_SNAKE_CASE , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=_SCREAMING_SNAKE_CASE , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=_SCREAMING_SNAKE_CASE , default=1000 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=_SCREAMING_SNAKE_CASE , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=_SCREAMING_SNAKE_CASE , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=_SCREAMING_SNAKE_CASE , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) _snake_case = parser.parse_args() return args def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): def fn(_SCREAMING_SNAKE_CASE ): return tokenizer(examples["""text"""] ) return fn def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = [] for i in range(len(tokenized_data["""input_ids"""] ) ): _snake_case = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } _snake_case = tf.train.Features(feature=_SCREAMING_SNAKE_CASE ) _snake_case = tf.train.Example(features=_SCREAMING_SNAKE_CASE ) _snake_case = example.SerializeToString() records.append(_SCREAMING_SNAKE_CASE ) return records def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: _snake_case = min(len(_SCREAMING_SNAKE_CASE ) , args.limit ) _snake_case = dataset.select(range(_SCREAMING_SNAKE_CASE ) ) print(f"""Limiting the dataset to {args.limit} entries.""" ) _snake_case = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _snake_case = os.path.join(args.output_dir , args.split ) if not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) else: _snake_case = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. _snake_case = tokenize_function(_SCREAMING_SNAKE_CASE ) _snake_case = dataset.map(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_SCREAMING_SNAKE_CASE ): # Concatenate all texts. _snake_case = {k: sum(examples[k] , [] ) for k in examples.keys()} _snake_case = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _snake_case = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _snake_case = { k: [t[i : i + args.max_length] for i in range(0 , _SCREAMING_SNAKE_CASE , args.max_length )] for k, t in concatenated_examples.items() } return result _snake_case = dataset_tokenized.map(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , batch_size=1000 , num_proc=4 ) _snake_case = 0 _snake_case = 0 for shard in range(0 , len(_SCREAMING_SNAKE_CASE ) , args.shard_size ): _snake_case = grouped_dataset[shard : shard + args.shard_size] _snake_case = len(dataset_snapshot["""input_ids"""] ) _snake_case = os.path.join(_SCREAMING_SNAKE_CASE , f"""dataset-{shard_count}-{records_containing}.tfrecord""" ) _snake_case = get_serialized_examples(_SCREAMING_SNAKE_CASE ) with tf.io.TFRecordWriter(_SCREAMING_SNAKE_CASE ) as out_file: for i in range(len(_SCREAMING_SNAKE_CASE ) ): _snake_case = serialized_examples[i] out_file.write(_SCREAMING_SNAKE_CASE ) print("""Wrote file {} containing {} records""".format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) shard_count += 1 total_records += records_containing with open(f"""split-{args.split}-records-count.txt""" , """w""" ) as f: print(f"""Total {args.split} records: {total_records}""" , file=_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = parse_args() main(args)
585
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase__( unittest.TestCase ): def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = tempfile.mkdtemp() # fmt: off UpperCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on UpperCAmelCase = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) UpperCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] UpperCAmelCase = {'''unk_token''': '''<unk>'''} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase ) ) UpperCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } UpperCAmelCase = os.path.join(self.tmpdirname , lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowerCAmelCase , lowerCAmelCase ) def a__( self : Optional[int] , **lowerCAmelCase : Optional[int] )-> int: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def a__( self : str , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def a__( self : List[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__( self : Dict )-> List[Any]: """simple docstring""" UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__( self : Optional[int] )-> Any: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = self.get_image_processor() UpperCAmelCase = CLIPProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase ) UpperCAmelCase = CLIPProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase ) def a__( self : Optional[int] )-> Any: """simple docstring""" UpperCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase = self.get_image_processor(do_normalize=lowerCAmelCase , padding_value=1.0 ) UpperCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = CLIPProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = processor(images=lowerCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a__( self : int )-> List[Any]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = CLIPProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = processor(text=lowerCAmelCase ) UpperCAmelCase = tokenizer(lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = CLIPProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(text=lowerCAmelCase , images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase ): processor() def a__( self : int )-> int: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = CLIPProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase = processor.batch_decode(lowerCAmelCase ) UpperCAmelCase = tokenizer.batch_decode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def a__( self : List[str] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = CLIPProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(text=lowerCAmelCase , images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __a : List[Any] = logging.get_logger(__name__) __a : Optional[int] = torch.device("""cpu""") def __magic_name__ ( ) -> List[str]: '''simple docstring''' UpperCamelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im def __magic_name__ ( lowercase_ ) -> Any: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = dct.pop(lowercase_ ) UpperCamelCase = val def __magic_name__ ( lowercase_ ) -> int: '''simple docstring''' UpperCamelCase = [] for k in state_dict.keys(): UpperCamelCase = k if ".pwconv" in k: UpperCamelCase = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: UpperCamelCase = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: UpperCamelCase = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: UpperCamelCase = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: UpperCamelCase = k_new.split("." ) if ls[2].isdigit(): UpperCamelCase = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: UpperCamelCase = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' UpperCamelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCamelCase = 1000 UpperCamelCase = "huggingface/label-files" UpperCamelCase = "imagenet-1k-id2label.json" UpperCamelCase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="dataset" ) , "r" ) ) UpperCamelCase = {int(lowercase_ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCamelCase = [3, 3, 6, 4] UpperCamelCase = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCamelCase = [3, 3, 9, 6] UpperCamelCase = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCamelCase = [4, 3, 10, 5] UpperCamelCase = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCamelCase = [4, 4, 12, 6] UpperCamelCase = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): UpperCamelCase = torch.hub.load_state_dict_from_url(lowercase_ , map_location="cpu" , check_hash=lowercase_ ) else: UpperCamelCase = torch.load(lowercase_ , map_location="cpu" ) UpperCamelCase = checkpoint UpperCamelCase = create_rename_keys(lowercase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) # load HuggingFace model UpperCamelCase = SwiftFormerForImageClassification(lowercase_ ).eval() hf_model.load_state_dict(lowercase_ ) # prepare test inputs UpperCamelCase = prepare_img() UpperCamelCase = ViTImageProcessor.from_pretrained("preprocessor_config" ) UpperCamelCase = processor(images=lowercase_ , return_tensors="pt" ) # compare outputs from both models UpperCamelCase = get_expected_output(lowercase_ ) UpperCamelCase = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase_ , atol=1E-3 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": __a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") __a : Tuple = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
606
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __A : def __init__(self , __magic_name__ , __magic_name__=13 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=99 , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=512 , __magic_name__=16 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=3 , __magic_name__=4 , __magic_name__=None , ): lowerCamelCase__ : Any = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : Optional[int] = seq_length lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : str = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : List[Any] = intermediate_size lowerCamelCase__ : Dict = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : List[str] = attention_probs_dropout_prob lowerCamelCase__ : str = max_position_embeddings lowerCamelCase__ : Optional[int] = type_vocab_size lowerCamelCase__ : Dict = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : str = num_labels lowerCamelCase__ : Dict = num_choices lowerCamelCase__ : Optional[Any] = scope lowerCamelCase__ : Any = self.vocab_size - 1 def _snake_case (self ): lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : List[Any] = None if self.use_token_type_ids: lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Tuple = None lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Tuple = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase__ : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , *__magic_name__ ): lowerCamelCase__ : List[Any] = OpenAIGPTModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCamelCase__ : Optional[Any] = model(__magic_name__ , token_type_ids=__magic_name__ , head_mask=__magic_name__ ) lowerCamelCase__ : Dict = model(__magic_name__ , token_type_ids=__magic_name__ ) lowerCamelCase__ : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , *__magic_name__ ): lowerCamelCase__ : Optional[Any] = OpenAIGPTLMHeadModel(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCamelCase__ : Dict = model(__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , *__magic_name__ ): lowerCamelCase__ : Optional[int] = OpenAIGPTDoubleHeadsModel(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCamelCase__ : List[str] = model(__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , *__magic_name__ ): lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Union[str, Any] = OpenAIGPTForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCamelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = model(__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case (self ): lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) ,( lowerCamelCase__ ) ,( lowerCamelCase__ ) ,( lowerCamelCase__ ) ,( lowerCamelCase__ ) ,( lowerCamelCase__ ) ,( lowerCamelCase__ ) , ) : Optional[Any] = config_and_inputs lowerCamelCase__ : str = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase :Dict = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCamelCase :Dict = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCamelCase :List[Any] = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__=False ): lowerCamelCase__ : Tuple = super()._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__magic_name__ , ) lowerCamelCase__ : str = inputs_dict["""labels"""] lowerCamelCase__ : List[str] = inputs_dict["""labels"""] lowerCamelCase__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__magic_name__ , ) lowerCamelCase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def _snake_case (self ): lowerCamelCase__ : str = OpenAIGPTModelTester(self ) lowerCamelCase__ : Tuple = ConfigTester(self , config_class=__magic_name__ , n_embd=37 ) def _snake_case (self ): self.config_tester.run_common_tests() def _snake_case (self ): lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__magic_name__ ) def _snake_case (self ): lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__magic_name__ ) def _snake_case (self ): lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__magic_name__ ) def _snake_case (self ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__magic_name__ ) @slow def _snake_case (self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Dict = OpenAIGPTModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch class __A ( unittest.TestCase ): @slow def _snake_case (self ): lowerCamelCase__ : Optional[Any] = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(__magic_name__ ) lowerCamelCase__ : Optional[Any] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__magic_name__ ) # the president is lowerCamelCase__ : Tuple = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : Tuple = model.generate(__magic_name__ , do_sample=__magic_name__ ) self.assertListEqual(output_ids[0].tolist() , __magic_name__ )
96
import itertools import string from collections.abc import Generator, Iterable def _A (UpperCamelCase : Iterable[str] , UpperCamelCase : int ) ->Generator[tuple[str, ...], None, None]: '''simple docstring''' lowerCamelCase__ : Any = iter(UpperCamelCase ) while True: lowerCamelCase__ : Union[str, Any] = tuple(itertools.islice(UpperCamelCase , UpperCamelCase ) ) if not chunk: return yield chunk def _A (UpperCamelCase : str ) ->str: '''simple docstring''' lowerCamelCase__ : Tuple = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) lowerCamelCase__ : Any = """""" if len(UpperCamelCase ) < 2: return dirty for i in range(len(UpperCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(UpperCamelCase ) & 1: clean += "X" return clean def _A (UpperCamelCase : str ) ->list[str]: '''simple docstring''' lowerCamelCase__ : Optional[Any] = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowerCamelCase__ : List[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(UpperCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(UpperCamelCase ) return table def _A (UpperCamelCase : str , UpperCamelCase : str ) ->str: '''simple docstring''' lowerCamelCase__ : Tuple = generate_table(UpperCamelCase ) lowerCamelCase__ : int = prepare_input(UpperCamelCase ) lowerCamelCase__ : List[str] = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase , 2 ): lowerCamelCase__ ,lowerCamelCase__ : Optional[Any] = divmod(table.index(UpperCamelCase ) , 5 ) lowerCamelCase__ ,lowerCamelCase__ : Optional[Any] = divmod(table.index(UpperCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _A (UpperCamelCase : str , UpperCamelCase : str ) ->str: '''simple docstring''' lowerCamelCase__ : Any = generate_table(UpperCamelCase ) lowerCamelCase__ : Any = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase , 2 ): lowerCamelCase__ ,lowerCamelCase__ : int = divmod(table.index(UpperCamelCase ) , 5 ) lowerCamelCase__ ,lowerCamelCase__ : Any = divmod(table.index(UpperCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
96
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any]=0.999 , SCREAMING_SNAKE_CASE_ : List[str]="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ : str ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ): __lowerCamelCase : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] __lowerCamelCase : Any = 2 @register_to_config def __init__( self , _lowerCAmelCase = 1000 , _lowerCAmelCase = 0.00085 , _lowerCAmelCase = 0.012 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = 1.0 , _lowerCAmelCase = "linspace" , _lowerCAmelCase = 0 , ) -> Union[str, Any]: if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="cosine" ) elif beta_schedule == "exp": _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="exp" ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = use_karras_sigmas def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: if schedule_timesteps is None: _lowerCAmelCase = self.timesteps _lowerCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowerCAmelCase = 1 if len(_lowerCAmelCase ) > 1 else 0 else: _lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep _lowerCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def _snake_case ( self ) -> Union[str, Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , ) -> torch.FloatTensor: _lowerCAmelCase = self.index_for_timestep(_lowerCAmelCase ) _lowerCAmelCase = self.sigmas[step_index] _lowerCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , ) -> Any: _lowerCAmelCase = num_inference_steps _lowerCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowerCAmelCase = np.linspace(0 , num_train_timesteps - 1 , _lowerCAmelCase , dtype=_lowerCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowerCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(_lowerCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowerCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(_lowerCAmelCase , 0 , -step_ratio )).round().copy().astype(_lowerCAmelCase ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _lowerCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowerCAmelCase = np.log(_lowerCAmelCase ) _lowerCAmelCase = np.interp(_lowerCAmelCase , np.arange(0 , len(_lowerCAmelCase ) ) , _lowerCAmelCase ) if self.config.use_karras_sigmas: _lowerCAmelCase = self._convert_to_karras(in_sigmas=_lowerCAmelCase , num_inference_steps=self.num_inference_steps ) _lowerCAmelCase = np.array([self._sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) for sigma in sigmas] ) _lowerCAmelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase ) _lowerCAmelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ) _lowerCAmelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_lowerCAmelCase ).startswith("mps" ): # mps does not support float64 _lowerCAmelCase = timesteps.to(_lowerCAmelCase , dtype=torch.floataa ) else: _lowerCAmelCase = timesteps.to(device=_lowerCAmelCase ) # empty dt and derivative _lowerCAmelCase = None _lowerCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowerCAmelCase = defaultdict(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: # get log sigma _lowerCAmelCase = np.log(_lowerCAmelCase ) # get distribution _lowerCAmelCase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _lowerCAmelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _lowerCAmelCase = low_idx + 1 _lowerCAmelCase = log_sigmas[low_idx] _lowerCAmelCase = log_sigmas[high_idx] # interpolate sigmas _lowerCAmelCase = (low - log_sigma) / (low - high) _lowerCAmelCase = np.clip(_lowerCAmelCase , 0 , 1 ) # transform interpolation to time range _lowerCAmelCase = (1 - w) * low_idx + w * high_idx _lowerCAmelCase = t.reshape(sigma.shape ) return t def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> torch.FloatTensor: _lowerCAmelCase = in_sigmas[-1].item() _lowerCAmelCase = in_sigmas[0].item() _lowerCAmelCase = 7.0 # 7.0 is the value used in the paper _lowerCAmelCase = np.linspace(0 , 1 , _lowerCAmelCase ) _lowerCAmelCase = sigma_min ** (1 / rho) _lowerCAmelCase = sigma_max ** (1 / rho) _lowerCAmelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _snake_case ( self ) -> Tuple: return self.dt is None def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: _lowerCAmelCase = self.index_for_timestep(_lowerCAmelCase ) # advance index counter by 1 _lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowerCAmelCase = self.sigmas[step_index] _lowerCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _lowerCAmelCase = self.sigmas[step_index - 1] _lowerCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowerCAmelCase = 0 _lowerCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_next _lowerCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_next _lowerCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowerCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowerCAmelCase = sigma_next - sigma_hat # store for 2nd order step _lowerCAmelCase = derivative _lowerCAmelCase = dt _lowerCAmelCase = sample else: # 2. 2nd order / Heun's method _lowerCAmelCase = (sample - pred_original_sample) / sigma_next _lowerCAmelCase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _lowerCAmelCase = self.dt _lowerCAmelCase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowerCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_lowerCAmelCase ): # mps does not support float64 _lowerCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _lowerCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _lowerCAmelCase = self.timesteps.to(original_samples.device ) _lowerCAmelCase = timesteps.to(original_samples.device ) _lowerCAmelCase = [self.index_for_timestep(_lowerCAmelCase , _lowerCAmelCase ) for t in timesteps] _lowerCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowerCAmelCase = sigma.unsqueeze(-1 ) _lowerCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self ) -> List[str]: return self.config.num_train_timesteps
18
"""simple docstring""" import mpmath # for roots of unity import numpy as np class _snake_case : """simple docstring""" def __init__( self : Any , _A : Optional[int]=None , _A : int=None): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = list(poly_a or [0])[:] _SCREAMING_SNAKE_CASE : Optional[Any] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _SCREAMING_SNAKE_CASE : Optional[int] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() _SCREAMING_SNAKE_CASE : str = len(self.polyB) # Add 0 to make lengths equal a power of 2 _SCREAMING_SNAKE_CASE : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform _SCREAMING_SNAKE_CASE : Optional[Any] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product _SCREAMING_SNAKE_CASE : List[Any] = self.__multiply() def _lowerCAmelCase ( self : List[str] , _A : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(_A) <= 1: return dft[0] # _SCREAMING_SNAKE_CASE : int = self.c_max_length // 2 while next_ncol > 0: _SCREAMING_SNAKE_CASE : Union[str, Any] = [[] for i in range(_A)] _SCREAMING_SNAKE_CASE : Any = self.root**next_ncol # First half of next step _SCREAMING_SNAKE_CASE : Union[str, Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_A): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step _SCREAMING_SNAKE_CASE : Optional[int] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_A): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update _SCREAMING_SNAKE_CASE : Optional[int] = new_dft _SCREAMING_SNAKE_CASE : List[str] = next_ncol // 2 return dft[0] def _lowerCAmelCase ( self : Any): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = self.__dft("""A""") _SCREAMING_SNAKE_CASE : Any = self.__dft("""B""") _SCREAMING_SNAKE_CASE : List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT _SCREAMING_SNAKE_CASE : Any = 2 while next_ncol <= self.c_max_length: _SCREAMING_SNAKE_CASE : int = [[] for i in range(_A)] _SCREAMING_SNAKE_CASE : List[str] = self.root ** (next_ncol // 2) _SCREAMING_SNAKE_CASE : Union[str, Any] = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update _SCREAMING_SNAKE_CASE : str = new_inverse_c next_ncol *= 2 # Unpack _SCREAMING_SNAKE_CASE : List[Any] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : List[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """A = """ + """ + """.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A])) _SCREAMING_SNAKE_CASE : Optional[int] = """B = """ + """ + """.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B])) _SCREAMING_SNAKE_CASE : Tuple = """A*B = """ + """ + """.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.product)) return f"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
338
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : int = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): UpperCAmelCase = '''xmod''' def __init__( self :Union[str, Any] ,__UpperCAmelCase :Tuple=3_05_22 ,__UpperCAmelCase :int=7_68 ,__UpperCAmelCase :Tuple=12 ,__UpperCAmelCase :Tuple=12 ,__UpperCAmelCase :Tuple=30_72 ,__UpperCAmelCase :str="gelu" ,__UpperCAmelCase :str=0.1 ,__UpperCAmelCase :str=0.1 ,__UpperCAmelCase :str=5_12 ,__UpperCAmelCase :Optional[Any]=2 ,__UpperCAmelCase :Optional[int]=0.02 ,__UpperCAmelCase :Dict=1E-12 ,__UpperCAmelCase :List[str]=1 ,__UpperCAmelCase :str=0 ,__UpperCAmelCase :Any=2 ,__UpperCAmelCase :List[Any]="absolute" ,__UpperCAmelCase :Union[str, Any]=True ,__UpperCAmelCase :Optional[int]=None ,__UpperCAmelCase :int=False ,__UpperCAmelCase :Tuple=2 ,__UpperCAmelCase :Tuple=False ,__UpperCAmelCase :Dict=True ,__UpperCAmelCase :Tuple=True ,__UpperCAmelCase :str=("en_XX",) ,__UpperCAmelCase :int=None ,**__UpperCAmelCase :str ,) -> List[str]: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase ,bos_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : Optional[int] = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : int = hidden_act lowerCamelCase__ : Optional[Any] = intermediate_size lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = layer_norm_eps lowerCamelCase__ : Optional[int] = position_embedding_type lowerCamelCase__ : Optional[Any] = use_cache lowerCamelCase__ : Optional[Any] = classifier_dropout lowerCamelCase__ : Optional[int] = pre_norm lowerCamelCase__ : Tuple = adapter_reduction_factor lowerCamelCase__ : Dict = adapter_layer_norm lowerCamelCase__ : Optional[Any] = adapter_reuse_layer_norm lowerCamelCase__ : Dict = ln_before_adapter lowerCamelCase__ : Dict = list(__UpperCAmelCase ) lowerCamelCase__ : List[Any] = default_language class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): @property def lowercase_ ( self :List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCamelCase__ : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
121
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCAmelCase : Dict = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): pass @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowercase_ ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self :Dict ) -> List[str]: """simple docstring""" lowerCamelCase__ : Any = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ,torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCamelCase__ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCamelCase__ : Union[str, Any] = torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = pipe.dual_guided( prompt='''first prompt''' ,image=__UpperCAmelCase ,text_to_image_strength=0.75 ,generator=__UpperCAmelCase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ,).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCAmelCase ) lowerCamelCase__ : Dict = VersatileDiffusionPipeline.from_pretrained(__UpperCAmelCase ,torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCamelCase__ : Dict = generator.manual_seed(0 ) lowerCamelCase__ : List[str] = pipe.dual_guided( prompt='''first prompt''' ,image=__UpperCAmelCase ,text_to_image_strength=0.75 ,generator=__UpperCAmelCase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ,).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowercase_ ( self :Tuple ) -> str: """simple docstring""" lowerCamelCase__ : Optional[Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ,torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCamelCase__ : Tuple = '''cyberpunk 2077''' lowerCamelCase__ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCamelCase__ : str = torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = pipe.dual_guided( prompt=__UpperCAmelCase ,image=__UpperCAmelCase ,text_to_image_strength=0.75 ,generator=__UpperCAmelCase ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='''numpy''' ,).images lowerCamelCase__ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCamelCase__ : Optional[Any] = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowerCamelCase__ : Tuple = '''A painting of a squirrel eating a burger ''' lowerCamelCase__ : Optional[Any] = torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = pipe.text_to_image( prompt=__UpperCAmelCase ,generator=__UpperCAmelCase ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='''numpy''' ).images lowerCamelCase__ : List[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCamelCase__ : Optional[Any] = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowerCamelCase__ : Any = pipe.image_variation(__UpperCAmelCase ,generator=__UpperCAmelCase ,output_type='''numpy''' ).images lowerCamelCase__ : Union[str, Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCamelCase__ : str = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
121
1
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( __magic_name__ )-> bool: """simple docstring""" return len(set(__magic_name__ ) ) == len(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
653
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger() @dataclass class A_ : """simple docstring""" a__ = 42 a__ = field(default_factory=a_ ) a__ = field(default_factory=a_ ) def _A ( self :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tensor , lowerCAmelCase__ :Tensor ) -> int: '''simple docstring''' snake_case_ : int = len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase__ , nn.Convad ) or isinstance(lowerCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCAmelCase__ ) def __call__( self :List[Any] , lowerCAmelCase__ :Tensor ) -> Union[str, Any]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _A ( self :int ) -> List[Any]: '''simple docstring''' return list(filter(lambda lowerCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class A_ : """simple docstring""" a__ = 42 a__ = 42 a__ = 0 a__ = field(default_factory=a_ ) a__ = field(default_factory=a_ ) def __call__( self :Tuple , lowerCAmelCase__ :Tensor ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = Tracker(self.dest )(lowerCAmelCase__ ).parametrized snake_case_ : Tuple = Tracker(self.src )(lowerCAmelCase__ ).parametrized snake_case_ : List[str] = list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.src_skip , lowerCAmelCase__ ) ) snake_case_ : Tuple = list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.dest_skip , lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCAmelCase__ )} operations while''' F''' destination module has {len(lowerCAmelCase__ )}.''' ) for dest_m, src_m in zip(lowerCAmelCase__ , lowerCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ = True )-> Optional[int]: """simple docstring""" print(F'''Converting {name}...''' ) with torch.no_grad(): snake_case_ : List[str] = timm.create_model(__magic_name__ ,pretrained=__magic_name__ ).eval() snake_case_ : Optional[int] = ResNetForImageClassification(__magic_name__ ).eval() snake_case_ : Dict = ModuleTransfer(src=__magic_name__ ,dest=__magic_name__ ) snake_case_ : Optional[int] = torch.randn((1, 3, 224, 224) ) module_transfer(__magic_name__ ) assert torch.allclose(from_model(__magic_name__ ) ,our_model(__magic_name__ ).logits ), "The model logits don't match the original one." snake_case_ : str = F'''resnet{'-'.join(name.split('resnet' ) )}''' print(__magic_name__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message="Add model" ,use_temp_dir=__magic_name__ ,) # we can use the convnext one snake_case_ : Optional[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message="Add image processor" ,use_temp_dir=__magic_name__ ,) print(F'''Pushed {checkpoint_name}''' ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ = None ,__magic_name__ = True )-> Tuple: """simple docstring""" snake_case_ : List[str] = "imagenet-1k-id2label.json" snake_case_ : Optional[Any] = 1000 snake_case_ : List[Any] = (1, num_labels) snake_case_ : Optional[Any] = "huggingface/label-files" snake_case_ : Dict = num_labels snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) ) snake_case_ : List[str] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case_ : Any = idalabel snake_case_ : List[Any] = {v: k for k, v in idalabel.items()} snake_case_ : Optional[int] = partial(__magic_name__ ,num_labels=__magic_name__ ,idalabel=__magic_name__ ,labelaid=__magic_name__ ) snake_case_ : Optional[int] = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[64, 128, 256, 512] ,layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[64, 128, 256, 512] ,layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), } if model_name: convert_weight_and_push(__magic_name__ ,names_to_config[model_name] ,__magic_name__ ,__magic_name__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) return config, expected_shape if __name__ == "__main__": __lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) __lowerCamelCase : Tuple = parser.parse_args() __lowerCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
653
1
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCAmelCase__ (*snake_case__ : List[Any] , snake_case__ : Optional[Union[Dict, Any]] = None , snake_case__ : str=True , snake_case__ : Dict=2 ): """simple docstring""" from .. import __version__ _snake_case : Tuple = take_from _snake_case : Tuple = () if not isinstance(args[0] , snake_case__ ): _snake_case : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(snake_case__ ).base_version ) >= version.parse(snake_case__ ): raise ValueError( F"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" F" version {__version__} is >= {version_name}" ) _snake_case : Optional[Any] = None if isinstance(snake_case__ , snake_case__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(snake_case__ ),) _snake_case : List[Any] = F"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(snake_case__ , snake_case__ ): values += (getattr(snake_case__ , snake_case__ ),) _snake_case : Union[str, Any] = F"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: _snake_case : List[Any] = F"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: _snake_case : Any = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , snake_case__ , stacklevel=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) > 0: _snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1] _snake_case : str = call_frame.filename _snake_case : int = call_frame.lineno _snake_case : Any = call_frame.function _snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(snake_case__ ) == 0: return elif len(snake_case__ ) == 1: return values[0] return values
714
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: List[str], a_: List[Any], a_: str=13, a_: Dict=32, a_: Union[str, Any]=3, a_: Union[str, Any]=4, a_: Tuple=[10, 20, 30, 40], a_: Dict=[2, 2, 3, 2], a_: Tuple=True, a_: Optional[Any]=True, a_: Any=37, a_: Any="gelu", a_: int=10, a_: Tuple=0.02, a_: str=["stage2", "stage3", "stage4"], a_: List[str]=[2, 3, 4], a_: List[str]=None, ): '''simple docstring''' _snake_case : int = parent _snake_case : int = batch_size _snake_case : List[Any] = image_size _snake_case : List[str] = num_channels _snake_case : Tuple = num_stages _snake_case : Union[str, Any] = hidden_sizes _snake_case : List[Any] = depths _snake_case : Tuple = is_training _snake_case : List[str] = use_labels _snake_case : Tuple = intermediate_size _snake_case : List[str] = hidden_act _snake_case : Optional[Any] = num_labels _snake_case : Tuple = initializer_range _snake_case : Tuple = out_features _snake_case : Tuple = out_indices _snake_case : Dict = scope def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Any = None if self.use_labels: _snake_case : Dict = ids_tensor([self.batch_size], self.num_labels ) _snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: int, a_: Tuple, a_: Any, a_: Dict ): '''simple docstring''' _snake_case : int = ConvNextVaModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Any = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: Tuple, a_: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = ConvNextVaForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Optional[int] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self: Union[str, Any], a_: Tuple, a_: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : List[str] = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : int = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case : Tuple = None _snake_case : Tuple = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : str = {"""pixel_values""": pixel_values} return config, inputs_dict def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[str] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase__ = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = ConvNextVaModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : List[Any] = True if model_class.__name__ in [ *get_values(a_ ), *get_values(a_ ), ]: continue _snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Optional[Any] = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Any = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : Any = False _snake_case : List[Any] = True if ( model_class.__name__ in [*get_values(a_ ), *get_values(a_ )] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Dict = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() _snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Optional[int] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) _snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : int = [*signature.parameters.keys()] _snake_case : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(a_: str, a_: Tuple, a_: Tuple ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : Optional[int] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[Any] = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : List[str] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : str = ConvNextVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a_ ) _snake_case : Union[str, Any] = self.default_image_processor _snake_case : List[Any] = prepare_img() _snake_case : Optional[int] = preprocessor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) # verify the logits _snake_case : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1E-4 ) )
28
0
class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : int, lowerCamelCase : str, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = name lowercase__ = value lowercase__ = weight def __repr__( self : List[str] ): '''simple docstring''' return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowercase__ ( self : List[str] ): '''simple docstring''' return self.value def lowercase__ ( self : str ): '''simple docstring''' return self.name def lowercase__ ( self : Dict ): '''simple docstring''' return self.weight def lowercase__ ( self : Optional[int] ): '''simple docstring''' return self.value / self.weight def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = sorted(lowerCamelCase_ , key=lowerCamelCase_ , reverse=lowerCamelCase_ ) lowercase__ = [] lowercase__ , lowercase__ = 0.0, 0.0 for i in range(len(lowerCamelCase_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
183
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A__ : Optional[Any] = None A__ : str = logging.get_logger(__name__) A__ : Optional[int] = '▁' A__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A__ : Dict = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A__ : int = { 'google/pegasus-xsum': 5_12, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PegasusTokenizer lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict, lowerCamelCase : str=None, lowerCamelCase : List[str]=None, lowerCamelCase : int="<pad>", lowerCamelCase : str="</s>", lowerCamelCase : Optional[Any]="<unk>", lowerCamelCase : Any="<mask_2>", lowerCamelCase : Optional[Any]="<mask_1>", lowerCamelCase : int=None, lowerCamelCase : Dict=103, **lowerCamelCase : List[Any], ): '''simple docstring''' lowercase__ = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase, lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(lowerCamelCase )}, but is""" F""" {type(lowerCamelCase )}""" ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(lowerCamelCase ), self.offset - 1 ) ] if len(set(lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2, self.offset )] super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, pad_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, mask_token=lowerCamelCase, mask_token_sent=lowerCamelCase, offset=lowerCamelCase, additional_special_tokens=lowerCamelCase, **lowerCamelCase, ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowercase__ ( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' F""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self : Optional[Any], lowerCamelCase : List, lowerCamelCase : Optional[List] = None, lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any]=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : Optional[Any], lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file, lowerCamelCase ) return (out_vocab_file,)
183
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def A ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) UpperCamelCase_ = ''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class a_ ( SCREAMING_SNAKE_CASE__ ): @staticmethod def __a ( _lowercase :str) -> List[str]: UpperCAmelCase_ = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=_lowercase , required=_lowercase , help='''Model\'s type.''') train_parser.add_argument( '''--tf_checkpoint''' , type=_lowercase , required=_lowercase , help='''TensorFlow checkpoint path or folder.''') train_parser.add_argument( '''--pytorch_dump_output''' , type=_lowercase , required=_lowercase , help='''Path to the PyTorch saved model output.''') train_parser.add_argument('''--config''' , type=_lowercase , default='''''' , help='''Configuration file path or folder.''') train_parser.add_argument( '''--finetuning_task_name''' , type=_lowercase , default=_lowercase , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=_lowercase) def __init__( self :Any , _lowercase :Optional[Any] , _lowercase :Tuple , _lowercase :int , _lowercase :Optional[Any] , _lowercase :Optional[int] , *_lowercase :Optional[int] , ) -> Tuple: UpperCAmelCase_ = logging.get_logger('''transformers-cli/converting''') self._logger.info(f"Loading model {model_type}") UpperCAmelCase_ = model_type UpperCAmelCase_ = tf_checkpoint UpperCAmelCase_ = pytorch_dump_output UpperCAmelCase_ = config UpperCAmelCase_ = finetuning_task_name def __a ( self :Tuple) -> Any: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_lowercase) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase_ = self._tf_checkpoint UpperCAmelCase_ = """""" else: UpperCAmelCase_ = self._tf_checkpoint UpperCAmelCase_ = """""" convert_transfo_xl_checkpoint_to_pytorch( _lowercase , self._config , self._pytorch_dump_output , _lowercase) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''')
721
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCamelCase_ = 16 UpperCamelCase_ = 32 def A ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return int(x / 2**20 ) class a_ : def __enter__( self :Any) -> str: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero UpperCAmelCase_ = torch.cuda.memory_allocated() return self def __exit__( self :Tuple , *_lowercase :Tuple) -> Union[str, Any]: gc.collect() torch.cuda.empty_cache() UpperCAmelCase_ = torch.cuda.memory_allocated() UpperCAmelCase_ = torch.cuda.max_memory_allocated() UpperCAmelCase_ = bamb(self.end - self.begin) UpperCAmelCase_ = bamb(self.peak - self.begin) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def A ( __UpperCAmelCase , __UpperCAmelCase = 16 , __UpperCAmelCase = "bert-base-cased" , __UpperCAmelCase = 320 , __UpperCAmelCase = 160 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) UpperCAmelCase_ = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': f"train[:{n_train}]", '''validation''': f"validation[:{n_val}]"} ) def tokenize_function(__UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase ) UpperCAmelCase_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase ) return train_dataloader, eval_dataloader def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' UpperCAmelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ = config['''lr'''] UpperCAmelCase_ = int(config['''num_epochs'''] ) UpperCAmelCase_ = int(config['''seed'''] ) UpperCAmelCase_ = int(config['''batch_size'''] ) UpperCAmelCase_ = args.model_name_or_path set_seed(__UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = get_dataloaders(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase , return_dict=__UpperCAmelCase ) # Instantiate optimizer UpperCAmelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_ = optimizer_cls(params=model.parameters() , lr=__UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCAmelCase_ = 1 UpperCAmelCase_ = (len(__UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_ = get_linear_schedule_with_warmup( optimizer=__UpperCAmelCase , num_warmup_steps=0 , num_training_steps=__UpperCAmelCase , ) else: UpperCAmelCase_ = DummyScheduler(__UpperCAmelCase , total_num_steps=__UpperCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_ = 0 # Now we train the model UpperCAmelCase_ = {} for epoch in range(__UpperCAmelCase , __UpperCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(__UpperCAmelCase ): UpperCAmelCase_ = model(**__UpperCAmelCase ) UpperCAmelCase_ = outputs.loss UpperCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(__UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) UpperCAmelCase_ = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def A ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=__UpperCAmelCase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__UpperCAmelCase , ) parser.add_argument( '''--output_dir''' , type=__UpperCAmelCase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=__UpperCAmelCase , default=__UpperCAmelCase , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=__UpperCAmelCase , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=__UpperCAmelCase , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=__UpperCAmelCase , default=1 , help='''Number of train epochs.''' , ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": main()
561
0
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class UpperCamelCase : def UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , thresholding=__A , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.414 , time_embedding_act_fn='gelu' , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , thresholding=__A , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__A ) SCREAMING_SNAKE_CASE = inputs['prompt'] SCREAMING_SNAKE_CASE = inputs['generator'] SCREAMING_SNAKE_CASE = inputs['num_inference_steps'] SCREAMING_SNAKE_CASE = inputs['output_type'] if "image" in inputs: SCREAMING_SNAKE_CASE = inputs['image'] else: SCREAMING_SNAKE_CASE = None if "mask_image" in inputs: SCREAMING_SNAKE_CASE = inputs['mask_image'] else: SCREAMING_SNAKE_CASE = None if "original_image" in inputs: SCREAMING_SNAKE_CASE = inputs['original_image'] else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pipe.encode_prompt(__A ) # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: SCREAMING_SNAKE_CASE = image if mask_image is not None: SCREAMING_SNAKE_CASE = mask_image if original_image is not None: SCREAMING_SNAKE_CASE = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__A , __A , __A ) SCREAMING_SNAKE_CASE = pipe(**__A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__A ) SCREAMING_SNAKE_CASE = self.pipeline_class.from_pretrained(__A ) pipe_loaded.to(__A ) pipe_loaded.set_progress_bar_config(disable=__A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__A , __A ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__A ) SCREAMING_SNAKE_CASE = inputs['generator'] SCREAMING_SNAKE_CASE = inputs['num_inference_steps'] SCREAMING_SNAKE_CASE = inputs['output_type'] # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: SCREAMING_SNAKE_CASE = image if mask_image is not None: SCREAMING_SNAKE_CASE = mask_image if original_image is not None: SCREAMING_SNAKE_CASE = original_image SCREAMING_SNAKE_CASE = pipe_loaded(**__A )[0] SCREAMING_SNAKE_CASE = np.abs(to_np(__A ) - to_np(__A ) ).max() self.assertLess(__A , 1E-4 ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__A ) SCREAMING_SNAKE_CASE = pipe(**__A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__A ) SCREAMING_SNAKE_CASE = self.pipeline_class.from_pretrained(__A ) pipe_loaded.to(__A ) pipe_loaded.set_progress_bar_config(disable=__A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__A ) SCREAMING_SNAKE_CASE = pipe_loaded(**__A )[0] SCREAMING_SNAKE_CASE = np.abs(to_np(__A ) - to_np(__A ) ).max() self.assertLess(__A , 1E-4 )
439
def a (lowerCAmelCase__ = 1_000_000 ): __a = 1 __a = 1 __a = {1: 1} for inputa in range(2 , lowerCAmelCase__ ): __a = 0 __a = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __a = (3 * number) + 1 counter += 1 if inputa not in counters: __a = counter if counter > pre_counter: __a = inputa __a = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
99
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase_ ( *lowerCamelCase_ : List[str] , **lowerCamelCase_ : List[str] ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) SCREAMING_SNAKE_CASE : Tuple = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = object_detector(examples[0] , threshold=0.0 ) SCREAMING_SNAKE_CASE : List[str] = len(lowerCamelCase_ ) self.assertGreater(lowerCamelCase_ , 0 ) self.assertEqual( lowerCamelCase_ , [ { """score""": ANY(lowerCamelCase_ ), """label""": ANY(lowerCamelCase_ ), """box""": {"""xmin""": ANY(lowerCamelCase_ ), """ymin""": ANY(lowerCamelCase_ ), """xmax""": ANY(lowerCamelCase_ ), """ymax""": ANY(lowerCamelCase_ )}, } for i in range(lowerCamelCase_ ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass @require_torch def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) SCREAMING_SNAKE_CASE : int = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""score""": 0.7_235, """label""": """cat""", """box""": {"""xmin""": 2_04, """ymin""": 1_67, """xmax""": 2_32, """ymax""": 1_90}}, {"""score""": 0.7_218, """label""": """remote""", """box""": {"""xmin""": 2_04, """ymin""": 1_67, """xmax""": 2_32, """ymax""": 1_90}}, {"""score""": 0.7_184, """label""": """couch""", """box""": {"""xmin""": 2_04, """ymin""": 1_67, """xmax""": 2_32, """ymax""": 1_90}}, {"""score""": 0.6_748, """label""": """remote""", """box""": {"""xmin""": 5_71, """ymin""": 83, """xmax""": 5_98, """ymax""": 1_03}}, {"""score""": 0.6_656, """label""": """cat""", """box""": {"""xmin""": 5_71, """ymin""": 83, """xmax""": 5_98, """ymax""": 1_03}}, {"""score""": 0.6_614, """label""": """couch""", """box""": {"""xmin""": 5_71, """ymin""": 83, """xmax""": 5_98, """ymax""": 1_03}}, {"""score""": 0.6_456, """label""": """remote""", """box""": {"""xmin""": 4_94, """ymin""": 1_05, """xmax""": 5_21, """ymax""": 1_27}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 2_74, """xmax""": 93, """ymax""": 2_97}}, {"""score""": 0.6_419, """label""": """cat""", """box""": {"""xmin""": 4_94, """ymin""": 1_05, """xmax""": 5_21, """ymax""": 1_27}}, ] , ) SCREAMING_SNAKE_CASE : List[str] = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {"""score""": 0.7_235, """label""": """cat""", """box""": {"""xmin""": 2_04, """ymin""": 1_67, """xmax""": 2_32, """ymax""": 1_90}}, {"""score""": 0.7_218, """label""": """remote""", """box""": {"""xmin""": 2_04, """ymin""": 1_67, """xmax""": 2_32, """ymax""": 1_90}}, {"""score""": 0.7_184, """label""": """couch""", """box""": {"""xmin""": 2_04, """ymin""": 1_67, """xmax""": 2_32, """ymax""": 1_90}}, {"""score""": 0.6_748, """label""": """remote""", """box""": {"""xmin""": 5_71, """ymin""": 83, """xmax""": 5_98, """ymax""": 1_03}}, {"""score""": 0.6_656, """label""": """cat""", """box""": {"""xmin""": 5_71, """ymin""": 83, """xmax""": 5_98, """ymax""": 1_03}}, {"""score""": 0.6_614, """label""": """couch""", """box""": {"""xmin""": 5_71, """ymin""": 83, """xmax""": 5_98, """ymax""": 1_03}}, {"""score""": 0.6_456, """label""": """remote""", """box""": {"""xmin""": 4_94, """ymin""": 1_05, """xmax""": 5_21, """ymax""": 1_27}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 2_74, """xmax""": 93, """ymax""": 2_97}}, {"""score""": 0.6_419, """label""": """cat""", """box""": {"""xmin""": 4_94, """ymin""": 1_05, """xmax""": 5_21, """ymax""": 1_27}}, ] ] , ) @require_torch @slow def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline("""zero-shot-object-detection""" ) SCREAMING_SNAKE_CASE : Dict = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 3_24, """ymin""": 20, """xmax""": 6_40, """ymax""": 3_73}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 1_77, """ymax""": 1_15}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 3_15, """ymax""": 4_72}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 3_35, """ymin""": 74, """xmax""": 3_71, """ymax""": 1_87}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 6_42, """ymax""": 4_76}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 3_24, """ymin""": 20, """xmax""": 6_40, """ymax""": 3_73}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 1_77, """ymax""": 1_15}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 3_15, """ymax""": 4_72}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 3_35, """ymin""": 74, """xmax""": 3_71, """ymax""": 1_87}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 6_42, """ymax""": 4_76}}, ], [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 3_24, """ymin""": 20, """xmax""": 6_40, """ymax""": 3_73}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 1_77, """ymax""": 1_15}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 3_15, """ymax""": 4_72}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 3_35, """ymin""": 74, """xmax""": 3_71, """ymax""": 1_87}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 6_42, """ymax""": 4_76}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass @require_torch @slow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 0.2 SCREAMING_SNAKE_CASE : List[Any] = pipeline("""zero-shot-object-detection""" ) SCREAMING_SNAKE_CASE : Any = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=lowerCamelCase_ , ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 3_24, """ymin""": 20, """xmax""": 6_40, """ymax""": 3_73}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 1_77, """ymax""": 1_15}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 3_15, """ymax""": 4_72}}, ] , ) @require_torch @slow def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : Optional[int] = pipeline("""zero-shot-object-detection""" ) SCREAMING_SNAKE_CASE : Any = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=lowerCamelCase_ , ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 3_24, """ymin""": 20, """xmax""": 6_40, """ymax""": 3_73}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 1_77, """ymax""": 1_15}}, ] , )
79
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Dict , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Dict ): '''simple docstring''' warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
79
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowercase_ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowercase_ = cvtColor(img, COLOR_BGR2GRAY) def __lowerCAmelCase ( ): lowercase__ = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def __lowerCAmelCase ( ): with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def __lowerCAmelCase ( ): lowercase__ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __lowerCAmelCase ( ): lowercase__ = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowercase__ = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def __lowerCAmelCase ( ): assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def __lowerCAmelCase ( ): # laplace diagonals lowercase__ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowercase__ = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def __lowerCAmelCase ( ): assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def __lowerCAmelCase ( ): lowercase__ , lowercase__ = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def __lowerCAmelCase ( ): lowercase__ = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" ): lowercase__ = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" , ): lowercase__ = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __lowerCAmelCase ( ): lowercase__ = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. lowercase__ = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None lowercase__ = 0 lowercase__ = 0 lowercase__ = image[x_coordinate][y_coordinate] lowercase__ = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowercase__ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowercase__ = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
413
import numpy as np def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
413
1
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase_ ( snake_case_ : Tuple , snake_case_ : int ) -> List[Any]: '''simple docstring''' __lowerCAmelCase = torch.load(snake_case_ , map_location="""cpu""" ) __lowerCAmelCase = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository __lowerCAmelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: __lowerCAmelCase = v else: __lowerCAmelCase = v __lowerCAmelCase = chkpt["""params"""] __lowerCAmelCase = {n: v for n, v in config.items() if not isinstance(snake_case_ , (torch.FloatTensor, numpy.ndarray) )} __lowerCAmelCase = chkpt["""dico_word2id"""] __lowerCAmelCase = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model __lowerCAmelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __lowerCAmelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME __lowerCAmelCase = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(snake_case_ , snake_case_ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(snake_case_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_ , indent=2 ) + """\n""" ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(snake_case_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_ , indent=2 ) + """\n""" ) if __name__ == "__main__": _A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _A : List[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
330
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _A : str = logging.get_logger(__name__) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[str] = ["""audio_values""", """audio_mask"""] def __init__( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Tuple=[16, 16] , SCREAMING_SNAKE_CASE__ : Optional[int]=1_28 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4_41_00 , SCREAMING_SNAKE_CASE__ : Tuple=86 , SCREAMING_SNAKE_CASE__ : List[str]=20_48 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Tuple: super().__init__( feature_size=SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , padding_value=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = spectrogram_length __lowerCAmelCase = num_channels __lowerCAmelCase = patch_size __lowerCAmelCase = feature_size // self.patch_size[1] __lowerCAmelCase = n_fft __lowerCAmelCase = sampling_rate // hop_length_to_sampling_rate __lowerCAmelCase = sampling_rate __lowerCAmelCase = padding_value __lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=SCREAMING_SNAKE_CASE__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=SCREAMING_SNAKE_CASE__ , norm="""slaney""" , mel_scale="""slaney""" , ).T def a ( self : str , SCREAMING_SNAKE_CASE__ : np.array ) -> np.ndarray: __lowerCAmelCase = spectrogram( SCREAMING_SNAKE_CASE__ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=8_0.0 , ) __lowerCAmelCase = log_spec[:, :-1] __lowerCAmelCase = log_spec - 2_0.0 __lowerCAmelCase = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __lowerCAmelCase = isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __lowerCAmelCase = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): __lowerCAmelCase = np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCAmelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowerCAmelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __lowerCAmelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __lowerCAmelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __lowerCAmelCase = np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) # convert into correct format for padding __lowerCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowerCAmelCase = np.ones([len(SCREAMING_SNAKE_CASE__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __lowerCAmelCase = padded_audio_features * self.padding_value for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __lowerCAmelCase = audio_features[i] __lowerCAmelCase = feature # return as BatchFeature if return_attention_mask: __lowerCAmelCase = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: __lowerCAmelCase = {"""audio_values""": padded_audio_features} __lowerCAmelCase = BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ ) return encoded_inputs
330
1
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC _UpperCAmelCase : Dict = parse(importlib.metadata.version('''torch''')) def UpperCamelCase ( lowercase_ : Union[str, Version] , lowercase_ : str , lowercase_ : str ) -> List[Any]: '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase =STR_OPERATION_TO_FUNC[operation] if isinstance(lowercase_ , lowercase_ ): lowercase =parse(importlib.metadata.version(lowercase_ ) ) return operation(lowercase_ , parse(lowercase_ ) ) def UpperCamelCase ( lowercase_ : str , lowercase_ : str ) -> Union[str, Any]: '''simple docstring''' return compare_versions(lowercase_ , lowercase_ , lowercase_ )
72
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = ['image_processor', 'tokenizer'] UpperCamelCase__ = 'BlipImageProcessor' UpperCamelCase__ = 'AutoTokenizer' def __init__( self , snake_case_ , snake_case_ , snake_case_ ): super().__init__(snake_case_ , snake_case_ ) # add QFormer tokenizer lowercase =qformer_tokenizer def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ): if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) lowercase =BatchFeature() if text is not None: lowercase =self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) encoding.update(snake_case_ ) lowercase =self.qformer_tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) lowercase =qformer_text_encoding.pop('''input_ids''' ) lowercase =qformer_text_encoding.pop('''attention_mask''' ) if images is not None: lowercase =self.image_processor(snake_case_ , return_tensors=snake_case_ ) encoding.update(snake_case_ ) return encoding def _A( self , *snake_case_ , **snake_case_ ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def _A( self , *snake_case_ , **snake_case_ ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _A( self ): lowercase =self.tokenizer.model_input_names lowercase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _A( self , snake_case_ , **snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) lowercase =os.path.join(snake_case_ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(snake_case_ ) return super().save_pretrained(snake_case_ , **snake_case_ ) @classmethod def _A( cls , snake_case_ , **snake_case_ ): lowercase =AutoTokenizer.from_pretrained(snake_case_ , subfolder='''qformer_tokenizer''' ) lowercase =cls._get_arguments_from_pretrained(snake_case_ , **snake_case_ ) args.append(snake_case_ ) return cls(*snake_case_ )
72
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__ ( lowerCAmelCase__ ): UpperCAmelCase_ : List[Any] = ['image_processor', 'tokenizer'] UpperCAmelCase_ : int = 'FlavaImageProcessor' UpperCAmelCase_ : Optional[int] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , lowercase__=None , lowercase__=None , **lowercase__ ) -> Optional[int]: __A = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase__ , ) __A = kwargs.pop("feature_extractor" ) __A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase__ , lowercase__ ) __A = self.image_processor def __call__( self , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = False , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ) -> Union[str, Any]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __A = self.tokenizer( text=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) if images is not None: __A = self.image_processor( lowercase__ , return_image_mask=lowercase__ , return_codebook_pixels=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) if text is not None and images is not None: encoding.update(lowercase__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def _lowerCamelCase ( self , *lowercase__ , **lowercase__ ) -> List[Any]: return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def _lowerCamelCase ( self , *lowercase__ , **lowercase__ ) -> Dict: return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def _lowerCamelCase ( self ) -> Tuple: __A = self.tokenizer.model_input_names __A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCamelCase ( self ) -> Union[str, Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase__ , ) return self.image_processor_class @property def _lowerCamelCase ( self ) -> Optional[int]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase__ , ) return self.image_processor
715
from __future__ import annotations from typing import Any def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' create_state_space_tree(lowerCAmelCase__ , [] , 0 ) def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if index == len(lowerCAmelCase__ ): print(lowerCAmelCase__ ) return create_state_space_tree(lowerCAmelCase__ , lowerCAmelCase__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(lowerCAmelCase__ , lowerCAmelCase__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": snake_case_ : list[Any] =[3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
205
0
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[int, int]: if b == 0: return (1, 0) ((UpperCAmelCase__) , (UpperCAmelCase__)) : List[str] = extended_euclid(lowerCAmelCase__ , a % b ) UpperCAmelCase__ : List[str] = a // b return (y, x - k * y) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: ((UpperCAmelCase__) , (UpperCAmelCase__)) : Optional[int] = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = na * na UpperCAmelCase__ : Any = ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> int: ((UpperCAmelCase__) , (UpperCAmelCase__)) : Tuple = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) if b < 0: UpperCAmelCase__ : int = (b % n + n) % n return b def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ), invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Any = na * na UpperCAmelCase__ : Optional[int] = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
75
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = """facebook/bart-large-mnli""" _A : str = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) _A : Any = """text_classifier""" _A : Optional[int] = AutoTokenizer _A : List[str] = AutoModelForSequenceClassification _A : Tuple = ["""text""", ["""text"""]] _A : Any = ["""text"""] def __UpperCamelCase (self ): super().setup() snake_case_ : List[Any] = self.model.config snake_case_ : Any = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): snake_case_ : Dict = int(lowercase__ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Union[str, Any] = labels return self.pre_processor( [text] * len(lowercase__ ) , [f'This example is {label}' for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : str = outputs.logits snake_case_ : Optional[Any] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
480
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Any = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
581
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def a ( UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple ) -> Optional[int]: # Initialise PyTorch model snake_case__ =TaConfig.from_json_file(UpperCamelCase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) snake_case__ =TaForConditionalGeneration(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_ta(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE__ : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
581
1
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() A = logging.get_logger(__name__) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]: """simple docstring""" __UpperCAmelCase : Any = WavaVecaForSequenceClassification.from_pretrained(UpperCamelCase , config=UpperCamelCase ) __UpperCAmelCase : int = downstream_dict["projector.weight"] __UpperCAmelCase : List[Any] = downstream_dict["projector.bias"] __UpperCAmelCase : Optional[Any] = downstream_dict["model.post_net.linear.weight"] __UpperCAmelCase : List[Any] = downstream_dict["model.post_net.linear.bias"] return model def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = WavaVecaForAudioFrameClassification.from_pretrained(UpperCamelCase , config=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = downstream_dict["model.linear.weight"] __UpperCAmelCase : Union[str, Any] = downstream_dict["model.linear.bias"] return model def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" __UpperCAmelCase : List[str] = WavaVecaForXVector.from_pretrained(UpperCamelCase , config=UpperCamelCase ) __UpperCAmelCase : Tuple = downstream_dict["connector.weight"] __UpperCAmelCase : str = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __UpperCAmelCase : int = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __UpperCAmelCase : Union[str, Any] = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __UpperCAmelCase : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] __UpperCAmelCase : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] __UpperCAmelCase : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] __UpperCAmelCase : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] __UpperCAmelCase : int = downstream_dict["objective.W"] return model @torch.no_grad() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: """simple docstring""" __UpperCAmelCase : Union[str, Any] = torch.load(UpperCamelCase , map_location="cpu" ) __UpperCAmelCase : Optional[Any] = checkpoint["Downstream"] __UpperCAmelCase : int = WavaVecaConfig.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained( UpperCamelCase , return_attention_mask=UpperCamelCase , do_normalize=UpperCamelCase ) __UpperCAmelCase : Dict = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): __UpperCAmelCase : List[Any] = convert_classification(UpperCamelCase , UpperCamelCase , UpperCamelCase ) elif arch.endswith("ForAudioFrameClassification" ): __UpperCAmelCase : List[str] = convert_diarization(UpperCamelCase , UpperCamelCase , UpperCamelCase ) elif arch.endswith("ForXVector" ): __UpperCAmelCase : str = convert_xvector(UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __UpperCAmelCase : Optional[Any] = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(UpperCamelCase ) hf_model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") A = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
77
from PIL import Image def _SCREAMING_SNAKE_CASE ( lowercase : Image ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = image.size lowerCamelCase_ = 0 lowerCamelCase_ = image.load() for i in range(lowercase ): for j in range(lowercase ): lowerCamelCase_ = pixels[j, i] mean += pixel mean //= width * height for j in range(lowercase ): for i in range(lowercase ): lowerCamelCase_ = 2_55 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": lowerCamelCase : Optional[Any] = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
70
0
def lowercase_ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" snake_case__ : str =0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowercase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" snake_case__ : List[str] =0 while b > 0: if b & 1: snake_case__ : Union[str, Any] =((res % c) + (a % c)) % c a += a b >>= 1 return res
408
def lowercase_ ( SCREAMING_SNAKE_CASE : int = 10_00 ): """simple docstring""" return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
408
1
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self : int , _A : Dict , _A : Tuple=1_3 , _A : Optional[Any]=7 , _A : Union[str, Any]=True , _A : Tuple=True , _A : Union[str, Any]=True , _A : List[Any]=True , _A : Optional[int]=9_9 , _A : int=3_2 , _A : Optional[int]=5 , _A : str=4 , _A : Optional[Any]=3_7 , _A : Union[str, Any]="gelu" , _A : Any=0.1 , _A : Optional[Any]=0.1 , _A : List[Any]=5_1_2 , _A : List[str]=1_6 , _A : Optional[Any]=2 , _A : Optional[int]=0.02 , _A : List[Any]=4 , ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = parent _SCREAMING_SNAKE_CASE : Dict = batch_size _SCREAMING_SNAKE_CASE : Tuple = seq_length _SCREAMING_SNAKE_CASE : Union[str, Any] = is_training _SCREAMING_SNAKE_CASE : Any = use_attention_mask _SCREAMING_SNAKE_CASE : Any = use_token_type_ids _SCREAMING_SNAKE_CASE : List[str] = use_labels _SCREAMING_SNAKE_CASE : List[Any] = vocab_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_size _SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : str = num_attention_heads _SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_act _SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings _SCREAMING_SNAKE_CASE : Any = type_vocab_size _SCREAMING_SNAKE_CASE : List[Any] = type_sequence_label_size _SCREAMING_SNAKE_CASE : List[Any] = initializer_range _SCREAMING_SNAKE_CASE : List[Any] = num_choices def _lowerCAmelCase ( self : Tuple): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _SCREAMING_SNAKE_CASE : int = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _SCREAMING_SNAKE_CASE : List[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowercase_ , ) return config, input_ids, attention_mask def _lowerCAmelCase ( self : Any): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs _SCREAMING_SNAKE_CASE : List[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _snake_case ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self : Tuple): """simple docstring""" _SCREAMING_SNAKE_CASE : int = FlaxDistilBertModelTester(self) @slow def _lowerCAmelCase ( self : List[Any]): """simple docstring""" for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE : Union[str, Any] = model_class_name.from_pretrained("""distilbert-base-uncased""") _SCREAMING_SNAKE_CASE : Dict = model(np.ones((1, 1))) self.assertIsNotNone(lowercase_) @require_flax class _snake_case ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""") _SCREAMING_SNAKE_CASE : List[str] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) _SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) _SCREAMING_SNAKE_CASE : int = model(lowercase_ , attention_mask=lowercase_)[0] _SCREAMING_SNAKE_CASE : Union[str, Any] = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowercase_) _SCREAMING_SNAKE_CASE : Any = np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowercase_ , atol=1e-4))
338
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _UpperCAmelCase : def __init__( self , lowercase_ = "cpu" , lowercase_ = "openai/clip-vit-large-patch14" ) -> None: UpperCAmelCase = device UpperCAmelCase = CLIPTokenizerFast.from_pretrained(lowercase_ ) UpperCAmelCase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] UpperCAmelCase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] UpperCAmelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) UpperCAmelCase = torchvision.transforms.Resize(2_2_4 ) UpperCAmelCase = torchvision.transforms.CenterCrop(2_2_4 ) def a_ ( self , lowercase_ ) -> Any: UpperCAmelCase = self.resize(lowercase_ ) UpperCAmelCase = self.center_crop(lowercase_ ) UpperCAmelCase = self.normalize(lowercase_ ) return images def __call__( self , lowercase_=None , lowercase_=None , **lowercase_ ) -> Union[str, Any]: UpperCAmelCase = self.tokenizer(text=lowercase_ , **lowercase_ ) UpperCAmelCase = self.preprocess_img(lowercase_ ) UpperCAmelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _UpperCAmelCase ( nn.Module ): def __init__( self , lowercase_=1_0 , lowercase_=0.0_1 , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=True , lowercase_="image" , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=False , ) -> None: super().__init__() UpperCAmelCase = None UpperCAmelCase = device if device else get_device() if vqgan: UpperCAmelCase = vqgan else: UpperCAmelCase = load_vqgan(self.device , conf_path=lowercase_ , ckpt_path=lowercase_ ) self.vqgan.eval() if clip: UpperCAmelCase = clip else: UpperCAmelCase = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) UpperCAmelCase = ProcessorGradientFlow(device=self.device ) UpperCAmelCase = iterations UpperCAmelCase = lr UpperCAmelCase = log UpperCAmelCase = make_grid UpperCAmelCase = return_val UpperCAmelCase = quantize UpperCAmelCase = self.vqgan.decoder.z_shape def a_ ( self , lowercase_=None , lowercase_=None , lowercase_=5 , lowercase_=True ) -> Dict: UpperCAmelCase = [] if output_path is None: UpperCAmelCase = './animation.gif' if input_path is None: UpperCAmelCase = self.save_path UpperCAmelCase = sorted(glob(input_path + '/*' ) ) if not len(lowercase_ ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(lowercase_ ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) UpperCAmelCase = total_duration / len(lowercase_ ) UpperCAmelCase = [frame_duration] * len(lowercase_ ) if extend_frames: UpperCAmelCase = 1.5 UpperCAmelCase = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(lowercase_ ) ) imageio.mimsave(lowercase_ , lowercase_ , duration=lowercase_ ) print(F"gif saved to {output_path}" ) def a_ ( self , lowercase_=None , lowercase_=None ) -> List[Any]: if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError UpperCAmelCase = preprocess(Image.open(lowercase_ ) , target_image_size=2_5_6 ).to(self.device ) UpperCAmelCase = preprocess_vqgan(lowercase_ ) UpperCAmelCase , *UpperCAmelCase = self.vqgan.encode(lowercase_ ) return z def a_ ( self , lowercase_ ) -> Optional[int]: UpperCAmelCase = self.latent.detach().requires_grad_() UpperCAmelCase = base_latent + transform_vector if self.quantize: UpperCAmelCase , *UpperCAmelCase = self.vqgan.quantize(lowercase_ ) else: UpperCAmelCase = trans_latent return self.vqgan.decode(lowercase_ ) def a_ ( self , lowercase_ , lowercase_ , lowercase_=None ) -> str: UpperCAmelCase = self.clip_preprocessor(text=lowercase_ , images=lowercase_ , return_tensors='pt' , padding=lowercase_ ) UpperCAmelCase = self.clip(**lowercase_ ) UpperCAmelCase = clip_outputs.logits_per_image if weights is not None: UpperCAmelCase = similarity_logits * weights return similarity_logits.sum() def a_ ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: UpperCAmelCase = self._get_clip_similarity(pos_prompts['prompts'] , lowercase_ , weights=(1 / pos_prompts['weights']) ) if neg_prompts: UpperCAmelCase = self._get_clip_similarity(neg_prompts['prompts'] , lowercase_ , weights=neg_prompts['weights'] ) else: UpperCAmelCase = torch.tensor([1] , device=self.device ) UpperCAmelCase = -torch.log(lowercase_ ) + torch.log(lowercase_ ) return loss def a_ ( self , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: UpperCAmelCase = torch.randn_like(self.latent , requires_grad=lowercase_ , device=self.device ) UpperCAmelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCAmelCase = self._add_vector(lowercase_ ) UpperCAmelCase = loop_post_process(lowercase_ ) UpperCAmelCase = self._get_CLIP_loss(lowercase_ , lowercase_ , lowercase_ ) print('CLIP loss' , lowercase_ ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=lowercase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def a_ ( self , lowercase_ , lowercase_ , lowercase_ ) -> Dict: wandb.init(reinit=lowercase_ , project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: UpperCAmelCase = Image.open(lowercase_ ) UpperCAmelCase = image.resize((2_5_6, 2_5_6) ) wandb.log('Original Image' , wandb.Image(lowercase_ ) ) def a_ ( self , lowercase_ ) -> Tuple: if not prompts: return [] UpperCAmelCase = [] UpperCAmelCase = [] if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(lowercase_ , (tuple, list) ): UpperCAmelCase = prompt[0] UpperCAmelCase = float(prompt[1] ) elif ":" in prompt: UpperCAmelCase , UpperCAmelCase = prompt.split(':' ) UpperCAmelCase = float(lowercase_ ) else: UpperCAmelCase = prompt UpperCAmelCase = 1.0 processed_prompts.append(lowercase_ ) weights.append(lowercase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowercase_ , device=self.device ), } def a_ ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_=None , ) -> List[str]: if image_path: UpperCAmelCase = self._get_latent(lowercase_ ) else: UpperCAmelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(lowercase_ , lowercase_ , lowercase_ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCAmelCase = self.process_prompts(lowercase_ ) UpperCAmelCase = self.process_prompts(lowercase_ ) if save_final and save_path is None: UpperCAmelCase = os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(lowercase_ ): os.makedirs(lowercase_ ) else: UpperCAmelCase = save_path + '_' + get_timestamp() os.makedirs(lowercase_ ) UpperCAmelCase = save_path UpperCAmelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(lowercase_ ) ) UpperCAmelCase = loop_post_process(lowercase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowercase_ , lowercase_ , lowercase_ ) ): if show_intermediate: show_pil(lowercase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'Image': wandb.Image(lowercase_ )} ) if show_final: show_pil(lowercase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}_final.png" ) )
373
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class a_ ( unittest.TestCase ): def lowerCAmelCase( self : List[str] ): """simple docstring""" snake_case : Any = inspect.getfile(accelerate.test_utils ) snake_case : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) snake_case : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) snake_case : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def lowerCAmelCase( self : Optional[int] ): """simple docstring""" print(F"Found {torch.cuda.device_count()} devices." ) snake_case : List[str] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase( self : Union[str, Any] ): """simple docstring""" print(F"Found {torch.cuda.device_count()} devices." ) snake_case : List[Any] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(F"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase( self : Dict ): """simple docstring""" snake_case : Union[str, Any] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase( self : int ): """simple docstring""" print(F"Found {torch.cuda.device_count()} devices, using 2 devices only" ) snake_case : List[str] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": _a : Dict = Accelerator() _a : Optional[Any] = (accelerator.state.process_index + 2, 10) _a : Dict = torch.randint(0, 10, shape).to(accelerator.device) _a : Optional[Any] = '' _a : Tuple = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _a : str = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _a : List[Any] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
84
from sklearn.metrics import fa_score import datasets _a : List[str] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' _a : Dict = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' _a : List[Any] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def lowerCAmelCase( self : Any ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def lowerCAmelCase( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=1 , UpperCAmelCase__ : List[str]="binary" , UpperCAmelCase__ : str=None ): """simple docstring""" snake_case : List[Any] = fa_score( UpperCAmelCase__ , UpperCAmelCase__ , labels=UpperCAmelCase__ , pos_label=UpperCAmelCase__ , average=UpperCAmelCase__ , sample_weight=UpperCAmelCase__ ) return {"f1": float(UpperCAmelCase__ ) if score.size == 1 else score}
84
1
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCamelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCamelCase__ = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') UpperCamelCase__ = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def a__ ( lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : str = None # source code of `config_class` UpperCAmelCase__ : str = inspect.getsource(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = _re_checkpoint.findall(lowerCAmelCase__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): UpperCAmelCase__ : List[str] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCAmelCase__ : Union[str, Any] = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: UpperCAmelCase__ : Any = ckpt_name break return checkpoint def a__ ( ) -> Dict: UpperCAmelCase__ : Optional[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCAmelCase__ : Any = get_checkpoint_from_config_class(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: UpperCAmelCase__ : List[str] = '''\n'''.join(sorted(lowerCAmelCase__ ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
75
'''simple docstring''' import math def a__ ( lowerCAmelCase__ ) -> list[int]: UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Optional[Any] = int(math.sqrt(lowerCAmelCase__ ) ) # Size of every segment UpperCAmelCase__ : str = [True] * (end + 1) UpperCAmelCase__ : Any = [] while start <= end: if temp[start] is True: in_prime.append(lowerCAmelCase__ ) for i in range(start * start , end + 1 , lowerCAmelCase__ ): UpperCAmelCase__ : Dict = False start += 1 prime += in_prime UpperCAmelCase__ : Optional[int] = end + 1 UpperCAmelCase__ : str = min(2 * end , lowerCAmelCase__ ) while low <= n: UpperCAmelCase__ : List[str] = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase__ : List[str] = math.floor(low / each ) * each if t < low: t += each for j in range(lowerCAmelCase__ , high + 1 , lowerCAmelCase__ ): UpperCAmelCase__ : Union[str, Any] = False for j in range(len(lowerCAmelCase__ ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase__ : Union[str, Any] = high + 1 UpperCAmelCase__ : str = min(high + end , lowerCAmelCase__ ) return prime print(sieve(1_0**6))
75
1
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase ( a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Tuple = DDIMPipeline _UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _UpperCamelCase : int = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } _UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : List[str] = False def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) _snake_case : List[Any] = DDIMScheduler() _snake_case : Union[str, Any] = {'unet': unet, 'scheduler': scheduler} return components def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str]=0 ): '''simple docstring''' if str(lowerCamelCase_ ).startswith('mps' ): _snake_case : str = torch.manual_seed(lowerCamelCase_ ) else: _snake_case : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' _snake_case : List[Any] = self.get_dummy_components() _snake_case : int = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Dict = self.get_dummy_inputs(lowerCamelCase_ ) _snake_case : Optional[Any] = pipe(**lowerCamelCase_ ).images _snake_case : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _snake_case : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) _snake_case : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase_ , 1e-3 ) def __UpperCAmelCase ( self : int ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def __UpperCAmelCase ( self : str ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = 'google/ddpm-cifar10-32' _snake_case : Any = UNetaDModel.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = DDIMScheduler() _snake_case : List[str] = DDIMPipeline(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) ddim.to(lowerCamelCase_ ) ddim.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = torch.manual_seed(0 ) _snake_case : List[Any] = ddim(generator=lowerCamelCase_ , eta=0.0 , output_type='numpy' ).images _snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case : Union[str, Any] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Optional[Any] = 'google/ddpm-ema-bedroom-256' _snake_case : Union[str, Any] = UNetaDModel.from_pretrained(lowerCamelCase_ ) _snake_case : Optional[int] = DDIMScheduler.from_pretrained(lowerCamelCase_ ) _snake_case : str = DDIMPipeline(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) ddpm.to(lowerCamelCase_ ) ddpm.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = torch.manual_seed(0 ) _snake_case : Optional[Any] = ddpm(generator=lowerCamelCase_ , output_type='numpy' ).images _snake_case : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _snake_case : Dict = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
700
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
0
from __future__ import annotations def _lowercase( __a : int ): a__ =2 a__ =[] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__a ) if n > 1: factors.append(__a ) return factors if __name__ == "__main__": import doctest doctest.testmod()
20
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) __lowerCAmelCase = logging.getLogger(__name__) __lowerCAmelCase = {'facebook/bart-base': BartForConditionalGeneration} __lowerCAmelCase = {'facebook/bart-base': BartTokenizer} def _UpperCAmelCase ( ): a_ : int = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=__A , default=__A , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=__A , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=__A , default=__A , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=__A , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__A , ) parser.add_argument( '''--config_name''' , type=__A , default=__A , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=__A , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=__A , default=__A , help='''Where to store the final ONNX file.''' ) a_ : Tuple = parser.parse_args() return args def _UpperCAmelCase ( __A : List[str] , __A : Dict="cpu" ): a_ : str = model_dict[model_name].from_pretrained(__A ).to(__A ) a_ : str = tokenizer_dict[model_name].from_pretrained(__A ) if model_name in ["facebook/bart-base"]: a_ : str = 0 a_ : Any = None a_ : int = 0 return huggingface_model, tokenizer def _UpperCAmelCase ( __A : int , __A : Dict , __A : str , __A : Optional[Any] , __A : Any ): model.eval() a_ : Union[str, Any] = None a_ : str = torch.jit.script(BARTBeamSearchGenerator(__A ) ) with torch.no_grad(): a_ : Any = '''My friends are cool but they eat too many carbs.''' a_ : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors='''pt''' ).to(model.device ) a_ : Dict = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=__A , max_length=__A , early_stopping=__A , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __A , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , __A , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=__A , ) logger.info('''Model exported to {}'''.format(__A ) ) a_ : Any = remove_dup_initializers(os.path.abspath(__A ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(__A ) ) a_ : int = onnxruntime.InferenceSession(__A ) a_ : Optional[Any] = ort_sess.run( __A , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(__A ), '''max_length''': np.array(__A ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def _UpperCAmelCase ( ): a_ : int = parse_args() a_ : List[str] = 5 a_ : List[str] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() a_ : Any = torch.device(args.device ) a_ , a_ : Optional[Any] = load_model_tokenizer(args.model_name_or_path , __A ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(__A ) if args.max_length: a_ : Dict = args.max_length if args.num_beams: a_ : str = args.num_beams if args.output_file_path: a_ : str = args.output_file_path else: a_ : Union[str, Any] = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(__A , __A , __A , __A , __A ) if __name__ == "__main__": main()
466
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: A : Any = None A : Any = logging.get_logger(__name__) A : int = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} A : Any = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } A : List[Any] = { "camembert-base": 5_12, } A : str = "▁" class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['''input_ids''', '''attention_mask'''] lowerCamelCase__ = CamembertTokenizer def __init__( self : Optional[Any] , __magic_name__ : Union[str, Any]=None , __magic_name__ : List[str]=None , __magic_name__ : int="<s>" , __magic_name__ : int="</s>" , __magic_name__ : Optional[Any]="</s>" , __magic_name__ : str="<s>" , __magic_name__ : Optional[Any]="<unk>" , __magic_name__ : str="<pad>" , __magic_name__ : Optional[Any]="<mask>" , __magic_name__ : List[str]=["<s>NOTUSED", "</s>NOTUSED"] , **__magic_name__ : List[str] , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token super().__init__( __magic_name__ , tokenizer_file=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , ) SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def __A ( self : Any , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] SCREAMING_SNAKE_CASE_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self : Dict , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self : int , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__magic_name__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ): copyfile(self.vocab_file , __magic_name__ ) return (out_vocab_file,)
706
from __future__ import annotations def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = str(__UpperCamelCase ) return n == n[::-1] def a__ ( __UpperCamelCase = 1_0_0_0_0_0_0 ): SCREAMING_SNAKE_CASE_ = 0 for i in range(1 , __UpperCamelCase ): if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
356
0
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = """\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n""" SCREAMING_SNAKE_CASE_ = """\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n""" SCREAMING_SNAKE_CASE_ = """\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def snake_case_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def snake_case_ ( self , a_ , a_ , a_=False ): if return_pvalue: a_ : Dict = pearsonr(a_ , a_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(a_ , a_ )[0] )}
237
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowercase__ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase (lowercase__ = 10001 ) -> int: '''simple docstring''' try: a_ = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) a_ = [] a_ = 2 while len(lowercase__ ) < nth: if is_prime(lowercase__ ): primes.append(lowercase__ ) num += 1 else: num += 1 return primes[len(lowercase__ ) - 1] if __name__ == "__main__": print(F'{solution() = }')
685
0
from typing import Any import numpy as np def lowerCamelCase_(lowerCamelCase_ ) -> bool: return np.array_equal(lowerCamelCase_ , matrix.conjugate().T ) def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> Any: UpperCAmelCase = v.conjugate().T UpperCAmelCase = v_star.dot(lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , np.ndarray ) return (v_star_dot.dot(lowerCamelCase_ )) / (v_star.dot(lowerCamelCase_ )) def lowerCamelCase_() -> None: UpperCAmelCase = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) UpperCAmelCase = np.array([[1], [2], [3]] ) assert is_hermitian(lowerCamelCase_ ), F'{a} is not hermitian.' print(rayleigh_quotient(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCAmelCase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowerCamelCase_ ), F'{a} is not hermitian.' assert rayleigh_quotient(lowerCamelCase_ , lowerCamelCase_ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
457
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __magic_name__ ( A__ ): lowercase : "DiagonalGaussianDistribution" class __magic_name__ ( A__, A__ ): lowercase : Union[str, Any] =True @register_to_config def __init__( self : List[str] , UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 3 , UpperCamelCase__ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCamelCase__ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCamelCase__ : Tuple[int] = (64,) , UpperCamelCase__ : int = 1 , UpperCamelCase__ : str = "silu" , UpperCamelCase__ : int = 4 , UpperCamelCase__ : int = 32 , UpperCamelCase__ : int = 32 , UpperCamelCase__ : float = 0.1_82_15 , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder UpperCAmelCase = Encoder( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , down_block_types=UpperCamelCase__ , block_out_channels=UpperCamelCase__ , layers_per_block=UpperCamelCase__ , act_fn=UpperCamelCase__ , norm_num_groups=UpperCamelCase__ , double_z=UpperCamelCase__ , ) # pass init params to Decoder UpperCAmelCase = Decoder( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , up_block_types=UpperCamelCase__ , block_out_channels=UpperCamelCase__ , layers_per_block=UpperCamelCase__ , norm_num_groups=UpperCamelCase__ , act_fn=UpperCamelCase__ , ) UpperCAmelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCAmelCase = nn.Convad(UpperCamelCase__ , UpperCamelCase__ , 1 ) UpperCAmelCase = False UpperCAmelCase = False # only relevant if vae tiling is enabled UpperCAmelCase = self.config.sample_size UpperCAmelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase = 0.25 def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int=False ) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase__ , (Encoder, Decoder) ): UpperCAmelCase = value def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCamelCase__ : bool = True ) -> Tuple: '''simple docstring''' UpperCAmelCase = use_tiling def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: '''simple docstring''' self.enable_tiling(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase = True def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: '''simple docstring''' UpperCAmelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def SCREAMING_SNAKE_CASE_ ( self : str ) -> Dict[str, AttentionProcessor]: '''simple docstring''' UpperCAmelCase = {} def fn_recursive_add_processors(UpperCamelCase__ : str , UpperCamelCase__ : torch.nn.Module , UpperCamelCase__ : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase__ , "set_processor" ): UpperCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , UpperCamelCase__ , UpperCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return processors def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCamelCase__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(UpperCamelCase__ )} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(UpperCamelCase__ : str , UpperCamelCase__ : torch.nn.Module , UpperCamelCase__ : List[Any] ): if hasattr(UpperCamelCase__ , "set_processor" ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): module.set_processor(UpperCamelCase__ ) else: module.set_processor(processor.pop(F'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , UpperCamelCase__ , UpperCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Dict: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ) -> AutoencoderKLOutput: '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(UpperCamelCase__ , return_dict=UpperCamelCase__ ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase = [self.encoder(UpperCamelCase__ ) for x_slice in x.split(1 )] UpperCAmelCase = torch.cat(UpperCamelCase__ ) else: UpperCAmelCase = self.encoder(UpperCamelCase__ ) UpperCAmelCase = self.quant_conv(UpperCamelCase__ ) UpperCAmelCase = DiagonalGaussianDistribution(UpperCamelCase__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(UpperCamelCase__ , return_dict=UpperCamelCase__ ) UpperCAmelCase = self.post_quant_conv(UpperCamelCase__ ) UpperCAmelCase = self.decoder(UpperCamelCase__ ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase__ ) @apply_forward_hook def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_slicing and z.shape[0] > 1: UpperCAmelCase = [self._decode(UpperCamelCase__ ).sample for z_slice in z.split(1 )] UpperCAmelCase = torch.cat(UpperCamelCase__ ) else: UpperCAmelCase = self._decode(UpperCamelCase__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase = min(a.shape[2] , b.shape[2] , UpperCamelCase__ ) for y in range(UpperCamelCase__ ): UpperCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def SCREAMING_SNAKE_CASE_ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' UpperCAmelCase = min(a.shape[3] , b.shape[3] , UpperCamelCase__ ) for x in range(UpperCamelCase__ ): UpperCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def SCREAMING_SNAKE_CASE_ ( self : str , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ) -> AutoencoderKLOutput: '''simple docstring''' UpperCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase = [] for i in range(0 , x.shape[2] , UpperCamelCase__ ): UpperCAmelCase = [] for j in range(0 , x.shape[3] , UpperCamelCase__ ): UpperCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase = self.encoder(UpperCamelCase__ ) UpperCAmelCase = self.quant_conv(UpperCamelCase__ ) row.append(UpperCamelCase__ ) rows.append(UpperCamelCase__ ) UpperCAmelCase = [] for i, row in enumerate(UpperCamelCase__ ): UpperCAmelCase = [] for j, tile in enumerate(UpperCamelCase__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase = self.blend_v(rows[i - 1][j] , UpperCamelCase__ , UpperCamelCase__ ) if j > 0: UpperCAmelCase = self.blend_h(row[j - 1] , UpperCamelCase__ , UpperCamelCase__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase__ , dim=3 ) ) UpperCAmelCase = torch.cat(UpperCamelCase__ , dim=2 ) UpperCAmelCase = DiagonalGaussianDistribution(UpperCamelCase__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' UpperCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase = [] for i in range(0 , z.shape[2] , UpperCamelCase__ ): UpperCAmelCase = [] for j in range(0 , z.shape[3] , UpperCamelCase__ ): UpperCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase = self.post_quant_conv(UpperCamelCase__ ) UpperCAmelCase = self.decoder(UpperCamelCase__ ) row.append(UpperCamelCase__ ) rows.append(UpperCamelCase__ ) UpperCAmelCase = [] for i, row in enumerate(UpperCamelCase__ ): UpperCAmelCase = [] for j, tile in enumerate(UpperCamelCase__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase = self.blend_v(rows[i - 1][j] , UpperCamelCase__ , UpperCamelCase__ ) if j > 0: UpperCAmelCase = self.blend_h(row[j - 1] , UpperCamelCase__ , UpperCamelCase__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase__ , dim=3 ) ) UpperCAmelCase = torch.cat(UpperCamelCase__ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' UpperCAmelCase = sample UpperCAmelCase = self.encode(UpperCamelCase__ ).latent_dist if sample_posterior: UpperCAmelCase = posterior.sample(generator=UpperCamelCase__ ) else: UpperCAmelCase = posterior.mode() UpperCAmelCase = self.decode(UpperCamelCase__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase__ )
457
1