code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__lowerCamelCase : Any = {
"configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Optional[int] = ["VisionEncoderDecoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Optional[int] = ["TFVisionEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Optional[Any] = ["FlaxVisionEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
__lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 323 |
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCamelCase : int = logging.get_logger(__name__)
__lowerCamelCase : List[str] = "https://openaipublic.azureedge.net/jukebox/models/"
__lowerCamelCase : List[Any] = {
"jukebox-1b-lyrics": [
"5b/vqvae.pth.tar",
"5b/prior_level_0.pth.tar",
"5b/prior_level_1.pth.tar",
"1b_lyrics/prior_level_2.pth.tar",
],
"jukebox-5b-lyrics": [
"5b/vqvae.pth.tar",
"5b/prior_level_0.pth.tar",
"5b/prior_level_1.pth.tar",
"5b_lyrics/prior_level_2.pth.tar",
],
}
def lowerCamelCase_(lowerCamelCase_ ) -> int:
if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10:
UpperCAmelCase = key.replace(".model.1.bias" , ".conv1d_1.bias" )
elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10:
UpperCAmelCase = key.replace(".model.1.weight" , ".conv1d_1.weight" )
elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10:
UpperCAmelCase = key.replace(".model.3.bias" , ".conv1d_2.bias" )
elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10:
UpperCAmelCase = key.replace(".model.3.weight" , ".conv1d_2.weight" )
if "conditioner_blocks.0." in key:
UpperCAmelCase = key.replace("conditioner_blocks.0" , "conditioner_blocks" )
if "prime_prior" in key:
UpperCAmelCase = key.replace("prime_prior" , "encoder" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
UpperCAmelCase = key.replace(".emb." , "." )
if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(".k" , ".codebook" )
if "y_emb." in key:
return key.replace("y_emb." , "metadata_embedding." )
if "x_emb.emb." in key:
UpperCAmelCase = key.replace("0.x_emb.emb" , "embed_tokens" )
if "prime_state_ln" in key:
return key.replace("prime_state_ln" , "encoder.final_layer_norm" )
if ".ln" in key:
return key.replace(".ln" , ".layer_norm" )
if "_ln" in key:
return key.replace("_ln" , "_layer_norm" )
if "prime_state_proj" in key:
return key.replace("prime_state_proj" , "encoder.proj_in" )
if "prime_x_out" in key:
return key.replace("prime_x_out" , "encoder.lm_head" )
if "prior.x_out" in key:
return key.replace("x_out" , "fc_proj_out" )
if "x_emb" in key:
return key.replace("x_emb" , "embed_tokens" )
return key
def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int:
UpperCAmelCase = {}
import re
UpperCAmelCase = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" )
UpperCAmelCase = re.compile(
r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
UpperCAmelCase = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" )
UpperCAmelCase = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" )
UpperCAmelCase = re.compile(
r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
UpperCAmelCase = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" )
UpperCAmelCase = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" )
UpperCAmelCase = re.compile(
r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
UpperCAmelCase = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_encoder_block_conv_in.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] )
UpperCAmelCase = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'
UpperCAmelCase = re_encoder_block_conv_in.sub(lowerCamelCase_ , lowerCamelCase_ )
elif re_encoder_block_resnet.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_encoder_block_resnet.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] )
UpperCAmelCase = {"1": 1, "3": 2}[groups[-2]]
UpperCAmelCase = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'
UpperCAmelCase = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
UpperCAmelCase = prefix + resnet_block
UpperCAmelCase = re_encoder_block_resnet.sub(lowerCamelCase_ , lowerCamelCase_ )
elif re_encoder_block_proj_out.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_encoder_block_proj_out.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = F'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'
UpperCAmelCase = re_encoder_block_proj_out.sub(lowerCamelCase_ , lowerCamelCase_ )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_decoder_block_conv_out.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2
UpperCAmelCase = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'
UpperCAmelCase = re_decoder_block_conv_out.sub(lowerCamelCase_ , lowerCamelCase_ )
elif re_decoder_block_resnet.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_decoder_block_resnet.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2
UpperCAmelCase = {"1": 1, "3": 2}[groups[-2]]
UpperCAmelCase = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'
UpperCAmelCase = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
UpperCAmelCase = prefix + resnet_block
UpperCAmelCase = re_decoder_block_resnet.sub(lowerCamelCase_ , lowerCamelCase_ )
elif re_decoder_block_proj_in.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_decoder_block_proj_in.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = F'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'
UpperCAmelCase = re_decoder_block_proj_in.sub(lowerCamelCase_ , lowerCamelCase_ )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_prior_cond_conv_out.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2
UpperCAmelCase = F'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'
UpperCAmelCase = re_prior_cond_conv_out.sub(lowerCamelCase_ , lowerCamelCase_ )
elif re_prior_cond_resnet.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_prior_cond_resnet.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2
UpperCAmelCase = {"1": 1, "3": 2}[groups[-2]]
UpperCAmelCase = F'conditioner_blocks.upsampler.upsample_block.{block_index}.'
UpperCAmelCase = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
UpperCAmelCase = prefix + resnet_block
UpperCAmelCase = re_prior_cond_resnet.sub(lowerCamelCase_ , lowerCamelCase_ )
elif re_prior_cond_proj_in.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_prior_cond_proj_in.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = F'conditioner_blocks.upsampler.proj_in.{groups[-1]}'
UpperCAmelCase = re_prior_cond_proj_in.sub(lowerCamelCase_ , lowerCamelCase_ )
# keep original key
else:
UpperCAmelCase = original_key
UpperCAmelCase = replace_key(lowerCamelCase_ )
if F'{key_prefix}.{key}' not in model_state_dict or key is None:
print(F'failed converting {original_key} to {key}, does not match' )
# handle missmatched shape
elif value.shape != model_state_dict[F'{key_prefix}.{key}'].shape:
UpperCAmelCase = model_state_dict[F'{key_prefix}.{key}']
print(F'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' )
UpperCAmelCase = original_key
UpperCAmelCase = original_key
UpperCAmelCase = value
return new_dict
@torch.no_grad()
def lowerCamelCase_(lowerCamelCase_=None , lowerCamelCase_=None ) -> str:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ):
UpperCAmelCase = requests.get(F'{PREFIX}{file}' , allow_redirects=lowerCamelCase_ )
os.makedirs(F'{pytorch_dump_folder_path}/' , exist_ok=lowerCamelCase_ )
open(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , "wb" ).write(r.content )
UpperCAmelCase = MODEL_MAPPING[model_name.split("/" )[-1]]
UpperCAmelCase = JukeboxConfig.from_pretrained(lowerCamelCase_ )
UpperCAmelCase = JukeboxModel(lowerCamelCase_ )
UpperCAmelCase = []
UpperCAmelCase = {}
for i, dict_name in enumerate(lowerCamelCase_ ):
UpperCAmelCase = torch.load(F'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["model"]
UpperCAmelCase = {}
for k in old_dic.keys():
if k.endswith(".b" ):
UpperCAmelCase = old_dic[k]
elif k.endswith(".w" ):
UpperCAmelCase = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
UpperCAmelCase = old_dic[k]
else:
UpperCAmelCase = old_dic[k]
UpperCAmelCase = "vqvae" if i == 0 else F'priors.{3 - i}'
UpperCAmelCase = fix_jukebox_keys(lowerCamelCase_ , model.state_dict() , lowerCamelCase_ , lowerCamelCase_ )
weight_dict.append(lowerCamelCase_ )
UpperCAmelCase = weight_dict.pop(0 )
model.vqvae.load_state_dict(lowerCamelCase_ )
for i in range(len(lowerCamelCase_ ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ )
with open(F'{pytorch_dump_folder_path}/mapping.json' , "w" ) as txtfile:
json.dump(lowerCamelCase_ , lowerCamelCase_ )
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCamelCase_ )
return weight_dict
if __name__ == "__main__":
__lowerCamelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="jukebox-5b-lyrics",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="jukebox-5b-lyrics-converted",
type=str,
help="Path to the output PyTorch model directory.",
)
__lowerCamelCase : Optional[int] = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 323 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = RoCBertTokenizer
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = filter_non_english
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
super().setUp()
lowerCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd']
lowerCamelCase_ = {}
lowerCamelCase_ = {}
for i, value in enumerate(SCREAMING_SNAKE_CASE_ ):
lowerCamelCase_ = i
lowerCamelCase_ = i
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ )
with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> str:
'''simple docstring'''
lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
lowerCamelCase_ = tokenizer.tokenize('你好[SEP]你是谁' )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['你', '好', '[SEP]', '你', '是', '谁'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] )
def UpperCamelCase( self ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] )
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] )
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def UpperCamelCase( self ) -> int:
'''simple docstring'''
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] )
def UpperCamelCase( self ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] )
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] )
def UpperCamelCase( self ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=['[UNK]'] )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] )
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']
lowerCamelCase_ = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE_ ):
lowerCamelCase_ = i
lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] )
self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] )
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
self.assertTrue(_is_whitespace(' ' ) )
self.assertTrue(_is_whitespace('\t' ) )
self.assertTrue(_is_whitespace('\r' ) )
self.assertTrue(_is_whitespace('\n' ) )
self.assertTrue(_is_whitespace('\u00A0' ) )
self.assertFalse(_is_whitespace('A' ) )
self.assertFalse(_is_whitespace('-' ) )
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
self.assertTrue(_is_control('\u0005' ) )
self.assertFalse(_is_control('A' ) )
self.assertFalse(_is_control(' ' ) )
self.assertFalse(_is_control('\t' ) )
self.assertFalse(_is_control('\r' ) )
def UpperCamelCase( self ) -> List[str]:
'''simple docstring'''
self.assertTrue(_is_punctuation('-' ) )
self.assertTrue(_is_punctuation('$' ) )
self.assertTrue(_is_punctuation('`' ) )
self.assertTrue(_is_punctuation('.' ) )
self.assertFalse(_is_punctuation('A' ) )
self.assertFalse(_is_punctuation(' ' ) )
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] )
if self.test_rust_tokenizer:
lowerCamelCase_ = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] )
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
lowerCamelCase_ = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , )
lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , 'do_lower_case' ) else False
lowerCamelCase_ = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), 'A'),
((1, 2), ','),
((3, 5), 'na'),
((5, 6), '##ï'),
((6, 8), '##ve'),
((9, 15), tokenizer_r.mask_token),
((16, 21), 'Allen'),
((21, 23), '##NL'),
((23, 24), '##P'),
((25, 33), 'sentence'),
((33, 34), '.'),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), 'a'),
((1, 2), ','),
((3, 8), 'naive'),
((9, 15), tokenizer_r.mask_token),
((16, 21), 'allen'),
((21, 23), '##nl'),
((23, 24), '##p'),
((25, 33), 'sentence'),
((33, 34), '.'),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] )
def UpperCamelCase( self ) -> str:
'''simple docstring'''
lowerCamelCase_ = ['的', '人', '有']
lowerCamelCase_ = ''.join(SCREAMING_SNAKE_CASE_ )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowerCamelCase_ = True
lowerCamelCase_ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = False
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
# it is expected that only the first Chinese character is not preceded by "##".
lowerCamelCase_ = [
f'''##{token}''' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_ )
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def UpperCamelCase( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
lowerCamelCase_ = tokenizer.encode('你好' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.encode('你是谁' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def UpperCamelCase( self ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
lowerCamelCase_ = '你好,你是谁'
lowerCamelCase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.prepare_for_model(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 384 |
'''simple docstring'''
from __future__ import annotations
from typing import Generic, TypeVar
A_ = TypeVar("T")
class UpperCAmelCase ( Generic[T] ):
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE_ ) -> None:
'''simple docstring'''
lowerCamelCase_ = data
lowerCamelCase_ = self
lowerCamelCase_ = 0
class UpperCAmelCase ( Generic[T] ):
'''simple docstring'''
def __init__( self ) -> None:
'''simple docstring'''
lowerCamelCase_ = {}
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> None:
'''simple docstring'''
lowerCamelCase_ = DisjointSetTreeNode(SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> DisjointSetTreeNode[T]:
'''simple docstring'''
lowerCamelCase_ = self.map[data]
if elem_ref != elem_ref.parent:
lowerCamelCase_ = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
'''simple docstring'''
if nodea.rank > nodea.rank:
lowerCamelCase_ = nodea
else:
lowerCamelCase_ = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
'''simple docstring'''
self.link(self.find_set(SCREAMING_SNAKE_CASE_ ) , self.find_set(SCREAMING_SNAKE_CASE_ ) )
class UpperCAmelCase ( Generic[T] ):
'''simple docstring'''
def __init__( self ) -> None:
'''simple docstring'''
lowerCamelCase_ = {}
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> None:
'''simple docstring'''
if node not in self.connections:
lowerCamelCase_ = {}
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
'''simple docstring'''
self.add_node(SCREAMING_SNAKE_CASE_ )
self.add_node(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = weight
lowerCamelCase_ = weight
def UpperCamelCase( self ) -> GraphUndirectedWeighted[T]:
'''simple docstring'''
lowerCamelCase_ = []
lowerCamelCase_ = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda SCREAMING_SNAKE_CASE_ : x[2] )
# creating the disjoint set
lowerCamelCase_ = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(SCREAMING_SNAKE_CASE_ )
# MST generation
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = edges[index]
index += 1
lowerCamelCase_ = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
disjoint_set.union(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return graph
| 384 | 1 |
'''simple docstring'''
import argparse
import json
import os
import re
import torch
from transformers import BloomConfig, BloomModel
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
from transformers.utils import logging
logging.set_verbosity_info()
a_ = [
'word_embeddings_layernorm.weight',
'word_embeddings_layernorm.bias',
'input_layernorm.weight',
'input_layernorm.bias',
'post_attention_layernorm.weight',
'post_attention_layernorm.bias',
'self_attention.dense.bias',
'mlp.dense_4h_to_h.bias',
'ln_f.weight',
'ln_f.bias',
]
a_ = [
'mlp.dense_4h_to_h.weight',
'self_attention.dense.weight',
]
def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Optional[Any]:
'''simple docstring'''
a_ = {
"word_embeddings.weight": "word_embeddings.weight",
"word_embeddings.norm.weight": "word_embeddings_layernorm.weight",
"word_embeddings.norm.bias": "word_embeddings_layernorm.bias",
"weight": "ln_f.weight",
"bias": "ln_f.bias",
}
if key in layer_rename_map:
return layer_rename_map[key]
# Handle transformer blocks
a_ = int(re.match(r".*layer_(\d*).*" ,lowercase__ )[1] )
layer_number -= 3
return F"""h.{layer_number}.""" + key
def __UpperCAmelCase (lowercase__ ) -> List[str]:
'''simple docstring'''
if dtype == torch.bool:
return 1 / 8
a_ = re.search(r"[^\d](\d+)$" ,str(lowercase__ ) )
if bit_search is None:
raise ValueError(F"""`dtype` is not a valid dtype: {dtype}.""" )
a_ = int(bit_search.groups()[0] )
return bit_size // 8
def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[Any]:
'''simple docstring'''
if bloom_config_file == "":
a_ = BloomConfig()
else:
a_ = BloomConfig.from_json_file(lowercase__ )
if shard_model:
a_ = os.listdir(lowercase__ )
a_ = sorted(filter(lambda lowercase__ : s.startswith("layer" ) and "model_00" in s ,lowercase__ ) )
a_ = {"weight_map": {}, "metadata": {}}
a_ = 0
a_ = None
a_ = BloomConfig()
for j, file in enumerate(lowercase__ ):
print("Processing file: {}".format(lowercase__ ) )
a_ = None
for i in range(lowercase__ ):
# load all TP files
a_ = file.replace("model_00" ,F"""model_0{i}""" )
a_ = torch.load(os.path.join(lowercase__ ,lowercase__ ) ,map_location="cpu" )
# Rename keys in the transformers names
a_ = list(temp.keys() )
for key in keys:
a_ = temp.pop(lowercase__ )
if tensors is None:
a_ = temp
else:
for key in tensors.keys():
if any(key.endswith(lowercase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
a_ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
a_ = torch.cat([tensors[key], temp[key]] ,dim=lowercase__ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(lowercase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
a_ = tensors[key] / pretraining_tp
torch.save(
lowercase__ ,os.path.join(
lowercase__ ,"pytorch_model_{}-of-{}.bin".format(str(j + 1 ).zfill(5 ) ,str(len(lowercase__ ) ).zfill(5 ) ) ,) ,)
for key in tensors.keys():
a_ = tensors[key]
total_size += value.numel() * get_dtype_size(value.dtype )
if key not in index_dict["weight_map"]:
a_ = "pytorch_model_{}-of-{}.bin".format(
str(j + 1 ).zfill(5 ) ,str(len(lowercase__ ) ).zfill(5 ) )
a_ = BloomConfig()
a_ = pytorch_dump_folder_path + "/" + CONFIG_NAME
a_ = total_size
with open(lowercase__ ,"w" ,encoding="utf-8" ) as f:
f.write(config.to_json_string() )
with open(os.path.join(lowercase__ ,WEIGHTS_NAME + ".index.json" ) ,"w" ,encoding="utf-8" ) as f:
a_ = json.dumps(lowercase__ ,indent=2 ,sort_keys=lowercase__ ) + "\n"
f.write(lowercase__ )
else:
a_ = BloomModel(lowercase__ )
a_ = os.listdir(lowercase__ )
a_ = sorted(filter(lambda lowercase__ : s.startswith("layer" ) and "model_00" in s ,lowercase__ ) )
a_ = None
for i, file in enumerate(lowercase__ ):
a_ = None
for i in range(lowercase__ ):
# load all TP files
a_ = file.replace("model_00" ,F"""model_0{i}""" )
a_ = torch.load(os.path.join(lowercase__ ,lowercase__ ) ,map_location="cpu" )
# Rename keys in the transformers names
a_ = list(temp.keys() )
for key in keys:
a_ = temp.pop(lowercase__ )
if tensors is None:
a_ = temp
else:
for key in tensors.keys():
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
if any(key.endswith(lowercase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
a_ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
a_ = torch.cat([tensors[key], temp[key]] ,dim=lowercase__ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(lowercase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
a_ = tensors[key] / pretraining_tp
a_ = model.load_state_dict(lowercase__ ,strict=lowercase__ )
assert not other_keys.unexpected_keys, F"""The keys {other_keys.unexpected_keys} are unexpected"""
if missing_keys is None:
a_ = set(other_keys.missing_keys )
else:
a_ = missing_keys.intersection(set(other_keys.missing_keys ) )
assert not missing_keys, F"""The keys {missing_keys} are missing"""
# Save pytorch-model
os.makedirs(lowercase__ ,exist_ok=lowercase__ )
a_ = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
a_ = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(F"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" )
if config.torch_dtype is not None:
a_ = model.to(config.torch_dtype )
torch.save(model.state_dict() ,lowercase__ )
print(F"""Save configuration file to {pytorch_config_dump_path}""" )
with open(lowercase__ ,"w" ,encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--bloom_checkpoint_path',
default=None,
type=str,
required=True,
help='Path to the Megatron-LM checkpoint path.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--bloom_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--shard_model',
action='store_true',
help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint',
)
parser.add_argument(
'--pretraining_tp',
default=4,
type=int,
help='Pretraining TP rank that has been used when training the model in Megatron-LM \n',
)
a_ = parser.parse_args()
convert_bloom_checkpoint_to_pytorch(
args.bloom_checkpoint_path,
args.bloom_config_file,
args.pytorch_dump_folder_path,
args.shard_model,
args.pretraining_tp,
)
| 685 |
'''simple docstring'''
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a_ = {
'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'],
'tokenization_cpmant': ['CpmAntTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST',
'CpmAntForCausalLM',
'CpmAntModel',
'CpmAntPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 685 | 1 |
"""simple docstring"""
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_a = get_tests_dir("""fixtures/spiece.model""")
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ):
lowercase__ = DebertaVaTokenizer
lowercase__ = DebertaVaTokenizerFast
lowercase__ = True
lowercase__ = True
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = DebertaVaTokenizer(__a , unk_token='''<unk>''')
tokenizer.save_pretrained(self.tmpdirname)
def UpperCAmelCase ( self , __a) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = '''this is a test'''
_UpperCamelCase = '''this is a test'''
return input_text, output_text
def UpperCAmelCase ( self) -> str:
'''simple docstring'''
_UpperCamelCase = '''<pad>'''
_UpperCamelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a) , __a)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a) , __a)
def UpperCAmelCase ( self) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '''<pad>''')
self.assertEqual(vocab_keys[1] , '''<unk>''')
self.assertEqual(vocab_keys[-1] , '''[PAD]''')
self.assertEqual(len(__a) , 3_00_01)
def UpperCAmelCase ( self) -> Any:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00)
def UpperCAmelCase ( self) -> Dict:
'''simple docstring'''
# fmt: off
_UpperCamelCase = ''' \tHeLLo!how \n Are yoU? '''
_UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?''']
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(__a , do_lower_case=__a)
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a))
self.assertListEqual(__a , __a)
_UpperCamelCase = DebertaVaTokenizerFast(__a , do_lower_case=__a)
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a))
self.assertListEqual(__a , __a)
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''')
def UpperCAmelCase ( self) -> Any:
'''simple docstring'''
pass
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''')
def UpperCAmelCase ( self) -> Dict:
'''simple docstring'''
pass
def UpperCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(__a , split_by_punct=__a)
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a))
self.assertListEqual(__a , __a)
_UpperCamelCase = DebertaVaTokenizerFast(__a , split_by_punct=__a)
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a))
self.assertListEqual(__a , __a)
def UpperCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(__a , do_lower_case=__a , split_by_punct=__a)
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a))
self.assertListEqual(__a , __a)
_UpperCamelCase = DebertaVaTokenizerFast(__a , do_lower_case=__a , split_by_punct=__a)
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a))
self.assertListEqual(__a , __a)
def UpperCAmelCase ( self) -> List[Any]:
'''simple docstring'''
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(__a , do_lower_case=__a , split_by_punct=__a)
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a))
self.assertListEqual(__a , __a)
_UpperCamelCase = DebertaVaTokenizerFast(__a , do_lower_case=__a , split_by_punct=__a)
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a))
self.assertListEqual(__a , __a)
def UpperCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(__a , do_lower_case=__a , split_by_punct=__a)
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a))
self.assertListEqual(__a , __a)
_UpperCamelCase = DebertaVaTokenizerFast(__a , do_lower_case=__a , split_by_punct=__a)
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a))
self.assertListEqual(__a , __a)
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
# fmt: off
_UpperCamelCase = ''' \tHeLLo!how \n Are yoU? '''
_UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?''']
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(__a , do_lower_case=__a , split_by_punct=__a)
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a))
self.assertListEqual(__a , __a)
_UpperCamelCase = DebertaVaTokenizerFast(__a , do_lower_case=__a , split_by_punct=__a)
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a))
self.assertListEqual(__a , __a)
def UpperCAmelCase ( self) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_tokenizer()
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a , add_special_tokens=__a))
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a , add_special_tokens=__a))
self.assertListEqual(__a , __a)
_UpperCamelCase = tokenizer.encode(__a , add_special_tokens=__a)
_UpperCamelCase = rust_tokenizer.encode(__a , add_special_tokens=__a)
self.assertListEqual(__a , __a)
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = tokenizer.encode(__a)
_UpperCamelCase = rust_tokenizer.encode(__a)
self.assertListEqual(__a , __a)
def UpperCAmelCase ( self) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = '''This is a test'''
_UpperCamelCase = [13, 1, 43_98, 25, 21, 12_89]
_UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test''']
_UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test''']
_UpperCamelCase = DebertaVaTokenizer(__a , keep_accents=__a)
_UpperCamelCase = DebertaVaTokenizerFast(__a , keep_accents=__a)
_UpperCamelCase = tokenizer.encode(__a , add_special_tokens=__a)
self.assertListEqual(__a , __a)
_UpperCamelCase = tokenizer.tokenize(__a)
self.assertListEqual(__a , __a)
_UpperCamelCase = tokenizer.convert_ids_to_tokens(__a)
self.assertListEqual(__a , __a)
_UpperCamelCase = rust_tokenizer.encode(__a , add_special_tokens=__a)
self.assertListEqual(__a , __a)
_UpperCamelCase = rust_tokenizer.tokenize(__a)
self.assertListEqual(__a , __a)
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(__a)
self.assertListEqual(__a , __a)
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9]
_UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ]
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
_UpperCamelCase = tokenizer.encode(__a , add_special_tokens=__a)
self.assertListEqual(__a , __a)
_UpperCamelCase = tokenizer.tokenize(__a)
self.assertListEqual(__a , __a)
_UpperCamelCase = tokenizer.convert_ids_to_tokens(__a)
self.assertListEqual(__a , __a)
_UpperCamelCase = rust_tokenizer.encode(__a , add_special_tokens=__a)
self.assertListEqual(__a , __a)
_UpperCamelCase = rust_tokenizer.tokenize(__a)
self.assertListEqual(__a , __a)
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(__a)
self.assertListEqual(__a , __a)
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
_UpperCamelCase = DebertaVaTokenizer(__a)
_UpperCamelCase = tokenizer.encode('''sequence builders''')
_UpperCamelCase = tokenizer.encode('''multi-sequence build''')
_UpperCamelCase = tokenizer.build_inputs_with_special_tokens(__a)
_UpperCamelCase = tokenizer.build_inputs_with_special_tokens(__a , __a)
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __a)
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __a , )
@slow
def UpperCAmelCase ( self) -> Optional[Any]:
'''simple docstring'''
# fmt: off
_UpperCamelCase = {'''input_ids''': [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__a , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
| 78 |
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ASTConfig
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_torchaudio_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ASTForAudioClassification, ASTModel
from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_torchaudio_available():
import torchaudio
from transformers import ASTFeatureExtractor
class _UpperCAmelCase:
def __init__( self , __a , __a=13 , __a=2 , __a=24 , __a=16 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=None , __a=2 , __a=2 , ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = patch_size
_UpperCamelCase = max_length
_UpperCamelCase = num_mel_bins
_UpperCamelCase = is_training
_UpperCamelCase = use_labels
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = scope
_UpperCamelCase = frequency_stride
_UpperCamelCase = time_stride
# in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
_UpperCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1
_UpperCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1
_UpperCamelCase = frequency_out_dimension * time_out_dimension
_UpperCamelCase = num_patches + 2
def UpperCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins])
_UpperCamelCase = None
if self.use_labels:
_UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size)
_UpperCamelCase = self.get_config()
return config, input_values, labels
def UpperCAmelCase ( self) -> Optional[int]:
'''simple docstring'''
return ASTConfig(
patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , )
def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ASTModel(config=__a)
model.to(__a)
model.eval()
_UpperCamelCase = model(__a)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = config_and_inputs
_UpperCamelCase = {'''input_values''': input_values}
return config, inputs_dict
@require_torch
class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
lowercase__ = (
(
ASTModel,
ASTForAudioClassification,
)
if is_torch_available()
else ()
)
lowercase__ = (
{'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCAmelCase ( self , __a , __a , __a , __a , __a) -> Optional[Any]:
'''simple docstring'''
if pipeline_test_casse_name == "AudioClassificationPipelineTests":
return True
return False
def UpperCAmelCase ( self) -> Any:
'''simple docstring'''
_UpperCamelCase = ASTModelTester(self)
_UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37)
def UpperCAmelCase ( self) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''AST does not use inputs_embeds''')
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
pass
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = model_class(__a)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
_UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear))
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = model_class(__a)
_UpperCamelCase = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCamelCase = [*signature.parameters.keys()]
_UpperCamelCase = ['''input_values''']
self.assertListEqual(arg_names[:1] , __a)
def UpperCAmelCase ( self) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a)
@slow
def UpperCAmelCase ( self) -> Optional[Any]:
'''simple docstring'''
for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = ASTModel.from_pretrained(__a)
self.assertIsNotNone(__a)
def lowerCamelCase__ ( ) -> List[str]:
"""simple docstring"""
_UpperCamelCase = hf_hub_download(
repo_id='''nielsr/audio-spectogram-transformer-checkpoint''', filename='''sample_audio.flac''', repo_type='''dataset''' )
_UpperCamelCase , _UpperCamelCase = torchaudio.load(__snake_case )
return audio, sampling_rate
@require_torch
@require_torchaudio
class _UpperCAmelCase( unittest.TestCase ):
@cached_property
def UpperCAmelCase ( self) -> Dict:
'''simple docstring'''
return (
ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''')
if is_torchaudio_available()
else None
)
@slow
def UpperCAmelCase ( self) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.default_feature_extractor
_UpperCamelCase = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''').to(__a)
_UpperCamelCase = self.default_feature_extractor
_UpperCamelCase , _UpperCamelCase = prepare_audio()
_UpperCamelCase = audio.squeeze().numpy()
_UpperCamelCase = feature_extractor(__a , sampling_rate=__a , return_tensors='''pt''').to(__a)
# forward pass
with torch.no_grad():
_UpperCamelCase = model(**__a)
# verify the logits
_UpperCamelCase = torch.Size((1, 5_27))
self.assertEqual(outputs.logits.shape , __a)
_UpperCamelCase = torch.tensor([-0.8760, -7.0042, -8.6602]).to(__a)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4))
| 78 | 1 |
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ = 3 ) -> Tuple:
'''simple docstring'''
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise TypeError('''number of qubits must be a integer.''' )
if number_of_qubits <= 0:
raise ValueError('''number of qubits must be > 0.''' )
if math.floor(UpperCamelCase__ ) != number_of_qubits:
raise ValueError('''number of qubits must be exact integer.''' )
if number_of_qubits > 10:
raise ValueError('''number of qubits too large to simulate(>10).''' )
UpperCAmelCase = QuantumRegister(UpperCamelCase__ , '''qr''' )
UpperCAmelCase = ClassicalRegister(UpperCamelCase__ , '''cr''' )
UpperCAmelCase = QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ )
UpperCAmelCase = number_of_qubits
for i in range(UpperCamelCase__ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(UpperCamelCase__ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase__ , UpperCamelCase__ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(UpperCamelCase__ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(UpperCamelCase__ , UpperCamelCase__ )
# simulate with 10000 shots
UpperCAmelCase = Aer.get_backend('''qasm_simulator''' )
UpperCAmelCase = execute(UpperCamelCase__ , UpperCamelCase__ , shots=1_0000 )
return job.result().get_counts(UpperCamelCase__ )
if __name__ == "__main__":
print(
F'Total count for quantum fourier transform state is: \\n {quantum_fourier_transform(3)}'
)
| 130 | import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowercase: int = logging.get_logger(__name__)
_lowercase: Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_lowercase: Dict = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
}
}
_lowercase: List[Any] = {
'''camembert-base''': 5_1_2,
}
_lowercase: Dict = '''▁'''
class lowerCamelCase__ ( UpperCAmelCase ):
UpperCamelCase__ =VOCAB_FILES_NAMES
UpperCamelCase__ =PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase__ =["input_ids", "attention_mask"]
def __init__( self : str , lowercase__ : int , lowercase__ : Tuple="<s>" , lowercase__ : Optional[int]="</s>" , lowercase__ : Optional[Any]="</s>" , lowercase__ : Any="<s>" , lowercase__ : Union[str, Any]="<unk>" , lowercase__ : Union[str, Any]="<pad>" , lowercase__ : Optional[int]="<mask>" , lowercase__ : str=["<s>NOTUSED", "</s>NOTUSED"] , lowercase__ : Optional[Dict[str, Any]] = None , **lowercase__ : Union[str, Any] , ):
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token
_lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , additional_special_tokens=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , )
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowercase__ ) )
_lowerCAmelCase = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
_lowerCAmelCase = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3}
_lowerCAmelCase = len(self.fairseq_tokens_to_ids )
_lowerCAmelCase = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
_lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
_lowerCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None , lowercase__ : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowercase__ )) + [1]
return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) + [1]
def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None ):
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
_lowerCAmelCase = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : str ):
return self.sp_model.encode(lowercase__ , out_type=lowercase__ )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Optional[Any] ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(lowercase__ ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(lowercase__ )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Tuple ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Optional[int] ):
_lowerCAmelCase = []
_lowerCAmelCase = ''
_lowerCAmelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowercase__ ) + token
_lowerCAmelCase = True
_lowerCAmelCase = []
else:
current_sub_tokens.append(lowercase__ )
_lowerCAmelCase = False
out_string += self.sp_model.decode(lowercase__ )
return out_string.strip()
def __getstate__( self : Any ):
_lowerCAmelCase = self.__dict__.copy()
_lowerCAmelCase = None
return state
def __setstate__( self : Optional[Any] , lowercase__ : Union[str, Any] ):
_lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
_lowerCAmelCase = {}
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : str , lowercase__ : Optional[str] = None ):
if not os.path.isdir(lowercase__ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
_lowerCAmelCase = os.path.join(
lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase__ , 'wb' ) as fi:
_lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(lowercase__ )
return (out_vocab_file,)
| 192 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase = logging.get_logger(__name__)
__lowerCamelCase = {
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class UpperCamelCase__( __A ):
lowerCAmelCase__ : str = 'falcon'
lowerCAmelCase__ : Union[str, Any] = ['past_key_values']
def __init__( self ,__UpperCAmelCase=6_50_24 ,__UpperCAmelCase=45_44 ,__UpperCAmelCase=32 ,__UpperCAmelCase=71 ,__UpperCAmelCase=1e-5 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=True ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=None ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase=11 ,__UpperCAmelCase=11 ,**__UpperCAmelCase ,) -> int:
A__ = vocab_size
# Backward compatibility with n_embed kwarg
A__ = kwargs.pop('n_embed' ,__UpperCAmelCase )
A__ = hidden_size if n_embed is None else n_embed
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = layer_norm_epsilon
A__ = initializer_range
A__ = use_cache
A__ = hidden_dropout
A__ = attention_dropout
A__ = bos_token_id
A__ = eos_token_id
A__ = num_attention_heads if num_kv_heads is None else num_kv_heads
A__ = alibi
A__ = new_decoder_architecture
A__ = multi_query # Ignored when new_decoder_architecture is True
A__ = parallel_attn
A__ = bias
super().__init__(bos_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase )
@property
def snake_case__ ( self ) -> Tuple:
return self.hidden_size // self.num_attention_heads
@property
def snake_case__ ( self ) -> int:
return not self.alibi
| 705 | """simple docstring"""
import enum
import warnings
from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING
from ..utils import add_end_docstrings, is_tf_available
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
class UpperCamelCase__( enum.Enum ):
lowerCAmelCase__ : Optional[Any] = 0
lowerCAmelCase__ : Optional[int] = 1
lowerCAmelCase__ : List[Any] = 2
@add_end_docstrings(__A )
class UpperCamelCase__( __A ):
lowerCAmelCase__ : Optional[Any] = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n '
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase )
self.check_model_type(
TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING )
if "prefix" not in self._preprocess_params:
# This is very specific. The logic is quite complex and needs to be done
# as a "default".
# It also defines both some preprocess_kwargs and generate_kwargs
# which is why we cannot put them in their respective methods.
A__ = None
if self.model.config.prefix is not None:
A__ = self.model.config.prefix
if prefix is None and self.model.__class__.__name__ in [
"XLNetLMHeadModel",
"TransfoXLLMHeadModel",
"TFXLNetLMHeadModel",
"TFTransfoXLLMHeadModel",
]:
# For XLNet and TransformerXL we add an article to the prompt to give more state to the model.
A__ = self.XL_PREFIX
if prefix is not None:
# Recalculate some generate_kwargs linked to prefix.
A__ , A__ , A__ = self._sanitize_parameters(prefix=__UpperCAmelCase ,**self._forward_params )
A__ = {**self._preprocess_params, **preprocess_params}
A__ = {**self._forward_params, **forward_params}
def snake_case__ ( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Dict:
A__ = {}
if prefix is not None:
A__ = prefix
if prefix:
A__ = self.tokenizer(
__UpperCAmelCase ,padding=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=self.framework )
A__ = prefix_inputs['input_ids'].shape[-1]
if handle_long_generation is not None:
if handle_long_generation not in {"hole"}:
raise ValueError(
f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected'''
' [None, \'hole\']' )
A__ = handle_long_generation
preprocess_params.update(__UpperCAmelCase )
A__ = generate_kwargs
A__ = {}
if return_full_text is not None and return_type is None:
if return_text is not None:
raise ValueError('`return_text` is mutually exclusive with `return_full_text`' )
if return_tensors is not None:
raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' )
A__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
if return_tensors is not None and return_type is None:
if return_text is not None:
raise ValueError('`return_text` is mutually exclusive with `return_tensors`' )
A__ = ReturnType.TENSORS
if return_type is not None:
A__ = return_type
if clean_up_tokenization_spaces is not None:
A__ = clean_up_tokenization_spaces
if stop_sequence is not None:
A__ = self.tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase )
if len(__UpperCAmelCase ) > 1:
warnings.warn(
'Stopping on a multiple token sequence is not yet supported on transformers. The first token of'
' the stop sequence will be used as the stop sequence string in the interim.' )
A__ = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def snake_case__ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
# Parse arguments
if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
kwargs.update({'add_space_before_punct_symbol': True} )
return super()._parse_and_tokenize(*__UpperCAmelCase ,**__UpperCAmelCase )
def __call__( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase )
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase="" ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> Dict:
A__ = self.tokenizer(
prefix + prompt_text ,padding=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=self.framework )
A__ = prompt_text
if handle_long_generation == "hole":
A__ = inputs['input_ids'].shape[-1]
if "max_new_tokens" in generate_kwargs:
A__ = generate_kwargs['max_new_tokens']
else:
A__ = generate_kwargs.get('max_length' ,self.model.config.max_length ) - cur_len
if new_tokens < 0:
raise ValueError('We cannot infer how many new tokens are expected' )
if cur_len + new_tokens > self.tokenizer.model_max_length:
A__ = self.tokenizer.model_max_length - new_tokens
if keep_length <= 0:
raise ValueError(
'We cannot use `hole` to handle this generation the number of desired tokens exceeds the'
' models max length' )
A__ = inputs['input_ids'][:, -keep_length:]
if "attention_mask" in inputs:
A__ = inputs['attention_mask'][:, -keep_length:]
return inputs
def snake_case__ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
A__ = model_inputs['input_ids']
A__ = model_inputs.get('attention_mask' ,__UpperCAmelCase )
# Allow empty prompts
if input_ids.shape[1] == 0:
A__ = None
A__ = None
A__ = 1
else:
A__ = input_ids.shape[0]
A__ = model_inputs.pop('prompt_text' )
# If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
# generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
A__ = generate_kwargs.pop('prefix_length' ,0 )
if prefix_length > 0:
A__ = 'max_new_tokens' in generate_kwargs or (
'generation_config' in generate_kwargs
and generate_kwargs['generation_config'].max_new_tokens is not None
)
if not has_max_new_tokens:
A__ = generate_kwargs.get('max_length' ) or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
A__ = 'min_new_tokens' in generate_kwargs or (
'generation_config' in generate_kwargs
and generate_kwargs['generation_config'].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
A__ = self.model.generate(input_ids=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,**__UpperCAmelCase )
A__ = generated_sequence.shape[0]
if self.framework == "pt":
A__ = generated_sequence.reshape(__UpperCAmelCase ,out_b // in_b ,*generated_sequence.shape[1:] )
elif self.framework == "tf":
A__ = tf.reshape(__UpperCAmelCase ,(in_b, out_b // in_b, *generated_sequence.shape[1:]) )
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=ReturnType.FULL_TEXT ,__UpperCAmelCase=True ) -> str:
A__ = model_outputs['generated_sequence'][0]
A__ = model_outputs['input_ids']
A__ = model_outputs['prompt_text']
A__ = generated_sequence.numpy().tolist()
A__ = []
for sequence in generated_sequence:
if return_type == ReturnType.TENSORS:
A__ = {'generated_token_ids': sequence}
elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}:
# Decode text
A__ = self.tokenizer.decode(
__UpperCAmelCase ,skip_special_tokens=__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ,)
# Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used
if input_ids is None:
A__ = 0
else:
A__ = len(
self.tokenizer.decode(
input_ids[0] ,skip_special_tokens=__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ,) )
if return_type == ReturnType.FULL_TEXT:
A__ = prompt_text + text[prompt_length:]
else:
A__ = text[prompt_length:]
A__ = {'generated_text': all_text}
records.append(__UpperCAmelCase )
return records
| 536 | 0 |
'''simple docstring'''
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCAmelCase__ :
def __init__( self : Optional[Any],__A : List[str],__A : Optional[int]=1_3,__A : Optional[int]=3_0,__A : Union[str, Any]=2,__A : Optional[int]=3,__A : int=True,__A : Union[str, Any]=True,__A : List[Any]=3_2,__A : Optional[Any]=5,__A : str=4,__A : List[str]=3_7,__A : List[str]="gelu",__A : Optional[Any]=0.1,__A : str=0.1,__A : Any=1_0,__A : Union[str, Any]=0.02,__A : List[str]=3,__A : int=0.6,__A : str=None,):
_lowerCamelCase : Any = parent
_lowerCamelCase : int = batch_size
_lowerCamelCase : Optional[Any] = image_size
_lowerCamelCase : Any = patch_size
_lowerCamelCase : List[Any] = num_channels
_lowerCamelCase : Optional[int] = is_training
_lowerCamelCase : List[str] = use_labels
_lowerCamelCase : Any = hidden_size
_lowerCamelCase : Union[str, Any] = num_hidden_layers
_lowerCamelCase : Union[str, Any] = num_attention_heads
_lowerCamelCase : List[str] = intermediate_size
_lowerCamelCase : Union[str, Any] = hidden_act
_lowerCamelCase : Any = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Any = type_sequence_label_size
_lowerCamelCase : int = initializer_range
_lowerCamelCase : Optional[int] = mask_ratio
_lowerCamelCase : Tuple = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
_lowerCamelCase : Optional[Any] = (image_size // patch_size) ** 2
_lowerCamelCase : Tuple = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def lowerCamelCase_ ( self : Optional[int] ):
_lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCamelCase : Optional[Any] = None
if self.use_labels:
_lowerCamelCase : List[Any] = ids_tensor([self.batch_size],self.type_sequence_label_size )
_lowerCamelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def lowerCamelCase_ ( self : List[Any] ):
return ViTMAEConfig(
image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=__lowerCamelCase,initializer_range=self.initializer_range,mask_ratio=self.mask_ratio,)
def lowerCamelCase_ ( self : Dict,__A : Dict,__A : Union[str, Any],__A : str ):
_lowerCamelCase : str = ViTMAEModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_lowerCamelCase : str = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase_ ( self : Optional[int],__A : Dict,__A : Dict,__A : Optional[int] ):
_lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_lowerCamelCase : Optional[int] = model(__lowerCamelCase )
_lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2
_lowerCamelCase : str = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
_lowerCamelCase : Optional[int] = 1
_lowerCamelCase : Optional[Any] = ViTMAEForPreTraining(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCamelCase : List[str] = model(__lowerCamelCase )
_lowerCamelCase : Optional[Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape,(self.batch_size, num_patches, expected_num_channels) )
def lowerCamelCase_ ( self : List[Any] ):
_lowerCamelCase : int = self.prepare_config_and_inputs()
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = config_and_inputs
_lowerCamelCase : int = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase__ ( A__ , A__ , unittest.TestCase ):
lowerCAmelCase_ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
lowerCAmelCase_ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {}
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowerCamelCase_ ( self : Optional[int] ):
_lowerCamelCase : str = ViTMAEModelTester(self )
_lowerCamelCase : Union[str, Any] = ConfigTester(self,config_class=__lowerCamelCase,has_text_modality=__lowerCamelCase,hidden_size=3_7 )
def lowerCamelCase_ ( self : List[Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="ViTMAE does not use inputs_embeds" )
def lowerCamelCase_ ( self : Optional[int] ):
pass
def lowerCamelCase_ ( self : List[str] ):
_lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings(),(nn.Module) )
_lowerCamelCase : List[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCamelCase,nn.Linear ) )
def lowerCamelCase_ ( self : List[str] ):
_lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : List[str] = model_class(__lowerCamelCase )
_lowerCamelCase : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase : str = [*signature.parameters.keys()]
_lowerCamelCase : Union[str, Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1],__lowerCamelCase )
def lowerCamelCase_ ( self : int ):
_lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCamelCase_ ( self : Any ):
_lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase )
def lowerCamelCase_ ( self : Optional[int],__A : int,__A : str,__A : Tuple ):
# make masks reproducible
np.random.seed(2 )
_lowerCamelCase : Any = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
_lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_lowerCamelCase : Tuple = torch.from_numpy(__lowerCamelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
_lowerCamelCase : Any = pt_noise
super().check_pt_tf_models(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase )
def lowerCamelCase_ ( self : Tuple ):
_lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : str = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCamelCase : List[str] = model(**self._prepare_for_class(__lowerCamelCase,__lowerCamelCase ) )
_lowerCamelCase : int = outputs[0].cpu().numpy()
_lowerCamelCase : Any = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowerCamelCase )
_lowerCamelCase : List[str] = model_class.from_pretrained(__lowerCamelCase )
model.to(__lowerCamelCase )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(__lowerCamelCase,__lowerCamelCase ) )
# Make sure we don't have nans
_lowerCamelCase : Tuple = after_outputs[0].cpu().numpy()
_lowerCamelCase : Union[str, Any] = 0
_lowerCamelCase : Optional[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__lowerCamelCase,1e-5 )
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def lowerCamelCase_ ( self : Optional[int] ):
pass
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def lowerCamelCase_ ( self : List[str] ):
pass
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def lowerCamelCase_ ( self : Optional[Any] ):
pass
@unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" )
def lowerCamelCase_ ( self : Tuple ):
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowerCamelCase_ ( self : Optional[Any] ):
pass
@slow
def lowerCamelCase_ ( self : Any ):
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : Union[str, Any] = ViTMAEModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def A_ ( ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase__ ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self : str ):
return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None
@slow
def lowerCamelCase_ ( self : List[str] ):
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
_lowerCamelCase : Tuple = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCamelCase )
_lowerCamelCase : str = self.default_image_processor
_lowerCamelCase : Union[str, Any] = prepare_img()
_lowerCamelCase : int = image_processor(images=__lowerCamelCase,return_tensors="pt" ).to(__lowerCamelCase )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
_lowerCamelCase : Any = ViTMAEConfig()
_lowerCamelCase : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
_lowerCamelCase : List[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
_lowerCamelCase : Tuple = model(**__lowerCamelCase,noise=torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase ) )
# verify the logits
_lowerCamelCase : int = torch.Size((1, 1_9_6, 7_6_8) )
self.assertEqual(outputs.logits.shape,__lowerCamelCase )
_lowerCamelCase : List[str] = torch.tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3],expected_slice.to(__lowerCamelCase ),atol=1e-4 ) ) | 44 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
_SCREAMING_SNAKE_CASE : Optional[Any] = '''2.13.1'''
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse('''3.7'''):
raise ImportWarning(
'''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.'''
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
'''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n'''
'''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.'''
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
_SCREAMING_SNAKE_CASE : Dict = concatenate_datasets
_SCREAMING_SNAKE_CASE : Optional[Any] = DownloadConfig
_SCREAMING_SNAKE_CASE : Dict = DownloadManager
_SCREAMING_SNAKE_CASE : str = DownloadMode
_SCREAMING_SNAKE_CASE : Dict = DownloadConfig
_SCREAMING_SNAKE_CASE : Optional[int] = DownloadMode
_SCREAMING_SNAKE_CASE : Any = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 493 | 0 |
from math import pow
def _a ( lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int , ):
'''simple docstring'''
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(pow(lowercase__ , lowercase__ ) )
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = backtrack(
lowercase__ , lowercase__ , current_number + 1 , lowercase__ , lowercase__ )
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = backtrack(
lowercase__ , lowercase__ , current_number + 1 , lowercase__ , lowercase__ )
return current_sum, solutions_count
def _a ( lowercase__ : int , lowercase__ : int ):
'''simple docstring'''
if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10):
raise ValueError(
'Invalid input\n'
'needed_sum must be between 1 and 1000, power between 2 and 10.' )
return backtrack(lowercase__ , lowercase__ , 1 , 0 , 0 )[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 636 | import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class snake_case ( UpperCamelCase_ ):
lowercase_ = ['image_processor', 'tokenizer']
lowercase_ = 'OwlViTImageProcessor'
lowercase_ = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self : List[str] , a_ : List[Any]=None , a_ : str=None , **a_ : Any )-> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , a_ , )
SCREAMING_SNAKE_CASE__ : Tuple = kwargs.pop('feature_extractor' )
SCREAMING_SNAKE_CASE__ : List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(a_ , a_ )
def __call__( self : Any , a_ : Optional[int]=None , a_ : Tuple=None , a_ : List[Any]=None , a_ : Tuple="max_length" , a_ : str="np" , **a_ : Any )-> int:
"""simple docstring"""
if text is None and query_images is None and images is None:
raise ValueError(
'You have to specify at least one text or query image or image. All three cannot be none.' )
if text is not None:
if isinstance(a_ , a_ ) or (isinstance(a_ , a_ ) and not isinstance(text[0] , a_ )):
SCREAMING_SNAKE_CASE__ : Tuple = [self.tokenizer(a_ , padding=a_ , return_tensors=a_ , **a_ )]
elif isinstance(a_ , a_ ) and isinstance(text[0] , a_ ):
SCREAMING_SNAKE_CASE__ : Any = []
# Maximum number of queries across batch
SCREAMING_SNAKE_CASE__ : str = max([len(a_ ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(a_ ) != max_num_queries:
SCREAMING_SNAKE_CASE__ : Tuple = t + [' '] * (max_num_queries - len(a_ ))
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer(a_ , padding=a_ , return_tensors=a_ , **a_ )
encodings.append(a_ )
else:
raise TypeError('Input text should be a string, a list of strings or a nested list of strings' )
if return_tensors == "np":
SCREAMING_SNAKE_CASE__ : Dict = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ : List[Any] = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
SCREAMING_SNAKE_CASE__ : Union[str, Any] = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ : Optional[Any] = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
SCREAMING_SNAKE_CASE__ : int = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 )
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
SCREAMING_SNAKE_CASE__ : str = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ : Dict = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 )
else:
raise ValueError('Target return tensor type could not be returned' )
SCREAMING_SNAKE_CASE__ : Optional[int] = BatchEncoding()
SCREAMING_SNAKE_CASE__ : List[str] = input_ids
SCREAMING_SNAKE_CASE__ : Tuple = attention_mask
if query_images is not None:
SCREAMING_SNAKE_CASE__ : Any = BatchEncoding()
SCREAMING_SNAKE_CASE__ : Dict = self.image_processor(
a_ , return_tensors=a_ , **a_ ).pixel_values
SCREAMING_SNAKE_CASE__ : Dict = query_pixel_values
if images is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor(a_ , return_tensors=a_ , **a_ )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE__ : Dict = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
SCREAMING_SNAKE_CASE__ : Optional[int] = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ )
def __lowercase( self : str , *a_ : List[str] , **a_ : int )-> List[Any]:
"""simple docstring"""
return self.image_processor.post_process(*a_ , **a_ )
def __lowercase( self : Tuple , *a_ : List[str] , **a_ : str )-> Union[str, Any]:
"""simple docstring"""
return self.image_processor.post_process_object_detection(*a_ , **a_ )
def __lowercase( self : Optional[Any] , *a_ : str , **a_ : Dict )-> Optional[int]:
"""simple docstring"""
return self.image_processor.post_process_image_guided_detection(*a_ , **a_ )
def __lowercase( self : Optional[int] , *a_ : Tuple , **a_ : Tuple )-> Optional[Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*a_ , **a_ )
def __lowercase( self : Tuple , *a_ : Tuple , **a_ : Tuple )-> List[str]:
"""simple docstring"""
return self.tokenizer.decode(*a_ , **a_ )
@property
def __lowercase( self : Tuple )-> Any:
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , a_ , )
return self.image_processor_class
@property
def __lowercase( self : List[Any] )-> List[str]:
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , a_ , )
return self.image_processor
| 636 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 103 |
"""simple docstring"""
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
'b0': efficientnet.EfficientNetBa,
'b1': efficientnet.EfficientNetBa,
'b2': efficientnet.EfficientNetBa,
'b3': efficientnet.EfficientNetBa,
'b4': efficientnet.EfficientNetBa,
'b5': efficientnet.EfficientNetBa,
'b6': efficientnet.EfficientNetBa,
'b7': efficientnet.EfficientNetBa,
}
lowercase_ = {
'b0': {
'hidden_dim': 12_80,
'width_coef': 1.0,
'depth_coef': 1.0,
'image_size': 2_24,
'dropout_rate': 0.2,
'dw_padding': [],
},
'b1': {
'hidden_dim': 12_80,
'width_coef': 1.0,
'depth_coef': 1.1,
'image_size': 2_40,
'dropout_rate': 0.2,
'dw_padding': [16],
},
'b2': {
'hidden_dim': 14_08,
'width_coef': 1.1,
'depth_coef': 1.2,
'image_size': 2_60,
'dropout_rate': 0.3,
'dw_padding': [5, 8, 16],
},
'b3': {
'hidden_dim': 15_36,
'width_coef': 1.2,
'depth_coef': 1.4,
'image_size': 3_00,
'dropout_rate': 0.3,
'dw_padding': [5, 18],
},
'b4': {
'hidden_dim': 17_92,
'width_coef': 1.4,
'depth_coef': 1.8,
'image_size': 3_80,
'dropout_rate': 0.4,
'dw_padding': [6],
},
'b5': {
'hidden_dim': 20_48,
'width_coef': 1.6,
'depth_coef': 2.2,
'image_size': 4_56,
'dropout_rate': 0.4,
'dw_padding': [13, 27],
},
'b6': {
'hidden_dim': 23_04,
'width_coef': 1.8,
'depth_coef': 2.6,
'image_size': 5_28,
'dropout_rate': 0.5,
'dw_padding': [31],
},
'b7': {
'hidden_dim': 25_60,
'width_coef': 2.0,
'depth_coef': 3.1,
'image_size': 6_00,
'dropout_rate': 0.5,
'dw_padding': [18],
},
}
def UpperCAmelCase ( _lowercase : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase_ = EfficientNetConfig()
lowerCAmelCase_ = CONFIG_MAP[model_name]['''hidden_dim''']
lowerCAmelCase_ = CONFIG_MAP[model_name]['''width_coef''']
lowerCAmelCase_ = CONFIG_MAP[model_name]['''depth_coef''']
lowerCAmelCase_ = CONFIG_MAP[model_name]['''image_size''']
lowerCAmelCase_ = CONFIG_MAP[model_name]['''dropout_rate''']
lowerCAmelCase_ = CONFIG_MAP[model_name]['''dw_padding''']
lowerCAmelCase_ = '''huggingface/label-files'''
lowerCAmelCase_ = '''imagenet-1k-id2label.json'''
lowerCAmelCase_ = 1_0_0_0
lowerCAmelCase_ = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) )
lowerCAmelCase_ = {int(_lowercase ): v for k, v in idalabel.items()}
lowerCAmelCase_ = idalabel
lowerCAmelCase_ = {v: k for k, v in idalabel.items()}
return config
def UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
lowerCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCAmelCase_ = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
def UpperCAmelCase ( _lowercase : Dict ) -> int:
"""simple docstring"""
lowerCAmelCase_ = CONFIG_MAP[model_name]['''image_size''']
lowerCAmelCase_ = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_lowercase , )
return preprocessor
def UpperCAmelCase ( _lowercase : List[Any] ) -> int:
"""simple docstring"""
lowerCAmelCase_ = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
lowerCAmelCase_ = sorted(set(_lowercase ) )
lowerCAmelCase_ = len(_lowercase )
lowerCAmelCase_ = {b: str(_lowercase ) for b, i in zip(_lowercase , range(_lowercase ) )}
lowerCAmelCase_ = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
lowerCAmelCase_ = block_name_mapping[b]
rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") )
rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") )
rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") )
rename_keys.append(
(F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") )
rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") )
rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") )
rename_keys.append(
(F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") )
rename_keys.append(
(F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") )
rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") )
rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") )
rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") )
rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") )
rename_keys.append(
(F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") )
rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") )
rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
lowerCAmelCase_ = {}
for item in rename_keys:
if item[0] in original_param_names:
lowerCAmelCase_ = '''efficientnet.''' + item[1]
lowerCAmelCase_ = '''classifier.weight'''
lowerCAmelCase_ = '''classifier.bias'''
return key_mapping
def UpperCAmelCase ( _lowercase : Dict , _lowercase : List[str] , _lowercase : str ) -> Any:
"""simple docstring"""
for key, value in tf_params.items():
if "normalization" in key:
continue
lowerCAmelCase_ = key_mapping[key]
if "_conv" in key and "kernel" in key:
lowerCAmelCase_ = torch.from_numpy(_lowercase ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
lowerCAmelCase_ = torch.from_numpy(_lowercase ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
lowerCAmelCase_ = torch.from_numpy(np.transpose(_lowercase ) )
else:
lowerCAmelCase_ = torch.from_numpy(_lowercase )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_lowercase )
@torch.no_grad()
def UpperCAmelCase ( _lowercase : str , _lowercase : Any , _lowercase : List[Any] , _lowercase : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase_ = model_classes[model_name](
include_top=_lowercase , weights='''imagenet''' , input_tensor=_lowercase , input_shape=_lowercase , pooling=_lowercase , classes=1_0_0_0 , classifier_activation='''softmax''' , )
lowerCAmelCase_ = original_model.trainable_variables
lowerCAmelCase_ = original_model.non_trainable_variables
lowerCAmelCase_ = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
lowerCAmelCase_ = param.numpy()
lowerCAmelCase_ = list(tf_params.keys() )
# Load HuggingFace model
lowerCAmelCase_ = get_efficientnet_config(_lowercase )
lowerCAmelCase_ = EfficientNetForImageClassification(_lowercase ).eval()
lowerCAmelCase_ = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
lowerCAmelCase_ = rename_keys(_lowercase )
replace_params(_lowercase , _lowercase , _lowercase )
# Initialize preprocessor and preprocess input image
lowerCAmelCase_ = convert_image_processor(_lowercase )
lowerCAmelCase_ = preprocessor(images=prepare_img() , return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
lowerCAmelCase_ = hf_model(**_lowercase )
lowerCAmelCase_ = outputs.logits.detach().numpy()
# Original model inference
lowerCAmelCase_ = False
lowerCAmelCase_ = CONFIG_MAP[model_name]['''image_size''']
lowerCAmelCase_ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
lowerCAmelCase_ = image.img_to_array(_lowercase )
lowerCAmelCase_ = np.expand_dims(_lowercase , axis=0 )
lowerCAmelCase_ = original_model.predict(_lowercase )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_lowercase , _lowercase , atol=1E-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(_lowercase ):
os.mkdir(_lowercase )
# Save converted model and image processor
hf_model.save_pretrained(_lowercase )
preprocessor.save_pretrained(_lowercase )
if push_to_hub:
# Push model and image processor to hub
print(F"""Pushing converted {model_name} to the hub...""" )
lowerCAmelCase_ = F"""efficientnet-{model_name}"""
preprocessor.push_to_hub(_lowercase )
hf_model.push_to_hub(_lowercase )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='b0',
type=str,
help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='hf_model',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--save_model', action='store_true', help='Save model to local')
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
lowercase_ = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub) | 552 | 0 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
_SCREAMING_SNAKE_CASE = transforms.Compose(
[
transforms.Resize((2_5_6, 2_5_6)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ):
if isinstance(lowerCamelCase_ , torch.Tensor ):
return image
elif isinstance(lowerCamelCase_ , PIL.Image.Image ):
__lowercase = [image]
__lowercase = [trans(img.convert('''RGB''' ) ) for img in image]
__lowercase = torch.stack(lowerCamelCase_ )
return image
class __lowercase ( lowerCAmelCase__ ):
'''simple docstring'''
def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
__lowercase = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_lowerCamelCase ,scheduler=_lowerCamelCase )
def _UpperCAmelCase (self ,_lowerCamelCase ) -> Any:
'''simple docstring'''
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}" )
def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Dict:
'''simple docstring'''
__lowercase = min(int(num_inference_steps * strength ) ,_lowerCamelCase )
__lowercase = max(num_inference_steps - init_timestep ,0 )
__lowercase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ) -> str:
'''simple docstring'''
if not isinstance(_lowerCamelCase ,(torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowerCamelCase )}" )
__lowercase = image.to(device=_lowerCamelCase ,dtype=_lowerCamelCase )
if isinstance(_lowerCamelCase ,_lowerCamelCase ) and len(_lowerCamelCase ) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(_lowerCamelCase )}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators." )
__lowercase = init_latents.shape
__lowercase = randn_tensor(_lowerCamelCase ,generator=_lowerCamelCase ,device=_lowerCamelCase ,dtype=_lowerCamelCase )
# get latents
print('''add noise to latents at timestep''' ,_lowerCamelCase )
__lowercase = self.scheduler.add_noise(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase )
__lowercase = init_latents
return latents
@torch.no_grad()
def __call__(self ,_lowerCamelCase = None ,_lowerCamelCase = 0.8 ,_lowerCamelCase = 1 ,_lowerCamelCase = None ,_lowerCamelCase = 0.0 ,_lowerCamelCase = 50 ,_lowerCamelCase = None ,_lowerCamelCase = "pil" ,_lowerCamelCase = True ,) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
self.check_inputs(_lowerCamelCase )
# 2. Preprocess image
__lowercase = preprocess(_lowerCamelCase )
# 3. set timesteps
self.scheduler.set_timesteps(_lowerCamelCase ,device=self.device )
__lowercase , __lowercase = self.get_timesteps(_lowerCamelCase ,_lowerCamelCase ,self.device )
__lowercase = timesteps[:1].repeat(_lowerCamelCase )
# 4. Prepare latent variables
__lowercase = self.prepare_latents(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,self.unet.dtype ,self.device ,_lowerCamelCase )
__lowercase = latents
# 5. Denoising loop
for t in self.progress_bar(_lowerCamelCase ):
# 1. predict noise model_output
__lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
__lowercase = self.scheduler.step(
_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,eta=_lowerCamelCase ,use_clipped_model_output=_lowerCamelCase ,generator=_lowerCamelCase ,).prev_sample
__lowercase = (image / 2 + 0.5).clamp(0 ,1 )
__lowercase = image.cpu().permute(0 ,2 ,3 ,1 ).numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(_lowerCamelCase )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=_lowerCamelCase )
| 56 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ['''XGLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
'''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XGLMForCausalLM''',
'''XGLMModel''',
'''XGLMPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
'''FlaxXGLMForCausalLM''',
'''FlaxXGLMModel''',
'''FlaxXGLMPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
'''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXGLMForCausalLM''',
'''TFXGLMModel''',
'''TFXGLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 56 | 1 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCAmelCase_ : Optional[int] = abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def _UpperCamelCase (_lowerCamelCase : Any )-> int:
'''simple docstring'''
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_lowerCamelCase )
def _UpperCamelCase (_lowerCamelCase : int )-> Tuple:
'''simple docstring'''
from diffusers.utils.testing_utils import pytest_terminal_summary_main
__snake_case = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase )
| 24 |
import argparse
import intel_extension_for_pytorch as ipex
import torch
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline
A_ : List[Any] =argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False)
parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""")
parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""")
A_ : List[Any] =parser.parse_args()
A_ : Tuple ="""cpu"""
A_ : List[Any] ="""a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings"""
A_ : Union[str, Any] ="""path-to-your-trained-model"""
A_ : str =StableDiffusionPipeline.from_pretrained(model_id)
if args.dpm:
A_ : Dict =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
A_ : List[Any] =pipe.to(device)
# to channels last
A_ : Optional[int] =pipe.unet.to(memory_format=torch.channels_last)
A_ : Optional[int] =pipe.vae.to(memory_format=torch.channels_last)
A_ : Optional[Any] =pipe.text_encoder.to(memory_format=torch.channels_last)
if pipe.requires_safety_checker:
A_ : Union[str, Any] =pipe.safety_checker.to(memory_format=torch.channels_last)
# optimize with ipex
A_ : Any =torch.randn(2, 4, 64, 64)
A_ : List[Any] =torch.rand(1) * 999
A_ : str =torch.randn(2, 77, 768)
A_ : Optional[int] =(sample, timestep, encoder_hidden_status)
try:
A_ : Dict =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example)
except Exception:
A_ : List[Any] =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True)
A_ : int =ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True)
A_ : Tuple =ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True)
if pipe.requires_safety_checker:
A_ : Any =ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True)
# compute
A_ : Any =666
A_ : int =torch.Generator(device).manual_seed(seed)
A_ : Any ={"""generator""": generator}
if args.steps is not None:
A_ : List[str] =args.steps
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa):
A_ : Any =pipe(prompt, **generate_kwargs).images[0]
# save image
image.save("""generated.png""") | 483 | 0 |
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class __UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(SCREAMING_SNAKE_CASE ):
UpperCamelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
UpperCamelCase = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(SCREAMING_SNAKE_CASE ):
UpperCamelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
UpperCamelCase = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
for model_name in ["bert-base-cased", "bert-large-uncased"]:
UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
UpperCamelCase = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE )
UpperCamelCase = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX )
@jax.jit
def eval(**SCREAMING_SNAKE_CASE ):
return model(**SCREAMING_SNAKE_CASE )
eval(**SCREAMING_SNAKE_CASE ).block_until_ready()
@slow
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
for model_name in ["roberta-base", "roberta-large"]:
UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
UpperCamelCase = FlaxRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE )
UpperCamelCase = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX )
@jax.jit
def eval(**SCREAMING_SNAKE_CASE ):
return model(**SCREAMING_SNAKE_CASE )
eval(**SCREAMING_SNAKE_CASE ).block_until_ready()
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , "bert-base is not a local folder and is not a valid model identifier" ):
UpperCamelCase = FlaxAutoModel.from_pretrained("bert-base" )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
UpperCamelCase = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE , revision="aaaaaa" )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ):
UpperCamelCase = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE , "Use `from_pt=True` to load this model" ):
UpperCamelCase = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
| 414 |
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
__a : Union[str, Any] = logging.get_logger(__name__)
def __magic_name__ ( lowercase_ ) -> Dict:
'''simple docstring'''
UpperCamelCase = torch.load(lowercase_ , map_location="cpu" )
if "model" in sd.keys():
UpperCamelCase = torch.load(lowercase_ , map_location="cpu" )["model"]
# pop unnecessary weights
UpperCamelCase = [
"decoder.version",
"decoder.output_projection.weight",
]
for key in keys_to_delete:
if key in sd:
sd.pop(lowercase_ )
UpperCamelCase = {
"decoder.project_in_dim.weight": "decoder.project_in.weight",
"decoder.project_out_dim.weight": "decoder.project_out.weight",
"decoder.layer_norm.weight": "decoder.final_layer_norm.weight",
"decoder.layer_norm.bias": "decoder.final_layer_norm.bias",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCamelCase = sd.pop(lowercase_ )
UpperCamelCase = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCamelCase = sd[key]
# We split QKV in separate Q,K,V
UpperCamelCase = key.replace(".qkv_proj." , ".q_proj." )
UpperCamelCase = key.replace(".qkv_proj." , ".k_proj." )
UpperCamelCase = key.replace(".qkv_proj." , ".v_proj." )
UpperCamelCase = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCamelCase , UpperCamelCase , UpperCamelCase = torch.split(lowercase_ , depth // 3 , dim=0 )
UpperCamelCase = q
UpperCamelCase = k
UpperCamelCase = v
del sd[key]
return sd
@torch.no_grad()
def __magic_name__ ( lowercase_ , lowercase_ , lowercase_=None ) -> str:
'''simple docstring'''
UpperCamelCase = load_checkpoint(lowercase_ )
if config is not None:
UpperCamelCase = OPTConfig.from_pretrained(lowercase_ )
else:
UpperCamelCase = OPTConfig()
UpperCamelCase = OPTModel(lowercase_ ).half().eval()
model.load_state_dict(lowercase_ )
# Check results
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
model.save_pretrained(lowercase_ )
if __name__ == "__main__":
__a : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
__a : Dict = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 414 | 1 |
'''simple docstring'''
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__SCREAMING_SNAKE_CASE = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='relu')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(3_2, (3, 3), activation='relu'))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=1_2_8, activation='relu'))
classifier.add(layers.Dense(units=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(
optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5)
__SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory(
'dataset/training_set', target_size=(6_4, 6_4), batch_size=3_2, class_mode='binary'
)
__SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory(
'dataset/test_set', target_size=(6_4, 6_4), batch_size=3_2, class_mode='binary'
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set
)
classifier.save('cnn.h5')
# Part 3 - Making new predictions
__SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img(
'dataset/single_prediction/image.png', target_size=(6_4, 6_4)
)
__SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image)
__SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0)
__SCREAMING_SNAKE_CASE = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__SCREAMING_SNAKE_CASE = 'Normal'
if result[0][0] == 1:
__SCREAMING_SNAKE_CASE = 'Abnormality detected'
| 688 |
'''simple docstring'''
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ):
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
a__ : Dict = TapasConfig.from_json_file(lowerCAmelCase__ )
# set absolute/relative position embeddings parameter
a__ : List[Any] = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
a__ : Optional[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
a__ : List[str] = 4
a__ : Optional[int] = True
# hparam_utils.py hparams
a__ : List[Any] = 0.664694
a__ : List[Any] = 0.207951
a__ : Union[str, Any] = 0.121194
a__ : Optional[Any] = True
a__ : Optional[int] = True
a__ : List[str] = False
a__ : Union[str, Any] = 0.0352513
a__ : Any = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
a__ : Tuple = 4
a__ : Dict = False
# hparam_utils.py hparams
a__ : str = 36.4519
a__ : str = 0.903421
a__ : Optional[Any] = 222.088
a__ : Dict = True
a__ : Dict = True
a__ : Dict = True
a__ : str = 0.763141
a__ : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ )
elif task == "TABFACT":
a__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase__ )
elif task == "MLM":
a__ : Tuple = TapasForMaskedLM(config=lowerCAmelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
a__ : List[str] = TapasModel(config=lowerCAmelCase__ )
else:
raise ValueError(F'Task {task} not supported.' )
print(F'Building PyTorch model from configuration: {config}' )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model (weights and configuration)
print(F'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowerCAmelCase__ )
# Save tokenizer files
print(F'Save tokenizer files to {pytorch_dump_path}' )
a__ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 )
tokenizer.save_pretrained(lowerCAmelCase__ )
print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.'
)
parser.add_argument(
'--reset_position_index_per_cell',
default=False,
action='store_true',
help='Whether to use relative position embeddings or not. Defaults to True.',
)
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--tapas_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained TAPAS model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 1 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
# Load checkpoint
lowercase = torch.load(lowerCAmelCase__ , map_location='''cpu''' )
lowercase = chkpt['''model''']
# We have the base model one level deeper than the original XLM repository
lowercase = {}
for k, v in state_dict.items():
if "pred_layer" in k:
lowercase = v
else:
lowercase = v
lowercase = chkpt['''params''']
lowercase = {n: v for n, v in config.items() if not isinstance(lowerCAmelCase__ , (torch.FloatTensor, numpy.ndarray) )}
lowercase = chkpt['''dico_word2id''']
lowercase = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()}
# Save pytorch-model
lowercase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
lowercase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
lowercase = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file''']
print(f'Save PyTorch model to {pytorch_weights_dump_path}' )
torch.save(lowerCAmelCase__ , lowerCAmelCase__ )
print(f'Save configuration file to {pytorch_config_dump_path}' )
with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(lowerCAmelCase__ , indent=2 ) + '''\n''' )
print(f'Save vocab file to {pytorch_config_dump_path}' )
with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(lowerCAmelCase__ , indent=2 ) + '''\n''' )
if __name__ == "__main__":
lowercase__ :Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowercase__ :Tuple = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 633 |
from numpy import exp, pi, sqrt
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 1.0 ):
'''simple docstring'''
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 633 | 1 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"""microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""",
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class _lowerCAmelCase ( a ):
"""simple docstring"""
__magic_name__ :Dict = """wavlm"""
def __init__( self , __UpperCAmelCase=3_2 , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=1_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=3_0_7_2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=1_2_8 , __UpperCAmelCase=1_6 , __UpperCAmelCase=3_2_0 , __UpperCAmelCase=8_0_0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=1_0 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1_0 , __UpperCAmelCase=3_2_0 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1_0_0 , __UpperCAmelCase=2_5_6 , __UpperCAmelCase=2_5_6 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=2_5_6 , __UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __UpperCAmelCase=(5, 3, 3, 1, 1) , __UpperCAmelCase=(1, 2, 3, 1, 1) , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=8_0 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
lowerCAmelCase__ :int = hidden_size
lowerCAmelCase__ :Optional[Any] = feat_extract_norm
lowerCAmelCase__ :List[str] = feat_extract_activation
lowerCAmelCase__ :List[Any] = list(__UpperCAmelCase )
lowerCAmelCase__ :int = list(__UpperCAmelCase )
lowerCAmelCase__ :List[str] = list(__UpperCAmelCase )
lowerCAmelCase__ :str = conv_bias
lowerCAmelCase__ :Any = num_buckets
lowerCAmelCase__ :Optional[Any] = max_bucket_distance
lowerCAmelCase__ :str = num_conv_pos_embeddings
lowerCAmelCase__ :int = num_conv_pos_embedding_groups
lowerCAmelCase__ :Dict = len(self.conv_dim )
lowerCAmelCase__ :int = num_hidden_layers
lowerCAmelCase__ :int = intermediate_size
lowerCAmelCase__ :List[str] = hidden_act
lowerCAmelCase__ :Any = num_attention_heads
lowerCAmelCase__ :Optional[Any] = hidden_dropout
lowerCAmelCase__ :Union[str, Any] = attention_dropout
lowerCAmelCase__ :Tuple = activation_dropout
lowerCAmelCase__ :Union[str, Any] = feat_proj_dropout
lowerCAmelCase__ :Optional[Any] = final_dropout
lowerCAmelCase__ :int = layerdrop
lowerCAmelCase__ :Union[str, Any] = layer_norm_eps
lowerCAmelCase__ :int = initializer_range
lowerCAmelCase__ :Any = num_ctc_classes
lowerCAmelCase__ :int = vocab_size
lowerCAmelCase__ :Dict = do_stable_layer_norm
lowerCAmelCase__ :Tuple = use_weighted_layer_sum
lowerCAmelCase__ :Dict = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"
F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCAmelCase__ :str = apply_spec_augment
lowerCAmelCase__ :Any = mask_time_prob
lowerCAmelCase__ :Union[str, Any] = mask_time_length
lowerCAmelCase__ :List[Any] = mask_time_min_masks
lowerCAmelCase__ :Dict = mask_feature_prob
lowerCAmelCase__ :Union[str, Any] = mask_feature_length
# parameters for pretraining with codevector quantized representations
lowerCAmelCase__ :Optional[Any] = num_codevectors_per_group
lowerCAmelCase__ :List[str] = num_codevector_groups
lowerCAmelCase__ :Union[str, Any] = contrastive_logits_temperature
lowerCAmelCase__ :List[str] = num_negatives
lowerCAmelCase__ :Union[str, Any] = codevector_dim
lowerCAmelCase__ :Optional[Any] = proj_codevector_dim
lowerCAmelCase__ :Optional[int] = diversity_loss_weight
# ctc loss
lowerCAmelCase__ :Any = ctc_loss_reduction
lowerCAmelCase__ :str = ctc_zero_infinity
# adapter
lowerCAmelCase__ :Optional[int] = add_adapter
lowerCAmelCase__ :Tuple = adapter_kernel_size
lowerCAmelCase__ :Tuple = adapter_stride
lowerCAmelCase__ :List[Any] = num_adapter_layers
lowerCAmelCase__ :Dict = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
lowerCAmelCase__ :Optional[Any] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
lowerCAmelCase__ :int = list(__UpperCAmelCase )
lowerCAmelCase__ :Tuple = list(__UpperCAmelCase )
lowerCAmelCase__ :Any = list(__UpperCAmelCase )
lowerCAmelCase__ :Any = xvector_output_dim
@property
def snake_case ( self ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 93 |
'''simple docstring'''
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : str ,a__ : Union[str, Any] ,a__ : Any=13 ,a__ : Dict=30 ,a__ : Union[str, Any]=2 ,a__ : Optional[Any]=3 ,a__ : List[Any]=True ,a__ : str=True ,a__ : Tuple=32 ,a__ : Any=5 ,a__ : Dict=4 ,a__ : Dict=37 ,a__ : List[Any]="gelu" ,a__ : List[Any]=0.1 ,a__ : Union[str, Any]=0.1 ,a__ : Optional[int]=10 ,a__ : Dict=0.02 ,a__ : List[str]=None ,):
a__ = parent
a__ = batch_size
a__ = image_size
a__ = patch_size
a__ = num_channels
a__ = is_training
a__ = use_labels
a__ = hidden_size
a__ = num_hidden_layers
a__ = num_attention_heads
a__ = intermediate_size
a__ = hidden_act
a__ = hidden_dropout_prob
a__ = attention_probs_dropout_prob
a__ = type_sequence_label_size
a__ = initializer_range
a__ = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
a__ = (image_size // patch_size) ** 2
a__ = num_patches + 1
def lowerCAmelCase_ ( self : Dict ):
a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a__ = None
if self.use_labels:
a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
a__ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase_ ( self : Tuple ):
return ViTMSNConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,)
def lowerCAmelCase_ ( self : str ,a__ : Any ,a__ : Tuple ,a__ : Optional[Any] ):
a__ = ViTMSNModel(config=a__ )
model.to(a__ )
model.eval()
a__ = model(a__ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase_ ( self : List[Any] ,a__ : Union[str, Any] ,a__ : List[Any] ,a__ : List[str] ):
a__ = self.type_sequence_label_size
a__ = ViTMSNForImageClassification(a__ )
model.to(a__ )
model.eval()
a__ = model(a__ ,labels=a__ )
print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" )
print("Labels: {labels}" )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
a__ = 1
a__ = ViTMSNForImageClassification(a__ )
model.to(a__ )
model.eval()
a__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
a__ = model(a__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase_ ( self : Union[str, Any] ):
a__ = self.prepare_config_and_inputs()
a__ , a__ , a__ = config_and_inputs
a__ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase__ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
UpperCamelCase__ = (
{'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowerCAmelCase_ ( self : List[Any] ):
a__ = ViTMSNModelTester(self )
a__ = ConfigTester(self ,config_class=a__ ,has_text_modality=a__ ,hidden_size=37 )
def lowerCAmelCase_ ( self : Tuple ):
self.config_tester.run_common_tests()
@unittest.skip(reason="ViTMSN does not use inputs_embeds" )
def lowerCAmelCase_ ( self : Optional[Any] ):
pass
def lowerCAmelCase_ ( self : Optional[int] ):
a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a__ = model_class(a__ )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
a__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a__ ,nn.Linear ) )
def lowerCAmelCase_ ( self : Union[str, Any] ):
a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a__ = model_class(a__ )
a__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a__ = [*signature.parameters.keys()]
a__ = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,a__ )
def lowerCAmelCase_ ( self : Optional[Any] ):
a__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a__ )
def lowerCAmelCase_ ( self : Optional[int] ):
a__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a__ )
@slow
def lowerCAmelCase_ ( self : Optional[int] ):
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a__ = ViTMSNModel.from_pretrained(a__ )
self.assertIsNotNone(a__ )
def _lowerCAmelCase ():
"""simple docstring"""
a__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowerCAmelCase_ ( self : Dict ):
return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None
@slow
def lowerCAmelCase_ ( self : Union[str, Any] ):
torch.manual_seed(2 )
a__ = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(a__ )
a__ = self.default_image_processor
a__ = prepare_img()
a__ = image_processor(images=a__ ,return_tensors="pt" ).to(a__ )
# forward pass
with torch.no_grad():
a__ = model(**a__ )
# verify the logits
a__ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape ,a__ )
a__ = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(a__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,a__ ,atol=1e-4 ) )
| 331 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=4_00 , __a=True , __a=None , __a=True , __a=False , __a=True , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , ):
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = image_size
__lowerCAmelCase = min_resolution
__lowerCAmelCase = max_resolution
__lowerCAmelCase = do_resize
__lowerCAmelCase = size if size is not None else {"height": 18, "width": 20}
__lowerCAmelCase = do_thumbnail
__lowerCAmelCase = do_align_axis
__lowerCAmelCase = do_pad
__lowerCAmelCase = do_normalize
__lowerCAmelCase = image_mean
__lowerCAmelCase = image_std
def snake_case ( self ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _UpperCamelCase ( lowerCAmelCase__ ,unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] =DonutImageProcessor if is_vision_available() else None
def snake_case ( self ):
__lowerCAmelCase = DonutImageProcessingTester(self )
@property
def snake_case ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case ( self ):
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__a , "do_resize" ) )
self.assertTrue(hasattr(__a , "size" ) )
self.assertTrue(hasattr(__a , "do_thumbnail" ) )
self.assertTrue(hasattr(__a , "do_align_long_axis" ) )
self.assertTrue(hasattr(__a , "do_pad" ) )
self.assertTrue(hasattr(__a , "do_normalize" ) )
self.assertTrue(hasattr(__a , "image_mean" ) )
self.assertTrue(hasattr(__a , "image_std" ) )
def snake_case ( self ):
__lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"height": 18, "width": 20} )
__lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"height": 42, "width": 42} )
# Previous config had dimensions in (width, height) order
__lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {"height": 84, "width": 42} )
def snake_case ( self ):
pass
@is_flaky()
def snake_case ( self ):
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a )
for image in image_inputs:
self.assertIsInstance(__a , Image.Image )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
__lowerCAmelCase = image_processing(__a , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
@is_flaky()
def snake_case ( self ):
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a )
for image in image_inputs:
self.assertIsInstance(__a , np.ndarray )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
__lowerCAmelCase = image_processing(__a , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
@is_flaky()
def snake_case ( self ):
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a )
for image in image_inputs:
self.assertIsInstance(__a , torch.Tensor )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
__lowerCAmelCase = image_processing(__a , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
| 701 |
"""simple docstring"""
from itertools import product
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = sides_number
__lowerCAmelCase = max_face_number * dice_number
__lowerCAmelCase = [0] * (max_total + 1)
__lowerCAmelCase = 1
__lowerCAmelCase = range(_UpperCamelCase , max_face_number + 1 )
for dice_numbers in product(_UpperCamelCase , repeat=_UpperCamelCase ):
__lowerCAmelCase = sum(_UpperCamelCase )
totals_frequencies[total] += 1
return totals_frequencies
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = total_frequency_distribution(
sides_number=4 , dice_number=9 )
__lowerCAmelCase = total_frequency_distribution(
sides_number=6 , dice_number=6 )
__lowerCAmelCase = 0
__lowerCAmelCase = 9
__lowerCAmelCase = 4 * 9
__lowerCAmelCase = 6
for peter_total in range(_UpperCamelCase , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
__lowerCAmelCase = (4**9) * (6**6)
__lowerCAmelCase = peter_wins_count / total_games_number
__lowerCAmelCase = round(_UpperCamelCase , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(f'''{solution() = }''')
| 282 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
a =None
a =logging.get_logger(__name__)
a ={'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
a ={
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
a ={
'google/rembert': 256,
}
a ='▁'
class __UpperCAmelCase ( __lowerCAmelCase ):
A__ : List[Any] = VOCAB_FILES_NAMES
A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
A__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ : str = RemBertTokenizer
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="[CLS]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="<unk>" , _lowerCamelCase="[SEP]" , _lowerCamelCase="<pad>" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , **_lowerCamelCase , ):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ =AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token
super().__init__(
_lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , )
lowerCamelCase__ =do_lower_case
lowerCamelCase__ =remove_space
lowerCamelCase__ =keep_accents
lowerCamelCase__ =vocab_file
lowerCamelCase__ =False if not self.vocab_file else True
def _a ( self , _lowerCamelCase , _lowerCamelCase = None ):
lowerCamelCase__ =[self.sep_token_id]
lowerCamelCase__ =[self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1]
return [1] + ([0] * len(_lowerCamelCase )) + [1]
def _a ( self , _lowerCamelCase , _lowerCamelCase = None ):
lowerCamelCase__ =[self.sep_token_id]
lowerCamelCase__ =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _a ( self , _lowerCamelCase , _lowerCamelCase = None ):
if not os.path.isdir(_lowerCamelCase ):
logger.error("Vocabulary path ({}) should be a directory".format(_lowerCamelCase ) )
return
lowerCamelCase__ =os.path.join(
_lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ):
copyfile(self.vocab_file , _lowerCamelCase )
return (out_vocab_file,)
| 530 | """simple docstring"""
from __future__ import annotations
a ='#'
class __UpperCAmelCase :
def __init__( self ):
lowerCamelCase__ ={}
def _a ( self , _lowerCamelCase ):
lowerCamelCase__ =self._trie
for char in text:
if char not in trie:
lowerCamelCase__ ={}
lowerCamelCase__ =trie[char]
lowerCamelCase__ =True
def _a ( self , _lowerCamelCase ):
lowerCamelCase__ =self._trie
for char in prefix:
if char in trie:
lowerCamelCase__ =trie[char]
else:
return []
return self._elements(_lowerCamelCase )
def _a ( self , _lowerCamelCase ):
lowerCamelCase__ =[]
for c, v in d.items():
lowerCamelCase__ =[" "] if c == END else [(c + s) for s in self._elements(_lowerCamelCase )]
result.extend(_lowerCamelCase )
return tuple(_lowerCamelCase )
a =Trie()
a =('depart', 'detergent', 'daring', 'dog', 'deer', 'deal')
for word in words:
trie.insert_word(word)
def lowerCamelCase_ ( __lowerCAmelCase ) -> tuple:
'''simple docstring'''
lowerCamelCase__ =trie.find_word(__lowerCAmelCase )
return tuple(string + word for word in suffixes )
def lowerCamelCase_ ( ) -> None:
'''simple docstring'''
print(autocomplete_using_trie("de" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 530 | 1 |
"""simple docstring"""
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
_A : int = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class _lowercase ( datasets.BuilderConfig ):
lowercase_ = None
def UpperCAmelCase ( a_, a_, ):
'''simple docstring'''
import pyspark
def generate_fn():
lowerCamelCase : str = df.select('*', pyspark.sql.functions.spark_partition_id().alias('part_id' ) )
for partition_id in partition_order:
lowerCamelCase : Tuple = df_with_partition_id.select('*' ).where(F"""part_id = {partition_id}""" ).drop('part_id' )
lowerCamelCase : Any = partition_df.collect()
lowerCamelCase : List[str] = 0
for row in rows:
yield F"""{partition_id}_{row_id}""", row.asDict()
row_id += 1
return generate_fn
class _lowercase ( _BaseExamplesIterable ):
def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=None , ) -> Any:
lowerCamelCase : Any = df
lowerCamelCase : Union[str, Any] = partition_order or range(self.df.rdd.getNumPartitions() )
lowerCamelCase : Dict = _generate_iterable_examples(self.df , self.partition_order )
def __iter__( self ) -> str:
yield from self.generate_examples_fn()
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> List[str]:
lowerCamelCase : Dict = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(__A )
return SparkExamplesIterable(self.df , partition_order=__A )
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> Dict:
lowerCamelCase : Union[str, Any] = self.split_shard_indices_by_worker(__A , __A )
return SparkExamplesIterable(self.df , partition_order=__A )
@property
def _UpperCamelCase ( self ) -> List[Any]:
return len(self.partition_order )
class _lowercase ( datasets.DatasetBuilder ):
lowercase_ = SparkConfig
def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , **UpperCAmelCase_ , ) -> Dict:
import pyspark
lowerCamelCase : List[str] = pyspark.sql.SparkSession.builder.getOrCreate()
lowerCamelCase : int = df
lowerCamelCase : Dict = working_dir
super().__init__(
cache_dir=__A , config_name=str(self.df.semanticHash() ) , **__A , )
def _UpperCamelCase ( self ) -> Tuple:
# Returns the path of the created file.
def create_cache_and_write_probe(UpperCAmelCase_ ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir , exist_ok=__A )
lowerCamelCase : List[str] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(__A , 'a' )
return [probe_file]
if self._spark.conf.get('spark.master' , '' ).startswith('local' ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
lowerCamelCase : int = (
self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__A ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' )
def _UpperCamelCase ( self ) -> Optional[Any]:
return datasets.DatasetInfo(features=self.config.features )
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Any:
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Optional[int]:
import pyspark
def get_arrow_batch_size(UpperCAmelCase_ ):
for batch in it:
yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} )
lowerCamelCase : List[str] = self.df.count()
lowerCamelCase : Dict = df_num_rows if df_num_rows <= 100 else 100
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
lowerCamelCase : int = (
self.df.limit(__A )
.repartition(1 )
.mapInArrow(__A , 'batch_bytes: long' )
.agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
lowerCamelCase : List[str] = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
lowerCamelCase : int = min(__A , int(approx_total_size / max_shard_size ) )
lowerCamelCase : Any = self.df.repartition(__A )
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) -> Optional[Any]:
import pyspark
lowerCamelCase : str = ParquetWriter if file_format == "parquet" else ArrowWriter
lowerCamelCase : List[str] = os.path.join(self._working_dir , os.path.basename(__A ) ) if self._working_dir else fpath
lowerCamelCase : Tuple = file_format == "parquet"
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
lowerCamelCase : str = self.config.features
lowerCamelCase : Tuple = self._writer_batch_size
lowerCamelCase : str = self._fs.storage_options
def write_arrow(UpperCAmelCase_ ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
lowerCamelCase : Tuple = pyspark.TaskContext().taskAttemptId()
lowerCamelCase : int = next(__A , __A )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , )
lowerCamelCase : int = 0
lowerCamelCase : Dict = writer_class(
features=__A , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , )
lowerCamelCase : Union[str, Any] = pa.Table.from_batches([first_batch] )
writer.write_table(__A )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
lowerCamelCase : Any = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
shard_id += 1
lowerCamelCase : Dict = writer_class(
features=writer._features , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , )
lowerCamelCase : int = pa.Table.from_batches([batch] )
writer.write_table(__A )
if writer._num_bytes > 0:
lowerCamelCase : List[Any] = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(__A ) ):
lowerCamelCase : Optional[int] = os.path.join(os.path.dirname(__A ) , os.path.basename(__A ) )
shutil.move(__A , __A )
lowerCamelCase : Dict = (
self.df.mapInArrow(__A , 'task_id: long, num_examples: long, num_bytes: long' )
.groupBy('task_id' )
.agg(
pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , )
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = "arrow" , UpperCAmelCase_ = None , UpperCAmelCase_ = None , **UpperCAmelCase_ , ) -> Any:
self._validate_cache_dir()
lowerCamelCase : str = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(__A )
lowerCamelCase : int = not is_remote_filesystem(self._fs )
lowerCamelCase : List[Any] = os.path.join if is_local else posixpath.join
lowerCamelCase : List[Any] = "-TTTTT-SSSSS-of-NNNNN"
lowerCamelCase : Optional[int] = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}"""
lowerCamelCase : Union[str, Any] = path_join(self._output_dir , __A )
lowerCamelCase : Tuple = 0
lowerCamelCase : Tuple = 0
lowerCamelCase : Optional[int] = 0
lowerCamelCase : Union[str, Any] = []
lowerCamelCase : Dict = []
for task_id, content in self._prepare_split_single(__A , __A , __A ):
(
lowerCamelCase
) : Optional[Any] = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(__A )
lowerCamelCase : Dict = total_num_examples
lowerCamelCase : Tuple = total_num_bytes
# should rename everything at the end
logger.debug(F"""Renaming {total_shards} shards.""" )
if total_shards > 1:
lowerCamelCase : Union[str, Any] = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
lowerCamelCase : Union[str, Any] = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ):
rename(
__A , fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace('TTTTT-SSSSS' , F"""{global_shard_id:05d}""" ).replace('NNNNN' , F"""{total_shards:05d}""" ) , )
lowerCamelCase : Optional[Any] = []
lowerCamelCase : List[str] = 0
for i in range(len(__A ) ):
lowerCamelCase : Optional[int] = task_id_and_num_shards[i]
for shard_id in range(__A ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(__A , len(__A ) ).map(lambda UpperCAmelCase_ : _rename_shard(*__A ) ).collect()
else:
# don't use any pattern
lowerCamelCase : Dict = 0
lowerCamelCase : Optional[int] = task_id_and_num_shards[0][0]
self._rename(
fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace(__A , '' ) , )
def _UpperCamelCase ( self , UpperCAmelCase_ , ) -> Dict:
return SparkExamplesIterable(self.df )
| 703 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def UpperCAmelCase ( ):
'''simple docstring'''
raise RuntimeError('CUDA out of memory.' )
class _lowercase ( nn.Module ):
def __init__( self ) -> Optional[Any]:
super().__init__()
lowerCamelCase : Dict = nn.Linear(3 , 4 )
lowerCamelCase : Optional[int] = nn.BatchNormad(4 )
lowerCamelCase : List[str] = nn.Linear(4 , 5 )
def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Dict:
return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase_ ) ) )
class _lowercase ( unittest.TestCase ):
def _UpperCamelCase ( self ) -> Dict:
lowerCamelCase : Union[str, Any] = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(UpperCAmelCase_ ):
nonlocal batch_sizes
batch_sizes.append(UpperCAmelCase_ )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(UpperCAmelCase_ , [128, 64, 32, 16, 8] )
def _UpperCamelCase ( self ) -> Any:
lowerCamelCase : Optional[Any] = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(UpperCAmelCase_ , UpperCAmelCase_ ):
nonlocal batch_sizes
batch_sizes.append(UpperCAmelCase_ )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
lowerCamelCase , lowerCamelCase : List[str] = mock_training_loop_function('hello' )
self.assertListEqual(UpperCAmelCase_ , [128, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, 'hello'] )
def _UpperCamelCase ( self ) -> List[str]:
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(UpperCAmelCase_ ):
pass
with self.assertRaises(UpperCAmelCase_ ) as cm:
mock_training_loop_function()
self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] )
def _UpperCamelCase ( self ) -> List[str]:
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(UpperCAmelCase_ ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(UpperCAmelCase_ ) as cm:
mock_training_loop_function()
self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] )
def _UpperCamelCase ( self ) -> Any:
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(UpperCAmelCase_ ) as cm:
mock_training_loop_function(128 , 'hello' , 'world' )
self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] )
self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] )
def _UpperCamelCase ( self ) -> List[str]:
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(UpperCAmelCase_ ):
raise ValueError('Oops, we had an error!' )
with self.assertRaises(UpperCAmelCase_ ) as cm:
mock_training_loop_function()
self.assertIn('Oops, we had an error!' , cm.exception.args[0] )
@require_cuda
def _UpperCamelCase ( self ) -> Union[str, Any]:
lowerCamelCase : List[str] = torch.cuda.memory_allocated()
lowerCamelCase : Optional[int] = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , UpperCAmelCase_ )
lowerCamelCase : Tuple = release_memory(UpperCAmelCase_ )
self.assertEqual(torch.cuda.memory_allocated() , UpperCAmelCase_ )
| 133 | 0 |
'''simple docstring'''
from __future__ import annotations
def snake_case ( snake_case : str , snake_case : str ) -> bool:
"""simple docstring"""
lowerCAmelCase = get_failure_array(__lowercase )
# 2) Step through text searching for pattern
lowerCAmelCase , lowerCAmelCase = 0, 0 # index into text, pattern
while i < len(__lowercase ):
if pattern[j] == text[i]:
if j == (len(__lowercase ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
lowerCAmelCase = failure[j - 1]
continue
i += 1
return False
def snake_case ( snake_case : str ) -> list[int]:
"""simple docstring"""
lowerCAmelCase = [0]
lowerCAmelCase = 0
lowerCAmelCase = 1
while j < len(__lowercase ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
lowerCAmelCase = failure[i - 1]
continue
j += 1
failure.append(__lowercase )
return failure
if __name__ == "__main__":
# Test 1)
_UpperCamelCase : Optional[int] = '''abc1abc12'''
_UpperCamelCase : int = '''alskfjaldsabc1abc1abc12k23adsfabcabc'''
_UpperCamelCase : Tuple = '''alskfjaldsk23adsfabcabc'''
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
_UpperCamelCase : List[Any] = '''ABABX'''
_UpperCamelCase : Tuple = '''ABABZABABYABABX'''
assert kmp(pattern, text)
# Test 3)
_UpperCamelCase : Union[str, Any] = '''AAAB'''
_UpperCamelCase : Optional[int] = '''ABAAAAAB'''
assert kmp(pattern, text)
# Test 4)
_UpperCamelCase : Union[str, Any] = '''abcdabcy'''
_UpperCamelCase : List[Any] = '''abcxabcdabxabcdabcdabcy'''
assert kmp(pattern, text)
# Test 5)
_UpperCamelCase : int = '''aabaabaaa'''
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 284 |
'''simple docstring'''
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
a__ : Optional[int] =logging.get_logger(__name__)
set_seed(770)
a__ : str ={
'''c_attn''': '''att_proj''',
'''c_proj''': '''out_proj''',
'''c_fc''': '''in_proj''',
'''transformer.''': '''''',
'''h.''': '''layers.''',
'''ln_1''': '''layernorm_1''',
'''ln_2''': '''layernorm_2''',
'''ln_f''': '''layernorm_final''',
'''wpe''': '''position_embeds_layer''',
'''wte''': '''input_embeds_layer''',
}
a__ : str ={
'''text_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''text.pt''',
},
'''coarse_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''coarse.pt''',
},
'''fine_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''fine.pt''',
},
'''text''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''text_2.pt''',
},
'''coarse''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''coarse_2.pt''',
},
'''fine''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''fine_2.pt''',
},
}
a__ : Dict =os.path.dirname(os.path.abspath(__file__))
a__ : str =os.path.join(os.path.expanduser('''~'''), '''.cache''')
a__ : str =os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''')
def lowercase__ ( __lowercase : List[str] , __lowercase : Optional[int]=False ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = model_type
if use_small:
key += "_small"
return os.path.join(__lowercase , REMOTE_MODEL_PATHS[key]['file_name'] )
def lowercase__ ( __lowercase : Optional[int] , __lowercase : int ) -> str:
"""simple docstring"""
os.makedirs(__lowercase , exist_ok=__lowercase )
hf_hub_download(repo_id=__lowercase , filename=__lowercase , local_dir=__lowercase )
def lowercase__ ( __lowercase : int , __lowercase : Tuple , __lowercase : Optional[int]=False , __lowercase : Tuple="text" ) -> Optional[Any]:
"""simple docstring"""
if model_type == "text":
__UpperCamelCase = BarkSemanticModel
__UpperCamelCase = BarkSemanticConfig
__UpperCamelCase = BarkSemanticGenerationConfig
elif model_type == "coarse":
__UpperCamelCase = BarkCoarseModel
__UpperCamelCase = BarkCoarseConfig
__UpperCamelCase = BarkCoarseGenerationConfig
elif model_type == "fine":
__UpperCamelCase = BarkFineModel
__UpperCamelCase = BarkFineConfig
__UpperCamelCase = BarkFineGenerationConfig
else:
raise NotImplementedError()
__UpperCamelCase = F'''{model_type}_small''' if use_small else model_type
__UpperCamelCase = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(__lowercase ):
logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' )
_download(model_info['repo_id'] , model_info['file_name'] )
__UpperCamelCase = torch.load(__lowercase , map_location=__lowercase )
# this is a hack
__UpperCamelCase = checkpoint['model_args']
if "input_vocab_size" not in model_args:
__UpperCamelCase = model_args['vocab_size']
__UpperCamelCase = model_args['vocab_size']
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
__UpperCamelCase = model_args.pop('n_head' )
__UpperCamelCase = model_args.pop('n_embd' )
__UpperCamelCase = model_args.pop('n_layer' )
__UpperCamelCase = ConfigClass(**checkpoint['model_args'] )
__UpperCamelCase = ModelClass(config=__lowercase )
__UpperCamelCase = GenerationConfigClass()
__UpperCamelCase = model_generation_config
__UpperCamelCase = checkpoint['model']
# fixup checkpoint
__UpperCamelCase = '_orig_mod.'
for k, v in list(state_dict.items() ):
if k.startswith(__lowercase ):
# replace part of the key with corresponding layer name in HF implementation
__UpperCamelCase = k[len(__lowercase ) :]
for old_layer_name in new_layer_name_dict:
__UpperCamelCase = new_k.replace(__lowercase , new_layer_name_dict[old_layer_name] )
__UpperCamelCase = state_dict.pop(__lowercase )
__UpperCamelCase = set(state_dict.keys() ) - set(model.state_dict().keys() )
__UpperCamelCase = {k for k in extra_keys if not k.endswith('.attn.bias' )}
__UpperCamelCase = set(model.state_dict().keys() ) - set(state_dict.keys() )
__UpperCamelCase = {k for k in missing_keys if not k.endswith('.attn.bias' )}
if len(__lowercase ) != 0:
raise ValueError(F'''extra keys found: {extra_keys}''' )
if len(__lowercase ) != 0:
raise ValueError(F'''missing keys: {missing_keys}''' )
model.load_state_dict(__lowercase , strict=__lowercase )
__UpperCamelCase = model.num_parameters(exclude_embeddings=__lowercase )
__UpperCamelCase = checkpoint['best_val_loss'].item()
logger.info(F'''model loaded: {round(n_params/1e6 , 1 )}M params, {round(__lowercase , 3 )} loss''' )
model.eval()
model.to(__lowercase )
del checkpoint, state_dict
return model
def lowercase__ ( __lowercase : List[Any] , __lowercase : Any=False , __lowercase : List[Any]="text" ) -> int:
"""simple docstring"""
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
__UpperCamelCase = 'cpu' # do conversion on cpu
__UpperCamelCase = _get_ckpt_path(__lowercase , use_small=__lowercase )
__UpperCamelCase = _load_model(__lowercase , __lowercase , model_type=__lowercase , use_small=__lowercase )
# load bark initial model
__UpperCamelCase = _bark_load_model(__lowercase , 'cpu' , model_type=__lowercase , use_small=__lowercase )
if model_type == "text":
__UpperCamelCase = bark_model['model']
if model.num_parameters(exclude_embeddings=__lowercase ) != bark_model.get_num_params():
raise ValueError('initial and new models don\'t have the same number of parameters' )
# check if same output as the bark model
__UpperCamelCase = 5
__UpperCamelCase = 10
if model_type in ["text", "coarse"]:
__UpperCamelCase = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int )
__UpperCamelCase = bark_model(__lowercase )[0]
__UpperCamelCase = model(__lowercase )
# take last logits
__UpperCamelCase = output_new_model_total.logits[:, [-1], :]
else:
__UpperCamelCase = 3
__UpperCamelCase = 8
__UpperCamelCase = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int )
__UpperCamelCase = model(__lowercase , __lowercase )
__UpperCamelCase = bark_model(__lowercase , __lowercase )
__UpperCamelCase = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError('initial and new outputs don\'t have the same shape' )
if (output_new_model - output_old_model).abs().max().item() > 1e-3:
raise ValueError('initial and new outputs are not equal' )
Path(__lowercase ).mkdir(exist_ok=__lowercase )
model.save_pretrained(__lowercase )
def lowercase__ ( __lowercase : int , __lowercase : int , __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : Any , __lowercase : List[Any] , ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = os.path.join(__lowercase , __lowercase )
__UpperCamelCase = BarkSemanticConfig.from_pretrained(os.path.join(__lowercase , 'config.json' ) )
__UpperCamelCase = BarkCoarseConfig.from_pretrained(os.path.join(__lowercase , 'config.json' ) )
__UpperCamelCase = BarkFineConfig.from_pretrained(os.path.join(__lowercase , 'config.json' ) )
__UpperCamelCase = EncodecConfig.from_pretrained('facebook/encodec_24khz' )
__UpperCamelCase = BarkSemanticModel.from_pretrained(__lowercase )
__UpperCamelCase = BarkCoarseModel.from_pretrained(__lowercase )
__UpperCamelCase = BarkFineModel.from_pretrained(__lowercase )
__UpperCamelCase = EncodecModel.from_pretrained('facebook/encodec_24khz' )
__UpperCamelCase = BarkConfig.from_sub_model_configs(
__lowercase , __lowercase , __lowercase , __lowercase )
__UpperCamelCase = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config )
__UpperCamelCase = BarkModel(__lowercase )
__UpperCamelCase = semantic
__UpperCamelCase = coarseAcoustic
__UpperCamelCase = fineAcoustic
__UpperCamelCase = codec
__UpperCamelCase = bark_generation_config
Path(__lowercase ).mkdir(exist_ok=__lowercase )
bark.save_pretrained(__lowercase , repo_id=__lowercase , push_to_hub=__lowercase )
if __name__ == "__main__":
a__ : Any =argparse.ArgumentParser()
# Required parameters
parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''')
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''')
a__ : Optional[int] =parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 399 | 0 |
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
lowercase : Tuple = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif''']
class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1 ) -> Dict:
snake_case_ : int = tokenizer
snake_case_ : Tuple = dataset
snake_case_ : List[str] = len(__a ) if n_tasks is None else n_tasks
snake_case_ : Optional[Any] = n_copies
def __iter__( self ) -> Union[str, Any]:
snake_case_ : Optional[Any] = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() )
snake_case_ : Optional[Any] = self.tokenizer(__a , padding=__a , return_tensors="pt" )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ : int = start_length
snake_case_ : Union[str, Any] = eof_strings
snake_case_ : List[str] = tokenizer
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]:
snake_case_ : Optional[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
snake_case_ : Optional[int] = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(__a )
def lowerCAmelCase__ ( _a : Dict ):
snake_case_ : int = re.split("(%s)" % "|".join(__snake_case ) , __snake_case )
# last string should be ""
return "".join(string_list[:-2] )
def lowerCAmelCase__ ( _a : Optional[int] , _a : Dict , _a : Any , _a : List[str] , _a : int , _a : Tuple=20 , **_a : List[str] ):
snake_case_ : Any = defaultdict(__snake_case ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(__snake_case ) ):
with torch.no_grad():
snake_case_ : int = batch["ids"].shape[-1]
snake_case_ : Tuple = accelerator.unwrap_model(__snake_case ).generate(
input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=__snake_case , **__snake_case )
# each task is generated batch_size times
snake_case_ : Tuple = batch["task_id"].repeat(__snake_case )
snake_case_ : Optional[int] = accelerator.pad_across_processes(
__snake_case , dim=1 , pad_index=tokenizer.pad_token_id )
snake_case_ , snake_case_ : Optional[int] = accelerator.gather((generated_tokens, generated_tasks) )
snake_case_ : Tuple = generated_tokens.cpu().numpy()
snake_case_ : List[Any] = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(__snake_case , __snake_case ):
gen_token_dict[task].append(__snake_case )
snake_case_ : Optional[int] = [[] for _ in range(__snake_case )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
snake_case_ : str = tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )
code_gens[task].append(remove_last_block(__snake_case ) )
return code_gens
def lowerCAmelCase__ ( ):
snake_case_ : Optional[Any] = HfArgumentParser(__snake_case )
snake_case_ : Tuple = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
snake_case_ : Tuple = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
snake_case_ : List[str] = "false"
if args.num_workers is None:
snake_case_ : Union[str, Any] = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
snake_case_ : Dict = Accelerator()
set_seed(args.seed , device_specific=__snake_case )
# Load model and tokenizer
snake_case_ : str = AutoTokenizer.from_pretrained(args.model_ckpt )
snake_case_ : Any = tokenizer.eos_token
snake_case_ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
snake_case_ : List[str] = {
"do_sample": args.do_sample,
"temperature": args.temperature,
"max_new_tokens": args.max_new_tokens,
"top_p": args.top_p,
"top_k": args.top_k,
"stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ),
}
# Load evaluation dataset and metric
snake_case_ : Optional[Any] = load_dataset("openai_humaneval" )
snake_case_ : Optional[int] = load_metric("code_eval" )
snake_case_ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] )
snake_case_ : Any = args.n_samples // args.batch_size
snake_case_ : str = TokenizedDataset(__snake_case , human_eval["test"] , n_copies=__snake_case , n_tasks=__snake_case )
# do not confuse args.batch_size, which is actually the num_return_sequences
snake_case_ : Optional[Any] = DataLoader(__snake_case , batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
snake_case_ : int = code_eval_metric.compute(references=[""] , predictions=[[""]] )
except ValueError as exception:
print(
"Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`"
" flag to enable code evaluation." )
raise exception
snake_case_ , snake_case_ : List[Any] = accelerator.prepare(__snake_case , __snake_case )
snake_case_ : Optional[int] = complete_code(
__snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , )
if accelerator.is_main_process:
snake_case_ : Optional[Any] = []
for task in tqdm(range(__snake_case ) ):
snake_case_ : Optional[int] = human_eval["test"][task]["test"]
snake_case_ : List[str] = F'''check({human_eval['test'][task]['entry_point']})'''
references.append("\n" + test_func + "\n" + entry_point )
# Evaluate completions with "code_eval" metric
snake_case_ , snake_case_ : List[Any] = code_eval_metric.compute(
references=__snake_case , predictions=__snake_case , num_workers=args.num_workers )
print(F'''Results: {pass_at_k}''' )
# Save results to json file
with open(args.output_file , "w" ) as fp:
json.dump(__snake_case , __snake_case )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 712 |
def lowerCAmelCase__ ( _a : int ):
snake_case_ : str = 1
for i in range(1 , num + 1 ):
fact *= i
return fact
def lowerCAmelCase__ ( _a : int ):
snake_case_ : List[str] = 0
while number > 0:
snake_case_ : Dict = number % 10
sum_of_digits += last_digit
snake_case_ : List[Any] = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def lowerCAmelCase__ ( _a : int = 1_00 ):
snake_case_ : Optional[Any] = factorial(_a )
snake_case_ : Optional[int] = split_and_add(_a )
return result
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 114 | 0 |
"""simple docstring"""
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class snake_case__ ( _SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE__ = (DPMSolverSinglestepScheduler,)
SCREAMING_SNAKE_CASE__ = (("num_inference_steps", 25),)
def __lowerCAmelCase ( self : Optional[int] , **lowercase : List[Any] ):
'''simple docstring'''
UpperCAmelCase : Tuple = {
"num_train_timesteps": 10_00,
"beta_start": 0.0_0_0_1,
"beta_end": 0.0_2,
"beta_schedule": "linear",
"solver_order": 2,
"prediction_type": "epsilon",
"thresholding": False,
"sample_max_value": 1.0,
"algorithm_type": "dpmsolver++",
"solver_type": "midpoint",
"lambda_min_clipped": -float("inf" ),
"variance_type": None,
}
config.update(**snake_case_ )
return config
def __lowerCAmelCase ( self : Any , lowercase : Optional[Any]=0 , **lowercase : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase : List[str] = dict(self.forward_default_kwargs )
UpperCAmelCase : Dict = kwargs.pop("num_inference_steps" , snake_case_ )
UpperCAmelCase : Union[str, Any] = self.dummy_sample
UpperCAmelCase : str = 0.1 * sample
UpperCAmelCase : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase : int = self.get_scheduler_config(**snake_case_ )
UpperCAmelCase : Tuple = scheduler_class(**snake_case_ )
scheduler.set_timesteps(snake_case_ )
# copy over dummy past residuals
UpperCAmelCase : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(snake_case_ )
UpperCAmelCase : Any = scheduler_class.from_pretrained(snake_case_ )
new_scheduler.set_timesteps(snake_case_ )
# copy over dummy past residuals
UpperCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase , UpperCAmelCase : Tuple = sample, sample
for t in range(snake_case_ , time_step + scheduler.config.solver_order + 1 ):
UpperCAmelCase : Dict = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample
UpperCAmelCase : Optional[Any] = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
pass
def __lowerCAmelCase ( self : str , lowercase : List[Any]=0 , **lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase : Tuple = dict(self.forward_default_kwargs )
UpperCAmelCase : Union[str, Any] = kwargs.pop("num_inference_steps" , snake_case_ )
UpperCAmelCase : str = self.dummy_sample
UpperCAmelCase : Dict = 0.1 * sample
UpperCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase : Any = self.get_scheduler_config()
UpperCAmelCase : Union[str, Any] = scheduler_class(**snake_case_ )
scheduler.set_timesteps(snake_case_ )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(snake_case_ )
UpperCAmelCase : Tuple = scheduler_class.from_pretrained(snake_case_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(snake_case_ )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample
UpperCAmelCase : Tuple = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self : List[str] , lowercase : Any=None , **lowercase : str ):
'''simple docstring'''
if scheduler is None:
UpperCAmelCase : int = self.scheduler_classes[0]
UpperCAmelCase : int = self.get_scheduler_config(**snake_case_ )
UpperCAmelCase : Optional[Any] = scheduler_class(**snake_case_ )
UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0]
UpperCAmelCase : Optional[int] = self.get_scheduler_config(**snake_case_ )
UpperCAmelCase : Any = scheduler_class(**snake_case_ )
UpperCAmelCase : Optional[Any] = 10
UpperCAmelCase : Any = self.dummy_model()
UpperCAmelCase : List[str] = self.dummy_sample_deter
scheduler.set_timesteps(snake_case_ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : Any = model(snake_case_ , snake_case_ )
UpperCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample
return sample
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
UpperCAmelCase : List[Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
UpperCAmelCase : Any = 50
UpperCAmelCase : int = self.dummy_model()
UpperCAmelCase : List[str] = self.dummy_sample_deter
scheduler.set_timesteps(snake_case_ )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
UpperCAmelCase : Tuple = model(snake_case_ , snake_case_ )
UpperCAmelCase : int = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample
UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(snake_case_ ) )
assert abs(result_mean.item() - 0.2_5_7_4 ) < 1E-3
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
for timesteps in [25, 50, 1_00, 9_99, 10_00]:
self.check_over_configs(num_train_timesteps=snake_case_ )
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
UpperCAmelCase : Dict = self.full_loop(scheduler=snake_case_ )
UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(snake_case_ ) )
assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3
UpperCAmelCase : int = DEISMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase : List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase : str = UniPCMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase : str = DPMSolverSinglestepScheduler.from_config(scheduler.config )
UpperCAmelCase : str = self.full_loop(scheduler=snake_case_ )
UpperCAmelCase : str = torch.mean(torch.abs(snake_case_ ) )
assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
self.check_over_configs(thresholding=snake_case_ )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=snake_case_ , prediction_type=snake_case_ , sample_max_value=snake_case_ , algorithm_type="dpmsolver++" , solver_order=snake_case_ , solver_type=snake_case_ , )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=snake_case_ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=snake_case_ , solver_type=snake_case_ , prediction_type=snake_case_ , algorithm_type=snake_case_ , )
UpperCAmelCase : Tuple = self.full_loop(
solver_order=snake_case_ , solver_type=snake_case_ , prediction_type=snake_case_ , algorithm_type=snake_case_ , )
assert not torch.isnan(snake_case_ ).any(), "Samples have nan numbers"
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
self.check_over_configs(lower_order_final=snake_case_ )
self.check_over_configs(lower_order_final=snake_case_ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
self.check_over_configs(lambda_min_clipped=-float("inf" ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
self.check_over_configs(variance_type=snake_case_ )
self.check_over_configs(variance_type="learned_range" )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]:
self.check_over_forward(num_inference_steps=snake_case_ , time_step=0 )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
UpperCAmelCase : Tuple = self.full_loop()
UpperCAmelCase : Any = torch.mean(torch.abs(snake_case_ ) )
assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.full_loop(use_karras_sigmas=snake_case_ )
UpperCAmelCase : str = torch.mean(torch.abs(snake_case_ ) )
assert abs(result_mean.item() - 0.2_2_4_8 ) < 1E-3
def __lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.full_loop(prediction_type="v_prediction" )
UpperCAmelCase : List[Any] = torch.mean(torch.abs(snake_case_ ) )
assert abs(result_mean.item() - 0.1_4_5_3 ) < 1E-3
def __lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase : List[Any] = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=snake_case_ )
UpperCAmelCase : int = torch.mean(torch.abs(snake_case_ ) )
assert abs(result_mean.item() - 0.0_6_4_9 ) < 1E-3
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
UpperCAmelCase : Any = self.scheduler_classes[0]
UpperCAmelCase : Optional[Any] = self.get_scheduler_config(thresholding=snake_case_ , dynamic_thresholding_ratio=0 )
UpperCAmelCase : Tuple = scheduler_class(**snake_case_ )
UpperCAmelCase : Tuple = 10
UpperCAmelCase : Optional[Any] = self.dummy_model()
UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter.half()
scheduler.set_timesteps(snake_case_ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : Optional[Any] = model(snake_case_ , snake_case_ )
UpperCAmelCase : Union[str, Any] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample
assert sample.dtype == torch.floataa
| 595 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE_ = {
'''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MegaForCausalLM''',
'''MegaForMaskedLM''',
'''MegaForMultipleChoice''',
'''MegaForQuestionAnswering''',
'''MegaForSequenceClassification''',
'''MegaForTokenClassification''',
'''MegaModel''',
'''MegaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 426 | 0 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
lowerCamelCase : int = ViTImageProcessor if is_vision_available() else None
@property
def __UpperCAmelCase ( self : List[Any] ) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCAmelCase ( self : List[str] ) -> Dict:
lowerCAmelCase = (3, 3_2, 1_2_8)
lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
# fmt: on
lowerCAmelCase = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) )
lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(UpperCAmelCase__ ) + '\n' )
lowerCAmelCase = {
'do_normalize': False,
'do_resize': True,
'image_processor_type': 'ViTImageProcessor',
'resample': 3,
'size': {'height': 3_2, 'width': 1_2_8},
}
lowerCAmelCase = os.path.join(self.tmpdirname , UpperCAmelCase__ )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
def __UpperCAmelCase ( self : Union[str, Any] , **UpperCAmelCase__ : List[Any] ) -> int:
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ )
def __UpperCAmelCase ( self : Any , **UpperCAmelCase__ : int ) -> int:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ )
def __UpperCAmelCase ( self : List[Any] ) -> int:
shutil.rmtree(self.tmpdirname )
def __UpperCAmelCase ( self : List[Any] ) -> Any:
lowerCAmelCase = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )
lowerCAmelCase = Image.fromarray(np.moveaxis(UpperCAmelCase__ , 0 , -1 ) )
return image_input
def __UpperCAmelCase ( self : List[Any] ) -> Dict:
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase__ )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase__ )
def __UpperCAmelCase ( self : str ) -> str:
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
lowerCAmelCase = self.get_image_processor(do_normalize=UpperCAmelCase__ , padding_value=1.0 )
lowerCAmelCase = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase__ , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase__ )
def __UpperCAmelCase ( self : Tuple ) -> int:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
lowerCAmelCase = self.prepare_image_inputs()
lowerCAmelCase = image_processor(UpperCAmelCase__ , return_tensors='np' )
lowerCAmelCase = processor(images=UpperCAmelCase__ , return_tensors='np' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __UpperCAmelCase ( self : int ) -> List[str]:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
lowerCAmelCase = 'test'
lowerCAmelCase = processor(text=UpperCAmelCase__ )
lowerCAmelCase = tokenizer(UpperCAmelCase__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __UpperCAmelCase ( self : Any ) -> int:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
lowerCAmelCase = 'test'
lowerCAmelCase = self.prepare_image_inputs()
lowerCAmelCase = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ )
self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'labels'] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase__ ):
processor()
def __UpperCAmelCase ( self : int ) -> int:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase = processor.char_decode(UpperCAmelCase__ )
lowerCAmelCase = tokenizer.batch_decode(UpperCAmelCase__ )
lowerCAmelCase = [seq.replace(' ' , '' ) for seq in decoded_tok]
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def __UpperCAmelCase ( self : Optional[int] ) -> Any:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
lowerCAmelCase = None
lowerCAmelCase = self.prepare_image_inputs()
lowerCAmelCase = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __UpperCAmelCase ( self : int ) -> List[str]:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
lowerCAmelCase = torch.randn(1 , 2_7 , 3_8 )
lowerCAmelCase = torch.randn(1 , 2_7 , 5_0_2_5_7 )
lowerCAmelCase = torch.randn(1 , 2_7 , 3_0_5_2_2 )
lowerCAmelCase = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )
| 713 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__snake_case ={
"""configuration_efficientformer""": [
"""EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""EfficientFormerConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case =["""EfficientFormerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case =[
"""EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""EfficientFormerForImageClassification""",
"""EfficientFormerForImageClassificationWithTeacher""",
"""EfficientFormerModel""",
"""EfficientFormerPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case =[
"""TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFEfficientFormerForImageClassification""",
"""TFEfficientFormerForImageClassificationWithTeacher""",
"""TFEfficientFormerModel""",
"""TFEfficientFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
__snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 513 | 0 |
def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
lowercase__ : Optional[Any] = abs(SCREAMING_SNAKE_CASE_ )
lowercase__ : Tuple = 0
while n > 0:
res += n % 10
n //= 10
return res
def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
lowercase__ : Optional[int] = abs(SCREAMING_SNAKE_CASE_ )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
return sum(int(SCREAMING_SNAKE_CASE_ ) for c in str(abs(SCREAMING_SNAKE_CASE_ ) ) )
def snake_case__ ( ):
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : int ) -> None:
lowercase__ : Optional[int] = f"""{func.__name__}({value})"""
lowercase__ : Union[str, Any] = timeit(f"""__main__.{call}""" , setup='import __main__' )
print(f"""{call:56} = {func(SCREAMING_SNAKE_CASE_ )} -- {timing:.4f} seconds""" )
for value in (262_144, 1_125_899_906_842_624, 1_267_650_600_228_229_401_496_703_205_376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 164 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
snake_case_ = logging.get_logger(__name__)
snake_case_ = Dict[str, Any]
snake_case_ = List[Prediction]
@add_end_docstrings(__snake_case )
class SCREAMING_SNAKE_CASE__ (__snake_case ):
def __init__( self , *a , **a):
super().__init__(*a , **a)
if self.framework == "tf":
raise ValueError(f"""The {self.__class__} is only available in PyTorch.""")
requires_backends(self , 'vision')
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items()))
def snake_case_ ( self , **a):
lowercase__ : Optional[int] = {}
if "threshold" in kwargs:
lowercase__ : List[Any] = kwargs['threshold']
return {}, {}, postprocess_kwargs
def __call__( self , *a , **a):
return super().__call__(*a , **a)
def snake_case_ ( self , a):
lowercase__ : Optional[int] = load_image(a)
lowercase__ : Any = torch.IntTensor([[image.height, image.width]])
lowercase__ : int = self.image_processor(images=[image] , return_tensors='pt')
if self.tokenizer is not None:
lowercase__ : str = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt')
lowercase__ : Union[str, Any] = target_size
return inputs
def snake_case_ ( self , a):
lowercase__ : Any = model_inputs.pop('target_size')
lowercase__ : Tuple = self.model(**a)
lowercase__ : Dict = outputs.__class__({'target_size': target_size, **outputs})
if self.tokenizer is not None:
lowercase__ : Tuple = model_inputs['bbox']
return model_outputs
def snake_case_ ( self , a , a=0.9):
lowercase__ : Union[str, Any] = model_outputs['target_size']
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
lowercase__ , lowercase__ : Tuple = target_size[0].tolist()
def unnormalize(a):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
]))
lowercase__ , lowercase__ : List[str] = model_outputs['logits'].squeeze(0).softmax(dim=-1).max(dim=-1)
lowercase__ : Optional[int] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
lowercase__ : List[Any] = [unnormalize(a) for bbox in model_outputs['bbox'].squeeze(0)]
lowercase__ : str = ['score', 'label', 'box']
lowercase__ : List[str] = [dict(zip(a , a)) for vals in zip(scores.tolist() , a , a) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
lowercase__ : Tuple = self.image_processor.post_process_object_detection(a , a , a)
lowercase__ : Union[str, Any] = raw_annotations[0]
lowercase__ : List[Any] = raw_annotation['scores']
lowercase__ : Optional[int] = raw_annotation['labels']
lowercase__ : List[Any] = raw_annotation['boxes']
lowercase__ : List[str] = scores.tolist()
lowercase__ : Any = [self.model.config.idalabel[label.item()] for label in labels]
lowercase__ : str = [self._get_bounding_box(a) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
lowercase__ : Union[str, Any] = ['score', 'label', 'box']
lowercase__ : Optional[Any] = [
dict(zip(a , a))
for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'])
]
return annotation
def snake_case_ ( self , a):
if self.framework != "pt":
raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.')
lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist()
lowercase__ : Optional[Any] = {
'xmin': xmin,
'ymin': ymin,
'xmax': xmax,
'ymax': ymax,
}
return bbox
| 164 | 1 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase : Optional[Any] =16
lowerCAmelCase : Dict =32
def A__ ( __A , __A = 16 ):
'''simple docstring'''
_lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" )
_lowerCamelCase : Optional[int] = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__A ):
# max_length=None => use the model max length (it's actually the default)
_lowerCamelCase : Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__A , max_length=__A )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_lowerCamelCase : Tuple = datasets.map(
__A , batched=__A , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_lowerCamelCase : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__A ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_lowerCamelCase : int = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_lowerCamelCase : Optional[Any] = 16
elif accelerator.mixed_precision != "no":
_lowerCamelCase : int = 8
else:
_lowerCamelCase : Optional[int] = None
return tokenizer.pad(
__A , padding="""longest""" , max_length=__A , pad_to_multiple_of=__A , return_tensors="""pt""" , )
# Instantiate dataloaders.
_lowerCamelCase : int = DataLoader(
tokenized_datasets["""train"""] , shuffle=__A , collate_fn=__A , batch_size=__A )
_lowerCamelCase : Any = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__A , collate_fn=__A , batch_size=__A )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCAmelCase : List[Any] =mocked_dataloaders # noqa: F811
def A__ ( __A , __A ):
'''simple docstring'''
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __A ) == "1":
_lowerCamelCase : Any = 2
# New Code #
_lowerCamelCase : Any = int(args.gradient_accumulation_steps )
# Initialize accelerator
_lowerCamelCase : Union[str, Any] = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__A )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
"""Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_lowerCamelCase : List[str] = config["""lr"""]
_lowerCamelCase : Tuple = int(config["""num_epochs"""] )
_lowerCamelCase : Tuple = int(config["""seed"""] )
_lowerCamelCase : Union[str, Any] = int(config["""batch_size"""] )
_lowerCamelCase : List[str] = evaluate.load("""glue""" , """mrpc""" )
set_seed(__A )
_lowerCamelCase , _lowerCamelCase : str = get_dataloaders(__A , __A )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_lowerCamelCase : str = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__A )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_lowerCamelCase : str = model.to(accelerator.device )
# Instantiate optimizer
_lowerCamelCase : List[str] = AdamW(params=model.parameters() , lr=__A )
# Instantiate scheduler
_lowerCamelCase : Any = get_linear_schedule_with_warmup(
optimizer=__A , num_warmup_steps=100 , num_training_steps=(len(__A ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = accelerator.prepare(
__A , __A , __A , __A , __A )
# Now we train the model
for epoch in range(__A ):
model.train()
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(__A ):
_lowerCamelCase : Dict = model(**__A )
_lowerCamelCase : str = output.loss
accelerator.backward(__A )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_lowerCamelCase : Optional[Any] = model(**__A )
_lowerCamelCase : Optional[int] = outputs.logits.argmax(dim=-1 )
_lowerCamelCase , _lowerCamelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__A , references=__A , )
_lowerCamelCase : Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , __A )
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__A , default=__A , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__A , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
_lowerCamelCase : Any = parser.parse_args()
_lowerCamelCase : Dict = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__A , __A )
if __name__ == "__main__":
main()
| 15 | lowerCAmelCase : Tuple =0 # The first color of the flag.
lowerCAmelCase : Union[str, Any] =1 # The second color of the flag.
lowerCAmelCase : Any =2 # The third color of the flag.
lowerCAmelCase : List[str] =(red, white, blue)
def A__ ( __A ):
'''simple docstring'''
if not sequence:
return []
if len(__A ) == 1:
return list(__A )
_lowerCamelCase : int = 0
_lowerCamelCase : Dict = len(__A ) - 1
_lowerCamelCase : str = 0
while mid <= high:
if sequence[mid] == colors[0]:
_lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
_lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid]
high -= 1
else:
_lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values"""
raise ValueError(__A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip()
lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 15 | 1 |
"""simple docstring"""
from __future__ import annotations
def UpperCAmelCase__ (snake_case__ : list ):
"""simple docstring"""
if not nums:
raise ValueError("""List is empty""" )
return sum(snake_case__ ) / len(snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 609 |
"""simple docstring"""
import argparse
from collections import defaultdict
def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : str ):
"""simple docstring"""
_snake_case : Dict = F"{file}_{class_name}_{test_name}"
done_test[_id] += 1
with open(snake_case__ , """r""" ) as f:
_snake_case : Optional[Any] = f.readlines()
_snake_case : Tuple = F"class {class_name}("
_snake_case : Tuple = F"{4 * ' '}def {test_name}("
_snake_case : Optional[int] = F"{8 * ' '}{correct_line.split()[0]}"
_snake_case : Union[str, Any] = F"{16 * ' '}{correct_line.split()[0]}"
_snake_case : Optional[int] = False
_snake_case : Optional[int] = False
_snake_case : Optional[Any] = False
_snake_case : Optional[Any] = False
_snake_case : List[Any] = 0
_snake_case : List[Any] = 0
_snake_case : List[str] = []
for line in lines:
if line.startswith(snake_case__ ):
_snake_case : Union[str, Any] = True
elif in_class and line.startswith(snake_case__ ):
_snake_case : str = True
elif in_class and in_func and (line.startswith(snake_case__ ) or line.startswith(snake_case__ )):
_snake_case : Optional[Any] = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_snake_case : Optional[Any] = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_snake_case : str = True
if in_class and in_func and in_line and insert_line:
new_lines.append(F"{spaces * ' '}{correct_line}" )
_snake_case : int = False
else:
new_lines.append(snake_case__ )
with open(snake_case__ , """w""" ) as f:
for line in new_lines:
f.write(snake_case__ )
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Any=None ):
"""simple docstring"""
if fail is not None:
with open(snake_case__ , """r""" ) as f:
_snake_case : List[Any] = {l.strip() for l in f.readlines()}
else:
_snake_case : Union[str, Any] = None
with open(snake_case__ , """r""" ) as f:
_snake_case : Union[str, Any] = f.readlines()
_snake_case : List[Any] = defaultdict(snake_case__ )
for line in correct_lines:
_snake_case , _snake_case , _snake_case , _snake_case : List[Any] = line.split(""";""" )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''')
parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None)
A_ = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 609 | 1 |
import random
from typing import Any
def A_ ( lowercase_ ) ->list[Any]:
"""simple docstring"""
for _ in range(len(lowercase_ ) ):
SCREAMING_SNAKE_CASE = random.randint(0 , len(lowercase_ ) - 1 )
SCREAMING_SNAKE_CASE = random.randint(0 , len(lowercase_ ) - 1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data[b], data[a]
return data
if __name__ == "__main__":
__UpperCAmelCase = [0, 1, 2, 3, 4, 5, 6, 7]
__UpperCAmelCase = ["python", "says", "hello", "!"]
print("Fisher-Yates Shuffle:")
print("List", integers, strings)
print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 259 |
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__UpperCAmelCase = {"LayoutLMv2Config", "LayoutLMv3Config"}
@is_pipeline_test
class a_( unittest.TestCase ):
"""simple docstring"""
__snake_case : Union[str, Any] =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
__snake_case : Dict =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
__snake_case : Optional[Any] ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
__snake_case : Any ={
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __UpperCamelCase ( self : List[Any]) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE = pipeline(
task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt')
SCREAMING_SNAKE_CASE = text_classifier('This is great !')
self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}])
SCREAMING_SNAKE_CASE = text_classifier('This is great !' , top_k=2)
self.assertEqual(
nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}])
SCREAMING_SNAKE_CASE = text_classifier(['This is great !', 'This is bad'] , top_k=2)
self.assertEqual(
nested_simplify(lowerCAmelCase__) , [
[{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}],
[{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}],
] , )
SCREAMING_SNAKE_CASE = text_classifier('This is great !' , top_k=1)
self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}])
# Legacy behavior
SCREAMING_SNAKE_CASE = text_classifier('This is great !' , return_all_scores=lowerCAmelCase__)
self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}])
SCREAMING_SNAKE_CASE = text_classifier('This is great !' , return_all_scores=lowerCAmelCase__)
self.assertEqual(
nested_simplify(lowerCAmelCase__) , [[{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}]])
SCREAMING_SNAKE_CASE = text_classifier(['This is great !', 'Something else'] , return_all_scores=lowerCAmelCase__)
self.assertEqual(
nested_simplify(lowerCAmelCase__) , [
[{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}],
[{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}],
] , )
SCREAMING_SNAKE_CASE = text_classifier(['This is great !', 'Something else'] , return_all_scores=lowerCAmelCase__)
self.assertEqual(
nested_simplify(lowerCAmelCase__) , [
{'label': 'LABEL_0', 'score': 0.5_04},
{'label': 'LABEL_0', 'score': 0.5_04},
] , )
@require_torch
def __UpperCamelCase ( self : str) -> Dict:
"""simple docstring"""
import torch
SCREAMING_SNAKE_CASE = pipeline(
task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' , device=torch.device('cpu') , )
SCREAMING_SNAKE_CASE = text_classifier('This is great !')
self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}])
@require_tf
def __UpperCamelCase ( self : int) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE = pipeline(
task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='tf')
SCREAMING_SNAKE_CASE = text_classifier('This is great !')
self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}])
@slow
@require_torch
def __UpperCamelCase ( self : List[Any]) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE = pipeline('text-classification')
SCREAMING_SNAKE_CASE = text_classifier('This is great !')
self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'POSITIVE', 'score': 1.0}])
SCREAMING_SNAKE_CASE = text_classifier('This is bad !')
self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'NEGATIVE', 'score': 1.0}])
SCREAMING_SNAKE_CASE = text_classifier('Birds are a type of animal')
self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'POSITIVE', 'score': 0.9_88}])
@slow
@require_tf
def __UpperCamelCase ( self : Optional[Any]) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE = pipeline('text-classification' , framework='tf')
SCREAMING_SNAKE_CASE = text_classifier('This is great !')
self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'POSITIVE', 'score': 1.0}])
SCREAMING_SNAKE_CASE = text_classifier('This is bad !')
self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'NEGATIVE', 'score': 1.0}])
SCREAMING_SNAKE_CASE = text_classifier('Birds are a type of animal')
self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'POSITIVE', 'score': 0.9_88}])
def __UpperCamelCase ( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE = TextClassificationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__)
return text_classifier, ["HuggingFace is in", "This is another test"]
def __UpperCamelCase ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
SCREAMING_SNAKE_CASE = 'HuggingFace is in'
SCREAMING_SNAKE_CASE = text_classifier(lowerCAmelCase__)
self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}])
self.assertTrue(outputs[0]['label'] in model.config.idalabel.values())
SCREAMING_SNAKE_CASE = ['HuggingFace is in ', 'Paris is in France']
SCREAMING_SNAKE_CASE = text_classifier(lowerCAmelCase__)
self.assertEqual(
nested_simplify(lowerCAmelCase__) , [{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}, {'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}] , )
self.assertTrue(outputs[0]['label'] in model.config.idalabel.values())
self.assertTrue(outputs[1]['label'] in model.config.idalabel.values())
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
SCREAMING_SNAKE_CASE = text_classifier(lowerCAmelCase__ , top_k=lowerCAmelCase__)
SCREAMING_SNAKE_CASE = len(model.config.idalabel.values())
self.assertEqual(
nested_simplify(lowerCAmelCase__) , [[{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}] * N, [{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}] * N] , )
SCREAMING_SNAKE_CASE = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'}
SCREAMING_SNAKE_CASE = text_classifier(lowerCAmelCase__)
self.assertEqual(
nested_simplify(lowerCAmelCase__) , {'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)} , )
self.assertTrue(outputs['label'] in model.config.idalabel.values())
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
SCREAMING_SNAKE_CASE = [['HuggingFace is in ', 'Paris is in France']]
with self.assertRaises(lowerCAmelCase__):
text_classifier(lowerCAmelCase__)
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
SCREAMING_SNAKE_CASE = text_classifier([[['HuggingFace is in ', 'Paris is in France']]])
self.assertEqual(
nested_simplify(lowerCAmelCase__) , [{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}] , )
self.assertTrue(outputs[0]['label'] in model.config.idalabel.values())
| 259 | 1 |
"""simple docstring"""
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class a :
def __init__( self , _snake_case=2 , _snake_case=3 , _snake_case=64 , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = np.random.default_rng(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase = length
lowerCAmelCase = rng.normal(size=(length,) ).astype(np.floataa )
lowerCAmelCase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ):
"""simple docstring"""
return self.length
def __getitem__( self , _snake_case ):
"""simple docstring"""
return {"x": self.x[i], "y": self.y[i]}
class a ( torch.nn.Module ):
def __init__( self , _snake_case=0 , _snake_case=0 , _snake_case=False ):
"""simple docstring"""
super().__init__()
lowerCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
lowerCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
lowerCAmelCase = True
def UpperCamelCase__ ( self , _snake_case=None ):
"""simple docstring"""
if self.first_batch:
print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
lowerCAmelCase = False
return x * self.a[0] + self.b[0]
class a ( torch.nn.Module ):
def __init__( self , _snake_case=0 , _snake_case=0 , _snake_case=False ):
"""simple docstring"""
super().__init__()
lowerCAmelCase = torch.nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE_ ).float() )
lowerCAmelCase = torch.nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE_ ).float() )
lowerCAmelCase = True
def UpperCamelCase__ ( self , _snake_case=None ):
"""simple docstring"""
if self.first_batch:
print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
lowerCAmelCase = False
return x * self.a + self.b
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : int = 16 ):
from datasets import load_dataset
from transformers import AutoTokenizer
lowerCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' )
lowerCAmelCase = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'}
lowerCAmelCase = load_dataset('csv' , data_files=_lowerCamelCase )
lowerCAmelCase = datasets['train'].unique('label' )
lowerCAmelCase = {v: i for i, v in enumerate(_lowerCamelCase )}
def tokenize_function(_UpperCAmelCase : List[str] ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase = tokenizer(
examples['sentence1'] , examples['sentence2'] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' )
if "label" in examples:
lowerCAmelCase = [label_to_id[l] for l in examples['label']]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowerCAmelCase = datasets.map(
_lowerCamelCase , batched=_lowerCamelCase , remove_columns=['sentence1', 'sentence2', 'label'] , )
def collate_fn(_UpperCAmelCase : Tuple ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(_lowerCamelCase , padding='max_length' , max_length=128 , return_tensors='pt' )
return tokenizer.pad(_lowerCamelCase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
lowerCAmelCase = DataLoader(tokenized_datasets['train'] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=2 )
lowerCAmelCase = DataLoader(tokenized_datasets['validation'] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=1 )
return train_dataloader, eval_dataloader
| 4 |
"""simple docstring"""
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def __magic_name__ ( _lowerCamelCase: Optional[Any] ) -> Dict:
'''simple docstring'''
def wrapper(*_lowerCamelCase: Any, **_lowerCamelCase: Union[str, Any] ):
lowerCAmelCase = timeit.default_timer()
lowerCAmelCase = func(*_lowerCamelCase, **_lowerCamelCase )
lowerCAmelCase = timeit.default_timer() - starttime
return delta
lowerCAmelCase = func.__name__
return wrapper
def __magic_name__ ( _lowerCamelCase: dict, _lowerCamelCase: List[Any]=100, _lowerCamelCase: int=None ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase = []
lowerCAmelCase = seq_shapes or {}
for i in range(_lowerCamelCase ):
lowerCAmelCase = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(_lowerCamelCase, _ArrayXD ):
lowerCAmelCase = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(_lowerCamelCase, datasets.Value ):
if v.dtype == "string":
lowerCAmelCase = '''The small grey turtle was surprisingly fast when challenged.'''
else:
lowerCAmelCase = np.random.randint(10, size=1 ).astype(v.dtype ).item()
elif isinstance(_lowerCamelCase, datasets.Sequence ):
while isinstance(_lowerCamelCase, datasets.Sequence ):
lowerCAmelCase = v.feature
lowerCAmelCase = seq_shapes[k]
lowerCAmelCase = np.random.rand(*_lowerCamelCase ).astype(v.dtype )
lowerCAmelCase = data
dummy_data.append((i, example) )
return dummy_data
def __magic_name__ ( _lowerCamelCase: Tuple, _lowerCamelCase: Tuple, _lowerCamelCase: Union[str, Any]=100, _lowerCamelCase: List[Any]=None ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase = generate_examples(_lowerCamelCase, num_examples=_lowerCamelCase, seq_shapes=_lowerCamelCase )
with ArrowWriter(features=_lowerCamelCase, path=_lowerCamelCase ) as writer:
for key, record in dummy_data:
lowerCAmelCase = features.encode_example(_lowerCamelCase )
writer.write(_lowerCamelCase )
lowerCAmelCase , lowerCAmelCase = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" )
lowerCAmelCase = datasets.Dataset.from_file(filename=_lowerCamelCase, info=datasets.DatasetInfo(features=_lowerCamelCase ) )
return dataset
| 535 | 0 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ = logging.get_logger(__name__)
def _snake_case ( lowercase__ , lowercase__=False , lowercase__=False , lowercase__=False ):
_lowerCamelCase : Tuple = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append(
(f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') )
# embeddings
rename_keys.extend(
[
# text embeddings
('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'),
(
'text_embeddings.position_embeddings.weight',
'vilt.embeddings.text_embeddings.position_embeddings.weight',
),
('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'),
(
'text_embeddings.token_type_embeddings.weight',
'vilt.embeddings.text_embeddings.token_type_embeddings.weight',
),
('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'),
('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'),
# patch embeddings
('transformer.cls_token', 'vilt.embeddings.cls_token'),
('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'),
('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'),
('transformer.pos_embed', 'vilt.embeddings.position_embeddings'),
# token type embeddings
('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'),
] )
# final layernorm + pooler
rename_keys.extend(
[
('transformer.norm.weight', 'vilt.layernorm.weight'),
('transformer.norm.bias', 'vilt.layernorm.bias'),
('pooler.dense.weight', 'vilt.pooler.dense.weight'),
('pooler.dense.bias', 'vilt.pooler.dense.bias'),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('vqa_classifier.0.weight', 'classifier.0.weight'),
('vqa_classifier.0.bias', 'classifier.0.bias'),
('vqa_classifier.1.weight', 'classifier.1.weight'),
('vqa_classifier.1.bias', 'classifier.1.bias'),
('vqa_classifier.3.weight', 'classifier.3.weight'),
('vqa_classifier.3.bias', 'classifier.3.bias'),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('nlvr2_classifier.0.weight', 'classifier.0.weight'),
('nlvr2_classifier.0.bias', 'classifier.0.bias'),
('nlvr2_classifier.1.weight', 'classifier.1.weight'),
('nlvr2_classifier.1.bias', 'classifier.1.bias'),
('nlvr2_classifier.3.weight', 'classifier.3.weight'),
('nlvr2_classifier.3.bias', 'classifier.3.bias'),
] )
else:
pass
return rename_keys
def _snake_case ( lowercase__ , lowercase__ ):
for i in range(config.num_hidden_layers ):
_lowerCamelCase : Optional[int] = 'vilt.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCamelCase : Any = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' )
_lowerCamelCase : int = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase : int = in_proj_weight[
: config.hidden_size, :
]
_lowerCamelCase : Dict = in_proj_bias[: config.hidden_size]
_lowerCamelCase : int = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCamelCase : Any = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCamelCase : int = in_proj_weight[
-config.hidden_size :, :
]
_lowerCamelCase : List[Any] = in_proj_bias[-config.hidden_size :]
def _snake_case ( lowercase__ ):
_lowerCamelCase : List[Any] = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : Any = dct.pop(lowercase__ )
_lowerCamelCase : Tuple = val
@torch.no_grad()
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : Union[str, Any] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowercase__ )
_lowerCamelCase : int = False
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Optional[Any] = False
_lowerCamelCase : Any = False
if "vqa" in checkpoint_url:
_lowerCamelCase : Tuple = True
_lowerCamelCase : Optional[int] = 3129
_lowerCamelCase : List[Any] = 'huggingface/label-files'
_lowerCamelCase : List[Any] = 'vqa2-id2label.json'
_lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) )
_lowerCamelCase : Any = {int(lowercase__ ): v for k, v in idalabel.items()}
_lowerCamelCase : int = idalabel
_lowerCamelCase : List[Any] = {v: k for k, v in idalabel.items()}
_lowerCamelCase : Tuple = ViltForQuestionAnswering(lowercase__ )
elif "nlvr" in checkpoint_url:
_lowerCamelCase : Tuple = True
_lowerCamelCase : int = 2
_lowerCamelCase : List[str] = {0: 'False', 1: 'True'}
_lowerCamelCase : Optional[int] = {v: k for k, v in config.idalabel.items()}
_lowerCamelCase : Any = 3
_lowerCamelCase : Union[str, Any] = ViltForImagesAndTextClassification(lowercase__ )
elif "irtr" in checkpoint_url:
_lowerCamelCase : List[str] = True
_lowerCamelCase : List[str] = ViltForImageAndTextRetrieval(lowercase__ )
elif "mlm_itm" in checkpoint_url:
_lowerCamelCase : str = True
_lowerCamelCase : Dict = ViltForMaskedLM(lowercase__ )
else:
raise ValueError('Unknown model type' )
# load state_dict of original model, remove and rename some keys
_lowerCamelCase : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase__ , map_location='cpu' )['state_dict']
_lowerCamelCase : Dict = create_rename_keys(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
read_in_q_k_v(lowercase__ , lowercase__ )
if mlm_model or irtr_model:
_lowerCamelCase : Any = ['itm_score.fc.weight', 'itm_score.fc.bias']
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
_lowerCamelCase : int = model.load_state_dict(lowercase__ , strict=lowercase__ )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(lowercase__ )
# Define processor
_lowerCamelCase : Optional[int] = ViltImageProcessor(size=384 )
_lowerCamelCase : int = BertTokenizer.from_pretrained('bert-base-uncased' )
_lowerCamelCase : Optional[Any] = ViltProcessor(lowercase__ , lowercase__ )
# Forward pass on example inputs (image + text)
if nlvr_model:
_lowerCamelCase : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw )
_lowerCamelCase : Any = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw )
_lowerCamelCase : int = (
'The left image contains twice the number of dogs as the right image, and at least two dogs in total are'
' standing.'
)
_lowerCamelCase : Tuple = processor(lowercase__ , lowercase__ , return_tensors='pt' )
_lowerCamelCase : Tuple = processor(lowercase__ , lowercase__ , return_tensors='pt' )
_lowerCamelCase : Dict = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
_lowerCamelCase : Any = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=lowercase__ ).raw )
if mlm_model:
_lowerCamelCase : Tuple = 'a bunch of [MASK] laying on a [MASK].'
else:
_lowerCamelCase : Any = 'How many cats are there?'
_lowerCamelCase : Union[str, Any] = processor(lowercase__ , lowercase__ , return_tensors='pt' )
_lowerCamelCase : int = model(**lowercase__ )
# Verify outputs
if mlm_model:
_lowerCamelCase : Union[str, Any] = torch.Size([1, 11, 30522] )
_lowerCamelCase : Optional[Any] = torch.tensor([-12.5061, -12.5123, -12.5174] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1E-4 )
# verify masked token prediction equals "cats"
_lowerCamelCase : List[str] = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
_lowerCamelCase : List[Any] = torch.Size([1, 3129] )
_lowerCamelCase : List[Any] = torch.tensor([-15.9495, -18.1472, -10.3041] )
assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1E-4 )
# verify vqa prediction equals "2"
_lowerCamelCase : Tuple = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
_lowerCamelCase : Union[str, Any] = torch.Size([1, 2] )
_lowerCamelCase : int = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] )
assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""",
type=str,
help="""URL of the checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
lowercase__ = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 712 |
"""simple docstring"""
def _snake_case ( lowercase__ ):
_lowerCamelCase : Optional[int] = int(lowercase__ )
if decimal in (0, 1): # Exit cases for the recursion
return str(lowercase__ )
_lowerCamelCase, _lowerCamelCase : Dict = divmod(lowercase__ , 2 )
return binary_recursive(lowercase__ ) + str(lowercase__ )
def _snake_case ( lowercase__ ):
_lowerCamelCase : List[Any] = str(lowercase__ ).strip()
if not number:
raise ValueError('No input value was provided' )
_lowerCamelCase : str = '-' if number.startswith('-' ) else ''
_lowerCamelCase : Union[str, Any] = number.lstrip('-' )
if not number.isnumeric():
raise ValueError('Input value is not an integer' )
return f'''{negative}0b{binary_recursive(int(lowercase__ ) )}'''
if __name__ == "__main__":
from doctest import testmod
testmod() | 492 | 0 |
"""simple docstring"""
def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :str ) -> Optional[Any]:
assert x is not None
assert y is not None
a_ : Optional[int] = len(_SCREAMING_SNAKE_CASE )
a_ : Dict = len(_SCREAMING_SNAKE_CASE )
# declaring the array for storing the dp values
a_ : Any = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1 , m + 1 ):
for j in range(1 , n + 1 ):
a_ : Tuple = 1 if x[i - 1] == y[j - 1] else 0
a_ : Dict = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match )
a_ : str = ""
a_ , a_ : Tuple = m, n
while i > 0 and j > 0:
a_ : Optional[Any] = 1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
a_ : str = x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
UpperCamelCase = 'AGGTAB'
UpperCamelCase = 'GXTXAYB'
UpperCamelCase = 4
UpperCamelCase = 'GTAB'
UpperCamelCase , UpperCamelCase = longest_common_subsequence(a, b)
print('len =', ln, ', sub-sequence =', subseq)
import doctest
doctest.testmod()
| 473 | """simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Optional[Any] ) -> List[Any]:
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x2_0000 and cp <= 0x2_a6df) #
or (cp >= 0x2_a700 and cp <= 0x2_b73f) #
or (cp >= 0x2_b740 and cp <= 0x2_b81f) #
or (cp >= 0x2_b820 and cp <= 0x2_ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2_f800 and cp <= 0x2_fa1f) #
): #
return True
return False
def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :str ) -> Union[str, Any]:
# word like '180' or '身高' or '神'
for char in word:
a_ : Union[str, Any] = ord(_SCREAMING_SNAKE_CASE )
if not _is_chinese_char(_SCREAMING_SNAKE_CASE ):
return 0
return 1
def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[str] ) -> Dict:
a_ : int = set()
for token in tokens:
a_ : Any = len(_SCREAMING_SNAKE_CASE ) > 1 and is_chinese(_SCREAMING_SNAKE_CASE )
if chinese_word:
word_set.add(_SCREAMING_SNAKE_CASE )
a_ : int = list(_SCREAMING_SNAKE_CASE )
return word_list
def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :set() ) -> Dict:
if not chinese_word_set:
return bert_tokens
a_ : Dict = max([len(_SCREAMING_SNAKE_CASE ) for w in chinese_word_set] )
a_ : int = bert_tokens
a_ , a_ : int = 0, len(_SCREAMING_SNAKE_CASE )
while start < end:
a_ : List[Any] = True
if is_chinese(bert_word[start] ):
a_ : Dict = min(end - start , _SCREAMING_SNAKE_CASE )
for i in range(_SCREAMING_SNAKE_CASE , 1 , -1 ):
a_ : Optional[int] = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
a_ : Any = "##" + bert_word[j]
a_ : int = start + i
a_ : Union[str, Any] = False
break
if single_word:
start += 1
return bert_word
def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :LTP , _SCREAMING_SNAKE_CASE :BertTokenizer ) -> str:
a_ : Union[str, Any] = []
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , 100 ):
a_ : Union[str, Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws
a_ : Union[str, Any] = [get_chinese_word(_SCREAMING_SNAKE_CASE ) for r in res]
ltp_res.extend(_SCREAMING_SNAKE_CASE )
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
a_ : Tuple = []
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , 100 ):
a_ : Union[str, Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=512 )
bert_res.extend(res["input_ids"] )
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
a_ : int = []
for input_ids, chinese_word in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
a_ : Any = []
for id in input_ids:
a_ : Any = bert_tokenizer._convert_id_to_token(_SCREAMING_SNAKE_CASE )
input_tokens.append(_SCREAMING_SNAKE_CASE )
a_ : int = add_sub_symbol(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
a_ : List[str] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_SCREAMING_SNAKE_CASE ):
if token[:2] == "##":
a_ : List[Any] = token[2:]
# save chinese tokens' pos
if len(_SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(_SCREAMING_SNAKE_CASE ) ):
ref_id.append(_SCREAMING_SNAKE_CASE )
ref_ids.append(_SCREAMING_SNAKE_CASE )
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
return ref_ids
def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Any ) -> str:
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , "r" , encoding="utf-8" ) as f:
a_ : Optional[Any] = f.readlines()
a_ : Optional[int] = [line.strip() for line in data if len(_SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
a_ : Tuple = LTP(args.ltp ) # faster in GPU device
a_ : int = BertTokenizer.from_pretrained(args.bert )
a_ : List[str] = prepare_ref(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
with open(args.save_path , "w" , encoding="utf-8" ) as f:
a_ : List[str] = [json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" for ref in ref_ids]
f.writelines(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
required=False,
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp',
required=False,
type=str,
default='./resources/ltp',
help='resources for LTP tokenizer, usually a path',
)
parser.add_argument(
'--bert',
required=False,
type=str,
default='./resources/robert',
help='resources for Bert tokenizer',
)
parser.add_argument(
'--save_path',
required=False,
type=str,
default='./resources/ref.txt',
help='path to save res',
)
UpperCamelCase = parser.parse_args()
main(args)
| 473 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name
lowerCAmelCase__ = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n"
def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase=8 ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ : Optional[Any] = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
UpperCAmelCase_ : str = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase=5_1_2 ,UpperCamelCase=5_1_2 ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ : Tuple = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 )
UpperCAmelCase_ : int = np.array(pil_image.convert('RGB' ) )
UpperCAmelCase_ : int = arr.astype(np.floataa ) / 127.5 - 1
UpperCAmelCase_ : int = np.transpose(lowercase__ ,[2, 0, 1] )
UpperCAmelCase_ : Tuple = torch.from_numpy(lowercase__ ).unsqueeze(0 )
return image
class lowercase ( __snake_case ):
def __init__( self , _snake_case , _snake_case , _snake_case , ) -> Dict:
super().__init__()
self.register_modules(
unet=__UpperCamelCase , scheduler=__UpperCamelCase , movq=__UpperCamelCase , )
UpperCAmelCase_ : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels) - 1)
def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> int:
UpperCAmelCase_ : List[Any] = min(int(num_inference_steps * strength) , __UpperCamelCase)
UpperCAmelCase_ : Any = max(num_inference_steps - init_timestep , 0)
UpperCAmelCase_ : Any = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None) -> str:
if not isinstance(__UpperCamelCase , (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__UpperCamelCase)}""")
UpperCAmelCase_ : str = image.to(device=__UpperCamelCase , dtype=__UpperCamelCase)
UpperCAmelCase_ : Any = batch_size * num_images_per_prompt
if image.shape[1] == 4:
UpperCAmelCase_ : Optional[int] = image
else:
if isinstance(__UpperCamelCase , __UpperCamelCase) and len(__UpperCamelCase) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(__UpperCamelCase)}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""")
elif isinstance(__UpperCamelCase , __UpperCamelCase):
UpperCAmelCase_ : Tuple = [
self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(__UpperCamelCase)
]
UpperCAmelCase_ : Any = torch.cat(__UpperCamelCase , dim=0)
else:
UpperCAmelCase_ : Dict = self.movq.encode(__UpperCamelCase).latent_dist.sample(__UpperCamelCase)
UpperCAmelCase_ : Tuple = self.movq.config.scaling_factor * init_latents
UpperCAmelCase_ : Any = torch.cat([init_latents] , dim=0)
UpperCAmelCase_ : int = init_latents.shape
UpperCAmelCase_ : Optional[Any] = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=__UpperCamelCase , dtype=__UpperCamelCase)
# get latents
UpperCAmelCase_ : Tuple = self.scheduler.add_noise(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase)
UpperCAmelCase_ : List[str] = init_latents
return latents
def _snake_case ( self , _snake_case=0) -> List[str]:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('Please install accelerate via `pip install accelerate`')
UpperCAmelCase_ : int = torch.device(F"""cuda:{gpu_id}""")
UpperCAmelCase_ : Tuple = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__UpperCamelCase , __UpperCamelCase)
def _snake_case ( self , _snake_case=0) -> Tuple:
if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0'):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.')
UpperCAmelCase_ : str = torch.device(F"""cuda:{gpu_id}""")
if self.device.type != "cpu":
self.to('cpu' , silence_dtype_warnings=__UpperCamelCase)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
UpperCAmelCase_ : Tuple = None
for cpu_offloaded_model in [self.unet, self.movq]:
UpperCAmelCase_ , UpperCAmelCase_ : int = cpu_offload_with_hook(__UpperCamelCase , __UpperCamelCase , prev_module_hook=__UpperCamelCase)
# We'll offload the last model manually.
UpperCAmelCase_ : Any = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _snake_case ( self) -> int:
if not hasattr(self.unet , '_hf_hook'):
return self.device
for module in self.unet.modules():
if (
hasattr(__UpperCamelCase , '_hf_hook')
and hasattr(module._hf_hook , 'execution_device')
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
@replace_example_docstring(__UpperCamelCase)
def __call__( self , _snake_case , _snake_case , _snake_case , _snake_case = 512 , _snake_case = 512 , _snake_case = 100 , _snake_case = 4.0 , _snake_case = 0.3 , _snake_case = 1 , _snake_case = None , _snake_case = "pil" , _snake_case = True , ) -> Dict:
UpperCAmelCase_ : Dict = self._execution_device
UpperCAmelCase_ : str = guidance_scale > 1.0
if isinstance(__UpperCamelCase , __UpperCamelCase):
UpperCAmelCase_ : Optional[int] = torch.cat(__UpperCamelCase , dim=0)
UpperCAmelCase_ : int = image_embeds.shape[0]
if isinstance(__UpperCamelCase , __UpperCamelCase):
UpperCAmelCase_ : List[str] = torch.cat(__UpperCamelCase , dim=0)
if do_classifier_free_guidance:
UpperCAmelCase_ : str = image_embeds.repeat_interleave(__UpperCamelCase , dim=0)
UpperCAmelCase_ : int = negative_image_embeds.repeat_interleave(__UpperCamelCase , dim=0)
UpperCAmelCase_ : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=__UpperCamelCase)
if not isinstance(__UpperCamelCase , __UpperCamelCase):
UpperCAmelCase_ : Tuple = [image]
if not all(isinstance(__UpperCamelCase , (PIL.Image.Image, torch.Tensor)) for i in image):
raise ValueError(
F"""Input is in incorrect format: {[type(__UpperCamelCase) for i in image]}. Currently, we only support PIL image and pytorch tensor""")
UpperCAmelCase_ : List[str] = torch.cat([prepare_image(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) for i in image] , dim=0)
UpperCAmelCase_ : List[str] = image.to(dtype=image_embeds.dtype , device=__UpperCamelCase)
UpperCAmelCase_ : str = self.movq.encode(__UpperCamelCase)['latents']
UpperCAmelCase_ : Optional[int] = latents.repeat_interleave(__UpperCamelCase , dim=0)
self.scheduler.set_timesteps(__UpperCamelCase , device=__UpperCamelCase)
UpperCAmelCase_ , UpperCAmelCase_ : Any = self.get_timesteps(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase)
UpperCAmelCase_ : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt)
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = downscale_height_and_width(__UpperCamelCase , __UpperCamelCase , self.movq_scale_factor)
UpperCAmelCase_ : Tuple = self.prepare_latents(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , image_embeds.dtype , __UpperCamelCase , __UpperCamelCase)
for i, t in enumerate(self.progress_bar(__UpperCamelCase)):
# expand the latents if we are doing classifier free guidance
UpperCAmelCase_ : Tuple = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
UpperCAmelCase_ : int = {'image_embeds': image_embeds}
UpperCAmelCase_ : Any = self.unet(
sample=__UpperCamelCase , timestep=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , added_cond_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0]
if do_classifier_free_guidance:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred.split(latents.shape[1] , dim=1)
UpperCAmelCase_ , UpperCAmelCase_ : Any = noise_pred.chunk(2)
UpperCAmelCase_ , UpperCAmelCase_ : Any = variance_pred.chunk(2)
UpperCAmelCase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
UpperCAmelCase_ : int = torch.cat([noise_pred, variance_pred_text] , dim=1)
if not (
hasattr(self.scheduler.config , 'variance_type')
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1)
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase_ : Tuple = self.scheduler.step(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase , )[0]
# post-processing
UpperCAmelCase_ : Tuple = self.movq.decode(__UpperCamelCase , force_not_quantize=__UpperCamelCase)['sample']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""")
if output_type in ["np", "pil"]:
UpperCAmelCase_ : Optional[Any] = image * 0.5 + 0.5
UpperCAmelCase_ : Optional[int] = image.clamp(0 , 1)
UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
UpperCAmelCase_ : List[str] = self.numpy_to_pil(__UpperCamelCase)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__UpperCamelCase)
| 702 |
'''simple docstring'''
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowerCAmelCase__ = logging.get_logger(__name__)
# General docstring
lowerCAmelCase__ = "RegNetConfig"
# Base docstring
lowerCAmelCase__ = "facebook/regnet-y-040"
lowerCAmelCase__ = [1, 1088, 7, 7]
# Image classification docstring
lowerCAmelCase__ = "facebook/regnet-y-040"
lowerCAmelCase__ = "tabby, tabby cat"
lowerCAmelCase__ = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class lowercase ( nn.Module ):
def __init__( self , _snake_case , _snake_case , _snake_case = 3 , _snake_case = 1 , _snake_case = 1 , _snake_case = "relu" , ) -> int:
super().__init__()
UpperCAmelCase_ : str = nn.Convad(
_snake_case , _snake_case , kernel_size=_snake_case , stride=_snake_case , padding=kernel_size // 2 , groups=_snake_case , bias=_snake_case , )
UpperCAmelCase_ : List[Any] = nn.BatchNormad(_snake_case)
UpperCAmelCase_ : Tuple = ACTaFN[activation] if activation is not None else nn.Identity()
def _snake_case ( self , _snake_case) -> Tuple:
UpperCAmelCase_ : Optional[int] = self.convolution(_snake_case)
UpperCAmelCase_ : int = self.normalization(_snake_case)
UpperCAmelCase_ : Optional[int] = self.activation(_snake_case)
return hidden_state
class lowercase ( nn.Module ):
def __init__( self , _snake_case) -> List[Any]:
super().__init__()
UpperCAmelCase_ : Tuple = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act)
UpperCAmelCase_ : Optional[Any] = config.num_channels
def _snake_case ( self , _snake_case) -> Dict:
UpperCAmelCase_ : List[Any] = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.')
UpperCAmelCase_ : Any = self.embedder(_snake_case)
return hidden_state
class lowercase ( nn.Module ):
def __init__( self , _snake_case , _snake_case , _snake_case = 2) -> Optional[Any]:
super().__init__()
UpperCAmelCase_ : Any = nn.Convad(_snake_case , _snake_case , kernel_size=1 , stride=_snake_case , bias=_snake_case)
UpperCAmelCase_ : Optional[Any] = nn.BatchNormad(_snake_case)
def _snake_case ( self , _snake_case) -> Tensor:
UpperCAmelCase_ : Optional[Any] = self.convolution(_snake_case)
UpperCAmelCase_ : Dict = self.normalization(_snake_case)
return hidden_state
class lowercase ( nn.Module ):
def __init__( self , _snake_case , _snake_case) -> Any:
super().__init__()
UpperCAmelCase_ : Tuple = nn.AdaptiveAvgPoolad((1, 1))
UpperCAmelCase_ : int = nn.Sequential(
nn.Convad(_snake_case , _snake_case , kernel_size=1) , nn.ReLU() , nn.Convad(_snake_case , _snake_case , kernel_size=1) , nn.Sigmoid() , )
def _snake_case ( self , _snake_case) -> Any:
# b c h w -> b c 1 1
UpperCAmelCase_ : Union[str, Any] = self.pooler(_snake_case)
UpperCAmelCase_ : Any = self.attention(_snake_case)
UpperCAmelCase_ : Optional[Any] = hidden_state * attention
return hidden_state
class lowercase ( nn.Module ):
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case = 1) -> str:
super().__init__()
UpperCAmelCase_ : Optional[Any] = in_channels != out_channels or stride != 1
UpperCAmelCase_ : Any = max(1 , out_channels // config.groups_width)
UpperCAmelCase_ : str = (
RegNetShortCut(_snake_case , _snake_case , stride=_snake_case) if should_apply_shortcut else nn.Identity()
)
UpperCAmelCase_ : Optional[int] = nn.Sequential(
RegNetConvLayer(_snake_case , _snake_case , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(_snake_case , _snake_case , stride=_snake_case , groups=_snake_case , activation=config.hidden_act) , RegNetConvLayer(_snake_case , _snake_case , kernel_size=1 , activation=_snake_case) , )
UpperCAmelCase_ : int = ACTaFN[config.hidden_act]
def _snake_case ( self , _snake_case) -> Union[str, Any]:
UpperCAmelCase_ : str = hidden_state
UpperCAmelCase_ : List[Any] = self.layer(_snake_case)
UpperCAmelCase_ : Dict = self.shortcut(_snake_case)
hidden_state += residual
UpperCAmelCase_ : Any = self.activation(_snake_case)
return hidden_state
class lowercase ( nn.Module ):
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case = 1) -> int:
super().__init__()
UpperCAmelCase_ : List[Any] = in_channels != out_channels or stride != 1
UpperCAmelCase_ : Optional[Any] = max(1 , out_channels // config.groups_width)
UpperCAmelCase_ : Optional[int] = (
RegNetShortCut(_snake_case , _snake_case , stride=_snake_case) if should_apply_shortcut else nn.Identity()
)
UpperCAmelCase_ : Optional[Any] = nn.Sequential(
RegNetConvLayer(_snake_case , _snake_case , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(_snake_case , _snake_case , stride=_snake_case , groups=_snake_case , activation=config.hidden_act) , RegNetSELayer(_snake_case , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(_snake_case , _snake_case , kernel_size=1 , activation=_snake_case) , )
UpperCAmelCase_ : Any = ACTaFN[config.hidden_act]
def _snake_case ( self , _snake_case) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = hidden_state
UpperCAmelCase_ : int = self.layer(_snake_case)
UpperCAmelCase_ : Any = self.shortcut(_snake_case)
hidden_state += residual
UpperCAmelCase_ : Any = self.activation(_snake_case)
return hidden_state
class lowercase ( nn.Module ):
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case = 2 , _snake_case = 2 , ) -> Optional[int]:
super().__init__()
UpperCAmelCase_ : str = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer
UpperCAmelCase_ : Dict = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_snake_case , _snake_case , _snake_case , stride=_snake_case , ) , *[layer(_snake_case , _snake_case , _snake_case) for _ in range(depth - 1)] , )
def _snake_case ( self , _snake_case) -> Dict:
UpperCAmelCase_ : Optional[Any] = self.layers(_snake_case)
return hidden_state
class lowercase ( nn.Module ):
def __init__( self , _snake_case) -> List[Any]:
super().__init__()
UpperCAmelCase_ : List[str] = nn.ModuleList([])
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ))
UpperCAmelCase_ : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:])
for (in_channels, out_channels), depth in zip(_snake_case , config.depths[1:]):
self.stages.append(RegNetStage(_snake_case , _snake_case , _snake_case , depth=_snake_case))
def _snake_case ( self , _snake_case , _snake_case = False , _snake_case = True) -> BaseModelOutputWithNoAttention:
UpperCAmelCase_ : List[Any] = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
UpperCAmelCase_ : int = hidden_states + (hidden_state,)
UpperCAmelCase_ : Tuple = stage_module(_snake_case)
if output_hidden_states:
UpperCAmelCase_ : Union[str, Any] = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case , hidden_states=_snake_case)
class lowercase ( a_ ):
_lowerCamelCase : str= RegNetConfig
_lowerCamelCase : Optional[int]= "regnet"
_lowerCamelCase : Union[str, Any]= "pixel_values"
_lowerCamelCase : List[str]= True
def _snake_case ( self , _snake_case) -> List[Any]:
if isinstance(_snake_case , nn.Convad):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu')
elif isinstance(_snake_case , (nn.BatchNormad, nn.GroupNorm)):
nn.init.constant_(module.weight , 1)
nn.init.constant_(module.bias , 0)
def _snake_case ( self , _snake_case , _snake_case=False) -> List[Any]:
if isinstance(_snake_case , _snake_case):
UpperCAmelCase_ : str = value
lowerCAmelCase__ = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
lowerCAmelCase__ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top.", a_, )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class lowercase ( a_ ):
def __init__( self , _snake_case) -> List[str]:
super().__init__(_snake_case)
UpperCAmelCase_ : str = config
UpperCAmelCase_ : Optional[int] = RegNetEmbeddings(_snake_case)
UpperCAmelCase_ : int = RegNetEncoder(_snake_case)
UpperCAmelCase_ : Any = nn.AdaptiveAvgPoolad((1, 1))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _snake_case ( self , _snake_case , _snake_case = None , _snake_case = None) -> BaseModelOutputWithPoolingAndNoAttention:
UpperCAmelCase_ : List[Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCAmelCase_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase_ : int = self.embedder(_snake_case)
UpperCAmelCase_ : str = self.encoder(
_snake_case , output_hidden_states=_snake_case , return_dict=_snake_case)
UpperCAmelCase_ : List[Any] = encoder_outputs[0]
UpperCAmelCase_ : str = self.pooler(_snake_case)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_snake_case , pooler_output=_snake_case , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ", a_, )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class lowercase ( a_ ):
def __init__( self , _snake_case) -> Union[str, Any]:
super().__init__(_snake_case)
UpperCAmelCase_ : List[str] = config.num_labels
UpperCAmelCase_ : Optional[int] = RegNetModel(_snake_case)
# classification head
UpperCAmelCase_ : Optional[Any] = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _snake_case ( self , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , ) -> ImageClassifierOutputWithNoAttention:
UpperCAmelCase_ : str = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase_ : Optional[Any] = self.regnet(_snake_case , output_hidden_states=_snake_case , return_dict=_snake_case)
UpperCAmelCase_ : Dict = outputs.pooler_output if return_dict else outputs[1]
UpperCAmelCase_ : int = self.classifier(_snake_case)
UpperCAmelCase_ : List[Any] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
UpperCAmelCase_ : Optional[int] = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
UpperCAmelCase_ : Union[str, Any] = 'single_label_classification'
else:
UpperCAmelCase_ : Tuple = 'multi_label_classification'
if self.config.problem_type == "regression":
UpperCAmelCase_ : int = MSELoss()
if self.num_labels == 1:
UpperCAmelCase_ : Dict = loss_fct(logits.squeeze() , labels.squeeze())
else:
UpperCAmelCase_ : Union[str, Any] = loss_fct(_snake_case , _snake_case)
elif self.config.problem_type == "single_label_classification":
UpperCAmelCase_ : Optional[int] = CrossEntropyLoss()
UpperCAmelCase_ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
UpperCAmelCase_ : int = BCEWithLogitsLoss()
UpperCAmelCase_ : Tuple = loss_fct(_snake_case , _snake_case)
if not return_dict:
UpperCAmelCase_ : Union[str, Any] = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_snake_case , logits=_snake_case , hidden_states=outputs.hidden_states)
| 471 | 0 |
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class _lowercase:
"""simple docstring"""
@staticmethod
def snake_case ( *a: Dict ,**a: Union[str, Any] ):
pass
def __snake_case ( lowerCAmelCase : Image ):
__UpperCAmelCase = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def __snake_case ( lowerCAmelCase : Image ):
__UpperCAmelCase = np.array(lowerCAmelCase )
__UpperCAmelCase = npimg.shape
return {"hash": hashimage(lowerCAmelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class _lowercase( unittest.TestCase ):
"""simple docstring"""
__lowerCamelCase = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
__lowerCamelCase = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def snake_case ( self: Any ,a: List[str] ,a: Tuple ,a: str ):
__UpperCAmelCase = MaskGenerationPipeline(model=a ,image_processor=a )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def snake_case ( self: List[Any] ,a: List[Any] ,a: Dict ):
pass
@require_tf
@unittest.skip('Image segmentation not implemented in TF' )
def snake_case ( self: Union[str, Any] ):
pass
@slow
@require_torch
def snake_case ( self: Union[str, Any] ):
__UpperCAmelCase = pipeline('mask-generation' ,model='facebook/sam-vit-huge' )
__UpperCAmelCase = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' ,points_per_batch=256 )
# Shortening by hashing
__UpperCAmelCase = []
for i, o in enumerate(outputs['masks'] ):
new_outupt += [{"mask": mask_to_test_readable(a ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(a ,decimals=4 ) ,[
{'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0444},
{'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.021},
{'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0167},
{'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0132},
{'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0053},
{'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9967},
{'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.993},
{'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9909},
{'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9879},
{'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9834},
{'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9716},
{'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9612},
{'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9599},
{'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9552},
{'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9532},
{'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9516},
{'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9499},
{'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9483},
{'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9464},
{'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.943},
{'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.943},
{'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9408},
{'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9335},
{'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9326},
{'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9262},
{'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8999},
{'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8986},
{'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8984},
{'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8873},
{'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8871}
] ,)
# fmt: on
@require_torch
@slow
def snake_case ( self: Tuple ):
__UpperCAmelCase = 'facebook/sam-vit-huge'
__UpperCAmelCase = pipeline('mask-generation' ,model=a )
__UpperCAmelCase = image_segmenter(
'http://images.cocodataset.org/val2017/000000039769.jpg' ,pred_iou_thresh=1 ,points_per_batch=256 )
# Shortening by hashing
__UpperCAmelCase = []
for i, o in enumerate(outputs['masks'] ):
new_outupt += [{"mask": mask_to_test_readable(a ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(a ,decimals=4 ) ,[
{'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0444},
{'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0210},
{'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0167},
{'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0132},
{'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0053},
] ,)
| 396 | '''simple docstring'''
def __snake_case ( lowerCAmelCase : str ):
if not all(x.isalpha() for x in string ):
raise ValueError('String must only contain alphabetic characters.' )
__UpperCAmelCase = sorted(string.lower() )
return len(lowerCAmelCase ) == len(set(lowerCAmelCase ) )
if __name__ == "__main__":
_UpperCamelCase : List[str] = input('Enter a string ').strip()
_UpperCamelCase : List[Any] = is_isogram(input_str)
print(f"{input_str} is {'an' if isogram else 'not an'} isogram.")
| 396 | 1 |
from io import BytesIO
from typing import List, Union
import requests
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_decord_available():
import numpy as np
from decord import VideoReader
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
__UpperCAmelCase = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class SCREAMING_SNAKE_CASE ( a_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
super().__init__(*lowerCAmelCase , **lowerCAmelCase )
requires_backends(self , """decord""" )
self.check_model_type(lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None ) -> Any:
"""simple docstring"""
__lowerCAmelCase : Optional[int] = {}
if frame_sampling_rate is not None:
__lowerCAmelCase : List[Any] = frame_sampling_rate
if num_frames is not None:
__lowerCAmelCase : Optional[Any] = num_frames
__lowerCAmelCase : Optional[Any] = {}
if top_k is not None:
__lowerCAmelCase : int = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : Tuple , lowerCAmelCase : Union[str, List[str]] , **lowerCAmelCase : str ) -> str:
"""simple docstring"""
return super().__call__(lowerCAmelCase , **lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : str=None , lowerCAmelCase : List[str]=1 ) -> str:
"""simple docstring"""
if num_frames is None:
__lowerCAmelCase : Tuple = self.model.config.num_frames
if video.startswith("""http://""" ) or video.startswith("""https://""" ):
__lowerCAmelCase : List[Any] = BytesIO(requests.get(lowerCAmelCase ).content )
__lowerCAmelCase : Union[str, Any] = VideoReader(lowerCAmelCase )
videoreader.seek(0 )
__lowerCAmelCase : Optional[int] = 0
__lowerCAmelCase : int = num_frames * frame_sampling_rate - 1
__lowerCAmelCase : int = np.linspace(lowerCAmelCase , lowerCAmelCase , num=lowerCAmelCase , dtype=np.intaa )
__lowerCAmelCase : Any = videoreader.get_batch(lowerCAmelCase ).asnumpy()
__lowerCAmelCase : List[Any] = list(lowerCAmelCase )
__lowerCAmelCase : Optional[int] = self.image_processor(lowerCAmelCase , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Any ) -> Optional[Any]:
"""simple docstring"""
__lowerCAmelCase : List[str] = self.model(**lowerCAmelCase )
return model_outputs
def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]=5 ) -> Dict:
"""simple docstring"""
if top_k > self.model.config.num_labels:
__lowerCAmelCase : List[str] = self.model.config.num_labels
if self.framework == "pt":
__lowerCAmelCase : Tuple = model_outputs.logits.softmax(-1 )[0]
__lowerCAmelCase : Any = probs.topk(lowerCAmelCase )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
__lowerCAmelCase : str = scores.tolist()
__lowerCAmelCase : Tuple = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase , lowerCAmelCase )]
| 706 |
import logging
import numpy as np
import pytest
from scipy.linalg import eigh
logging.basicConfig(level=logging.INFO, format="""%(message)s""")
def snake_case_ (__A : np.ndarray ) -> np.ndarray:
return input_array.reshape((input_array.size, 1) )
def snake_case_ (__A : np.ndarray , __A : np.ndarray , __A : int ) -> np.ndarray:
__lowerCAmelCase : str = np.nan
for i in range(__A ):
__lowerCAmelCase : Optional[int] = features[:, labels == i]
__lowerCAmelCase : List[str] = data.mean(1 )
# Centralize the data of class i
__lowerCAmelCase : int = data - column_reshape(__A )
if i > 0:
# If covariance_sum is not None
covariance_sum += np.dot(__A , centered_data.T )
else:
# If covariance_sum is np.nan (i.e. first loop)
__lowerCAmelCase : str = np.dot(__A , centered_data.T )
return covariance_sum / features.shape[1]
def snake_case_ (__A : np.ndarray , __A : np.ndarray , __A : int ) -> np.ndarray:
__lowerCAmelCase : Tuple = features.mean(1 )
__lowerCAmelCase : Union[str, Any] = np.nan
for i in range(__A ):
__lowerCAmelCase : Any = features[:, labels == i]
__lowerCAmelCase : Dict = data.shape[1]
__lowerCAmelCase : int = data.mean(1 )
if i > 0:
# If covariance_sum is not None
covariance_sum += device_data * np.dot(
column_reshape(__A ) - column_reshape(__A ) , (column_reshape(__A ) - column_reshape(__A )).T , )
else:
# If covariance_sum is np.nan (i.e. first loop)
__lowerCAmelCase : Optional[Any] = device_data * np.dot(
column_reshape(__A ) - column_reshape(__A ) , (column_reshape(__A ) - column_reshape(__A )).T , )
return covariance_sum / features.shape[1]
def snake_case_ (__A : np.ndarray , __A : int ) -> np.ndarray:
# Check if the features have been loaded
if features.any():
__lowerCAmelCase : List[Any] = features.mean(1 )
# Center the dataset
__lowerCAmelCase : List[Any] = features - np.reshape(__A , (data_mean.size, 1) )
__lowerCAmelCase : Dict = np.dot(__A , centered_data.T ) / features.shape[1]
__lowerCAmelCase ,__lowerCAmelCase : int = np.linalg.eigh(__A )
# Take all the columns in the reverse order (-1), and then takes only the first
__lowerCAmelCase : Dict = eigenvectors[:, ::-1][:, 0:dimensions]
# Project the database on the new space
__lowerCAmelCase : Any = np.dot(filtered_eigenvectors.T , __A )
logging.info("""Principal Component Analysis computed""" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=__A )
logging.error("""Dataset empty""" )
raise AssertionError
def snake_case_ (__A : np.ndarray , __A : np.ndarray , __A : int , __A : int ) -> np.ndarray:
assert classes > dimensions
# Check if features have been already loaded
if features.any:
__lowerCAmelCase ,__lowerCAmelCase : Optional[Any] = eigh(
covariance_between_classes(__A , __A , __A ) , covariance_within_classes(__A , __A , __A ) , )
__lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions]
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Tuple = np.linalg.svd(__A )
__lowerCAmelCase : str = svd_matrix[:, 0:dimensions]
__lowerCAmelCase : int = np.dot(filtered_svd_matrix.T , __A )
logging.info("""Linear Discriminant Analysis computed""" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=__A )
logging.error("""Dataset empty""" )
raise AssertionError
def snake_case_ () -> None:
# Create dummy dataset with 2 classes and 3 features
__lowerCAmelCase : Any = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] )
__lowerCAmelCase : Tuple = np.array([0, 0, 0, 1, 1] )
__lowerCAmelCase : List[str] = 2
__lowerCAmelCase : List[Any] = 2
# Assert that the function raises an AssertionError if dimensions > classes
with pytest.raises(__A ) as error_info:
__lowerCAmelCase : List[Any] = linear_discriminant_analysis(
__A , __A , __A , __A )
if isinstance(__A , np.ndarray ):
raise AssertionError(
"""Did not raise AssertionError for dimensions > classes""" )
assert error_info.type is AssertionError
def snake_case_ () -> None:
__lowerCAmelCase : List[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] )
__lowerCAmelCase : List[str] = 2
__lowerCAmelCase : Dict = np.array([[6.9282_0323, 8.6602_5404, 10.3923_0485], [3.0, 3.0, 3.0]] )
with pytest.raises(__A ) as error_info:
__lowerCAmelCase : Union[str, Any] = principal_component_analysis(__A , __A )
if not np.allclose(__A , __A ):
raise AssertionError
assert error_info.type is AssertionError
if __name__ == "__main__":
import doctest
doctest.testmod()
| 218 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case : List[Any] = logging.get_logger(__name__)
_snake_case : str = {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json',
'umberto-commoncrawl-cased-v1': (
'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json'
),
'umberto-wikipedia-uncased-v1': (
'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = """camembert"""
def __init__( self : Optional[Any] , lowerCAmelCase_ : Dict=3_0_5_2_2 , lowerCAmelCase_ : Optional[Any]=7_6_8 , lowerCAmelCase_ : Optional[int]=1_2 , lowerCAmelCase_ : Dict=1_2 , lowerCAmelCase_ : Dict=3_0_7_2 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=5_1_2 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[str]=1e-12 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : str="absolute" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[str] , ) -> Dict:
super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = hidden_act
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = position_embedding_type
__lowerCAmelCase = use_cache
__lowerCAmelCase = classifier_dropout
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
@property
def lowercase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__lowerCAmelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 53 |
'''simple docstring'''
import math
def __snake_case ( lowercase : Optional[Any] , lowercase : List[str] ):
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.logaa(lowercase )
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError("This should never happen" )
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
lowercase__ = '''Enter the base and the power separated by a comma: '''
lowercase__ , lowercase__ = map(int, input(prompt).split(''','''))
lowercase__ , lowercase__ = map(int, input(prompt).split(''','''))
# We find the log of each number, using the function res(), which takes two
# arguments.
lowercase__ = res(xa, ya)
lowercase__ = res(xa, ya)
# We check for the largest number
if resa > resa:
print('''Largest number is''', xa, '''^''', ya)
elif resa > resa:
print('''Largest number is''', xa, '''^''', ya)
else:
print('''Both are equal''')
| 508 | 0 |
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
UpperCamelCase = logging.getLogger(__name__)
class _a ( lowerCAmelCase__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ):
super().__init__(
__UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , index=__UpperCAmelCase , init_retrieval=__UpperCAmelCase , )
__A : List[Any] = None
def __UpperCAmelCase( self , __UpperCAmelCase ):
logger.info("initializing retrieval" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("dist initialized" )
# needs to be set manually
__A : Optional[Any] = self._infer_socket_ifname()
# avoid clash with the NCCL port
__A : Union[str, Any] = str(distributed_port + 1 )
__A : str = dist.new_group(ranks=__UpperCAmelCase , backend="gloo" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("dist not initialized / main" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def __UpperCAmelCase( self ):
return dist.get_rank(group=self.process_group ) == 0
def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=torch.floataa ):
__A : Dict = torch.empty(__UpperCAmelCase , dtype=__UpperCAmelCase )
dist.scatter(__UpperCAmelCase , src=0 , scatter_list=__UpperCAmelCase , group=self.process_group )
return target_tensor
def __UpperCAmelCase( self ):
__A : str = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__A : List[str] = next((addr for addr in addrs if addr.startswith("e" )) , __UpperCAmelCase )
return ifname
def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase ):
# single GPU training
if not dist.is_initialized():
__A , __A : Optional[Any] = self._main_retrieve(__UpperCAmelCase , __UpperCAmelCase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__UpperCAmelCase )
# distributed training
__A : Dict = dist.get_world_size(group=self.process_group )
# gather logic
__A : int = None
if self._is_main():
__A : Tuple = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__UpperCAmelCase )]
dist.gather(torch.tensor(__UpperCAmelCase ) , dst=0 , gather_list=__UpperCAmelCase , group=self.process_group )
# scatter logic
__A : str = question_hidden_states.shape[0]
__A : Union[str, Any] = []
__A : Tuple = []
if self._is_main():
assert len(__UpperCAmelCase ) == world_size
__A , __A : Union[str, Any] = self._main_retrieve(torch.cat(__UpperCAmelCase ).numpy() , __UpperCAmelCase )
__A , __A : Any = torch.tensor(__UpperCAmelCase ), torch.tensor(__UpperCAmelCase )
__A : Any = self._chunk_tensor(__UpperCAmelCase , __UpperCAmelCase )
__A : Dict = self._chunk_tensor(__UpperCAmelCase , __UpperCAmelCase )
__A : int = self._scattered(__UpperCAmelCase , [n_queries, n_docs] , target_type=torch.intaa )
__A : List[str] = self._scattered(__UpperCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__UpperCAmelCase )
| 387 | import os
import string
import sys
UpperCamelCase = 1 << 8
UpperCamelCase = {
'tab': ord('\t'),
'newline': ord('\r'),
'esc': 27,
'up': 65 + ARROW_KEY_FLAG,
'down': 66 + ARROW_KEY_FLAG,
'right': 67 + ARROW_KEY_FLAG,
'left': 68 + ARROW_KEY_FLAG,
'mod_int': 91,
'undefined': sys.maxsize,
'interrupt': 3,
'insert': 50,
'delete': 51,
'pg_up': 53,
'pg_down': 54,
}
UpperCamelCase = KEYMAP['up']
UpperCamelCase = KEYMAP['left']
if sys.platform == "win32":
UpperCamelCase = []
UpperCamelCase = {
b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG,
b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG,
}
for i in range(10):
UpperCamelCase = ord(str(i))
def lowerCamelCase_ ( ) -> Tuple:
if os.name == "nt":
import msvcrt
__A : Optional[int] = "mbcs"
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(_lowercase ) == 0:
# Read the keystroke
__A : Union[str, Any] = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
__A : Tuple = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
__A : int = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) )
WIN_CH_BUFFER.append(_lowercase )
if ord(_lowercase ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
__A : Tuple = chr(KEYMAP["esc"] )
except KeyError:
__A : Union[str, Any] = cha[1]
else:
__A : Optional[int] = ch.decode(_lowercase )
else:
__A : Dict = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
__A : str = sys.stdin.fileno()
__A : Tuple = termios.tcgetattr(_lowercase )
try:
tty.setraw(_lowercase )
__A : int = sys.stdin.read(1 )
finally:
termios.tcsetattr(_lowercase , termios.TCSADRAIN , _lowercase )
return ch
def lowerCamelCase_ ( ) -> Union[str, Any]:
__A : Any = get_raw_chars()
if ord(_lowercase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(_lowercase ) == KEYMAP["esc"]:
__A : Tuple = get_raw_chars()
if ord(_lowercase ) == KEYMAP["mod_int"]:
__A : Optional[int] = get_raw_chars()
if ord(_lowercase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_lowercase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(_lowercase ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 387 | 1 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : List[str]
UpperCAmelCase : Optional[str] = None
# Automatically constructed
UpperCAmelCase : ClassVar[str] = "dict"
UpperCAmelCase : ClassVar[Any] = None
UpperCAmelCase : str = field(default='''Translation''' , init=__lowerCAmelCase , repr=__lowerCAmelCase )
def __call__( self : List[Any] ):
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def lowerCAmelCase_ ( self : int ):
from .features import Value
return {k: Value('string' ) for k in sorted(self.languages )}
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : Optional[List] = None
UpperCAmelCase : Optional[int] = None
UpperCAmelCase : Optional[str] = None
# Automatically constructed
UpperCAmelCase : ClassVar[str] = "dict"
UpperCAmelCase : ClassVar[Any] = None
UpperCAmelCase : str = field(default='''TranslationVariableLanguages''' , init=__lowerCAmelCase , repr=__lowerCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
_A = sorted(set(self.languages ) ) if self.languages else None
_A = len(self.languages ) if self.languages else None
def __call__( self : Tuple ):
return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} )
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Union[str, Any] ):
_A = set(self.languages )
if self.languages and set(_UpperCAmelCase ) - lang_set:
raise ValueError(
F'''Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).''' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
_A = []
for lang, text in translation_dict.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
_A , _A = zip(*sorted(_UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def lowerCAmelCase_ ( self : Optional[int] ):
from .features import Sequence, Value
return {
"language": Sequence(Value('string' ) ),
"translation": Sequence(Value('string' ) ),
}
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'''
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''speech_to_text'''
UpperCAmelCase : List[Any] = ['''past_key_values''']
UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ):
_A = vocab_size
_A = d_model
_A = encoder_ffn_dim
_A = encoder_layers
_A = encoder_attention_heads
_A = decoder_ffn_dim
_A = decoder_layers
_A = decoder_attention_heads
_A = dropout
_A = attention_dropout
_A = activation_dropout
_A = activation_function
_A = init_std
_A = encoder_layerdrop
_A = decoder_layerdrop
_A = use_cache
_A = encoder_layers
_A = scale_embedding # scale factor will be sqrt(d_model) if True
_A = max_source_positions
_A = max_target_positions
_A = num_conv_layers
_A = list(_UpperCAmelCase )
_A = conv_channels
_A = input_feat_per_channel
_A = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowercase ( __UpperCamelCase ) -> int: # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowercase ( ) -> Optional[int]:
with parallel_backend('''spark''' ):
assert ParallelBackendConfig.backend_name == "spark"
__magic_name__ = [1, 2, 3]
with pytest.raises(lowerCamelCase_ ):
with parallel_backend('''unsupported backend''' ):
map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=2 )
with pytest.raises(lowerCamelCase_ ):
with parallel_backend('''unsupported backend''' ):
map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize('''num_proc''' , [2, -1] )
def lowercase ( __UpperCamelCase ) -> Union[str, Any]:
__magic_name__ = [1, 2]
__magic_name__ = {'''a''': 1, '''b''': 2}
__magic_name__ = {'''a''': [1, 2], '''b''': [3, 4]}
__magic_name__ = {'''a''': {'''1''': 1}, '''b''': 2}
__magic_name__ = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4}
__magic_name__ = [2, 3]
__magic_name__ = {'''a''': 2, '''b''': 3}
__magic_name__ = {'''a''': [2, 3], '''b''': [4, 5]}
__magic_name__ = {'''a''': {'''1''': 2}, '''b''': 3}
__magic_name__ = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5}
with parallel_backend('''spark''' ):
assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa
assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa
assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa
assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa
assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa
| 712 |
"""simple docstring"""
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class _lowercase ( __UpperCAmelCase ):
_lowerCamelCase = (EulerDiscreteScheduler,)
_lowerCamelCase = 10
def lowerCAmelCase__ ( self , **UpperCamelCase_ ):
__magic_name__ = {
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
}
config.update(**UpperCamelCase_ )
return config
def lowerCAmelCase__ ( self ):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=UpperCamelCase_ )
def lowerCAmelCase__ ( self ):
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ):
self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ )
def lowerCAmelCase__ ( self ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=UpperCamelCase_ )
def lowerCAmelCase__ ( self ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCamelCase_ )
def lowerCAmelCase__ ( self ):
__magic_name__ = self.scheduler_classes[0]
__magic_name__ = self.get_scheduler_config()
__magic_name__ = scheduler_class(**UpperCamelCase_ )
scheduler.set_timesteps(self.num_inference_steps )
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = self.dummy_model()
__magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma
__magic_name__ = sample.to(UpperCamelCase_ )
for i, t in enumerate(scheduler.timesteps ):
__magic_name__ = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ )
__magic_name__ = model(UpperCamelCase_ , UpperCamelCase_ )
__magic_name__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ )
__magic_name__ = output.prev_sample
__magic_name__ = torch.sum(torch.abs(UpperCamelCase_ ) )
__magic_name__ = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1E-2
assert abs(result_mean.item() - 0.0_1_3_1 ) < 1E-3
def lowerCAmelCase__ ( self ):
__magic_name__ = self.scheduler_classes[0]
__magic_name__ = self.get_scheduler_config(prediction_type='''v_prediction''' )
__magic_name__ = scheduler_class(**UpperCamelCase_ )
scheduler.set_timesteps(self.num_inference_steps )
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = self.dummy_model()
__magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma
__magic_name__ = sample.to(UpperCamelCase_ )
for i, t in enumerate(scheduler.timesteps ):
__magic_name__ = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ )
__magic_name__ = model(UpperCamelCase_ , UpperCamelCase_ )
__magic_name__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ )
__magic_name__ = output.prev_sample
__magic_name__ = torch.sum(torch.abs(UpperCamelCase_ ) )
__magic_name__ = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 0.0_0_0_2 ) < 1E-2
assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3
def lowerCAmelCase__ ( self ):
__magic_name__ = self.scheduler_classes[0]
__magic_name__ = self.get_scheduler_config()
__magic_name__ = scheduler_class(**UpperCamelCase_ )
scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase_ )
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = self.dummy_model()
__magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
__magic_name__ = sample.to(UpperCamelCase_ )
for t in scheduler.timesteps:
__magic_name__ = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ )
__magic_name__ = model(UpperCamelCase_ , UpperCamelCase_ )
__magic_name__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ )
__magic_name__ = output.prev_sample
__magic_name__ = torch.sum(torch.abs(UpperCamelCase_ ) )
__magic_name__ = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1E-2
assert abs(result_mean.item() - 0.0_1_3_1 ) < 1E-3
def lowerCAmelCase__ ( self ):
__magic_name__ = self.scheduler_classes[0]
__magic_name__ = self.get_scheduler_config()
__magic_name__ = scheduler_class(**UpperCamelCase_ , use_karras_sigmas=UpperCamelCase_ )
scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase_ )
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = self.dummy_model()
__magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
__magic_name__ = sample.to(UpperCamelCase_ )
for t in scheduler.timesteps:
__magic_name__ = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ )
__magic_name__ = model(UpperCamelCase_ , UpperCamelCase_ )
__magic_name__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ )
__magic_name__ = output.prev_sample
__magic_name__ = torch.sum(torch.abs(UpperCamelCase_ ) )
__magic_name__ = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1E-2
assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1E-3
| 190 | 0 |
from __future__ import annotations
from collections import Counter
from random import random
class _UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[str]) -> Any:
"""simple docstring"""
_UpperCamelCase = {}
def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : str) -> None:
"""simple docstring"""
_UpperCamelCase = {}
def __UpperCAmelCase ( self : List[str] , lowercase_ : str , lowercase_ : str , lowercase_ : float) -> None:
"""simple docstring"""
if nodea not in self.connections:
self.add_node(lowercase_)
if nodea not in self.connections:
self.add_node(lowercase_)
_UpperCamelCase = probability
def __UpperCAmelCase ( self : Any) -> list[str]:
"""simple docstring"""
return list(self.connections)
def __UpperCAmelCase ( self : Tuple , lowercase_ : str) -> str:
"""simple docstring"""
_UpperCamelCase = 0
_UpperCamelCase = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def lowerCAmelCase__ ( a__ , a__ , a__ ) ->dict[str, int]:
'''simple docstring'''
_UpperCamelCase = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(a__ , a__ , a__ )
_UpperCamelCase = Counter(graph.get_nodes() )
_UpperCamelCase = start
for _ in range(a__ ):
_UpperCamelCase = graph.transition(a__ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 547 | import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _UpperCAmelCase ( lowerCAmelCase ):
'''simple docstring'''
__A = ['''image_processor''', '''tokenizer''']
__A = '''ViTImageProcessor'''
__A = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Union[str, Any] , lowercase_ : Optional[int]=None , lowercase_ : Dict=None , **lowercase_ : List[str]) -> str:
"""simple docstring"""
_UpperCamelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , lowercase_ , )
_UpperCamelCase = kwargs.pop("feature_extractor")
_UpperCamelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(lowercase_ , lowercase_)
def __call__( self : Any , lowercase_ : List[str]=None , lowercase_ : int=None , lowercase_ : Optional[Any]=None , lowercase_ : Dict=None , **lowercase_ : Dict) -> int:
"""simple docstring"""
if text is None and visual_prompt is None and images is None:
raise ValueError("You have to specify either text, visual prompt or images.")
if text is not None and visual_prompt is not None:
raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt.")
if text is not None:
_UpperCamelCase = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_)
if visual_prompt is not None:
_UpperCamelCase = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_)
if images is not None:
_UpperCamelCase = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_)
if visual_prompt is not None and images is not None:
_UpperCamelCase = {
"pixel_values": image_features.pixel_values,
"conditional_pixel_values": prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
_UpperCamelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
_UpperCamelCase = {
"conditional_pixel_values": prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**lowercase_) , tensor_type=lowercase_)
def __UpperCAmelCase ( self : Optional[Any] , *lowercase_ : List[Any] , **lowercase_ : List[Any]) -> int:
"""simple docstring"""
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_)
def __UpperCAmelCase ( self : Union[str, Any] , *lowercase_ : Any , **lowercase_ : int) -> Optional[int]:
"""simple docstring"""
return self.tokenizer.decode(*lowercase_ , **lowercase_)
@property
def __UpperCAmelCase ( self : Optional[int]) -> str:
"""simple docstring"""
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase_ , )
return self.image_processor_class
@property
def __UpperCAmelCase ( self : int) -> int:
"""simple docstring"""
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase_ , )
return self.image_processor
| 547 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase_ = {
"configuration_bridgetower": [
"BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BridgeTowerConfig",
"BridgeTowerTextConfig",
"BridgeTowerVisionConfig",
],
"processing_bridgetower": ["BridgeTowerProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["BridgeTowerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST",
"BridgeTowerForContrastiveLearning",
"BridgeTowerForImageAndTextRetrieval",
"BridgeTowerForMaskedLM",
"BridgeTowerModel",
"BridgeTowerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_bridgetower import (
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
BridgeTowerConfig,
BridgeTowerTextConfig,
BridgeTowerVisionConfig,
)
from .processing_bridgetower import BridgeTowerProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_bridgetower import BridgeTowerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bridgetower import (
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
BridgeTowerForContrastiveLearning,
BridgeTowerForImageAndTextRetrieval,
BridgeTowerForMaskedLM,
BridgeTowerModel,
BridgeTowerPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 508 |
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class _a :
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( *A, **A ):
'''simple docstring'''
pass
def lowercase__( __UpperCamelCase: Image ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def lowercase__( __UpperCamelCase: Image ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = np.array(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Tuple = npimg.shape
return {"hash": hashimage(__UpperCamelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class _a ( unittest.TestCase ):
'''simple docstring'''
A : str = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
A : str = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = MaskGenerationPipeline(model=A, image_processor=A )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
pass
@require_tf
@unittest.skip('Image segmentation not implemented in TF' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@slow
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = pipeline('mask-generation', model='facebook/sam-vit-huge' )
SCREAMING_SNAKE_CASE : Union[str, Any] = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg', points_per_batch=256 )
# Shortening by hashing
SCREAMING_SNAKE_CASE : Any = []
for i, o in enumerate(outputs['masks'] ):
new_outupt += [{"mask": mask_to_test_readable(A ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(A, decimals=4 ), [
{'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.04_44},
{'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_21},
{'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.01_67},
{'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.01_32},
{'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.00_53},
{'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.99_67},
{'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.9_93},
{'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.99_09},
{'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.98_79},
{'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.98_34},
{'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.97_16},
{'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.96_12},
{'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.95_99},
{'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.95_52},
{'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.95_32},
{'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.95_16},
{'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.94_99},
{'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.94_83},
{'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.94_64},
{'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.9_43},
{'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.9_43},
{'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.94_08},
{'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.93_35},
{'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.93_26},
{'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.92_62},
{'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.89_99},
{'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.89_86},
{'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.89_84},
{'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.88_73},
{'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.88_71}
], )
# fmt: on
@require_torch
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = 'facebook/sam-vit-huge'
SCREAMING_SNAKE_CASE : int = pipeline('mask-generation', model=A )
SCREAMING_SNAKE_CASE : Optional[Any] = image_segmenter(
'http://images.cocodataset.org/val2017/000000039769.jpg', pred_iou_thresh=1, points_per_batch=256 )
# Shortening by hashing
SCREAMING_SNAKE_CASE : List[Any] = []
for i, o in enumerate(outputs['masks'] ):
new_outupt += [{"mask": mask_to_test_readable(A ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(A, decimals=4 ), [
{'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.04_44},
{'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.02_10},
{'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.01_67},
{'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.01_32},
{'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.00_53},
], )
| 508 | 1 |
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
class A__ ( A__ ):
"""simple docstring"""
_lowercase = ['input_features', 'attention_mask']
def __init__( self : str , lowerCamelCase__ : List[str]=80 , lowerCamelCase__ : Any=16_000 , lowerCamelCase__ : int=80 , lowerCamelCase__ : Optional[Any]=0.0 , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Tuple=True , **lowerCamelCase__ : Optional[int] , ):
super().__init__(feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , **lowerCamelCase__ )
a__ : Dict = num_mel_bins
a__ : Optional[int] = do_ceptral_normalize
a__ : List[str] = normalize_means
a__ : Any = normalize_vars
a__ : Optional[Any] = True
def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : np.ndarray , ):
a__ : Tuple = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
a__ : Union[str, Any] = torch.from_numpy(lowerCamelCase__ ).unsqueeze(0 )
a__ : str = ta_kaldi.fbank(lowerCamelCase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def _UpperCamelCase( lowerCamelCase__ : np.ndarray , lowerCamelCase__ : int , lowerCamelCase__ : Optional[bool] = True , lowerCamelCase__ : Optional[bool] = True , lowerCamelCase__ : float = 0.0 , ):
# make sure we normalize float32 arrays
if normalize_means:
a__ : List[str] = x[:input_length].mean(axis=0 )
a__ : Dict = np.subtract(lowerCamelCase__ , lowerCamelCase__ )
if normalize_vars:
a__ : Any = x[:input_length].std(axis=0 )
a__ : List[str] = np.divide(lowerCamelCase__ , lowerCamelCase__ )
if input_length < x.shape[0]:
a__ : str = padding_value
# make sure array is in float32
a__ : List[Any] = x.astype(np.floataa )
return x
def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[np.ndarray] , lowerCamelCase__ : Optional[np.ndarray] = None ):
a__ : List[str] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(lowerCamelCase__ , lowerCamelCase__ , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(lowerCamelCase__ , lowerCamelCase__ )
]
def __call__( self : str , lowerCamelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , **lowerCamelCase__ : List[Any] , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'''
f''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
a__ : List[str] = isinstance(lowerCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' )
a__ : Dict = is_batched_numpy or (
isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
a__ : str = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ):
a__ : Tuple = np.asarray(lowerCamelCase__ , dtype=np.floataa )
elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
a__ : str = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
a__ : List[str] = [raw_speech]
# extract fbank features
a__ : Any = [self._extract_fbank_features(lowerCamelCase__ ) for waveform in raw_speech]
# convert into correct format for padding
a__ : Any = BatchFeature({"input_features": features} )
a__ : Any = self.pad(
lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , )
# make sure list is in array format
a__ : List[str] = padded_inputs.get("input_features" )
if isinstance(input_features[0] , lowerCamelCase__ ):
a__ : Optional[int] = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for feature in input_features]
a__ : Dict = padded_inputs.get("attention_mask" )
if attention_mask is not None:
a__ : Optional[int] = [np.asarray(lowerCamelCase__ , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
a__ : Optional[Any] = (
np.array(lowerCamelCase__ , dtype=np.intaa )
if self._get_padding_strategies(lowerCamelCase__ , max_length=lowerCamelCase__ ) is not PaddingStrategy.DO_NOT_PAD
else None
)
a__ : Optional[Any] = self.normalize(
padded_inputs["input_features"] , attention_mask=lowerCamelCase__ )
if return_tensors is not None:
a__ : Optional[Any] = padded_inputs.convert_to_tensors(lowerCamelCase__ )
return padded_inputs
| 37 |
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ):
UpperCAmelCase__ : int = IFPipeline
UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"}
UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"}
def snake_case_ ( self ) -> str:
return self._get_dummy_components()
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]:
if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ):
UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def snake_case_ ( self ) -> Optional[int]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' )
def snake_case_ ( self ) -> str:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def snake_case_ ( self ) -> Dict:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def snake_case_ ( self ) -> Optional[int]:
self._test_save_load_local()
def snake_case_ ( self ) -> List[str]:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2, )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', )
def snake_case_ ( self ) -> Optional[int]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self ) -> List[Any]:
# if
UpperCamelCase : Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0', variant='fp16', torch_dtype=torch.floataa )
UpperCamelCase : str = IFSuperResolutionPipeline.from_pretrained(
'DeepFloyd/IF-II-L-v1.0', variant='fp16', torch_dtype=torch.floataa, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to('cuda' )
UpperCamelCase , UpperCamelCase : List[str] = pipe_a.encode_prompt('anime turtle', device='cuda' )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
UpperCamelCase : int = None
UpperCamelCase : Union[str, Any] = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
UpperCamelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components )
UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
UpperCamelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components )
UpperCamelCase : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : Union[str, Any] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
UpperCamelCase : Any = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Tuple = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Any = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : Optional[int] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
UpperCamelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Any = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Any = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : List[Any] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
UpperCamelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = floats_tensor((1, 3, 256, 256), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Optional[int] = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : Optional[int] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( ) -> Union[str, Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 40 | 0 |
import cmath
import math
def A (__A : float , __A : float , __A : float , __A : float ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ = math.radians(__lowercase )
UpperCAmelCase_ = math.radians(__lowercase )
# Convert voltage and current to rectangular form
UpperCAmelCase_ = cmath.rect(__lowercase , __lowercase )
UpperCAmelCase_ = cmath.rect(__lowercase , __lowercase )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod()
| 704 |
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : Dict = LxmertTokenizer
UpperCAmelCase__ : Tuple = LxmertTokenizerFast
UpperCAmelCase__ : Any = True
UpperCAmelCase__ : Dict = True
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
super().setUp()
UpperCAmelCase_ = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens]))
def lowerCamelCase ( self : str , _snake_case : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = '''UNwant\u00E9d,running'''
UpperCAmelCase_ = '''unwanted, running'''
return input_text, output_text
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.tokenizer_class(self.vocab_file)
UpperCAmelCase_ = tokenizer.tokenize('''UNwant\u00E9d,running''')
self.assertListEqual(_snake_case , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''])
self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , [7, 4, 5, 10, 8, 9])
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = self.get_rust_tokenizer()
UpperCAmelCase_ = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase_ = tokenizer.tokenize(_snake_case)
UpperCAmelCase_ = rust_tokenizer.tokenize(_snake_case)
self.assertListEqual(_snake_case , _snake_case)
UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case)
UpperCAmelCase_ = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case)
self.assertListEqual(_snake_case , _snake_case)
UpperCAmelCase_ = self.get_rust_tokenizer()
UpperCAmelCase_ = tokenizer.encode(_snake_case)
UpperCAmelCase_ = rust_tokenizer.encode(_snake_case)
self.assertListEqual(_snake_case , _snake_case)
| 169 | 0 |
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
lowerCamelCase__ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n"
class lowerCAmelCase__ ( unittest.TestCase , __lowercase ):
def A_ ( self ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = load_tool("""text-question-answering""" )
self.tool.setup()
_UpperCamelCase = load_tool("""text-question-answering""" , remote=a )
def A_ ( self ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.tool(a , """What did Hugging Face do in April 2021?""" )
self.assertEqual(a , """launched the BigScience Research Workshop""" )
def A_ ( self ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.remote_tool(a , """What did Hugging Face do in April 2021?""" )
self.assertEqual(a , """launched the BigScience Research Workshop""" )
def A_ ( self ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.tool(text=a , question="""What did Hugging Face do in April 2021?""" )
self.assertEqual(a , """launched the BigScience Research Workshop""" )
def A_ ( self ) -> int:
'''simple docstring'''
_UpperCamelCase = self.remote_tool(text=a , question="""What did Hugging Face do in April 2021?""" )
self.assertEqual(a , """launched the BigScience Research Workshop""" )
| 612 |
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
lowerCamelCase__ = TypeVar("T")
lowerCamelCase__ = TypeVar("U")
class lowerCAmelCase__ ( Generic[T, U] ):
def __init__( self , a , a ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = key
_UpperCamelCase = val
_UpperCamelCase = None
_UpperCamelCase = None
def __repr__( self ) -> str:
'''simple docstring'''
return (
F'Node: key: {self.key}, val: {self.val}, '
F'has next: {bool(self.next )}, has prev: {bool(self.prev )}'
)
class lowerCAmelCase__ ( Generic[T, U] ):
def __init__( self ) -> None:
'''simple docstring'''
_UpperCamelCase = DoubleLinkedListNode(a , a )
_UpperCamelCase = DoubleLinkedListNode(a , a )
_UpperCamelCase , _UpperCamelCase = self.rear, self.head
def __repr__( self ) -> str:
'''simple docstring'''
_UpperCamelCase = ["""DoubleLinkedList"""]
_UpperCamelCase = self.head
while node.next is not None:
rep.append(str(a ) )
_UpperCamelCase = node.next
rep.append(str(self.rear ) )
return ",\n ".join(a )
def A_ ( self , a ) -> None:
'''simple docstring'''
_UpperCamelCase = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
_UpperCamelCase = node
_UpperCamelCase = previous
_UpperCamelCase = node
_UpperCamelCase = self.rear
def A_ ( self , a ) -> DoubleLinkedListNode[T, U] | None:
'''simple docstring'''
if node.prev is None or node.next is None:
return None
_UpperCamelCase = node.next
_UpperCamelCase = node.prev
_UpperCamelCase = None
_UpperCamelCase = None
return node
class lowerCAmelCase__ ( Generic[T, U] ):
UpperCamelCase_ : dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self , a ) -> int:
'''simple docstring'''
_UpperCamelCase = DoubleLinkedList()
_UpperCamelCase = capacity
_UpperCamelCase = 0
_UpperCamelCase = 0
_UpperCamelCase = 0
_UpperCamelCase = {}
def __repr__( self ) -> str:
'''simple docstring'''
return (
F'CacheInfo(hits={self.hits}, misses={self.miss}, '
F'capacity={self.capacity}, current size={self.num_keys})'
)
def __contains__( self , a ) -> bool:
'''simple docstring'''
return key in self.cache
def A_ ( self , a ) -> U | None:
'''simple docstring'''
if key in self.cache:
self.hits += 1
_UpperCamelCase = self.cache[key]
_UpperCamelCase = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(a )
return node.val
self.miss += 1
return None
def A_ ( self , a , a ) -> None:
'''simple docstring'''
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
_UpperCamelCase = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(a ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
_UpperCamelCase = DoubleLinkedListNode(a , a )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
_UpperCamelCase = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
_UpperCamelCase = value
self.list.add(a )
@classmethod
def A_ ( cls , a = 1_28 ) -> Callable[[Callable[[T], U]], Callable[..., U]]:
'''simple docstring'''
def cache_decorator_inner(a ) -> Callable[..., U]:
def cache_decorator_wrapper(*a ) -> U:
if func not in cls.decorator_function_to_instance_map:
_UpperCamelCase = LRUCache(a )
_UpperCamelCase = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
_UpperCamelCase = func(*a )
cls.decorator_function_to_instance_map[func].put(args[0] , a )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(a , """cache_info""" , a ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 612 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {
"""facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = """levit"""
def __init__( self : int , SCREAMING_SNAKE_CASE_ : Tuple=2_2_4 , SCREAMING_SNAKE_CASE_ : Optional[int]=3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : Any=1 , SCREAMING_SNAKE_CASE_ : Tuple=1_6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=[1_2_8, 2_5_6, 3_8_4] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=[4, 8, 1_2] , SCREAMING_SNAKE_CASE_ : List[Any]=[4, 4, 4] , SCREAMING_SNAKE_CASE_ : Optional[Any]=[1_6, 1_6, 1_6] , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : Tuple=[2, 2, 2] , SCREAMING_SNAKE_CASE_ : List[Any]=[2, 2, 2] , SCREAMING_SNAKE_CASE_ : Any=0.02 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : List[str] = image_size
lowerCAmelCase_ : int = num_channels
lowerCAmelCase_ : Union[str, Any] = kernel_size
lowerCAmelCase_ : Union[str, Any] = stride
lowerCAmelCase_ : Optional[Any] = padding
lowerCAmelCase_ : List[Any] = hidden_sizes
lowerCAmelCase_ : int = num_attention_heads
lowerCAmelCase_ : List[str] = depths
lowerCAmelCase_ : Optional[Any] = key_dim
lowerCAmelCase_ : Tuple = drop_path_rate
lowerCAmelCase_ : Tuple = patch_size
lowerCAmelCase_ : str = attention_ratio
lowerCAmelCase_ : str = mlp_ratio
lowerCAmelCase_ : Union[str, Any] = initializer_range
lowerCAmelCase_ : List[str] = [
['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = version.parse("""1.11""" )
@property
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
return 1E-4
| 317 |
"""simple docstring"""
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
lowercase__ : Optional[int] = {
"""169M""": 1_2,
"""430M""": 2_4,
"""1B5""": 2_4,
"""3B""": 3_2,
"""7B""": 3_2,
"""14B""": 4_0,
}
lowercase__ : Optional[Any] = {
"""169M""": 7_6_8,
"""430M""": 1_0_2_4,
"""1B5""": 2_0_4_8,
"""3B""": 2_5_6_0,
"""7B""": 4_0_9_6,
"""14B""": 5_1_2_0,
}
def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase_ : str = list(state_dict.keys() )
for name in state_dict_keys:
lowerCAmelCase_ : List[Any] = state_dict.pop(lowerCAmelCase__ )
# emb -> embedding
if name.startswith('emb.' ):
lowerCAmelCase_ : Dict = name.replace('emb.' , 'embeddings.' )
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('blocks.0.ln0' ):
lowerCAmelCase_ : str = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' )
# att -> attention
lowerCAmelCase_ : Optional[Any] = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , lowerCAmelCase__ )
# ffn -> feed_forward
lowerCAmelCase_ : Any = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , lowerCAmelCase__ )
# time_mix_k -> time_mix_key and reshape
if name.endswith('.time_mix_k' ):
lowerCAmelCase_ : str = name.replace('.time_mix_k' , '.time_mix_key' )
# time_mix_v -> time_mix_value and reshape
if name.endswith('.time_mix_v' ):
lowerCAmelCase_ : int = name.replace('.time_mix_v' , '.time_mix_value' )
# time_mix_r -> time_mix_key and reshape
if name.endswith('.time_mix_r' ):
lowerCAmelCase_ : Any = name.replace('.time_mix_r' , '.time_mix_receptance' )
if name != "head.weight":
lowerCAmelCase_ : Optional[int] = 'rwkv.' + name
lowerCAmelCase_ : int = weight
return state_dict
def UpperCamelCase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : int=None ) -> int:
"""simple docstring"""
if tokenizer_file is None:
print('No `--tokenizer_file` provided, we will use the default tokenizer.' )
lowerCAmelCase_ : int = 5_0277
lowerCAmelCase_ : List[str] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' )
else:
lowerCAmelCase_ : Dict = PreTrainedTokenizerFast(tokenizer_file=lowerCAmelCase__ )
lowerCAmelCase_ : Dict = len(lowerCAmelCase__ )
tokenizer.save_pretrained(lowerCAmelCase__ )
# 2. Build the config
lowerCAmelCase_ : int = list(NUM_HIDDEN_LAYERS_MAPPING.keys() )
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
lowerCAmelCase_ : Tuple = candidate
break
if size is None:
raise ValueError('Could not infer the size, please provide it with the `--size` argument.' )
if size not in possible_sizes:
raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." )
lowerCAmelCase_ : Dict = RwkvConfig(
vocab_size=lowerCAmelCase__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(lowerCAmelCase__ )
# 3. Download model file then convert state_dict
lowerCAmelCase_ : Dict = hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ )
lowerCAmelCase_ : List[Any] = torch.load(lowerCAmelCase__ , map_location='cpu' )
lowerCAmelCase_ : int = convert_state_dict(lowerCAmelCase__ )
# 4. Split in shards and save
lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = shard_checkpoint(lowerCAmelCase__ )
for shard_file, shard in shards.items():
torch.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) )
if index is not None:
lowerCAmelCase_ : List[str] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
# Save the index as well
with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f:
lowerCAmelCase_ : str = json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + '\n'
f.write(lowerCAmelCase__ )
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' )
lowerCAmelCase_ : List[str] = list(shards.keys() )
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
lowerCAmelCase_ : List[Any] = torch.load(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) )
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) )
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('Please provide a `model_name` to push the model to the Hub.' )
lowerCAmelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(lowerCAmelCase__ )
model.push_to_hub(lowerCAmelCase__ , max_shard_size='2GB' )
tokenizer.push_to_hub(lowerCAmelCase__ )
if __name__ == "__main__":
lowercase__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint."""
)
parser.add_argument(
"""--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo."""
)
parser.add_argument(
"""--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model."""
)
parser.add_argument(
"""--tokenizer_file""",
default=None,
type=str,
help="""Path to the tokenizer file to use (if not provided, only the model is converted).""",
)
parser.add_argument(
"""--size""",
default=None,
type=str,
help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Push to the Hub the converted model.""",
)
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help="""Name of the pushed model on the Hub, including the username / organization.""",
)
lowercase__ : List[str] = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 317 | 1 |
"""simple docstring"""
def __lowercase ( _a ):
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or number < 0:
raise ValueError('''Input must be a non-negative integer''' )
snake_case_ : int = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 123 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowercase : Dict ={
"""configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] =[
"""RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ResNetForImageClassification""",
"""ResNetModel""",
"""ResNetPreTrainedModel""",
"""ResNetBackbone""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] =[
"""TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFResNetForImageClassification""",
"""TFResNetModel""",
"""TFResNetPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Tuple =[
"""FlaxResNetForImageClassification""",
"""FlaxResNetModel""",
"""FlaxResNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
_lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 364 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = '''▁'''
UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
UpperCAmelCase = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
UpperCAmelCase = {
'''facebook/xglm-564M''': 2048,
}
class A_ ( __lowerCamelCase ):
'''simple docstring'''
_UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES
_UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""]
def __init__( self , snake_case , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case = None , **snake_case , ):
lowercase = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
lowercase = 7
lowercase = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )]
lowercase = kwargs.get('additional_special_tokens' , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , )
lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(snake_case ) )
lowercase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowercase = 1
# Mimic fairseq token-to-id alignment for the first 4 token
lowercase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
lowercase = len(self.sp_model )
lowercase = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(snake_case )
lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ):
lowercase = self.__dict__.copy()
lowercase = None
lowercase = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , snake_case ):
lowercase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
lowercase = {}
lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ):
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
lowercase = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case )
if token_ids_a is None:
return [1] + ([0] * len(snake_case ))
return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case ))
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ):
lowercase = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE__ ( self , snake_case ):
return self.sp_model.encode(snake_case , out_type=snake_case )
def SCREAMING_SNAKE_CASE__ ( self , snake_case ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowercase = self.sp_model.PieceToId(snake_case )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE__ ( self , snake_case ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def SCREAMING_SNAKE_CASE__ ( self , snake_case ):
lowercase = ''.join(snake_case ).replace(snake_case , ' ' ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ):
if not os.path.isdir(snake_case ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase = os.path.join(
snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case , 'wb' ) as fi:
lowercase = self.sp_model.serialized_model_proto()
fi.write(snake_case )
return (out_vocab_file,)
| 710 |
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = {
'''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''',
}
class A_ ( __lowerCamelCase ):
'''simple docstring'''
_UpperCamelCase : int = """autoformer"""
_UpperCamelCase : Any = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
"""num_hidden_layers""": """encoder_layers""",
}
def __init__( self , snake_case = None , snake_case = None , snake_case = "student_t" , snake_case = "nll" , snake_case = 1 , snake_case = [1, 2, 3, 4, 5, 6, 7] , snake_case = True , snake_case = 0 , snake_case = 0 , snake_case = 0 , snake_case = 0 , snake_case = None , snake_case = None , snake_case = 64 , snake_case = 2 , snake_case = 2 , snake_case = 2 , snake_case = 2 , snake_case = 32 , snake_case = 32 , snake_case = "gelu" , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 100 , snake_case = 0.02 , snake_case = True , snake_case=True , snake_case = 10 , snake_case = 25 , snake_case = 3 , **snake_case , ):
# time series specific configuration
lowercase = prediction_length
lowercase = context_length if context_length is not None else prediction_length
lowercase = distribution_output
lowercase = loss
lowercase = input_size
lowercase = num_time_features
lowercase = lags_sequence
lowercase = scaling
lowercase = num_dynamic_real_features
lowercase = num_static_real_features
lowercase = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(snake_case ) != num_static_categorical_features:
raise ValueError(
'The cardinality should be a list of the same length as `num_static_categorical_features`' )
lowercase = cardinality
else:
lowercase = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(snake_case ) != num_static_categorical_features:
raise ValueError(
'The embedding dimension should be a list of the same length as `num_static_categorical_features`' )
lowercase = embedding_dimension
else:
lowercase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
lowercase = num_parallel_samples
# Transformer architecture configuration
lowercase = input_size * len(self.lags_sequence ) + self._number_of_features
lowercase = d_model
lowercase = encoder_attention_heads
lowercase = decoder_attention_heads
lowercase = encoder_ffn_dim
lowercase = decoder_ffn_dim
lowercase = encoder_layers
lowercase = decoder_layers
lowercase = dropout
lowercase = attention_dropout
lowercase = activation_dropout
lowercase = encoder_layerdrop
lowercase = decoder_layerdrop
lowercase = activation_function
lowercase = init_std
lowercase = use_cache
# Autoformer
lowercase = label_length
lowercase = moving_average
lowercase = autocorrelation_factor
super().__init__(is_encoder_decoder=snake_case , **snake_case )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 565 | 0 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
__magic_name__ = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""")
@dataclass
class SCREAMING_SNAKE_CASE__ :
snake_case = field(
default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} )
snake_case = field(
default=_SCREAMING_SNAKE_CASE , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
snake_case = field(
default=_SCREAMING_SNAKE_CASE , metadata={"help": "The column name of the images in the files."} )
snake_case = field(default=_SCREAMING_SNAKE_CASE , metadata={"help": "A folder containing the training data."} )
snake_case = field(default=_SCREAMING_SNAKE_CASE , metadata={"help": "A folder containing the validation data."} )
snake_case = field(
default=0.1_5 , metadata={"help": "Percent to split off of train for validation."} )
snake_case = field(
default=_SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
snake_case = field(
default=_SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def __UpperCAmelCase ( self : Dict ):
lowerCamelCase__ = {}
if self.train_dir is not None:
lowerCamelCase__ = self.train_dir
if self.validation_dir is not None:
lowerCamelCase__ = self.validation_dir
lowerCamelCase__ = data_files if data_files else None
@dataclass
class SCREAMING_SNAKE_CASE__ :
snake_case = field(
default=_SCREAMING_SNAKE_CASE , metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
} , )
snake_case = field(
default=_SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} )
snake_case = field(
default=_SCREAMING_SNAKE_CASE , metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
} , )
snake_case = field(
default=_SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} )
snake_case = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
snake_case = field(default=_SCREAMING_SNAKE_CASE , metadata={"help": "Name or path of preprocessor config."} )
snake_case = field(
default=_SCREAMING_SNAKE_CASE , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
snake_case = field(
default=0.7_5 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} )
snake_case = field(
default=_SCREAMING_SNAKE_CASE , metadata={"help": "Whether or not to train with normalized pixel values as target."} )
@dataclass
class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ):
snake_case = field(
default=1E-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} )
def _A ( __lowercase ):
"""simple docstring"""
lowerCamelCase__ = torch.stack([example["""pixel_values"""] for example in examples] )
return {"pixel_values": pixel_values}
def _A ( ):
"""simple docstring"""
lowerCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_mae""" , __lowercase , __lowercase )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCamelCase__ = training_args.get_process_log_level()
logger.setLevel(__lowercase )
transformers.utils.logging.set_verbosity(__lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
lowerCamelCase__ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase__ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Initialize our dataset.
lowerCamelCase__ = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
lowerCamelCase__ = None if """validation""" in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , __lowercase ) and data_args.train_val_split > 0.0:
lowerCamelCase__ = ds["""train"""].train_test_split(data_args.train_val_split )
lowerCamelCase__ = split["""train"""]
lowerCamelCase__ = split["""test"""]
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase__ = {
"""cache_dir""": model_args.cache_dir,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.config_name:
lowerCamelCase__ = ViTMAEConfig.from_pretrained(model_args.config_name , **__lowercase )
elif model_args.model_name_or_path:
lowerCamelCase__ = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
lowerCamelCase__ = ViTMAEConfig()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.config_overrides is not None:
logger.info(f"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(f"""New config: {config}""" )
# adapt config
config.update(
{
"""mask_ratio""": model_args.mask_ratio,
"""norm_pix_loss""": model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
lowerCamelCase__ = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__lowercase )
elif model_args.model_name_or_path:
lowerCamelCase__ = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
lowerCamelCase__ = ViTImageProcessor()
# create model
if model_args.model_name_or_path:
lowerCamelCase__ = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info("""Training new model from scratch""" )
lowerCamelCase__ = ViTMAEForPreTraining(__lowercase )
if training_args.do_train:
lowerCamelCase__ = ds["""train"""].column_names
else:
lowerCamelCase__ = ds["""validation"""].column_names
if data_args.image_column_name is not None:
lowerCamelCase__ = data_args.image_column_name
elif "image" in column_names:
lowerCamelCase__ = """image"""
elif "img" in column_names:
lowerCamelCase__ = """img"""
else:
lowerCamelCase__ = column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
lowerCamelCase__ = image_processor.size["""shortest_edge"""]
else:
lowerCamelCase__ = (image_processor.size["""height"""], image_processor.size["""width"""])
lowerCamelCase__ = Compose(
[
Lambda(lambda __lowercase : img.convert("""RGB""" ) if img.mode != "RGB" else img ),
RandomResizedCrop(__lowercase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
def preprocess_images(__lowercase ):
lowerCamelCase__ = [transforms(__lowercase ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError("""--do_train requires a train dataset""" )
if data_args.max_train_samples is not None:
lowerCamelCase__ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(__lowercase )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError("""--do_eval requires a validation dataset""" )
if data_args.max_eval_samples is not None:
lowerCamelCase__ = (
ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(__lowercase )
# Compute absolute learning rate
lowerCamelCase__ = (
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
lowerCamelCase__ = training_args.base_learning_rate * total_train_batch_size / 256
# Initialize our trainer
lowerCamelCase__ = Trainer(
model=__lowercase , args=__lowercase , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , )
# Training
if training_args.do_train:
lowerCamelCase__ = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase__ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase__ = last_checkpoint
lowerCamelCase__ = trainer.train(resume_from_checkpoint=__lowercase )
trainer.save_model()
trainer.log_metrics("""train""" , train_result.metrics )
trainer.save_metrics("""train""" , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
lowerCamelCase__ = trainer.evaluate()
trainer.log_metrics("""eval""" , __lowercase )
trainer.save_metrics("""eval""" , __lowercase )
# Write model card and (optionally) push to hub
lowerCamelCase__ = {
"""tasks""": """masked-auto-encoding""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""masked-auto-encoding"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**__lowercase )
else:
trainer.create_model_card(**__lowercase )
def _A ( __lowercase ):
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 129 |
"""simple docstring"""
def _A ( __lowercase , __lowercase ):
"""simple docstring"""
while second != 0:
lowerCamelCase__ = first & second
first ^= second
lowerCamelCase__ = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
__magic_name__ = int(input("""Enter the first number: """).strip())
__magic_name__ = int(input("""Enter the second number: """).strip())
print(F'{add(first, second) = }')
| 129 | 1 |
_UpperCamelCase: List[Any] =[4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
_UpperCamelCase: List[str] =[3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
_UpperCamelCase: List[Any] ={
0: 'Sunday',
1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
}
def _a ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
assert len(str(__SCREAMING_SNAKE_CASE ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
_lowerCAmelCase = year // 100
_lowerCAmelCase = (5 * (century % 4) + 2) % 7
_lowerCAmelCase = year % 100
_lowerCAmelCase = centurian % 12
_lowerCAmelCase = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
_lowerCAmelCase = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0)
else DOOMSDAY_LEAP[month - 1]
)
_lowerCAmelCase = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 585 |
from typing import Dict
import numpy as np
import torch
from . import residue_constants as rc
from .tensor_utils import tensor_tree_map, tree_map
def _a ( __SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ):
"""simple docstring"""
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
for rt in rc.restypes:
_lowerCAmelCase = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]]
restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] )
_lowerCAmelCase = {name: i for i, name in enumerate(__SCREAMING_SNAKE_CASE )}
restype_atomaa_to_atomaa_list.append(
[(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] )
restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] )
# Add dummy mapping for restype 'UNK'
restype_atomaa_to_atomaa_list.append([0] * 14 )
restype_atomaa_to_atomaa_list.append([0] * 37 )
restype_atomaa_mask_list.append([0.0] * 14 )
_lowerCAmelCase = torch.tensor(
__SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['aatype'].device , )
_lowerCAmelCase = torch.tensor(
__SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['aatype'].device , )
_lowerCAmelCase = torch.tensor(
__SCREAMING_SNAKE_CASE , dtype=torch.floataa , device=protein['aatype'].device , )
_lowerCAmelCase = protein['aatype'].to(torch.long )
# create the mapping for (residx, atom14) --> atom37, i.e. an array
# with shape (num_res, 14) containing the atom37 indices for this protein
_lowerCAmelCase = restype_atomaa_to_atomaa[protein_aatype]
_lowerCAmelCase = restype_atomaa_mask[protein_aatype]
_lowerCAmelCase = residx_atomaa_mask
_lowerCAmelCase = residx_atomaa_to_atomaa.long()
# create the gather indices for mapping back
_lowerCAmelCase = restype_atomaa_to_atomaa[protein_aatype]
_lowerCAmelCase = residx_atomaa_to_atomaa.long()
# create the corresponding mask
_lowerCAmelCase = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['aatype'].device )
for restype, restype_letter in enumerate(rc.restypes ):
_lowerCAmelCase = rc.restype_atoa[restype_letter]
_lowerCAmelCase = rc.residue_atoms[restype_name]
for atom_name in atom_names:
_lowerCAmelCase = rc.atom_order[atom_name]
_lowerCAmelCase = 1
_lowerCAmelCase = restype_atomaa_mask[protein_aatype]
_lowerCAmelCase = residx_atomaa_mask
return protein
def _a ( __SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ):
"""simple docstring"""
_lowerCAmelCase = tree_map(lambda __SCREAMING_SNAKE_CASE : torch.tensor(__SCREAMING_SNAKE_CASE , device=batch['aatype'].device ) , __SCREAMING_SNAKE_CASE , np.ndarray )
_lowerCAmelCase = tensor_tree_map(lambda __SCREAMING_SNAKE_CASE : np.array(__SCREAMING_SNAKE_CASE ) , make_atomaa_masks(__SCREAMING_SNAKE_CASE ) )
return out
| 585 | 1 |
'''simple docstring'''
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class _snake_case( __a , __a ):
@register_to_config
def __init__(self : Tuple , a : List[Any] = 7_68 , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
A__ = nn.Parameter(torch.zeros(1 , A__ ) )
A__ = nn.Parameter(torch.ones(1 , A__ ) )
def _UpperCamelCase (self : Optional[int] , a : Union[str, Any] = None , a : Optional[int] = None , ) -> List[str]:
"""simple docstring"""
A__ = nn.Parameter(self.mean.to(A__ ).to(A__ ) )
A__ = nn.Parameter(self.std.to(A__ ).to(A__ ) )
return self
def _UpperCamelCase (self : Dict , a : int ) -> List[Any]:
"""simple docstring"""
A__ = (embeds - self.mean) * 1.0 / self.std
return embeds
def _UpperCamelCase (self : int , a : Dict ) -> List[Any]:
"""simple docstring"""
A__ = (embeds * self.std) + self.mean
return embeds
| 531 |
'''simple docstring'''
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
_lowercase = logging.get_logger(__name__)
class _lowercase :
def __init__( self , A__ , A__ ) -> Tuple:
snake_case = question_encoder
snake_case = generator
snake_case = self.question_encoder
def UpperCamelCase ( self , A__ ) -> int:
if os.path.isfile(A__ ):
raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" )
os.makedirs(A__ , exist_ok=A__ )
snake_case = os.path.join(A__ , '''question_encoder_tokenizer''' )
snake_case = os.path.join(A__ , '''generator_tokenizer''' )
self.question_encoder.save_pretrained(A__ )
self.generator.save_pretrained(A__ )
@classmethod
def UpperCamelCase ( cls , A__ , **A__ ) -> List[Any]:
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
snake_case = kwargs.pop('''config''' , A__ )
if config is None:
snake_case = RagConfig.from_pretrained(A__ )
snake_case = AutoTokenizer.from_pretrained(
A__ , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' )
snake_case = AutoTokenizer.from_pretrained(
A__ , config=config.generator , subfolder='''generator_tokenizer''' )
return cls(question_encoder=A__ , generator=A__ )
def __call__( self , *A__ , **A__ ) -> Any:
return self.current_tokenizer(*A__ , **A__ )
def UpperCamelCase ( self , *A__ , **A__ ) -> Tuple:
return self.generator.batch_decode(*A__ , **A__ )
def UpperCamelCase ( self , *A__ , **A__ ) -> Tuple:
return self.generator.decode(*A__ , **A__ )
def UpperCamelCase ( self ) -> Optional[Any]:
snake_case = self.question_encoder
def UpperCamelCase ( self ) -> str:
snake_case = self.generator
def UpperCamelCase ( self , A__ , A__ = None , A__ = None , A__ = None , A__ = "longest" , A__ = None , A__ = True , **A__ , ) -> BatchEncoding:
warnings.warn(
'''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '''
'''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '''
'''context manager to prepare your targets. See the documentation of your specific tokenizer for more '''
'''details''' , A__ , )
if max_length is None:
snake_case = self.current_tokenizer.model_max_length
snake_case = self(
A__ , add_special_tokens=A__ , return_tensors=A__ , max_length=A__ , padding=A__ , truncation=A__ , **A__ , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
snake_case = self.current_tokenizer.model_max_length
snake_case = self(
text_target=A__ , add_special_tokens=A__ , return_tensors=A__ , padding=A__ , max_length=A__ , truncation=A__ , **A__ , )
snake_case = labels['''input_ids''']
return model_inputs
| 342 | 0 |
'''simple docstring'''
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class lowerCamelCase_ ( __a ):
def __init__( self : Optional[Any] , _A : UNetaDModel , _A : UNetaDModel , _A : DDPMScheduler , _A : Any , ):
'''simple docstring'''
super().__init__()
UpperCAmelCase__ : List[str] = value_function
UpperCAmelCase__ : Optional[Any] = unet
UpperCAmelCase__ : int = scheduler
UpperCAmelCase__ : int = env
UpperCAmelCase__ : Optional[int] = env.get_dataset()
UpperCAmelCase__ : Any = {}
for key in self.data.keys():
try:
UpperCAmelCase__ : Optional[int] = self.data[key].mean()
except: # noqa: E722
pass
UpperCAmelCase__ : List[str] = {}
for key in self.data.keys():
try:
UpperCAmelCase__ : Tuple = self.data[key].std()
except: # noqa: E722
pass
UpperCAmelCase__ : Tuple = env.observation_space.shape[0]
UpperCAmelCase__ : Optional[Any] = env.action_space.shape[0]
def lowercase_ ( self : Optional[Any] , _A : Any , _A : int ):
'''simple docstring'''
return (x_in - self.means[key]) / self.stds[key]
def lowercase_ ( self : Optional[int] , _A : str , _A : List[str] ):
'''simple docstring'''
return x_in * self.stds[key] + self.means[key]
def lowercase_ ( self : List[str] , _A : Tuple ):
'''simple docstring'''
if type(_A ) is dict:
return {k: self.to_torch(_A ) for k, v in x_in.items()}
elif torch.is_tensor(_A ):
return x_in.to(self.unet.device )
return torch.tensor(_A , device=self.unet.device )
def lowercase_ ( self : Optional[Any] , _A : Optional[int] , _A : Dict , _A : Optional[Any] ):
'''simple docstring'''
for key, val in cond.items():
UpperCAmelCase__ : List[Any] = val.clone()
return x_in
def lowercase_ ( self : Tuple , _A : Optional[Any] , _A : Any , _A : Optional[Any] , _A : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = x.shape[0]
UpperCAmelCase__ : List[str] = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
UpperCAmelCase__ : Tuple = torch.full((batch_size,) , _A , device=self.unet.device , dtype=torch.long )
for _ in range(_A ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
UpperCAmelCase__ : str = self.value_function(x.permute(0 , 2 , 1 ) , _A ).sample
UpperCAmelCase__ : Union[str, Any] = torch.autograd.grad([y.sum()] , [x] )[0]
UpperCAmelCase__ : Dict = self.scheduler._get_variance(_A )
UpperCAmelCase__ : str = torch.exp(0.5 * posterior_variance )
UpperCAmelCase__ : Dict = model_std * grad
UpperCAmelCase__ : Union[str, Any] = 0
UpperCAmelCase__ : List[str] = x.detach()
UpperCAmelCase__ : Tuple = x + scale * grad
UpperCAmelCase__ : Tuple = self.reset_xa(_A , _A , self.action_dim )
UpperCAmelCase__ : Optional[int] = self.unet(x.permute(0 , 2 , 1 ) , _A ).sample.permute(0 , 2 , 1 )
# TODO: verify deprecation of this kwarg
UpperCAmelCase__ : Optional[int] = self.scheduler.step(_A , _A , _A , predict_epsilon=_A )['''prev_sample''']
# apply conditions to the trajectory (set the initial state)
UpperCAmelCase__ : Any = self.reset_xa(_A , _A , self.action_dim )
UpperCAmelCase__ : Tuple = self.to_torch(_A )
return x, y
def __call__( self : Any , _A : Tuple , _A : int=64 , _A : Tuple=32 , _A : List[Any]=2 , _A : List[str]=0.1 ):
'''simple docstring'''
UpperCAmelCase__ : Any = self.normalize(_A , '''observations''' )
UpperCAmelCase__ : Any = obs[None].repeat(_A , axis=0 )
UpperCAmelCase__ : Optional[Any] = {0: self.to_torch(_A )}
UpperCAmelCase__ : Union[str, Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
UpperCAmelCase__ : List[Any] = randn_tensor(_A , device=self.unet.device )
UpperCAmelCase__ : Optional[Any] = self.reset_xa(_A , _A , self.action_dim )
UpperCAmelCase__ : List[Any] = self.to_torch(_A )
# run the diffusion process
UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.run_diffusion(_A , _A , _A , _A )
# sort output trajectories by value
UpperCAmelCase__ : List[str] = y.argsort(0 , descending=_A ).squeeze()
UpperCAmelCase__ : int = x[sorted_idx]
UpperCAmelCase__ : Optional[int] = sorted_values[:, :, : self.action_dim]
UpperCAmelCase__ : int = actions.detach().cpu().numpy()
UpperCAmelCase__ : Optional[int] = self.de_normalize(_A , key='''actions''' )
# select the action with the highest value
if y is not None:
UpperCAmelCase__ : List[Any] = 0
else:
# if we didn't run value guiding, select a random action
UpperCAmelCase__ : Any = np.random.randint(0 , _A )
UpperCAmelCase__ : List[str] = denorm_actions[selected_index, 0]
return denorm_actions
| 701 |
'''simple docstring'''
from timeit import timeit
def a__ ( lowerCAmelCase__ ) -> int:
if number < 0:
raise ValueError('''the value of input must not be negative''' )
UpperCAmelCase__ : Tuple = 0
while number:
number &= number - 1
result += 1
return result
def a__ ( lowerCAmelCase__ ) -> int:
if number < 0:
raise ValueError('''the value of input must not be negative''' )
UpperCAmelCase__ : Optional[Any] = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def a__ ( ) -> None:
def do_benchmark(lowerCAmelCase__ ) -> None:
UpperCAmelCase__ : Optional[Any] = '''import __main__ as z'''
print(F"""Benchmark when {number = }:""" )
print(F"""{get_set_bits_count_using_modulo_operator(lowerCAmelCase__ ) = }""" )
UpperCAmelCase__ : Optional[int] = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=lowerCAmelCase__ )
print(F"""timeit() runs in {timing} seconds""" )
print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase__ ) = }""" )
UpperCAmelCase__ : Optional[int] = timeit(
'''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=lowerCAmelCase__ , )
print(F"""timeit() runs in {timing} seconds""" )
for number in (25, 37, 58, 0):
do_benchmark(lowerCAmelCase__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 312 | 0 |
"""simple docstring"""
from __future__ import annotations
from cmath import sqrt
def __a ( A , A , A ) -> tuple[complex, complex]:
'''simple docstring'''
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
A__ = b * b - 4 * a * c
A__ = (-b + sqrt(A )) / (2 * a)
A__ = (-b - sqrt(A )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def __a ( ) -> Optional[Any]:
'''simple docstring'''
A__ , A__ = quadratic_roots(a=5 , b=6 , c=1 )
print(f"""The solutions are: {solutiona} and {solutiona}""" )
if __name__ == "__main__":
main() | 337 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
)
else:
from .modeling_text_unet import UNetFlatConditionModel
from .pipeline_versatile_diffusion import VersatileDiffusionPipeline
from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline
from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline
from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline | 337 | 1 |
"""simple docstring"""
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class __snake_case ( __lowerCAmelCase ):
def __init__( self , lowercase , lowercase) -> Optional[Any]:
'''simple docstring'''
a__: List[Any] = params
a__: Optional[Any] = np.array(lowercase)
a__: Optional[Any] = np.array([len(lowercase) for t in data])
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self , lowercase) -> Union[str, Any]:
'''simple docstring'''
return (self.token_ids[index], self.lengths[index])
def __len__( self) -> Optional[Any]:
'''simple docstring'''
return len(self.lengths)
def lowerCamelCase_ ( self) -> Any:
'''simple docstring'''
assert len(self.token_ids) == len(self.lengths)
assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths)))
def lowerCamelCase_ ( self) -> int:
'''simple docstring'''
a__: List[Any] = self.params.max_model_input_size
a__: Any = self.lengths > max_len
logger.info(f'Splitting {sum(lowercase)} too long sequences.')
def divide_chunks(lowercase , lowercase):
return [l[i : i + n] for i in range(0 , len(lowercase) , lowercase)]
a__: Optional[int] = []
a__: int = []
if self.params.mlm:
a__ , a__: Union[str, Any] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
else:
a__ , a__: Optional[int] = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token']
for seq_, len_ in zip(self.token_ids , self.lengths):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_)
new_lengths.append(len_)
else:
a__: List[str] = []
for sub_s in divide_chunks(seq_ , max_len - 2):
if sub_s[0] != cls_id:
a__: Tuple = np.insert(lowercase , 0 , lowercase)
if sub_s[-1] != sep_id:
a__: int = np.insert(lowercase , len(lowercase) , lowercase)
assert len(lowercase) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(lowercase)
new_tok_ids.extend(lowercase)
new_lengths.extend([len(lowercase) for l in sub_seqs])
a__: int = np.array(lowercase)
a__: Optional[int] = np.array(lowercase)
def lowerCamelCase_ ( self) -> Optional[int]:
'''simple docstring'''
a__: Union[str, Any] = len(self)
a__: int = self.lengths > 11
a__: int = self.token_ids[indices]
a__: int = self.lengths[indices]
a__: Tuple = len(self)
logger.info(f'Remove {init_size - new_size} too short (<=11 tokens) sequences.')
def lowerCamelCase_ ( self) -> int:
'''simple docstring'''
if "unk_token" not in self.params.special_tok_ids:
return
else:
a__: Optional[int] = self.params.special_tok_ids['unk_token']
a__: Union[str, Any] = len(self)
a__: Any = np.array([np.count_nonzero(a == unk_token_id) for a in self.token_ids])
a__: Optional[Any] = (unk_occs / self.lengths) < 0.5
a__: int = self.token_ids[indices]
a__: Union[str, Any] = self.lengths[indices]
a__: Optional[int] = len(self)
logger.info(f'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).')
def lowerCamelCase_ ( self) -> int:
'''simple docstring'''
if not self.params.is_master:
return
logger.info(f'{len(self)} sequences')
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def lowerCamelCase_ ( self , lowercase) -> List[str]:
'''simple docstring'''
a__: Union[str, Any] = [t[0] for t in batch]
a__: List[str] = [t[1] for t in batch]
assert len(lowercase) == len(lowercase)
# Max for paddings
a__: int = max(lowercase)
# Pad token ids
if self.params.mlm:
a__: int = self.params.special_tok_ids['pad_token']
else:
a__: List[Any] = self.params.special_tok_ids['unk_token']
a__: str = [list(t.astype(lowercase)) + [pad_idx] * (max_seq_len_ - len(lowercase)) for t in token_ids]
assert len(tk_) == len(lowercase)
assert all(len(lowercase) == max_seq_len_ for t in tk_)
a__: str = torch.tensor(tk_) # (bs, max_seq_len_)
a__: Dict = torch.tensor(lowercase) # (bs)
return tk_t, lg_t
| 217 | """simple docstring"""
import re
def __a ( _SCREAMING_SNAKE_CASE ) ->list:
return [char.split() for char in re.split(r'[^ a-z A-Z 0-9 \s]' , str_ )]
def __a ( _SCREAMING_SNAKE_CASE ) ->str:
a__: int = split_input(str_ )
return "".join(
[''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str:
try:
a__: List[str] = split_input(_SCREAMING_SNAKE_CASE )
if upper:
a__: Optional[int] = ''.join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
a__: Optional[Any] = ''.join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def __a ( _SCREAMING_SNAKE_CASE ) ->str:
return to_simple_case(_SCREAMING_SNAKE_CASE )
def __a ( _SCREAMING_SNAKE_CASE ) ->str:
try:
a__: Union[str, Any] = to_simple_case(_SCREAMING_SNAKE_CASE )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str:
return to_complex_case(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '_' )
def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str:
return to_complex_case(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '-' )
if __name__ == "__main__":
__import__('doctest').testmod()
| 217 | 1 |
"""simple docstring"""
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
_lowerCAmelCase : List[Any] = {
"""facebook/maskformer-swin-base-ade""": (
"""https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json"""
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
_lowerCAmelCase : List[Any] = logging.get_logger(__name__)
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''maskformer'''
SCREAMING_SNAKE_CASE_ ={'''hidden_size''': '''mask_feature_size'''}
SCREAMING_SNAKE_CASE_ =['''resnet''', '''swin''']
SCREAMING_SNAKE_CASE_ =['''detr''']
def __init__( self : List[Any] , snake_case__ : int = 2_5_6 , snake_case__ : int = 2_5_6 , snake_case__ : float = 0.1 , snake_case__ : bool = False , snake_case__ : Optional[Dict] = None , snake_case__ : Optional[Dict] = None , snake_case__ : float = 0.02 , snake_case__ : float = 1.0 , snake_case__ : float = 1.0 , snake_case__ : float = 1.0 , snake_case__ : float = 20.0 , snake_case__ : Optional[bool] = None , **snake_case__ : Dict , ):
'''simple docstring'''
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
UpperCAmelCase__ : Any = SwinConfig(
image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , )
if isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase__ : List[Any] = backbone_config.pop("model_type" )
UpperCAmelCase__ : Any = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase__ : int = config_class.from_dict(snake_case__ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. '
f'Supported model types: {",".join(self.backbones_supported )}' )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
UpperCAmelCase__ : str = DetrConfig()
else:
# verify that the decoder is supported
UpperCAmelCase__ : Optional[int] = (
decoder_config.pop("model_type" ) if isinstance(snake_case__ , snake_case__ ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f'Transformer Decoder {decoder_type} not supported, please use one of'
f' {",".join(self.decoders_supported )}' )
if isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase__ : Any = CONFIG_MAPPING[decoder_type]
UpperCAmelCase__ : Union[str, Any] = config_class.from_dict(snake_case__ )
UpperCAmelCase__ : str = backbone_config
UpperCAmelCase__ : Optional[Any] = decoder_config
# main feature dimension for the model
UpperCAmelCase__ : Tuple = fpn_feature_size
UpperCAmelCase__ : Optional[Any] = mask_feature_size
# initializer
UpperCAmelCase__ : Tuple = init_std
UpperCAmelCase__ : List[Any] = init_xavier_std
# Hungarian matcher && loss
UpperCAmelCase__ : str = cross_entropy_weight
UpperCAmelCase__ : int = dice_weight
UpperCAmelCase__ : Dict = mask_weight
UpperCAmelCase__ : Union[str, Any] = use_auxiliary_loss
UpperCAmelCase__ : Optional[int] = no_object_weight
UpperCAmelCase__ : Optional[int] = output_auxiliary_logits
UpperCAmelCase__ : Union[str, Any] = self.decoder_config.encoder_attention_heads
UpperCAmelCase__ : Tuple = self.decoder_config.num_hidden_layers
super().__init__(**snake_case__ )
@classmethod
def __a ( cls : Union[str, Any] , snake_case__ : PretrainedConfig , snake_case__ : PretrainedConfig , **snake_case__ : Optional[Any] ):
'''simple docstring'''
return cls(
backbone_config=snake_case__ , decoder_config=snake_case__ , **snake_case__ , )
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = copy.deepcopy(self.__dict__ )
UpperCAmelCase__ : Tuple = self.backbone_config.to_dict()
UpperCAmelCase__ : Union[str, Any] = self.decoder_config.to_dict()
UpperCAmelCase__ : List[Any] = self.__class__.model_type
return output
| 438 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
_lowerCAmelCase : Tuple = {
"""uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""",
}
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''mra'''
def __init__( self : Any , snake_case__ : List[str]=5_0_2_6_5 , snake_case__ : Any=7_6_8 , snake_case__ : Union[str, Any]=1_2 , snake_case__ : Optional[Any]=1_2 , snake_case__ : Tuple=3_0_7_2 , snake_case__ : str="gelu" , snake_case__ : Any=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : Union[str, Any]=1 , snake_case__ : List[Any]=0.02 , snake_case__ : str=1e-5 , snake_case__ : List[Any]="absolute" , snake_case__ : str=4 , snake_case__ : List[str]="full" , snake_case__ : Tuple=0 , snake_case__ : Any=0 , snake_case__ : Union[str, Any]=1 , snake_case__ : int=0 , snake_case__ : int=2 , **snake_case__ : List[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
UpperCAmelCase__ : List[Any] = vocab_size
UpperCAmelCase__ : str = max_position_embeddings
UpperCAmelCase__ : Any = hidden_size
UpperCAmelCase__ : Union[str, Any] = num_hidden_layers
UpperCAmelCase__ : str = num_attention_heads
UpperCAmelCase__ : int = intermediate_size
UpperCAmelCase__ : int = hidden_act
UpperCAmelCase__ : List[str] = hidden_dropout_prob
UpperCAmelCase__ : List[str] = attention_probs_dropout_prob
UpperCAmelCase__ : Any = initializer_range
UpperCAmelCase__ : Any = type_vocab_size
UpperCAmelCase__ : Dict = layer_norm_eps
UpperCAmelCase__ : Tuple = position_embedding_type
UpperCAmelCase__ : List[str] = block_per_row
UpperCAmelCase__ : Optional[Any] = approx_mode
UpperCAmelCase__ : Any = initial_prior_first_n_blocks
UpperCAmelCase__ : List[Any] = initial_prior_diagonal_n_blocks
| 438 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCamelCase__ : Any = {
"""configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""],
"""tokenization_xlm""": ["""XLMTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Any = [
"""XLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLMForMultipleChoice""",
"""XLMForQuestionAnswering""",
"""XLMForQuestionAnsweringSimple""",
"""XLMForSequenceClassification""",
"""XLMForTokenClassification""",
"""XLMModel""",
"""XLMPreTrainedModel""",
"""XLMWithLMHeadModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : int = [
"""TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLMForMultipleChoice""",
"""TFXLMForQuestionAnsweringSimple""",
"""TFXLMForSequenceClassification""",
"""TFXLMForTokenClassification""",
"""TFXLMMainLayer""",
"""TFXLMModel""",
"""TFXLMPreTrainedModel""",
"""TFXLMWithLMHeadModel""",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
lowerCamelCase__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 495 |
import sys
lowerCamelCase__ : List[Any] = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def UpperCamelCase ( lowercase_ = N ) -> int:
'''simple docstring'''
lowercase__ : int = -sys.maxsize - 1
for i in range(len(lowercase_ ) - 12 ):
lowercase__ : Optional[int] = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
lowercase__ : int = product
return largest_product
if __name__ == "__main__":
print(f'''{solution() = }''')
| 495 | 1 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 251 | '''simple docstring'''
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_tf_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_tf_available():
import tensorflow as tf
_lowerCAmelCase :str = logging.get_logger(__name__)
@dataclass
class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case__ : List[str] = [
"no_inference",
"no_cuda",
"no_tpu",
"no_speed",
"no_memory",
"no_env_print",
"no_multi_process",
]
def __init__( self , **lowercase__ ) -> Dict:
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
SCREAMING_SNAKE_CASE : Tuple = deprecated_arg[3:]
SCREAMING_SNAKE_CASE : Optional[int] = not kwargs.pop(lowercase__ )
logger.warning(
F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or"""
F""" {positive_arg}={kwargs[positive_arg]}""" )
SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('tpu_name' , self.tpu_name )
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('device_idx' , self.device_idx )
SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('eager_mode' , self.eager_mode )
SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('use_xla' , self.use_xla )
super().__init__(**lowercase__ )
snake_case__ : str = field(
default=_SCREAMING_SNAKE_CASE , metadata={"help": "Name of TPU"} , )
snake_case__ : int = field(
default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , )
snake_case__ : bool = field(default=_SCREAMING_SNAKE_CASE , metadata={"help": "Benchmark models in eager model."} )
snake_case__ : bool = field(
default=_SCREAMING_SNAKE_CASE , metadata={
"help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`."
} , )
@cached_property
def _UpperCamelCase ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self , ['tf'] )
SCREAMING_SNAKE_CASE : List[Any] = None
if self.tpu:
try:
if self.tpu_name:
SCREAMING_SNAKE_CASE : Union[str, Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name )
else:
SCREAMING_SNAKE_CASE : str = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
SCREAMING_SNAKE_CASE : str = None
return tpu
@cached_property
def _UpperCamelCase ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self , ['tf'] )
if self.is_tpu:
tf.config.experimental_connect_to_cluster(self._setup_tpu )
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu )
SCREAMING_SNAKE_CASE : Optional[int] = tf.distribute.TPUStrategy(self._setup_tpu )
else:
# currently no multi gpu is allowed
if self.is_gpu:
# TODO: Currently only single GPU is supported
tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' )
SCREAMING_SNAKE_CASE : List[str] = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" )
else:
tf.config.set_visible_devices([] , 'GPU' ) # disable GPU
SCREAMING_SNAKE_CASE : Optional[int] = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" )
return strategy
@property
def _UpperCamelCase ( self ) -> bool:
requires_backends(self , ['tf'] )
return self._setup_tpu is not None
@property
def _UpperCamelCase ( self ) -> "tf.distribute.Strategy":
requires_backends(self , ['tf'] )
return self._setup_strategy
@property
def _UpperCamelCase ( self ) -> Optional[int]:
requires_backends(self , ['tf'] )
return tf.config.list_physical_devices('GPU' )
@property
def _UpperCamelCase ( self ) -> int:
requires_backends(self , ['tf'] )
if self.cuda:
return len(self.gpu_list )
return 0
@property
def _UpperCamelCase ( self ) -> bool:
return self.n_gpu > 0
| 251 | 1 |
'''simple docstring'''
def snake_case ( snake_case : str ) -> list:
"""simple docstring"""
return [
txt[:a] + txt[a].upper() + txt[a + 1 :]
for a in range(len(snake_case ) )
if txt[a].isalpha()
]
if __name__ == "__main__":
__import__("doctest").testmod()
| 514 |
'''simple docstring'''
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def snake_case ( snake_case : List[str] , snake_case : int="shi-labs/oneformer_demo" ) -> Any:
"""simple docstring"""
with open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) as f:
lowerCAmelCase = json.load(snake_case )
lowerCAmelCase = {}
lowerCAmelCase = []
lowerCAmelCase = []
for key, info in class_info.items():
lowerCAmelCase = info['name']
class_names.append(info['name'] )
if info["isthing"]:
thing_ids.append(int(snake_case ) )
lowerCAmelCase = thing_ids
lowerCAmelCase = class_names
return metadata
class _snake_case ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=4_00 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2_55 , _SCREAMING_SNAKE_CASE="shi-labs/oneformer_demo" , _SCREAMING_SNAKE_CASE="ade20k_panoptic.json" , _SCREAMING_SNAKE_CASE=10 , ):
'''simple docstring'''
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = num_channels
lowerCAmelCase = min_resolution
lowerCAmelCase = max_resolution
lowerCAmelCase = do_resize
lowerCAmelCase = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size
lowerCAmelCase = do_normalize
lowerCAmelCase = image_mean
lowerCAmelCase = image_std
lowerCAmelCase = class_info_file
lowerCAmelCase = prepare_metadata(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
lowerCAmelCase = num_text
lowerCAmelCase = repo_path
# for the post_process_functions
lowerCAmelCase = 2
lowerCAmelCase = 10
lowerCAmelCase = 10
lowerCAmelCase = 3
lowerCAmelCase = 4
lowerCAmelCase = num_labels
lowerCAmelCase = do_reduce_labels
lowerCAmelCase = ignore_index
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
if not batched:
lowerCAmelCase = image_inputs[0]
if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ):
lowerCAmelCase , lowerCAmelCase = image.size
else:
lowerCAmelCase , lowerCAmelCase = image.shape[1], image.shape[2]
if w < h:
lowerCAmelCase = int(self.size['shortest_edge'] * h / w )
lowerCAmelCase = self.size['shortest_edge']
elif w > h:
lowerCAmelCase = self.size['shortest_edge']
lowerCAmelCase = int(self.size['shortest_edge'] * w / h )
else:
lowerCAmelCase = self.size['shortest_edge']
lowerCAmelCase = self.size['shortest_edge']
else:
lowerCAmelCase = []
for image in image_inputs:
lowerCAmelCase , lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0]
lowerCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1]
return expected_height, expected_width
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class _snake_case ( a_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE : Tuple = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
SCREAMING_SNAKE_CASE : str = image_processing_class
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = OneFormerImageProcessorTester(self )
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self.image_processing_tester.prepare_image_processor_dict()
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'ignore_index' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'class_info_file' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'num_text' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'repo_path' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'metadata' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_reduce_labels' ) )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
pass
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
lowerCAmelCase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
lowerCAmelCase , lowerCAmelCase = self.image_processing_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase , lowerCAmelCase = self.image_processing_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
lowerCAmelCase = image_processor(
_SCREAMING_SNAKE_CASE , ['semantic'] * len(_SCREAMING_SNAKE_CASE ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
lowerCAmelCase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
lowerCAmelCase , lowerCAmelCase = self.image_processing_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase , lowerCAmelCase = self.image_processing_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
lowerCAmelCase = image_processor(
_SCREAMING_SNAKE_CASE , ['semantic'] * len(_SCREAMING_SNAKE_CASE ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
lowerCAmelCase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
lowerCAmelCase , lowerCAmelCase = self.image_processing_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase , lowerCAmelCase = self.image_processing_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
lowerCAmelCase = image_processor(
_SCREAMING_SNAKE_CASE , ['semantic'] * len(_SCREAMING_SNAKE_CASE ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="np" ):
'''simple docstring'''
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
lowerCAmelCase = self.image_processing_tester.num_labels
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
if with_segmentation_maps:
lowerCAmelCase = num_labels
if is_instance_map:
lowerCAmelCase = list(range(_SCREAMING_SNAKE_CASE ) ) * 2
lowerCAmelCase = dict(enumerate(_SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
lowerCAmelCase = [Image.fromarray(_SCREAMING_SNAKE_CASE ) for annotation in annotations]
lowerCAmelCase = image_processor(
_SCREAMING_SNAKE_CASE , ['semantic'] * len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , return_tensors='pt' , instance_id_to_semantic_id=_SCREAMING_SNAKE_CASE , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE , )
return inputs
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
pass
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
def common(_SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None ):
lowerCAmelCase = self.comm_get_image_processor_inputs(
with_segmentation_maps=_SCREAMING_SNAKE_CASE , is_instance_map=_SCREAMING_SNAKE_CASE , segmentation_type=_SCREAMING_SNAKE_CASE )
lowerCAmelCase = inputs['mask_labels']
lowerCAmelCase = inputs['class_labels']
lowerCAmelCase = inputs['pixel_values']
lowerCAmelCase = inputs['text_inputs']
# check the batch_size
for mask_label, class_label, text_input in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=_SCREAMING_SNAKE_CASE )
common(is_instance_map=_SCREAMING_SNAKE_CASE , segmentation_type='pil' )
common(is_instance_map=_SCREAMING_SNAKE_CASE , segmentation_type='pil' )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = np.zeros((20, 50) )
lowerCAmelCase = 1
lowerCAmelCase = 1
lowerCAmelCase = 1
lowerCAmelCase = binary_mask_to_rle(_SCREAMING_SNAKE_CASE )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 4 )
self.assertEqual(rle[0] , 21 )
self.assertEqual(rle[1] , 45 )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(_SCREAMING_SNAKE_CASE )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(_SCREAMING_SNAKE_CASE , target_sizes=_SCREAMING_SNAKE_CASE )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
lowerCAmelCase = image_processor.post_process_instance_segmentation(_SCREAMING_SNAKE_CASE , threshold=0 )
self.assertTrue(len(_SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('segmentation' in el )
self.assertTrue('segments_info' in el )
self.assertEqual(type(el['segments_info'] ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(
el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
lowerCAmelCase = image_processor.post_process_panoptic_segmentation(_SCREAMING_SNAKE_CASE , threshold=0 )
self.assertTrue(len(_SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('segmentation' in el )
self.assertTrue('segments_info' in el )
self.assertEqual(type(el['segments_info'] ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(
el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
| 514 | 1 |
"""simple docstring"""
from __future__ import annotations
class _UpperCAmelCase :
'''simple docstring'''
def __init__( self , A=None ) -> List[str]:
_UpperCAmelCase : Tuple = data
_UpperCAmelCase : Union[str, Any] = None
def __repr__( self ) -> List[str]:
_UpperCAmelCase : Optional[int] = []
_UpperCAmelCase : str = self
while temp:
string_rep.append(f'{temp.data}' )
_UpperCAmelCase : Dict = temp.next
return "->".join(A )
def lowerCamelCase_ (UpperCamelCase__ : list ):
if not elements_list:
raise Exception('''The Elements List is empty''' )
_UpperCAmelCase : Union[str, Any] = Node(elements_list[0] )
for i in range(1 , len(UpperCamelCase__ ) ):
_UpperCAmelCase : Tuple = Node(elements_list[i] )
_UpperCAmelCase : Optional[int] = current.next
return head
def lowerCamelCase_ (UpperCamelCase__ : Node ):
if head_node is not None and isinstance(UpperCamelCase__ , UpperCamelCase__ ):
print_reverse(head_node.next )
print(head_node.data )
def lowerCamelCase_ ():
from doctest import testmod
testmod()
_UpperCAmelCase : str = make_linked_list([14, 52, 14, 12, 43] )
print('''Linked List:''' )
print(UpperCamelCase__ )
print('''Elements in Reverse:''' )
print_reverse(UpperCamelCase__ )
if __name__ == "__main__":
main()
| 506 |
"""simple docstring"""
def lowerCamelCase_ (UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 7 , UpperCamelCase__ : int = 100_0000 ):
_UpperCAmelCase : List[Any] = 0
_UpperCAmelCase : Optional[int] = 1
for current_denominator in range(1 , limit + 1 ):
_UpperCAmelCase : Union[str, Any] = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
_UpperCAmelCase : List[Any] = current_numerator
_UpperCAmelCase : Any = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1_000_000))
| 506 | 1 |
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class __snake_case ( UpperCamelCase_ ):
"""simple docstring"""
UpperCamelCase_ = 'EncodecFeatureExtractor'
UpperCamelCase_ = ('T5Tokenizer', 'T5TokenizerFast')
def __init__( self : int ,lowerCAmelCase__ : str ,lowerCAmelCase__ : str ) -> List[Any]:
'''simple docstring'''
super().__init__(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCAmelCase_ : Any = self.feature_extractor
lowerCAmelCase_ : Any = False
def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : List[str]=True ) -> Tuple:
'''simple docstring'''
return self.tokenizer.get_decoder_prompt_ids(task=lowerCAmelCase__ ,language=lowerCAmelCase__ ,no_timestamps=lowerCAmelCase__ )
def __call__( self : Optional[Any] ,*lowerCAmelCase__ : int ,**lowerCAmelCase__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*lowerCAmelCase__ ,**lowerCAmelCase__ )
lowerCAmelCase_ : str = kwargs.pop("audio" ,lowerCAmelCase__ )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("sampling_rate" ,lowerCAmelCase__ )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("text" ,lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > 0:
lowerCAmelCase_ : Union[str, Any] = args[0]
lowerCAmelCase_ : Optional[int] = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process." )
if text is not None:
lowerCAmelCase_ : List[Any] = self.tokenizer(lowerCAmelCase__ ,**lowerCAmelCase__ )
if audio is not None:
lowerCAmelCase_ : List[str] = self.feature_extractor(lowerCAmelCase__ ,*lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,**lowerCAmelCase__ )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
lowerCAmelCase_ : List[Any] = audio_inputs['''input_values''']
if "padding_mask" in audio_inputs:
lowerCAmelCase_ : Optional[int] = audio_inputs['''padding_mask''']
return inputs
def UpperCAmelCase_ ( self : Any ,*lowerCAmelCase__ : Tuple ,**lowerCAmelCase__ : Any ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : int = kwargs.pop("audio" ,lowerCAmelCase__ )
lowerCAmelCase_ : int = kwargs.pop("padding_mask" ,lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > 0:
lowerCAmelCase_ : Optional[int] = args[0]
lowerCAmelCase_ : Dict = args[1:]
if audio_values is not None:
return self._decode_audio(lowerCAmelCase__ ,padding_mask=lowerCAmelCase__ )
else:
return self.tokenizer.batch_decode(*lowerCAmelCase__ ,**lowerCAmelCase__ )
def UpperCAmelCase_ ( self : Optional[Any] ,*lowerCAmelCase__ : str ,**lowerCAmelCase__ : Any ) -> List[Any]:
'''simple docstring'''
return self.tokenizer.decode(*lowerCAmelCase__ ,**lowerCAmelCase__ )
def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : List[Any] = None ) -> List[np.ndarray]:
'''simple docstring'''
lowerCAmelCase_ : Dict = to_numpy(lowerCAmelCase__ )
lowerCAmelCase_ : List[Any] = audio_values.shape
if padding_mask is None:
return list(lowerCAmelCase__ )
lowerCAmelCase_ : Optional[Any] = to_numpy(lowerCAmelCase__ )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
lowerCAmelCase_ : Union[str, Any] = seq_len - padding_mask.shape[-1]
lowerCAmelCase_ : List[str] = 1 - self.feature_extractor.padding_value
lowerCAmelCase_ : str = np.pad(lowerCAmelCase__ ,((0, 0), (0, difference)) ,"constant" ,constant_values=lowerCAmelCase__ )
lowerCAmelCase_ : int = audio_values.tolist()
for i in range(lowerCAmelCase__ ):
lowerCAmelCase_ : Optional[Any] = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
lowerCAmelCase_ : int = sliced_audio.reshape(lowerCAmelCase__ ,-1 )
return audio_values
| 719 |
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
_lowercase = logging.get_logger(__name__)
class __snake_case ( snake_case__ ):
"""simple docstring"""
UpperCamelCase_ = ['input_features', 'is_longer']
def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]:
'''simple docstring'''
super().__init__(
feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,)
lowerCAmelCase_ : Optional[Any] = top_db
lowerCAmelCase_ : str = truncation
lowerCAmelCase_ : Tuple = padding
lowerCAmelCase_ : str = fft_window_size
lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1
lowerCAmelCase_ : Dict = hop_length
lowerCAmelCase_ : Any = max_length_s
lowerCAmelCase_ : int = max_length_s * sampling_rate
lowerCAmelCase_ : Optional[int] = sampling_rate
lowerCAmelCase_ : int = frequency_min
lowerCAmelCase_ : Optional[Any] = frequency_max
lowerCAmelCase_ : List[Any] = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,)
lowerCAmelCase_ : List[Any] = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,)
def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ )
lowerCAmelCase_ : Optional[int] = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = spectrogram(
lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,)
return log_mel_spectrogram.T
def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
lowerCAmelCase_ : List[Any] = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
lowerCAmelCase_ : List[Any] = [0]
# randomly choose index for each part
lowerCAmelCase_ : str = np.random.choice(ranges[0] )
lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] )
lowerCAmelCase_ : Any = np.random.choice(ranges[2] )
lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :]
lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :]
lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :]
lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] )
lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate(
lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ )
lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy()
lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 )
return mel_fusion
def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array:
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
lowerCAmelCase_ : List[Any] = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length
lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 )
lowerCAmelCase_ : Dict = waveform[idx : idx + max_length]
lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters )
lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
lowerCAmelCase_ : List[str] = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 )
lowerCAmelCase_ : int = False
else:
lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCAmelCase_ : Any = True
else:
raise NotImplementedError(f'''data_truncating {truncation} not implemented''' )
else:
lowerCAmelCase_ : Dict = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) )
lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) )
lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) )
lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 )
if truncation == "fusion":
lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters )
lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 )
else:
lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature:
'''simple docstring'''
lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation
lowerCAmelCase_ : List[Any] = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' )
lowerCAmelCase_ : Dict = is_batched_numpy or (
isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) ))
)
if is_batched:
lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ):
lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa )
elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCAmelCase_ : Any = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )]
# convert to mel spectrogram, truncate and pad if needed.
lowerCAmelCase_ : Optional[Any] = [
self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ )
for waveform in raw_speech
]
lowerCAmelCase_ : str = []
lowerCAmelCase_ : str = []
for mel, longer in padded_inputs:
input_mel.append(lowerCAmelCase__ )
is_longer.append(lowerCAmelCase__ )
if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) )
lowerCAmelCase_ : Dict = True
if isinstance(input_mel[0] ,lowerCAmelCase__ ):
lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer]
lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer}
lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ )
if return_tensors is not None:
lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ )
return input_features
| 683 | 0 |
def A__ ( lowercase: int, lowercase: int ) -> int:
return int((input_a, input_a).count(0 ) != 0 )
def A__ ( ) -> None:
assert nand_gate(0, 0 ) == 1
assert nand_gate(0, 1 ) == 1
assert nand_gate(1, 0 ) == 1
assert nand_gate(1, 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 305 | from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[int]:
A : Optional[int] =parent
A : Dict =13
A : List[str] =7
A : Any =True
A : str =True
A : Optional[int] =True
A : Union[str, Any] =99
A : List[Any] =32
A : Optional[Any] =2
A : int =4
A : List[Any] =37
A : Any ='gelu'
A : Optional[Any] =0.1
A : Optional[Any] =0.1
A : List[Any] =5_12
A : Optional[Any] =16
A : Optional[Any] =2
A : Dict =0.0_2
A : Dict =3
A : Union[str, Any] =4
A : int =None
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any:
A : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : List[Any] =None
if self.use_input_mask:
A : List[str] =random_attention_mask([self.batch_size, self.seq_length] )
A : List[str] =None
A : Tuple =None
A : List[str] =None
if self.use_labels:
A : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A : List[str] =ids_tensor([self.batch_size] , self.num_choices )
A : str =EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[int]:
(
(
A
) , (
A
) , (
A
) , (
A
) , (
A
) , (
A
) ,
) : Any =self.prepare_config_and_inputs()
A : Dict =True
A : Optional[Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A : Any =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple:
A : List[Any] =TFEsmModel(config=SCREAMING_SNAKE_CASE__ )
A : str ={'input_ids': input_ids, 'attention_mask': input_mask}
A : str =model(SCREAMING_SNAKE_CASE__ )
A : Any =[input_ids, input_mask]
A : Optional[Any] =model(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =model(SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Optional[int]:
A : List[Any] =True
A : List[Any] =TFEsmModel(config=SCREAMING_SNAKE_CASE__ )
A : Dict ={
'input_ids': input_ids,
'attention_mask': input_mask,
'encoder_hidden_states': encoder_hidden_states,
'encoder_attention_mask': encoder_attention_mask,
}
A : Union[str, Any] =model(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =[input_ids, input_mask]
A : Dict =model(SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ )
# Also check the case where encoder outputs are not passed
A : Optional[Any] =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]:
A : Any =TFEsmForMaskedLM(config=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
A : Optional[int] =self.num_labels
A : List[str] =TFEsmForTokenClassification(config=SCREAMING_SNAKE_CASE__ )
A : Optional[int] ={'input_ids': input_ids, 'attention_mask': input_mask}
A : Optional[int] =model(SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
A : Optional[Any] =self.prepare_config_and_inputs()
(
(
A
) , (
A
) , (
A
) , (
A
) , (
A
) , (
A
) ,
) : List[str] =config_and_inputs
A : str ={'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Dict = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase : Tuple = (
{
"feature-extraction": TFEsmModel,
"fill-mask": TFEsmForMaskedLM,
"text-classification": TFEsmForSequenceClassification,
"token-classification": TFEsmForTokenClassification,
"zero-shot": TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
lowercase : str = False
lowercase : Optional[Any] = False
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[Any]:
A : Any =TFEsmModelTester(self )
A : Any =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[int]:
A : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]:
A : Optional[int] =self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]:
A : Optional[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> int:
A : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : Optional[Any] =TFEsmModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
@unittest.skip('Protein models do not support embedding resizing.' )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Union[str, Any]:
pass
@unittest.skip('Protein models do not support embedding resizing.' )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
pass
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[int]:
A , A : str =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Union[str, Any] =model_class(SCREAMING_SNAKE_CASE__ )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
A : Any =model.get_bias()
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
for k, v in name.items():
assert isinstance(SCREAMING_SNAKE_CASE__ , tf.Variable )
else:
A : List[Any] =model.get_output_embeddings()
assert x is None
A : Optional[Any] =model.get_bias()
assert name is None
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[int]:
A : Optional[Any] =TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
A : Any =tf.constant([[0, 1, 2, 3, 4, 5]] )
A : Dict =model(SCREAMING_SNAKE_CASE__ )[0]
A : str =[1, 6, 33]
self.assertEqual(list(output.numpy().shape ) , SCREAMING_SNAKE_CASE__ )
# compare the actual values for a slice.
A : Dict =tf.constant(
[
[
[8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7],
[-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5],
[-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[Any]:
A : Optional[int] =TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
A : Union[str, Any] =tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
A : str =model(SCREAMING_SNAKE_CASE__ )[0]
# compare the actual values for a slice.
A : str =tf.constant(
[
[
[0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9],
[0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2],
[0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 305 | 1 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : str ) -> str:
return "".join(chr(ord(__lowerCAmelCase ) - 32 ) if """a""" <= char <= """z""" else char for char in word )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 517 |
'''simple docstring'''
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class _lowerCAmelCase ( ctypes.Structure ):
"""simple docstring"""
snake_case_ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)]
def __lowerCamelCase ( ) -> Optional[int]:
if os.name == "nt":
snake_case = CursorInfo()
snake_case = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(__lowerCAmelCase , ctypes.byref(__lowerCAmelCase ) )
snake_case = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(__lowerCAmelCase , ctypes.byref(__lowerCAmelCase ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25l""" )
sys.stdout.flush()
def __lowerCamelCase ( ) -> Tuple:
if os.name == "nt":
snake_case = CursorInfo()
snake_case = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(__lowerCAmelCase , ctypes.byref(__lowerCAmelCase ) )
snake_case = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(__lowerCAmelCase , ctypes.byref(__lowerCAmelCase ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25h""" )
sys.stdout.flush()
@contextmanager
def __lowerCamelCase ( ) -> Optional[Any]:
try:
hide_cursor()
yield
finally:
show_cursor()
| 517 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
'''google/realm-cc-news-pretrained-embedder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'''
),
'''google/realm-cc-news-pretrained-encoder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'''
),
'''google/realm-cc-news-pretrained-scorer''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'''
),
'''google/realm-cc-news-pretrained-openqa''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'''
),
'''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''',
'''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''',
'''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''',
'''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class snake_case_ ( _UpperCAmelCase ):
"""simple docstring"""
snake_case__ = """realm"""
def __init__(self: Dict , __UpperCAmelCase: Dict=30522 , __UpperCAmelCase: Optional[int]=768 , __UpperCAmelCase: List[str]=128 , __UpperCAmelCase: List[str]=12 , __UpperCAmelCase: int=12 , __UpperCAmelCase: Any=8 , __UpperCAmelCase: List[Any]=3072 , __UpperCAmelCase: Union[str, Any]="gelu_new" , __UpperCAmelCase: List[Any]=0.1 , __UpperCAmelCase: Optional[Any]=0.1 , __UpperCAmelCase: List[str]=512 , __UpperCAmelCase: List[str]=2 , __UpperCAmelCase: Dict=0.02 , __UpperCAmelCase: int=1E-12 , __UpperCAmelCase: List[Any]=256 , __UpperCAmelCase: Dict=10 , __UpperCAmelCase: Dict=1E-3 , __UpperCAmelCase: Optional[Any]=5 , __UpperCAmelCase: List[Any]=320 , __UpperCAmelCase: int=13353718 , __UpperCAmelCase: List[Any]=5000 , __UpperCAmelCase: str=1 , __UpperCAmelCase: Dict=0 , __UpperCAmelCase: int=2 , **__UpperCAmelCase: Any , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
# Common config
__a : str = vocab_size
__a : Tuple = max_position_embeddings
__a : Dict = hidden_size
__a : Optional[Any] = retriever_proj_size
__a : int = num_hidden_layers
__a : List[Any] = num_attention_heads
__a : Union[str, Any] = num_candidates
__a : str = intermediate_size
__a : Optional[Any] = hidden_act
__a : str = hidden_dropout_prob
__a : Dict = attention_probs_dropout_prob
__a : Any = initializer_range
__a : Optional[int] = type_vocab_size
__a : List[str] = layer_norm_eps
# Reader config
__a : int = span_hidden_size
__a : Tuple = max_span_width
__a : Dict = reader_layer_norm_eps
__a : List[Any] = reader_beam_size
__a : str = reader_seq_len
# Retrieval config
__a : Dict = num_block_records
__a : Any = searcher_beam_size
| 351 |
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __lowercase :
def __init__( self , A_ , A_=13 , A_=[30, 30] , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=8 , A_=10 , ) ->Optional[Any]:
'''simple docstring'''
__lowerCAmelCase : Union[str, Any] = parent
__lowerCAmelCase : List[Any] = batch_size
__lowerCAmelCase : List[Any] = image_size
__lowerCAmelCase : Tuple = patch_size
__lowerCAmelCase : int = num_channels
__lowerCAmelCase : Tuple = is_training
__lowerCAmelCase : Optional[Any] = use_labels
__lowerCAmelCase : str = hidden_size
__lowerCAmelCase : Dict = num_hidden_layers
__lowerCAmelCase : Optional[Any] = num_attention_heads
__lowerCAmelCase : Optional[int] = intermediate_size
__lowerCAmelCase : int = hidden_act
__lowerCAmelCase : Dict = hidden_dropout_prob
__lowerCAmelCase : Any = attention_probs_dropout_prob
__lowerCAmelCase : Optional[Any] = type_sequence_label_size
__lowerCAmelCase : Optional[Any] = initializer_range
__lowerCAmelCase : List[Any] = num_labels
__lowerCAmelCase : str = scope
__lowerCAmelCase : Union[str, Any] = n_targets
__lowerCAmelCase : Tuple = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
__lowerCAmelCase : Union[str, Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size)
__lowerCAmelCase : List[Any] = num_patches + 1 + self.num_detection_tokens
def UpperCamelCase__ ( self ) ->Any:
'''simple docstring'''
__lowerCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] )
__lowerCAmelCase : str = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
__lowerCAmelCase : Union[str, Any] = []
for i in range(self.batch_size ):
__lowerCAmelCase : int = {}
__lowerCAmelCase : Union[str, Any] = torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=A_ )
__lowerCAmelCase : List[Any] = torch.rand(self.n_targets , 4 , device=A_ )
labels.append(A_ )
__lowerCAmelCase : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ ( self ) ->Any:
'''simple docstring'''
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->Dict:
'''simple docstring'''
__lowerCAmelCase : Dict = YolosModel(config=A_ )
model.to(A_ )
model.eval()
__lowerCAmelCase : Tuple = model(A_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) )
def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->List[str]:
'''simple docstring'''
__lowerCAmelCase : int = YolosForObjectDetection(A_ )
model.to(A_ )
model.eval()
__lowerCAmelCase : List[str] = model(pixel_values=A_ )
__lowerCAmelCase : List[Any] = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
__lowerCAmelCase : str = model(pixel_values=A_ , labels=A_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
def UpperCamelCase__ ( self ) ->Optional[int]:
'''simple docstring'''
__lowerCAmelCase : str = self.prepare_config_and_inputs()
__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Optional[int] = config_and_inputs
__lowerCAmelCase : Dict = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __lowercase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
_UpperCamelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
_UpperCamelCase = (
{"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {}
)
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase__ ( self , A_ , A_ , A_=False ) ->List[Any]:
'''simple docstring'''
__lowerCAmelCase : Any = super()._prepare_for_class(A_ , A_ , return_labels=A_ )
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
__lowerCAmelCase : Union[str, Any] = []
for i in range(self.model_tester.batch_size ):
__lowerCAmelCase : List[str] = {}
__lowerCAmelCase : Optional[int] = torch.ones(
size=(self.model_tester.n_targets,) , device=A_ , dtype=torch.long )
__lowerCAmelCase : str = torch.ones(
self.model_tester.n_targets , 4 , device=A_ , dtype=torch.float )
labels.append(A_ )
__lowerCAmelCase : Union[str, Any] = labels
return inputs_dict
def UpperCamelCase__ ( self ) ->List[Any]:
'''simple docstring'''
__lowerCAmelCase : Tuple = YolosModelTester(self )
__lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 )
def UpperCamelCase__ ( self ) ->Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ) ->Optional[int]:
'''simple docstring'''
pass
def UpperCamelCase__ ( self ) ->Union[str, Any]:
'''simple docstring'''
__lowerCAmelCase, __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase : List[str] = model_class(A_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowerCAmelCase : int = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A_ , nn.Linear ) )
def UpperCamelCase__ ( self ) ->Optional[Any]:
'''simple docstring'''
__lowerCAmelCase, __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase : Optional[int] = model_class(A_ )
__lowerCAmelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCAmelCase : Dict = [*signature.parameters.keys()]
__lowerCAmelCase : Optional[int] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , A_ )
def UpperCamelCase__ ( self ) ->Tuple:
'''simple docstring'''
__lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def UpperCamelCase__ ( self ) ->Any:
'''simple docstring'''
__lowerCAmelCase, __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCAmelCase : List[Any] = True
# in YOLOS, the seq_len is different
__lowerCAmelCase : Dict = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
__lowerCAmelCase : str = True
__lowerCAmelCase : List[str] = False
__lowerCAmelCase : List[str] = True
__lowerCAmelCase : Dict = model_class(A_ )
model.to(A_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase : str = model(**self._prepare_for_class(A_ , A_ ) )
__lowerCAmelCase : Dict = outputs.attentions
self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__lowerCAmelCase : str = True
__lowerCAmelCase : Tuple = model_class(A_ )
model.to(A_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(A_ , A_ ) )
__lowerCAmelCase : Any = outputs.attentions
self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
__lowerCAmelCase : List[str] = len(A_ )
# Check attention is always last and order is fine
__lowerCAmelCase : str = True
__lowerCAmelCase : Tuple = True
__lowerCAmelCase : Dict = model_class(A_ )
model.to(A_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase : str = model(**self._prepare_for_class(A_ , A_ ) )
__lowerCAmelCase : Optional[int] = 1
self.assertEqual(out_len + added_hidden_states , len(A_ ) )
__lowerCAmelCase : Optional[int] = outputs.attentions
self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def UpperCamelCase__ ( self ) ->Optional[Any]:
'''simple docstring'''
def check_hidden_states_output(A_ , A_ , A_ ):
__lowerCAmelCase : Optional[Any] = model_class(A_ )
model.to(A_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(A_ , A_ ) )
__lowerCAmelCase : str = outputs.hidden_states
__lowerCAmelCase : List[Any] = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(A_ ) , A_ )
# YOLOS has a different seq_length
__lowerCAmelCase : List[str] = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__lowerCAmelCase, __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase : Tuple = True
check_hidden_states_output(A_ , A_ , A_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCAmelCase : Dict = True
check_hidden_states_output(A_ , A_ , A_ )
def UpperCamelCase__ ( self ) ->int:
'''simple docstring'''
__lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*A_ )
@slow
def UpperCamelCase__ ( self ) ->Optional[Any]:
'''simple docstring'''
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase : Union[str, Any] = YolosModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
def _lowercase ( ):
__lowerCAmelCase : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __lowercase (unittest.TestCase ):
@cached_property
def UpperCamelCase__ ( self ) ->str:
'''simple docstring'''
return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None
@slow
def UpperCamelCase__ ( self ) ->List[str]:
'''simple docstring'''
__lowerCAmelCase : Optional[Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(A_ )
__lowerCAmelCase : Optional[Any] = self.default_image_processor
__lowerCAmelCase : Optional[Any] = prepare_img()
__lowerCAmelCase : Optional[Any] = image_processor(images=A_ , return_tensors='''pt''' ).to(A_ )
# forward pass
with torch.no_grad():
__lowerCAmelCase : str = model(inputs.pixel_values )
# verify outputs
__lowerCAmelCase : Optional[Any] = torch.Size((1, 100, 92) )
self.assertEqual(outputs.logits.shape , A_ )
__lowerCAmelCase : Tuple = torch.tensor(
[[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=A_ , )
__lowerCAmelCase : Optional[int] = torch.tensor(
[[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=A_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , A_ , atol=1e-4 ) )
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , A_ , atol=1e-4 ) )
# verify postprocessing
__lowerCAmelCase : Optional[Any] = image_processor.post_process_object_detection(
A_ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0]
__lowerCAmelCase : Tuple = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(A_ )
__lowerCAmelCase : Any = [75, 75, 17, 63, 17]
__lowerCAmelCase : Tuple = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(A_ )
self.assertEqual(len(results['''scores'''] ) , 5 )
self.assertTrue(torch.allclose(results['''scores'''] , A_ , atol=1e-4 ) )
self.assertSequenceEqual(results['''labels'''].tolist() , A_ )
self.assertTrue(torch.allclose(results['''boxes'''][0, :] , A_ ) )
| 492 | 0 |
UpperCAmelCase__ : Any =[4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
UpperCAmelCase__ : Union[str, Any] =[3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
UpperCAmelCase__ : List[Any] ={
0: 'Sunday',
1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
}
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str:
assert len(str(__UpperCamelCase ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
lowerCamelCase =year // 1_00
lowerCamelCase =(5 * (century % 4) + 2) % 7
lowerCamelCase =year % 1_00
lowerCamelCase =centurian % 12
lowerCamelCase =(
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
lowerCamelCase =(
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0)
else DOOMSDAY_LEAP[month - 1]
)
lowerCamelCase =(dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 711 |
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
UpperCAmelCase__ : int =logging.get_logger(__name__)
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any:
lowerCamelCase =UniSpeechSatForSequenceClassification.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase )
lowerCamelCase =downstream_dict["""projector.weight"""]
lowerCamelCase =downstream_dict["""projector.bias"""]
lowerCamelCase =downstream_dict["""model.post_net.linear.weight"""]
lowerCamelCase =downstream_dict["""model.post_net.linear.bias"""]
return model
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int:
lowerCamelCase =UniSpeechSatForAudioFrameClassification.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase )
lowerCamelCase =downstream_dict["""model.linear.weight"""]
lowerCamelCase =downstream_dict["""model.linear.bias"""]
return model
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict:
lowerCamelCase =UniSpeechSatForXVector.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase )
lowerCamelCase =downstream_dict["""connector.weight"""]
lowerCamelCase =downstream_dict["""connector.bias"""]
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
lowerCamelCase =downstream_dict[
F"""model.framelevel_feature_extractor.module.{i}.kernel.weight"""
]
lowerCamelCase =downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""]
lowerCamelCase =downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""]
lowerCamelCase =downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""]
lowerCamelCase =downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""]
lowerCamelCase =downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""]
lowerCamelCase =downstream_dict["""objective.W"""]
return model
@torch.no_grad()
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str:
lowerCamelCase =torch.load(_UpperCAmelCase , map_location="""cpu""" )
lowerCamelCase =checkpoint["""Downstream"""]
lowerCamelCase =UniSpeechSatConfig.from_pretrained(_UpperCAmelCase )
lowerCamelCase =WavaVecaFeatureExtractor.from_pretrained(
_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , do_normalize=_UpperCAmelCase )
lowerCamelCase =hf_config.architectures[0]
if arch.endswith("""ForSequenceClassification""" ):
lowerCamelCase =convert_classification(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
elif arch.endswith("""ForAudioFrameClassification""" ):
lowerCamelCase =convert_diarization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
elif arch.endswith("""ForXVector""" ):
lowerCamelCase =convert_xvector(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
else:
raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" )
if hf_config.use_weighted_layer_sum:
lowerCamelCase =checkpoint["""Featurizer"""]["""weights"""]
hf_feature_extractor.save_pretrained(_UpperCAmelCase )
hf_model.save_pretrained(_UpperCAmelCase )
if __name__ == "__main__":
UpperCAmelCase__ : Dict =argparse.ArgumentParser()
parser.add_argument(
'''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.'''
)
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''')
parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''')
UpperCAmelCase__ : List[Any] =parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 269 | 0 |
def a_ (__A , __A , __A ) -> bool:
"""simple docstring"""
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(__A ) )
def a_ (__A , __A , __A , __A ) -> bool:
"""simple docstring"""
# Base Case
if index == len(__A ):
return True
# Recursive Step
for i in range(__A ):
if valid_coloring(graph[index] , __A , __A ):
# Color current vertex
__a : Optional[int] = i
# Validate coloring
if util_color(__A , __A , __A , index + 1 ):
return True
# Backtrack
__a : Dict = -1
return False
def a_ (__A , __A ) -> list[int]:
"""simple docstring"""
__a : Optional[Any] = [-1] * len(__A )
if util_color(__A , __A , __A , 0 ):
return colored_vertices
return []
| 351 |
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class snake_case_ ( __UpperCamelCase ):
"""simple docstring"""
@staticmethod
@abstractmethod
def UpperCAmelCase__ (__UpperCAmelCase: ArgumentParser ) -> Tuple:
'''simple docstring'''
raise NotImplementedError()
@abstractmethod
def UpperCAmelCase__ (self: List[str] ) -> List[str]:
'''simple docstring'''
raise NotImplementedError()
| 351 | 1 |
'''simple docstring'''
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def _UpperCAmelCase ( a : List[str] ) -> str:
"""simple docstring"""
lowercase_ : List[Any] = []
for line in lines:
lowercase_ : Tuple = re.sub(R'#.*' , '' , __lowerCAmelCase ) # remove comments
if line:
filtered_lines.append(__lowerCAmelCase )
lowercase_ : Optional[int] = '\n'.join(__lowerCAmelCase )
# Make a hash from all this code
lowercase_ : str = full_str.encode('utf-8' )
return shaaaa(__lowerCAmelCase ).hexdigest()
# get importable module names and hash for caching
A: Optional[Any] = {
'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
A: List[str] = {
'.csv': ('csv', {}),
'.tsv': ('csv', {'sep': '\t'}),
'.json': ('json', {}),
'.jsonl': ('json', {}),
'.parquet': ('parquet', {}),
'.arrow': ('arrow', {}),
'.txt': ('text', {}),
}
_EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
A: Dict = {'imagefolder', 'audiofolder'}
# Used to filter data files based on extensions given a module name
A: Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append(".zip")
_MODULE_TO_EXTENSIONS["audiofolder"].append(".zip")
| 708 |
'''simple docstring'''
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class __magic_name__ ( UpperCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs
def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]:
super().__init__(self , **_lowercase )
lowercase_ : int = repo_info
lowercase_ : List[Any] = token
lowercase_ : Union[str, Any] = None
def lowerCamelCase__ ( self ) -> Optional[Any]:
if self.dir_cache is None:
lowercase_ : Optional[Any] = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
lowercase_ : str = {
'name': hf_file.rfilename,
'size': None,
'type': 'file',
}
self.dir_cache.update(
{
str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict:
if not isinstance(self.repo_info , _lowercase ):
raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" )
lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha )
return fsspec.open(
_lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open()
def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple:
self._get_dirs()
lowercase_ : str = self._strip_protocol(_lowercase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(_lowercase )
def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]:
self._get_dirs()
lowercase_ : List[str] = PurePosixPath(path.strip('/' ) )
lowercase_ : List[str] = {}
for p, f in self.dir_cache.items():
lowercase_ : Tuple = PurePosixPath(p.strip('/' ) )
lowercase_ : Optional[int] = p.parent
if root == path:
lowercase_ : List[str] = f
lowercase_ : List[str] = list(paths.values() )
if detail:
return out
else:
return sorted(f['name'] for f in out )
| 7 | 0 |
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Any = parent
lowercase__ : Optional[Any] = 13
lowercase__ : Any = 7
lowercase__ : Optional[Any] = 30
lowercase__ : int = self.seq_length + self.mem_len
lowercase__ : str = 15
lowercase__ : int = True
lowercase__ : Union[str, Any] = True
lowercase__ : Optional[Any] = 99
lowercase__ : Any = [10, 50, 80]
lowercase__ : str = 32
lowercase__ : Tuple = 32
lowercase__ : int = 4
lowercase__ : Tuple = 8
lowercase__ : Optional[int] = 1_28
lowercase__ : Any = 2
lowercase__ : Optional[int] = 2
lowercase__ : List[Any] = None
lowercase__ : Union[str, Any] = 1
lowercase__ : List[Any] = 0
lowercase__ : Union[str, Any] = 3
lowercase__ : Tuple = self.vocab_size - 1
lowercase__ : Union[str, Any] = 0.0_1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : List[str] = None
if self.use_labels:
lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : int = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def lowercase__ ( self):
'''simple docstring'''
random.seed(self.seed)
tf.random.set_seed(self.seed)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = TFTransfoXLModel(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : List[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a}
lowercase__ , lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = TFTransfoXLLMHeadModel(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : int = {"""input_ids""": input_ids_a, """labels""": lm_labels}
lowercase__ , lowercase__ : str = model(SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ , lowercase__ : Dict = model([input_ids_a, mems_a]).to_tuple()
lowercase__ : Tuple = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels}
lowercase__ , lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = TFTransfoXLForSequenceClassification(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.prepare_config_and_inputs()
((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : Any = config_and_inputs
lowercase__ : Any = {"""input_ids""": input_ids_a}
return config, inputs_dict
@require_tf
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : List[Any] = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
__lowerCAmelCase : Union[str, Any] = () if is_tf_available() else ()
__lowerCAmelCase : Optional[int] = (
{
'feature-extraction': TFTransfoXLModel,
'text-classification': TFTransfoXLForSequenceClassification,
'text-generation': TFTransfoXLLMHeadModel,
'zero-shot': TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
__lowerCAmelCase : Any = False
__lowerCAmelCase : Dict = False
__lowerCAmelCase : Union[str, Any] = False
__lowerCAmelCase : List[Any] = False
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = TFTransfoXLModelTester(self)
lowercase__ : int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , d_embed=37)
def lowercase__ ( self):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self):
'''simple docstring'''
self.model_tester.set_seed()
lowercase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.model_tester.set_seed()
lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : List[str] = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
lowercase__ : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_)
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer)
if model_class in list_other_models_with_output_ebd:
lowercase__ : Tuple = model.get_output_embeddings()
assert isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Layer)
lowercase__ : List[Any] = model.get_bias()
assert name is None
else:
lowercase__ : Union[str, Any] = model.get_output_embeddings()
assert x is None
lowercase__ : Optional[Any] = model.get_bias()
assert name is None
def lowercase__ ( self):
'''simple docstring'''
pass
@slow
def lowercase__ ( self):
'''simple docstring'''
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : Union[str, Any] = TFTransfoXLModel.from_pretrained(SCREAMING_SNAKE_CASE_)
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
@unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""")
def lowercase__ ( self):
'''simple docstring'''
pass
@require_tf
class _snake_case ( unittest.TestCase ):
@unittest.skip("""Skip test until #12651 is resolved.""")
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""")
# fmt: off
lowercase__ : int = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
lowercase__ : Optional[int] = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
lowercase__ : List[Any] = model.generate(SCREAMING_SNAKE_CASE_ , max_length=2_00 , do_sample=SCREAMING_SNAKE_CASE_)
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_)
| 12 |
def UpperCamelCase ( lowercase_ ) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
UpperCamelCase = 500_000
UpperCamelCase , UpperCamelCase = os.path.split(__file__)
UpperCamelCase = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json"))
@get_duration
def __magic_name__ ( SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Any:
_lowercase : List[str] = dataset.map(**SCREAMING_SNAKE_CASE )
@get_duration
def __magic_name__ ( SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]:
_lowercase : List[str] = dataset.filter(**SCREAMING_SNAKE_CASE )
def __magic_name__ ( ) -> int:
_lowercase : List[str] = {'num examples': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
_lowercase : int = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} )
_lowercase : Any = generate_example_dataset(
os.path.join(SCREAMING_SNAKE_CASE , 'dataset.arrow' ) , SCREAMING_SNAKE_CASE , num_examples=SCREAMING_SNAKE_CASE )
_lowercase : Optional[Any] = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=SCREAMING_SNAKE_CASE )
def tokenize(SCREAMING_SNAKE_CASE ):
return tokenizer(examples['text'] )
_lowercase : Union[str, Any] = map(SCREAMING_SNAKE_CASE )
_lowercase : int = map(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE )
_lowercase : str = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE )
with dataset.formatted_as(type='numpy' ):
_lowercase : Union[str, Any] = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE )
with dataset.formatted_as(type='pandas' ):
_lowercase : Union[str, Any] = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE )
with dataset.formatted_as(type='torch' , columns='numbers' ):
_lowercase : Optional[int] = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE )
with dataset.formatted_as(type='tensorflow' , columns='numbers' ):
_lowercase : Any = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE )
_lowercase : Optional[int] = map(SCREAMING_SNAKE_CASE , function=SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE )
_lowercase : Tuple = filter(SCREAMING_SNAKE_CASE )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(SCREAMING_SNAKE_CASE , 'wb' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE ).encode('utf-8' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 713 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {
"configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Swinv2ForImageClassification",
"Swinv2ForMaskedImageModeling",
"Swinv2Model",
"Swinv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
'''simple docstring'''
def A_ ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ) -> bool:
__SCREAMING_SNAKE_CASE : Any = len(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE : Tuple = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__SCREAMING_SNAKE_CASE : Optional[int] = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__SCREAMING_SNAKE_CASE : Dict = subset[i - 1][j]
if arr[i - 1] <= j:
__SCREAMING_SNAKE_CASE : Optional[Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 158 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
expand_dims,
flatten_dict,
is_flax_available,
is_tf_available,
is_torch_available,
reshape,
squeeze,
transpose,
)
if is_flax_available():
import jax.numpy as jnp
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def _snake_case ( self ) -> List[str]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Tuple = {
'''task_specific_params''': {
'''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_2_8, '''min_length''': 1_2, '''num_beams''': 4},
'''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_4_2, '''min_length''': 5_6, '''num_beams''': 4},
'''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 6_2, '''min_length''': 1_1, '''num_beams''': 6},
}
}
__SCREAMING_SNAKE_CASE : Optional[int] = {
'''task_specific_params.summarization.length_penalty''': 1.0,
'''task_specific_params.summarization.max_length''': 1_2_8,
'''task_specific_params.summarization.min_length''': 1_2,
'''task_specific_params.summarization.num_beams''': 4,
'''task_specific_params.summarization_cnn.length_penalty''': 2.0,
'''task_specific_params.summarization_cnn.max_length''': 1_4_2,
'''task_specific_params.summarization_cnn.min_length''': 5_6,
'''task_specific_params.summarization_cnn.num_beams''': 4,
'''task_specific_params.summarization_xsum.length_penalty''': 1.0,
'''task_specific_params.summarization_xsum.max_length''': 6_2,
'''task_specific_params.summarization_xsum.min_length''': 1_1,
'''task_specific_params.summarization_xsum.num_beams''': 6,
}
self.assertEqual(flatten_dict(lowercase ) , lowercase )
def _snake_case ( self ) -> Any:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Any = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(transpose(lowercase ) , x.transpose() ) )
__SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(transpose(lowercase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) )
@require_torch
def _snake_case ( self ) -> List[str]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 )
__SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(lowercase )
self.assertTrue(np.allclose(transpose(lowercase ) , transpose(lowercase ).numpy() ) )
__SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 , 5 )
__SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(lowercase )
self.assertTrue(np.allclose(transpose(lowercase , axes=(1, 2, 0) ) , transpose(lowercase , axes=(1, 2, 0) ).numpy() ) )
@require_tf
def _snake_case ( self ) -> Union[str, Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Any = np.random.randn(3 , 4 )
__SCREAMING_SNAKE_CASE : Any = tf.constant(lowercase )
self.assertTrue(np.allclose(transpose(lowercase ) , transpose(lowercase ).numpy() ) )
__SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 , 5 )
__SCREAMING_SNAKE_CASE : int = tf.constant(lowercase )
self.assertTrue(np.allclose(transpose(lowercase , axes=(1, 2, 0) ) , transpose(lowercase , axes=(1, 2, 0) ).numpy() ) )
@require_flax
def _snake_case ( self ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 )
__SCREAMING_SNAKE_CASE : List[Any] = jnp.array(lowercase )
self.assertTrue(np.allclose(transpose(lowercase ) , np.asarray(transpose(lowercase ) ) ) )
__SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 , 5 )
__SCREAMING_SNAKE_CASE : Optional[Any] = jnp.array(lowercase )
self.assertTrue(np.allclose(transpose(lowercase , axes=(1, 2, 0) ) , np.asarray(transpose(lowercase , axes=(1, 2, 0) ) ) ) )
def _snake_case ( self ) -> List[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(reshape(lowercase , (4, 3) ) , np.reshape(lowercase , (4, 3) ) ) )
__SCREAMING_SNAKE_CASE : Tuple = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(reshape(lowercase , (1_2, 5) ) , np.reshape(lowercase , (1_2, 5) ) ) )
@require_torch
def _snake_case ( self ) -> Tuple:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 )
__SCREAMING_SNAKE_CASE : Any = torch.tensor(lowercase )
self.assertTrue(np.allclose(reshape(lowercase , (4, 3) ) , reshape(lowercase , (4, 3) ).numpy() ) )
__SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 , 5 )
__SCREAMING_SNAKE_CASE : Dict = torch.tensor(lowercase )
self.assertTrue(np.allclose(reshape(lowercase , (1_2, 5) ) , reshape(lowercase , (1_2, 5) ).numpy() ) )
@require_tf
def _snake_case ( self ) -> Optional[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 )
__SCREAMING_SNAKE_CASE : List[Any] = tf.constant(lowercase )
self.assertTrue(np.allclose(reshape(lowercase , (4, 3) ) , reshape(lowercase , (4, 3) ).numpy() ) )
__SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 , 5 )
__SCREAMING_SNAKE_CASE : List[str] = tf.constant(lowercase )
self.assertTrue(np.allclose(reshape(lowercase , (1_2, 5) ) , reshape(lowercase , (1_2, 5) ).numpy() ) )
@require_flax
def _snake_case ( self ) -> List[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 )
__SCREAMING_SNAKE_CASE : str = jnp.array(lowercase )
self.assertTrue(np.allclose(reshape(lowercase , (4, 3) ) , np.asarray(reshape(lowercase , (4, 3) ) ) ) )
__SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 , 5 )
__SCREAMING_SNAKE_CASE : List[str] = jnp.array(lowercase )
self.assertTrue(np.allclose(reshape(lowercase , (1_2, 5) ) , np.asarray(reshape(lowercase , (1_2, 5) ) ) ) )
def _snake_case ( self ) -> Dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : str = np.random.randn(1 , 3 , 4 )
self.assertTrue(np.allclose(squeeze(lowercase ) , np.squeeze(lowercase ) ) )
__SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(1 , 4 , 1 , 5 )
self.assertTrue(np.allclose(squeeze(lowercase , axis=2 ) , np.squeeze(lowercase , axis=2 ) ) )
@require_torch
def _snake_case ( self ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(1 , 3 , 4 )
__SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(lowercase )
self.assertTrue(np.allclose(squeeze(lowercase ) , squeeze(lowercase ).numpy() ) )
__SCREAMING_SNAKE_CASE : str = np.random.randn(1 , 4 , 1 , 5 )
__SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(lowercase )
self.assertTrue(np.allclose(squeeze(lowercase , axis=2 ) , squeeze(lowercase , axis=2 ).numpy() ) )
@require_tf
def _snake_case ( self ) -> Tuple:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(1 , 3 , 4 )
__SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant(lowercase )
self.assertTrue(np.allclose(squeeze(lowercase ) , squeeze(lowercase ).numpy() ) )
__SCREAMING_SNAKE_CASE : List[str] = np.random.randn(1 , 4 , 1 , 5 )
__SCREAMING_SNAKE_CASE : Union[str, Any] = tf.constant(lowercase )
self.assertTrue(np.allclose(squeeze(lowercase , axis=2 ) , squeeze(lowercase , axis=2 ).numpy() ) )
@require_flax
def _snake_case ( self ) -> Dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(1 , 3 , 4 )
__SCREAMING_SNAKE_CASE : int = jnp.array(lowercase )
self.assertTrue(np.allclose(squeeze(lowercase ) , np.asarray(squeeze(lowercase ) ) ) )
__SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(1 , 4 , 1 , 5 )
__SCREAMING_SNAKE_CASE : Any = jnp.array(lowercase )
self.assertTrue(np.allclose(squeeze(lowercase , axis=2 ) , np.asarray(squeeze(lowercase , axis=2 ) ) ) )
def _snake_case ( self ) -> Union[str, Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(expand_dims(lowercase , axis=1 ) , np.expand_dims(lowercase , axis=1 ) ) )
@require_torch
def _snake_case ( self ) -> Union[str, Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 )
__SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(lowercase )
self.assertTrue(np.allclose(expand_dims(lowercase , axis=1 ) , expand_dims(lowercase , axis=1 ).numpy() ) )
@require_tf
def _snake_case ( self ) -> Optional[int]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Tuple = np.random.randn(3 , 4 )
__SCREAMING_SNAKE_CASE : Any = tf.constant(lowercase )
self.assertTrue(np.allclose(expand_dims(lowercase , axis=1 ) , expand_dims(lowercase , axis=1 ).numpy() ) )
@require_flax
def _snake_case ( self ) -> Tuple:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 )
__SCREAMING_SNAKE_CASE : Optional[Any] = jnp.array(lowercase )
self.assertTrue(np.allclose(expand_dims(lowercase , axis=1 ) , np.asarray(expand_dims(lowercase , axis=1 ) ) ) )
| 158 | 1 |
"""simple docstring"""
from math import sqrt
def _lowerCAmelCase ( _UpperCamelCase = 1_000_000 ):
"""simple docstring"""
_lowercase: int = 0
_lowercase: int = 0
_lowercase: int
while num_cuboids <= limit:
max_cuboid_size += 1
for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ):
if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer():
num_cuboids += (
min(_UpperCamelCase , sum_shortest_sides // 2 )
- max(1 , sum_shortest_sides - max_cuboid_size )
+ 1
)
return max_cuboid_size
if __name__ == "__main__":
print(f"""{solution() = }""")
| 712 |
"""simple docstring"""
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=0 ):
"""simple docstring"""
if name is None:
_lowercase: str = None
else:
_lowercase: Optional[Any] = '''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(50 - spaces ) + '''s}'''
_lowercase: Union[str, Any] = fmt.format(_UpperCamelCase )
# Print and recurse (if needed).
if isinstance(_UpperCamelCase , _UpperCamelCase ):
if msg is not None:
print(_UpperCamelCase )
for k in val.keys():
recursive_print(_UpperCamelCase , val[k] , spaces + 2 )
elif isinstance(_UpperCamelCase , torch.Tensor ):
print(_UpperCamelCase , ''':''' , val.size() )
else:
print(_UpperCamelCase , ''':''' , _UpperCamelCase )
def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
"""simple docstring"""
_lowercase: str = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
_lowercase: Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:]
_lowercase: Any = param.view(*_UpperCamelCase )
_lowercase: Optional[Any] = param.transpose(0 , 2 )
_lowercase: List[Any] = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
_lowercase: int = (num_heads, num_splits, hidden_size) + input_shape[1:]
_lowercase: Optional[Any] = param.view(*_UpperCamelCase )
_lowercase: Dict = param.transpose(0 , 1 ).contiguous()
_lowercase: Optional[Any] = param.view(*_UpperCamelCase )
return param
def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
"""simple docstring"""
_lowercase: List[Any] = {}
# old versions did not store training args
_lowercase: int = input_state_dict.get('''args''' , _UpperCamelCase )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
_lowercase: str = ds_args.padded_vocab_size
_lowercase: Dict = ds_args.max_position_embeddings
_lowercase: List[str] = ds_args.hidden_size
_lowercase: List[Any] = ds_args.num_layers
_lowercase: Optional[int] = ds_args.num_attention_heads
_lowercase: Any = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
_lowercase: Optional[int] = config.n_head
# The hidden_size per head.
_lowercase: Dict = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
_lowercase: List[str] = input_state_dict['''checkpoint_version''']
else:
_lowercase: List[Any] = 0.0
# The model.
_lowercase: Dict = input_state_dict['''model''']
# The language model.
_lowercase: str = model['''language_model''']
# The embeddings.
_lowercase: List[Any] = lm['''embedding''']
# The word embeddings.
_lowercase: Tuple = embeddings['''word_embeddings''']['''weight''']
# Truncate the embedding table to vocab_size rows.
_lowercase: Any = word_embeddings[: config.vocab_size, :]
_lowercase: Optional[Any] = word_embeddings
# The position embeddings.
_lowercase: Optional[Any] = embeddings['''position_embeddings''']['''weight''']
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
_lowercase: List[str] = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
_lowercase: Any = pos_embeddings
# The transformer.
_lowercase: Optional[Any] = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder''']
# The regex to extract layer names.
_lowercase: str = re.compile(R'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' )
# The simple map of names for "automated" rules.
_lowercase: Any = {
'''attention.dense''': '''.attn.c_proj.''',
'''self_attention.dense''': '''.attn.c_proj.''',
'''mlp.dense_h_to_4h''': '''.mlp.c_fc.''',
'''mlp.dense_4h_to_h''': '''.mlp.c_proj.''',
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
_lowercase: str = layer_re.match(_UpperCamelCase )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
_lowercase: Optional[Any] = int(m.group(1 ) )
# The name of the operation.
_lowercase: Tuple = m.group(2 )
# Is it a weight or a bias?
_lowercase: Any = m.group(3 )
# The name of the layer.
_lowercase: Dict = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith('''layernorm''' ):
_lowercase: Any = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2'''
_lowercase: Tuple = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
_lowercase: Any = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , _UpperCamelCase , _UpperCamelCase )
_lowercase: List[Any] = causal_mask
# Insert a "dummy" tensor for masked_bias.
_lowercase: Any = torch.tensor(-1e4 , dtype=torch.floataa )
_lowercase: Tuple = masked_bias
_lowercase: List[str] = fix_query_key_value_ordering(_UpperCamelCase , _UpperCamelCase , 3 , _UpperCamelCase , _UpperCamelCase )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
_lowercase: str = out_val.transpose(0 , 1 ).contiguous()
# Store.
_lowercase: Tuple = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
_lowercase: List[Any] = fix_query_key_value_ordering(_UpperCamelCase , _UpperCamelCase , 3 , _UpperCamelCase , _UpperCamelCase )
# Store. No change of shape.
_lowercase: Union[str, Any] = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
_lowercase: str = megatron_to_transformers[op_name]
_lowercase: str = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
_lowercase: List[Any] = megatron_to_transformers[op_name]
_lowercase: Optional[int] = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
_lowercase: str = transformer['''final_layernorm.weight''']
_lowercase: Dict = transformer['''final_layernorm.bias''']
# For LM head, transformers' wants the matrix to weight embeddings.
_lowercase: Dict = word_embeddings
# It should be done!
return output_state_dict
def _lowerCAmelCase ( ):
"""simple docstring"""
_lowercase: List[Any] = argparse.ArgumentParser()
parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' )
parser.add_argument(
'''path_to_checkpoint''' , type=_UpperCamelCase , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , )
parser.add_argument(
'''--config_file''' , default='''''' , type=_UpperCamelCase , help='''An optional config json file describing the pre-trained model.''' , )
_lowercase: int = parser.parse_args()
# Extract the basename.
_lowercase: Tuple = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith('''.zip''' ):
with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint:
with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict:
_lowercase: str = torch.load(_UpperCamelCase , map_location='''cpu''' )
else:
_lowercase: Optional[int] = torch.load(args.path_to_checkpoint , map_location='''cpu''' )
_lowercase: Dict = input_state_dict.get('''args''' , _UpperCamelCase )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
_lowercase: List[str] = '''gelu_fast'''
elif ds_args.openai_gelu:
_lowercase: Optional[int] = '''gelu_new'''
else:
_lowercase: Any = '''gelu'''
else:
# in the very early days this used to be "gelu_new"
_lowercase: Optional[int] = '''gelu_new'''
# Spell out all parameters in case the defaults change.
_lowercase: List[str] = GPTaConfig(
vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=_UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='''cls_index''' , summary_use_proj=_UpperCamelCase , summary_activation=_UpperCamelCase , summary_proj_to_labels=_UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=_UpperCamelCase , use_cache=_UpperCamelCase , bos_token_id=50_256 , eos_token_id=50_256 , )
else:
_lowercase: Optional[int] = GPTaConfig.from_json_file(args.config_file )
_lowercase: str = ['''GPT2LMHeadModel''']
# Convert.
print('''Converting''' )
_lowercase: Optional[int] = convert_megatron_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(_UpperCamelCase , _UpperCamelCase )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
_lowercase: Optional[int] = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
_lowercase: int = '''gpt2'''
elif tokenizer_type == "PretrainedFromHF":
_lowercase: str = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
_lowercase: str = '''gpt2'''
_lowercase: List[Any] = AutoTokenizer.from_pretrained(_UpperCamelCase )
_lowercase: Any = type(_UpperCamelCase ).__name__
_lowercase: Tuple = tokenizer_class
# Store the config to file.
print('''Saving config''' )
config.save_pretrained(_UpperCamelCase )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(_UpperCamelCase )
# Store the state_dict to file.
_lowercase: int = os.path.join(_UpperCamelCase , '''pytorch_model.bin''' )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(_UpperCamelCase , _UpperCamelCase )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 272 | 0 |
'''simple docstring'''
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def A_( A : Optional[int] , A : Optional[Any]):
UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
UpperCamelCase = Image.open(requests.get(A , stream=A).raw).convert('RGB')
UpperCamelCase = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711)),
])
UpperCamelCase = transform(A).unsqueeze(0).to(A)
return image
def A_( A : Any):
if "visual_encoder" in key:
UpperCamelCase = re.sub('visual_encoder*' , 'vision_model.encoder' , A)
if "blocks" in key:
UpperCamelCase = re.sub(r'blocks' , 'layers' , A)
if "attn" in key:
UpperCamelCase = re.sub(r'attn' , 'self_attn' , A)
if "norm1" in key:
UpperCamelCase = re.sub(r'norm1' , 'layer_norm1' , A)
if "norm2" in key:
UpperCamelCase = re.sub(r'norm2' , 'layer_norm2' , A)
if "encoder.norm" in key:
UpperCamelCase = re.sub(r'encoder.norm' , 'post_layernorm' , A)
if "encoder.patch_embed.proj" in key:
UpperCamelCase = re.sub(r'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , A)
if "encoder.pos_embed" in key:
UpperCamelCase = re.sub(r'encoder.pos_embed' , 'embeddings.position_embedding' , A)
if "encoder.cls_token" in key:
UpperCamelCase = re.sub(r'encoder.cls_token' , 'embeddings.class_embedding' , A)
if "self_attn" in key:
UpperCamelCase = re.sub(r'self_attn.proj' , 'self_attn.projection' , A)
return key
@torch.no_grad()
def A_( A : List[str] , A : Any=None):
if config_path is not None:
UpperCamelCase = BlipConfig.from_pretrained(A)
else:
UpperCamelCase = BlipConfig(projection_dim=512 , text_config={} , vision_config={})
UpperCamelCase = BlipForConditionalGeneration(A).eval()
UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'
UpperCamelCase = blip_decoder(pretrained=A , image_size=384 , vit='base')
UpperCamelCase = pt_model.eval()
UpperCamelCase = pt_model.state_dict()
for key in modified_state_dict.copy():
UpperCamelCase = modified_state_dict.pop(A)
UpperCamelCase = rename_key(A)
UpperCamelCase = value
hf_model.load_state_dict(A)
UpperCamelCase = 384
UpperCamelCase = load_demo_image(image_size=A , device='cpu')
UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased')
UpperCamelCase = tokenizer(['a picture of']).input_ids
UpperCamelCase = hf_model.generate(A , A)
assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
UpperCamelCase = hf_model.generate(A)
assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(A)
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
UpperCamelCase = (
'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'
)
UpperCamelCase = blip_vqa(pretrained=A , image_size=A , vit='base')
vqa_model.eval()
UpperCamelCase = vqa_model.state_dict()
for key in modified_state_dict.copy():
UpperCamelCase = modified_state_dict.pop(A)
UpperCamelCase = rename_key(A)
UpperCamelCase = value
UpperCamelCase = BlipForQuestionAnswering(A)
hf_vqa_model.load_state_dict(A)
UpperCamelCase = ['How many dogs are in this image?']
UpperCamelCase = tokenizer(A , return_tensors='pt').input_ids
UpperCamelCase = hf_vqa_model.generate(A , A)
print(tokenizer.decode(answer[0]))
assert tokenizer.decode(answer[0]) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa')
UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
UpperCamelCase = blip_itm(pretrained=A , image_size=A , vit='base')
itm_model.eval()
UpperCamelCase = itm_model.state_dict()
for key in modified_state_dict.copy():
UpperCamelCase = modified_state_dict.pop(A)
UpperCamelCase = rename_key(A)
UpperCamelCase = value
UpperCamelCase = BlipForImageTextRetrieval(A)
UpperCamelCase = ['A picture of a woman with a dog sitting in a beach']
UpperCamelCase = tokenizer(
A , return_tensors='pt' , padding='max_length' , truncation=A , max_length=35 , ).input_ids
hf_itm_model.load_state_dict(A)
hf_itm_model.eval()
UpperCamelCase = hf_itm_model(A , A , use_itm_head=A)
UpperCamelCase = hf_itm_model(A , A , use_itm_head=A)
assert out[0].item() == 0.2_110_687_494_277_954
assert torch.nn.functional.softmax(out_itm[0] , dim=1)[:, 1].item() == 0.45_698_845_386_505_127
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm')
if __name__ == "__main__":
lowerCAmelCase : List[str] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
lowerCAmelCase : Optional[Any] = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 3 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase : Optional[Any] = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 | 1 |
'''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def _lowerCAmelCase ( _lowerCAmelCase )-> int:
__UpperCAmelCase = prime_factors(_lowerCAmelCase )
if is_square_free(_lowerCAmelCase ):
return -1 if len(_lowerCAmelCase ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 718 |
'''simple docstring'''
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class UpperCAmelCase :
def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=64 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.0_2 , __A=3 , __A=4 , __A=None , ):
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = seq_length
__UpperCAmelCase = is_training
__UpperCAmelCase = use_input_mask
__UpperCAmelCase = use_token_type_ids
__UpperCAmelCase = use_labels
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = embedding_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_act
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = type_vocab_size
__UpperCAmelCase = type_sequence_label_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = num_labels
__UpperCAmelCase = num_choices
__UpperCAmelCase = scope
def __lowerCamelCase ( self ):
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase = None
if self.use_input_mask:
__UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase = None
if self.use_token_type_ids:
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCamelCase ( self ):
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , )
def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ):
__UpperCAmelCase = MegatronBertModel(config=__A )
model.to(__A )
model.eval()
__UpperCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A )
__UpperCAmelCase = model(__A , token_type_ids=__A )
__UpperCAmelCase = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ):
__UpperCAmelCase = MegatronBertForMaskedLM(config=__A )
model.to(__A )
model.eval()
__UpperCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ):
__UpperCAmelCase = MegatronBertForCausalLM(config=__A )
model.to(__A )
model.eval()
__UpperCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ):
__UpperCAmelCase = MegatronBertForNextSentencePrediction(config=__A )
model.to(__A )
model.eval()
__UpperCAmelCase = model(
__A , attention_mask=__A , token_type_ids=__A , labels=__A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ):
__UpperCAmelCase = MegatronBertForPreTraining(config=__A )
model.to(__A )
model.eval()
__UpperCAmelCase = model(
__A , attention_mask=__A , token_type_ids=__A , labels=__A , next_sentence_label=__A , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ):
__UpperCAmelCase = MegatronBertForQuestionAnswering(config=__A )
model.to(__A )
model.eval()
__UpperCAmelCase = model(
__A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ):
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = MegatronBertForSequenceClassification(__A )
model.to(__A )
model.eval()
__UpperCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ):
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = MegatronBertForTokenClassification(config=__A )
model.to(__A )
model.eval()
__UpperCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ):
__UpperCAmelCase = self.num_choices
__UpperCAmelCase = MegatronBertForMultipleChoice(config=__A )
model.to(__A )
model.eval()
__UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase = model(
__A , attention_mask=__A , token_type_ids=__A , labels=__A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCamelCase ( self ):
__UpperCAmelCase = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) = config_and_inputs
__UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
_A : str = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
_A : Dict = (
{
"""feature-extraction""": MegatronBertModel,
"""fill-mask""": MegatronBertForMaskedLM,
"""question-answering""": MegatronBertForQuestionAnswering,
"""text-classification""": MegatronBertForSequenceClassification,
"""text-generation""": MegatronBertForCausalLM,
"""token-classification""": MegatronBertForTokenClassification,
"""zero-shot""": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_A : List[str] = True
# test_resize_embeddings = False
_A : Tuple = False
def __lowerCamelCase ( self , __A , __A , __A=False ):
__UpperCAmelCase = super()._prepare_for_class(__A , __A , return_labels=__A )
if return_labels:
if model_class in get_values(__A ):
__UpperCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A )
__UpperCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__A )
return inputs_dict
def __lowerCamelCase ( self ):
__UpperCAmelCase = MegatronBertModelTester(self )
__UpperCAmelCase = ConfigTester(self , config_class=__A , hidden_size=37 )
def __lowerCamelCase ( self ):
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*__A )
def __lowerCamelCase ( self ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__A )
def __lowerCamelCase ( self ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__A )
def __lowerCamelCase ( self ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__A )
def __lowerCamelCase ( self ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*__A )
def __lowerCamelCase ( self ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*__A )
def __lowerCamelCase ( self ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__A )
def __lowerCamelCase ( self ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*__A )
def _lowerCAmelCase ( _lowerCAmelCase )-> Dict:
return torch.tensor(
_lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase , )
_A: Any = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase ( unittest.TestCase ):
@slow
@unittest.skip('Model is not available.' )
def __lowerCamelCase ( self ):
__UpperCAmelCase = 'nvidia/megatron-bert-uncased-345m'
if "MYDIR" in os.environ:
__UpperCAmelCase = os.path.join(os.environ['MYDIR'] , __A )
__UpperCAmelCase = MegatronBertModel.from_pretrained(__A )
model.to(__A )
model.half()
__UpperCAmelCase = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] )
with torch.no_grad():
__UpperCAmelCase = model(__A )[0]
__UpperCAmelCase = torch.Size((1, 9, 1_024) )
self.assertEqual(output.shape , __A )
__UpperCAmelCase = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8]
for ii in range(3 ):
for jj in range(3 ):
__UpperCAmelCase = output[0, ii, jj]
__UpperCAmelCase = expected[3 * ii + jj]
__UpperCAmelCase = 'ii={} jj={} a={} b={}'.format(__A , __A , __A , __A )
self.assertTrue(math.isclose(__A , __A , rel_tol=__A , abs_tol=__A ) , msg=__A )
| 617 | 0 |
import string
def __UpperCAmelCase ( a_):
for key in range(len(string.ascii_uppercase)):
snake_case_ = ''
for symbol in message:
if symbol in string.ascii_uppercase:
snake_case_ = string.ascii_uppercase.find(a_)
snake_case_ = num - key
if num < 0:
snake_case_ = num + len(string.ascii_uppercase)
snake_case_ = translated + string.ascii_uppercase[num]
else:
snake_case_ = translated + symbol
print(f'''Decryption using Key #{key}: {translated}''')
def __UpperCAmelCase ( ):
snake_case_ = input('Encrypted message: ')
snake_case_ = message.upper()
decrypt(a_)
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 198 |
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
lowercase = logging.get_logger(__name__)
class UpperCamelCase_ ( snake_case_ ):
'''simple docstring'''
lowerCAmelCase = ['''input_features''', '''is_longer''']
def __init__( self , a=64 , a=4_80_00 , a=4_80 , a=10 , a=10_24 , a=0.0 , a=False , a = 0 , a = 1_40_00 , a = None , a = "fusion" , a = "repeatpad" , **a , ) -> List[str]:
super().__init__(
feature_size=a , sampling_rate=a , padding_value=a , return_attention_mask=a , **a , )
snake_case_ = top_db
snake_case_ = truncation
snake_case_ = padding
snake_case_ = fft_window_size
snake_case_ = (fft_window_size >> 1) + 1
snake_case_ = hop_length
snake_case_ = max_length_s
snake_case_ = max_length_s * sampling_rate
snake_case_ = sampling_rate
snake_case_ = frequency_min
snake_case_ = frequency_max
snake_case_ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=a , min_frequency=a , max_frequency=a , sampling_rate=a , norm=a , mel_scale='htk' , )
snake_case_ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=a , min_frequency=a , max_frequency=a , sampling_rate=a , norm='slaney' , mel_scale='slaney' , )
def _UpperCamelCase ( self ) -> Dict[str, Any]:
snake_case_ = copy.deepcopy(self.__dict__ )
snake_case_ = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def _UpperCamelCase ( self , a , a = None ) -> np.ndarray:
snake_case_ = spectrogram(
a , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=a , log_mel='dB' , )
return log_mel_spectrogram.T
def _UpperCamelCase ( self , a , a , a ) -> Tuple:
snake_case_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
snake_case_ = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
snake_case_ = [0]
# randomly choose index for each part
snake_case_ = np.random.choice(ranges[0] )
snake_case_ = np.random.choice(ranges[1] )
snake_case_ = np.random.choice(ranges[2] )
snake_case_ = mel[idx_front : idx_front + chunk_frames, :]
snake_case_ = mel[idx_middle : idx_middle + chunk_frames, :]
snake_case_ = mel[idx_back : idx_back + chunk_frames, :]
snake_case_ = torch.tensor(mel[None, None, :] )
snake_case_ = torch.nn.functional.interpolate(
a , size=[chunk_frames, 64] , mode='bilinear' , align_corners=a )
snake_case_ = mel_shrink[0][0].numpy()
snake_case_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def _UpperCamelCase ( self , a , a , a , a ) -> np.array:
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
snake_case_ = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
snake_case_ = len(a ) - max_length
snake_case_ = np.random.randint(0 , overflow + 1 )
snake_case_ = waveform[idx : idx + max_length]
snake_case_ = self._np_extract_fbank_features(a , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
snake_case_ = self._np_extract_fbank_features(a , self.mel_filters )
snake_case_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
snake_case_ = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
snake_case_ = np.stack([mel, mel, mel, mel] , axis=0 )
snake_case_ = False
else:
snake_case_ = self._random_mel_fusion(a , a , a )
snake_case_ = True
else:
raise NotImplementedError(F'''data_truncating {truncation} not implemented''' )
else:
snake_case_ = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
snake_case_ = int(max_length / len(a ) )
snake_case_ = np.stack(np.tile(a , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
snake_case_ = int(max_length / len(a ) )
snake_case_ = np.stack(np.tile(a , a ) )
snake_case_ = np.pad(a , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 )
if truncation == "fusion":
snake_case_ = self._np_extract_fbank_features(a , self.mel_filters )
snake_case_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
snake_case_ = self._np_extract_fbank_features(a , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self , a , a = None , a = None , a = None , a = None , a = None , **a , ) -> BatchFeature:
snake_case_ = truncation if truncation is not None else self.truncation
snake_case_ = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
snake_case_ = isinstance(a , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
snake_case_ = is_batched_numpy or (
isinstance(a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
snake_case_ = [np.asarray(a , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(a , np.ndarray ):
snake_case_ = np.asarray(a , dtype=np.floataa )
elif isinstance(a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
snake_case_ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
snake_case_ = [np.asarray(a )]
# convert to mel spectrogram, truncate and pad if needed.
snake_case_ = [
self._get_input_mel(a , max_length if max_length else self.nb_max_samples , a , a )
for waveform in raw_speech
]
snake_case_ = []
snake_case_ = []
for mel, longer in padded_inputs:
input_mel.append(a )
is_longer.append(a )
if truncation == "fusion" and sum(a ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
snake_case_ = np.random.randint(0 , len(a ) )
snake_case_ = True
if isinstance(input_mel[0] , a ):
snake_case_ = [np.asarray(a , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
snake_case_ = [[longer] for longer in is_longer]
snake_case_ = {'input_features': input_mel, 'is_longer': is_longer}
snake_case_ = BatchFeature(a )
if return_tensors is not None:
snake_case_ = input_features.convert_to_tensors(a )
return input_features
| 198 | 1 |
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __UpperCAmelCase ( __A , __A , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase = AutoencoderKL
_lowerCamelCase = """sample"""
_lowerCamelCase = 1e-2
@property
def snake_case_ ( self ):
__a = 4
__a = 3
__a = (32, 32)
__a = floats_tensor((batch_size, num_channels) + sizes ).to(__A )
return {"sample": image}
@property
def snake_case_ ( self ):
return (3, 32, 32)
@property
def snake_case_ ( self ):
return (3, 32, 32)
def snake_case_ ( self ):
__a = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 4,
}
__a = self.dummy_input
return init_dict, inputs_dict
def snake_case_ ( self ):
pass
def snake_case_ ( self ):
pass
@unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" )
def snake_case_ ( self ):
# enable deterministic behavior for gradient checkpointing
__a , __a = self.prepare_init_args_and_inputs_for_common()
__a = self.model_class(**__A )
model.to(__A )
assert not model.is_gradient_checkpointing and model.training
__a = model(**__A ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
__a = torch.randn_like(__A )
__a = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
__a = self.model_class(**__A )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(__A )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
__a = model_a(**__A ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
__a = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1E-5 )
__a = dict(model.named_parameters() )
__a = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) )
def snake_case_ ( self ):
__a , __a = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=__A )
self.assertIsNotNone(__A )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(__A )
__a = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def snake_case_ ( self ):
__a = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" )
__a = model.to(__A )
model.eval()
if torch_device == "mps":
__a = torch.manual_seed(0 )
else:
__a = torch.Generator(device=__A ).manual_seed(0 )
__a = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
__a = image.to(__A )
with torch.no_grad():
__a = model(__A , sample_posterior=__A , generator=__A ).sample
__a = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
__a = torch.tensor(
[
-4.0078E-01,
-3.8323E-04,
-1.2681E-01,
-1.1462E-01,
2.0095E-01,
1.0893E-01,
-8.8247E-02,
-3.0361E-01,
-9.8644E-03,
] )
elif torch_device == "cpu":
__a = torch.tensor(
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] )
else:
__a = torch.tensor(
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] )
self.assertTrue(torch_all_close(__A , __A , rtol=1E-2 ) )
@slow
class __UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case_ ( self , __A , __A ):
return f'''gaussian_noise_s={seed}_shape={'_'.join([str(__A ) for s in shape] )}.npy'''
def snake_case_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self , __A=0 , __A=(4, 3, 512, 512) , __A=False ):
__a = torch.floataa if fpaa else torch.floataa
__a = torch.from_numpy(load_hf_numpy(self.get_file_format(__A , __A ) ) ).to(__A ).to(__A )
return image
def snake_case_ ( self , __A="CompVis/stable-diffusion-v1-4" , __A=False ):
__a = """fp16""" if fpaa else None
__a = torch.floataa if fpaa else torch.floataa
__a = AutoencoderKL.from_pretrained(
__A , subfolder="""vae""" , torch_dtype=__A , revision=__A , )
model.to(__A ).eval()
return model
def snake_case_ ( self , __A=0 ):
if torch_device == "mps":
return torch.manual_seed(__A )
return torch.Generator(device=__A ).manual_seed(__A )
@parameterized.expand(
[
# fmt: off
[33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def snake_case_ ( self , __A , __A , __A ):
__a = self.get_sd_vae_model()
__a = self.get_sd_image(__A )
__a = self.get_generator(__A )
with torch.no_grad():
__a = model(__A , generator=__A , sample_posterior=__A ).sample
assert sample.shape == image.shape
__a = sample[-1, -2:, -2:, :2].flatten().float().cpu()
__a = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice )
assert torch_all_close(__A , __A , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
# fmt: on
] )
@require_torch_gpu
def snake_case_ ( self , __A , __A ):
__a = self.get_sd_vae_model(fpaa=__A )
__a = self.get_sd_image(__A , fpaa=__A )
__a = self.get_generator(__A )
with torch.no_grad():
__a = model(__A , generator=__A , sample_posterior=__A ).sample
assert sample.shape == image.shape
__a = sample[-1, -2:, :2, -2:].flatten().float().cpu()
__a = torch.tensor(__A )
assert torch_all_close(__A , __A , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def snake_case_ ( self , __A , __A , __A ):
__a = self.get_sd_vae_model()
__a = self.get_sd_image(__A )
with torch.no_grad():
__a = model(__A ).sample
assert sample.shape == image.shape
__a = sample[-1, -2:, -2:, :2].flatten().float().cpu()
__a = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice )
assert torch_all_close(__A , __A , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
# fmt: on
] )
@require_torch_gpu
def snake_case_ ( self , __A , __A ):
__a = self.get_sd_vae_model()
__a = self.get_sd_image(__A , shape=(3, 4, 64, 64) )
with torch.no_grad():
__a = model.decode(__A ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
__a = sample[-1, -2:, :2, -2:].flatten().cpu()
__a = torch.tensor(__A )
assert torch_all_close(__A , __A , atol=1E-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
# fmt: on
] )
@require_torch_gpu
def snake_case_ ( self , __A , __A ):
__a = self.get_sd_vae_model(fpaa=__A )
__a = self.get_sd_image(__A , shape=(3, 4, 64, 64) , fpaa=__A )
with torch.no_grad():
__a = model.decode(__A ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
__a = sample[-1, -2:, :2, -2:].flatten().float().cpu()
__a = torch.tensor(__A )
assert torch_all_close(__A , __A , atol=5E-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" )
def snake_case_ ( self , __A ):
__a = self.get_sd_vae_model(fpaa=__A )
__a = self.get_sd_image(__A , shape=(3, 4, 64, 64) , fpaa=__A )
with torch.no_grad():
__a = model.decode(__A ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
__a = model.decode(__A ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(__A , __A , atol=1E-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" )
def snake_case_ ( self , __A ):
__a = self.get_sd_vae_model()
__a = self.get_sd_image(__A , shape=(3, 4, 64, 64) )
with torch.no_grad():
__a = model.decode(__A ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
__a = model.decode(__A ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(__A , __A , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
] )
def snake_case_ ( self , __A , __A ):
__a = self.get_sd_vae_model()
__a = self.get_sd_image(__A )
__a = self.get_generator(__A )
with torch.no_grad():
__a = model.encode(__A ).latent_dist
__a = dist.sample(generator=__A )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
__a = sample[0, -1, -3:, -3:].flatten().cpu()
__a = torch.tensor(__A )
__a = 3E-3 if torch_device != """mps""" else 1E-2
assert torch_all_close(__A , __A , atol=__A )
| 703 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __UpperCAmelCase ( __A ):
"""simple docstring"""
_lowerCamelCase = ["""image_processor""", """tokenizer"""]
_lowerCamelCase = """LayoutLMv2ImageProcessor"""
_lowerCamelCase = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""")
def __init__( self , __A=None , __A=None , **__A ):
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __A , )
__a = kwargs.pop("""feature_extractor""" )
__a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__A , __A )
def __call__( self , __A , __A = None , __A = None , __A = None , __A = None , __A = True , __A = False , __A = None , __A = None , __A = 0 , __A = None , __A = None , __A = None , __A = False , __A = False , __A = False , __A = False , __A = True , __A = None , **__A , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"""You cannot provide bounding boxes """
"""if you initialized the image processor with apply_ocr set to True.""" )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"""You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" )
# first, apply the image processor
__a = self.image_processor(images=__A , return_tensors=__A )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__A , __A ):
__a = [text] # add batch dimension (as the image processor always adds a batch dimension)
__a = features["""words"""]
__a = self.tokenizer(
text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , )
# add pixel values
__a = features.pop("""pixel_values""" )
if return_overflowing_tokens is True:
__a = self.get_overflowing_images(__A , encoded_inputs["""overflow_to_sample_mapping"""] )
__a = images
return encoded_inputs
def snake_case_ ( self , __A , __A ):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
__a = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__A ) != len(__A ):
raise ValueError(
"""Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"""
f''' {len(__A )} and {len(__A )}''' )
return images_with_overflow
def snake_case_ ( self , *__A , **__A ):
return self.tokenizer.batch_decode(*__A , **__A )
def snake_case_ ( self , *__A , **__A ):
return self.tokenizer.decode(*__A , **__A )
@property
def snake_case_ ( self ):
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def snake_case_ ( self ):
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , )
return self.image_processor_class
@property
def snake_case_ ( self ):
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , )
return self.image_processor
| 209 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class _a ( unittest.TestCase ):
def __init__( self: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Dict=3 , UpperCamelCase_: Any=10 , UpperCamelCase_: Optional[int]=18 , UpperCamelCase_: List[Any]=30 , UpperCamelCase_: Tuple=400 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=None , UpperCamelCase_: Tuple=True , UpperCamelCase_: str=[0.5, 0.5, 0.5] , UpperCamelCase_: List[Any]=[0.5, 0.5, 0.5] , UpperCamelCase_: Dict=None , ) -> Any:
"""simple docstring"""
lowercase__ = size if size is not None else {'''shortest_edge''': 18}
lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = num_channels
lowercase__ = num_frames
lowercase__ = image_size
lowercase__ = min_resolution
lowercase__ = max_resolution
lowercase__ = do_resize
lowercase__ = size
lowercase__ = do_normalize
lowercase__ = image_mean
lowercase__ = image_std
lowercase__ = crop_size
def lowerCamelCase_ ( self: int ) -> List[str]:
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _a ( UpperCamelCase__ , unittest.TestCase ):
_lowercase : Tuple = VivitImageProcessor if is_vision_available() else None
def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = VivitImageProcessingTester(self )
@property
def lowerCamelCase_ ( self: Dict ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_center_crop''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) )
def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def lowerCamelCase_ ( self: Any ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
lowercase__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ )
for video in video_inputs:
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
self.assertIsInstance(video[0] , Image.Image )
# Test not batched input
lowercase__ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def lowerCamelCase_ ( self: Dict ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ )
for video in video_inputs:
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
self.assertIsInstance(video[0] , np.ndarray )
# Test not batched input
lowercase__ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def lowerCamelCase_ ( self: List[str] ) -> int:
"""simple docstring"""
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ )
for video in video_inputs:
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
self.assertIsInstance(video[0] , torch.Tensor )
# Test not batched input
lowercase__ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 43 |
import sys
import turtle
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(snake_case_, get_mid(snake_case_, snake_case_ ), get_mid(snake_case_, snake_case_ ), depth - 1 )
triangle(snake_case_, get_mid(snake_case_, snake_case_ ), get_mid(snake_case_, snake_case_ ), depth - 1 )
triangle(snake_case_, get_mid(snake_case_, snake_case_ ), get_mid(snake_case_, snake_case_ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
__lowerCamelCase : str = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
__lowerCamelCase : List[Any] = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 416 | 0 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__UpperCamelCase : Optional[int] = 4
__UpperCamelCase : Any = 3
class _UpperCamelCase ( A ):
'''simple docstring'''
pass
def _UpperCAmelCase ( UpperCAmelCase : List[str] ):
"""simple docstring"""
for shard in shards:
for i in range(UpperCAmelCase ):
yield {"i": i, "shard": shard}
def _UpperCAmelCase ( ):
"""simple docstring"""
__lowerCamelCase : List[Any] = int(os.environ["""RANK"""] )
__lowerCamelCase : Union[str, Any] = int(os.environ["""WORLD_SIZE"""] )
__lowerCamelCase : Union[str, Any] = ArgumentParser()
parser.add_argument("""--streaming""" , type=UpperCAmelCase )
parser.add_argument("""--local_rank""" , type=UpperCAmelCase )
parser.add_argument("""--num_workers""" , type=UpperCAmelCase , default=0 )
__lowerCamelCase : Dict = parser.parse_args()
__lowerCamelCase : Any = args.streaming
__lowerCamelCase : Optional[int] = args.num_workers
__lowerCamelCase : List[str] = {"""shards""": [f"""shard_{shard_idx}""" for shard_idx in range(UpperCAmelCase )]}
__lowerCamelCase : Tuple = IterableDataset.from_generator(UpperCAmelCase , gen_kwargs=UpperCAmelCase )
if not streaming:
__lowerCamelCase : Optional[Any] = Dataset.from_list(list(UpperCAmelCase ) )
__lowerCamelCase : int = split_dataset_by_node(UpperCAmelCase , rank=UpperCAmelCase , world_size=UpperCAmelCase )
__lowerCamelCase : Tuple = torch.utils.data.DataLoader(UpperCAmelCase , num_workers=UpperCAmelCase )
__lowerCamelCase : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__lowerCamelCase : List[str] = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__lowerCamelCase : Optional[Any] = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" )
if __name__ == "__main__":
main()
| 458 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowerCamelCase : List[Any] = tempfile.mkdtemp()
__lowerCamelCase : Union[str, Any] = SamImageProcessor()
__lowerCamelCase : int = SamProcessor(_lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self : Tuple , **_lowerCamelCase : Any ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).image_processor
def _snake_case ( self : List[Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : str ):
'''simple docstring'''
__lowerCamelCase : Any = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
__lowerCamelCase : Optional[int] = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowerCamelCase : Tuple = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase : Optional[int] = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 )
__lowerCamelCase : Optional[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _lowerCamelCase )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowerCamelCase : int = self.get_image_processor()
__lowerCamelCase : Tuple = SamProcessor(image_processor=_lowerCamelCase )
__lowerCamelCase : Optional[Any] = self.prepare_image_inputs()
__lowerCamelCase : List[str] = image_processor(_lowerCamelCase , return_tensors="""np""" )
__lowerCamelCase : List[Any] = processor(images=_lowerCamelCase , return_tensors="""np""" )
input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_torch
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowerCamelCase : Dict = self.get_image_processor()
__lowerCamelCase : Union[str, Any] = SamProcessor(image_processor=_lowerCamelCase )
__lowerCamelCase : Union[str, Any] = [torch.ones((1, 3, 5, 5) )]
__lowerCamelCase : Any = [[1_7_6_4, 2_6_4_6]]
__lowerCamelCase : Any = [[6_8_3, 1_0_2_4]]
__lowerCamelCase : Tuple = processor.post_process_masks(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) )
__lowerCamelCase : Union[str, Any] = processor.post_process_masks(
_lowerCamelCase , torch.tensor(_lowerCamelCase ) , torch.tensor(_lowerCamelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) )
# should also work with np
__lowerCamelCase : Any = [np.ones((1, 3, 5, 5) )]
__lowerCamelCase : int = processor.post_process_masks(_lowerCamelCase , np.array(_lowerCamelCase ) , np.array(_lowerCamelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) )
__lowerCamelCase : List[str] = [[1, 0], [0, 1]]
with self.assertRaises(_lowerCamelCase ):
__lowerCamelCase : Union[str, Any] = processor.post_process_masks(_lowerCamelCase , np.array(_lowerCamelCase ) , np.array(_lowerCamelCase ) )
@require_vision
@require_tf
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : str ):
'''simple docstring'''
__lowerCamelCase : Optional[Any] = tempfile.mkdtemp()
__lowerCamelCase : int = SamImageProcessor()
__lowerCamelCase : Dict = SamProcessor(_lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self : List[str] , **_lowerCamelCase : List[Any] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).image_processor
def _snake_case ( self : str ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowerCamelCase : Any = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
__lowerCamelCase : str = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowerCamelCase : int = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase : Dict = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 )
__lowerCamelCase : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _lowerCamelCase )
def _snake_case ( self : str ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = self.get_image_processor()
__lowerCamelCase : Tuple = SamProcessor(image_processor=_lowerCamelCase )
__lowerCamelCase : str = self.prepare_image_inputs()
__lowerCamelCase : List[Any] = image_processor(_lowerCamelCase , return_tensors="""np""" )
__lowerCamelCase : Union[str, Any] = processor(images=_lowerCamelCase , return_tensors="""np""" )
input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_tf
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowerCamelCase : List[Any] = self.get_image_processor()
__lowerCamelCase : str = SamProcessor(image_processor=_lowerCamelCase )
__lowerCamelCase : Any = [tf.ones((1, 3, 5, 5) )]
__lowerCamelCase : Optional[Any] = [[1_7_6_4, 2_6_4_6]]
__lowerCamelCase : List[str] = [[6_8_3, 1_0_2_4]]
__lowerCamelCase : Optional[int] = processor.post_process_masks(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , return_tensors="""tf""" )
self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) )
__lowerCamelCase : Optional[Any] = processor.post_process_masks(
_lowerCamelCase , tf.convert_to_tensor(_lowerCamelCase ) , tf.convert_to_tensor(_lowerCamelCase ) , return_tensors="""tf""" , )
self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) )
# should also work with np
__lowerCamelCase : Tuple = [np.ones((1, 3, 5, 5) )]
__lowerCamelCase : str = processor.post_process_masks(
_lowerCamelCase , np.array(_lowerCamelCase ) , np.array(_lowerCamelCase ) , return_tensors="""tf""" )
self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) )
__lowerCamelCase : Union[str, Any] = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__lowerCamelCase : Optional[Any] = processor.post_process_masks(
_lowerCamelCase , np.array(_lowerCamelCase ) , np.array(_lowerCamelCase ) , return_tensors="""tf""" )
@require_vision
@require_torchvision
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowerCamelCase : Optional[int] = tempfile.mkdtemp()
__lowerCamelCase : Union[str, Any] = SamImageProcessor()
__lowerCamelCase : Dict = SamProcessor(_lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self : Optional[int] , **_lowerCamelCase : Tuple ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).image_processor
def _snake_case ( self : List[str] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : str ):
'''simple docstring'''
__lowerCamelCase : List[str] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
__lowerCamelCase : str = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def _snake_case ( self : int ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = self.get_image_processor()
__lowerCamelCase : Tuple = SamProcessor(image_processor=_lowerCamelCase )
__lowerCamelCase : str = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
__lowerCamelCase : Tuple = [tf.convert_to_tensor(_lowerCamelCase )]
__lowerCamelCase : List[str] = [torch.tensor(_lowerCamelCase )]
__lowerCamelCase : Optional[int] = [[1_7_6_4, 2_6_4_6]]
__lowerCamelCase : Tuple = [[6_8_3, 1_0_2_4]]
__lowerCamelCase : int = processor.post_process_masks(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , return_tensors="""tf""" )
__lowerCamelCase : Any = processor.post_process_masks(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowerCamelCase : Optional[int] = self.get_image_processor()
__lowerCamelCase : int = SamProcessor(image_processor=_lowerCamelCase )
__lowerCamelCase : Any = self.prepare_image_inputs()
__lowerCamelCase : Any = image_processor(_lowerCamelCase , return_tensors="""pt""" )["""pixel_values"""].numpy()
__lowerCamelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" )["""pixel_values"""].numpy()
__lowerCamelCase : Dict = image_processor(_lowerCamelCase , return_tensors="""tf""" )["""pixel_values"""].numpy()
__lowerCamelCase : int = processor(images=_lowerCamelCase , return_tensors="""tf""" )["""pixel_values"""].numpy()
self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase ) )
self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase ) )
self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase ) )
| 458 | 1 |
"""simple docstring"""
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def lowerCamelCase__ ( UpperCAmelCase_="" )-> str:
"""simple docstring"""
UpperCamelCase = tempfile.mkdtemp()
return os.path.join(__A , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class __a ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Any )-> str:
"""simple docstring"""
UpperCamelCase = torch.rand(12 , dtype=torch.floataa ) - 0.5
UpperCamelCase = AgentAudio(lowercase__ )
UpperCamelCase = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(lowercase__ , agent_type.to_raw() , atol=1e-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(lowercase__ ) )
# Ensure that the file contains the same value as the original tensor
UpperCamelCase , UpperCamelCase = sf.read(lowercase__ )
self.assertTrue(torch.allclose(lowercase__ , torch.tensor(lowercase__ ) , atol=1e-4 ) )
def _SCREAMING_SNAKE_CASE ( self : Any )-> str:
"""simple docstring"""
UpperCamelCase = torch.rand(12 , dtype=torch.floataa ) - 0.5
UpperCamelCase = get_new_path(suffix=".wav" )
sf.write(lowercase__ , lowercase__ , 16_000 )
UpperCamelCase = AgentAudio(lowercase__ )
self.assertTrue(torch.allclose(lowercase__ , agent_type.to_raw() , atol=1e-4 ) )
self.assertEqual(agent_type.to_string() , lowercase__ )
@require_vision
@require_torch
class __a ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Optional[Any]:
"""simple docstring"""
UpperCamelCase = torch.randint(0 , 256 , (64, 64, 3) )
UpperCamelCase = AgentImage(lowercase__ )
UpperCamelCase = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(lowercase__ , agent_type._tensor , atol=1e-4 ) )
self.assertIsInstance(agent_type.to_raw() , Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowercase__ ) )
def _SCREAMING_SNAKE_CASE ( self : str )-> Optional[Any]:
"""simple docstring"""
UpperCamelCase = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png"
UpperCamelCase = Image.open(lowercase__ )
UpperCamelCase = AgentImage(lowercase__ )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowercase__ ) )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Optional[int]:
"""simple docstring"""
UpperCamelCase = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png"
UpperCamelCase = Image.open(lowercase__ )
UpperCamelCase = AgentImage(lowercase__ )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowercase__ ) )
class __a ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : str )-> Tuple:
"""simple docstring"""
UpperCamelCase = "Hey!"
UpperCamelCase = AgentText(lowercase__ )
self.assertEqual(lowercase__ , agent_type.to_string() )
self.assertEqual(lowercase__ , agent_type.to_raw() )
self.assertEqual(lowercase__ , lowercase__ )
| 554 |
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self ):
'''simple docstring'''
__A =StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
__A =sd_pipe.to(lowercase__ )
sd_pipe.set_progress_bar_config(disable=lowercase__ )
sd_pipe.set_scheduler('''sample_euler''' )
__A ='''A painting of a squirrel eating a burger'''
__A =torch.manual_seed(0 )
__A =sd_pipe([prompt] , generator=lowercase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='''np''' )
__A =output.images
__A =image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__A =np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __UpperCamelCase ( self ):
'''simple docstring'''
__A =StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
__A =sd_pipe.to(lowercase__ )
sd_pipe.set_progress_bar_config(disable=lowercase__ )
sd_pipe.set_scheduler('''sample_euler''' )
__A ='''A painting of a squirrel eating a burger'''
__A =torch.manual_seed(0 )
__A =sd_pipe([prompt] , generator=lowercase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='''np''' )
__A =output.images
__A =image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__A =np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1
def __UpperCamelCase ( self ):
'''simple docstring'''
__A =StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
__A =sd_pipe.to(lowercase__ )
sd_pipe.set_progress_bar_config(disable=lowercase__ )
sd_pipe.set_scheduler('''sample_dpmpp_2m''' )
__A ='''A painting of a squirrel eating a burger'''
__A =torch.manual_seed(0 )
__A =sd_pipe(
[prompt] , generator=lowercase__ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='''np''' , use_karras_sigmas=lowercase__ , )
__A =output.images
__A =image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__A =np.array(
[0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 184 | 0 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
_lowercase = """platform"""
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : List[str]=None , ) -> List[str]:
if attention_mask is None:
SCREAMING_SNAKE_CASE_ : Union[str, Any] =np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
SCREAMING_SNAKE_CASE_ : List[Any] =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
SCREAMING_SNAKE_CASE_ : Any =np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
SCREAMING_SNAKE_CASE_ : Any =np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
SCREAMING_SNAKE_CASE_ : Tuple =np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class lowercase_ :
def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=False , __A=99 , __A=16 , __A=2 , __A=4 , __A=4 , __A="gelu" , __A=0.1 , __A=0.1 , __A=32 , __A=2 , __A=1 , __A=0 , __A=0.02 , ) -> List[Any]:
SCREAMING_SNAKE_CASE_ : Tuple =parent
SCREAMING_SNAKE_CASE_ : str =batch_size
SCREAMING_SNAKE_CASE_ : List[Any] =seq_length
SCREAMING_SNAKE_CASE_ : List[Any] =is_training
SCREAMING_SNAKE_CASE_ : List[str] =use_labels
SCREAMING_SNAKE_CASE_ : Dict =vocab_size
SCREAMING_SNAKE_CASE_ : Optional[int] =hidden_size
SCREAMING_SNAKE_CASE_ : int =num_hidden_layers
SCREAMING_SNAKE_CASE_ : List[str] =num_attention_heads
SCREAMING_SNAKE_CASE_ : Optional[int] =intermediate_size
SCREAMING_SNAKE_CASE_ : Any =hidden_act
SCREAMING_SNAKE_CASE_ : Union[str, Any] =hidden_dropout_prob
SCREAMING_SNAKE_CASE_ : Dict =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ : Optional[int] =max_position_embeddings
SCREAMING_SNAKE_CASE_ : List[str] =eos_token_id
SCREAMING_SNAKE_CASE_ : Optional[int] =pad_token_id
SCREAMING_SNAKE_CASE_ : List[Any] =bos_token_id
SCREAMING_SNAKE_CASE_ : Dict =initializer_range
def _snake_case ( self ) -> Dict:
SCREAMING_SNAKE_CASE_ : Dict =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
SCREAMING_SNAKE_CASE_ : Tuple =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
SCREAMING_SNAKE_CASE_ : Tuple =shift_tokens_right(__A , 1 , 2 )
SCREAMING_SNAKE_CASE_ : List[str] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__A , )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =prepare_blenderbot_inputs_dict(__A , __A , __A )
return config, inputs_dict
def _snake_case ( self ) -> Tuple:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =self.prepare_config_and_inputs()
return config, inputs_dict
def _snake_case ( self , __A , __A , __A ) -> List[Any]:
SCREAMING_SNAKE_CASE_ : Any =20
SCREAMING_SNAKE_CASE_ : Tuple =model_class_name(__A )
SCREAMING_SNAKE_CASE_ : Dict =model.encode(inputs_dict['''input_ids'''] )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] =(
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
SCREAMING_SNAKE_CASE_ : Tuple =model.init_cache(decoder_input_ids.shape[0] , __A , __A )
SCREAMING_SNAKE_CASE_ : Dict =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
SCREAMING_SNAKE_CASE_ : Dict =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
SCREAMING_SNAKE_CASE_ : int =model.decode(
decoder_input_ids[:, :-1] , __A , decoder_attention_mask=__A , past_key_values=__A , decoder_position_ids=__A , )
SCREAMING_SNAKE_CASE_ : List[str] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
SCREAMING_SNAKE_CASE_ : Tuple =model.decode(
decoder_input_ids[:, -1:] , __A , decoder_attention_mask=__A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__A , )
SCREAMING_SNAKE_CASE_ : List[Any] =model.decode(__A , __A )
SCREAMING_SNAKE_CASE_ : List[str] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
def _snake_case ( self , __A , __A , __A ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ : Optional[int] =20
SCREAMING_SNAKE_CASE_ : Union[str, Any] =model_class_name(__A )
SCREAMING_SNAKE_CASE_ : List[Any] =model.encode(inputs_dict['''input_ids'''] )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple =(
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
SCREAMING_SNAKE_CASE_ : Optional[Any] =jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
SCREAMING_SNAKE_CASE_ : Optional[Any] =model.init_cache(decoder_input_ids.shape[0] , __A , __A )
SCREAMING_SNAKE_CASE_ : List[str] =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
SCREAMING_SNAKE_CASE_ : Optional[int] =model.decode(
decoder_input_ids[:, :-1] , __A , decoder_attention_mask=__A , past_key_values=__A , decoder_position_ids=__A , )
SCREAMING_SNAKE_CASE_ : str =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
SCREAMING_SNAKE_CASE_ : int =model.decode(
decoder_input_ids[:, -1:] , __A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__A , decoder_position_ids=__A , )
SCREAMING_SNAKE_CASE_ : Any =model.decode(__A , __A , decoder_attention_mask=__A )
SCREAMING_SNAKE_CASE_ : Tuple =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
@require_flax
class lowercase_ ( unittest.TestCase ):
__lowerCamelCase = 9_9
def _snake_case ( self ) -> Optional[Any]:
SCREAMING_SNAKE_CASE_ : int =np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =input_ids.shape[0]
SCREAMING_SNAKE_CASE_ : Optional[int] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _snake_case ( self ) -> int:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict =self._get_config_and_data()
SCREAMING_SNAKE_CASE_ : Tuple =FlaxBlenderbotForConditionalGeneration(__A )
SCREAMING_SNAKE_CASE_ : Optional[int] =lm_model(input_ids=__A )
SCREAMING_SNAKE_CASE_ : List[str] =(batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['''logits'''].shape , __A )
def _snake_case ( self ) -> str:
SCREAMING_SNAKE_CASE_ : Dict =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =FlaxBlenderbotForConditionalGeneration(__A )
SCREAMING_SNAKE_CASE_ : Dict =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
SCREAMING_SNAKE_CASE_ : int =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
SCREAMING_SNAKE_CASE_ : Dict =lm_model(input_ids=__A , decoder_input_ids=__A )
SCREAMING_SNAKE_CASE_ : Dict =(*summary.shape, config.vocab_size)
self.assertEqual(outputs['''logits'''].shape , __A )
def _snake_case ( self ) -> int:
SCREAMING_SNAKE_CASE_ : Dict =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
SCREAMING_SNAKE_CASE_ : List[Any] =shift_tokens_right(__A , 1 , 2 )
SCREAMING_SNAKE_CASE_ : Any =np.equal(__A , 1 ).astype(np.floataa ).sum()
SCREAMING_SNAKE_CASE_ : Tuple =np.equal(__A , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(__A , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class lowercase_ ( A , unittest.TestCase , A ):
__lowerCamelCase = True
__lowerCamelCase = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
__lowerCamelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def _snake_case ( self ) -> List[str]:
SCREAMING_SNAKE_CASE_ : Any =FlaxBlenderbotModelTester(self )
def _snake_case ( self ) -> Any:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__A , __A , __A )
def _snake_case ( self ) -> str:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__A , __A , __A )
def _snake_case ( self ) -> str:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
SCREAMING_SNAKE_CASE_ : Any =self._prepare_for_class(__A , __A )
SCREAMING_SNAKE_CASE_ : List[Any] =model_class(__A )
@jax.jit
def encode_jitted(__A , __A=None , **__A ):
return model.encode(input_ids=__A , attention_mask=__A )
with self.subTest('''JIT Enabled''' ):
SCREAMING_SNAKE_CASE_ : List[str] =encode_jitted(**__A ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
SCREAMING_SNAKE_CASE_ : str =encode_jitted(**__A ).to_tuple()
self.assertEqual(len(__A ) , len(__A ) )
for jitted_output, output in zip(__A , __A ):
self.assertEqual(jitted_output.shape , output.shape )
def _snake_case ( self ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
SCREAMING_SNAKE_CASE_ : str =model_class(__A )
SCREAMING_SNAKE_CASE_ : int =model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] )
SCREAMING_SNAKE_CASE_ : Any ={
'''decoder_input_ids''': inputs_dict['''decoder_input_ids'''],
'''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''],
'''encoder_outputs''': encoder_outputs,
}
@jax.jit
def decode_jitted(__A , __A , __A ):
return model.decode(
decoder_input_ids=__A , decoder_attention_mask=__A , encoder_outputs=__A , )
with self.subTest('''JIT Enabled''' ):
SCREAMING_SNAKE_CASE_ : str =decode_jitted(**__A ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
SCREAMING_SNAKE_CASE_ : List[str] =decode_jitted(**__A ).to_tuple()
self.assertEqual(len(__A ) , len(__A ) )
for jitted_output, output in zip(__A , __A ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _snake_case ( self ) -> Dict:
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE_ : List[Any] =model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
SCREAMING_SNAKE_CASE_ : Dict =np.ones((1, 1) ) * model.config.eos_token_id
SCREAMING_SNAKE_CASE_ : List[Any] =model(__A )
self.assertIsNotNone(__A )
@unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' )
@slow
def _snake_case ( self ) -> Dict:
SCREAMING_SNAKE_CASE_ : int ={'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25}
SCREAMING_SNAKE_CASE_ : List[Any] ={'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True}
SCREAMING_SNAKE_CASE_ : str =FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=__A )
SCREAMING_SNAKE_CASE_ : Optional[int] =BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' )
SCREAMING_SNAKE_CASE_ : List[str] =['''Sam''']
SCREAMING_SNAKE_CASE_ : Tuple =tokenizer(__A , return_tensors='''jax''' )
SCREAMING_SNAKE_CASE_ : Any =model.generate(**__A , **__A )
SCREAMING_SNAKE_CASE_ : Any ='''Sam is a great name. It means "sun" in Gaelic.'''
SCREAMING_SNAKE_CASE_ : Any =tokenizer.batch_decode(__A , **__A )
assert generated_txt[0].strip() == tgt_text
| 431 |
import unittest
from transformers import DebertaVaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaVaForMaskedLM,
DebertaVaForMultipleChoice,
DebertaVaForQuestionAnswering,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaModel,
)
from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST
class lowercase_ ( A ):
def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=False , __A=True , __A="None" , __A=3 , __A=4 , __A=None , ) -> Optional[Any]:
SCREAMING_SNAKE_CASE_ : Any =parent
SCREAMING_SNAKE_CASE_ : Tuple =batch_size
SCREAMING_SNAKE_CASE_ : Dict =seq_length
SCREAMING_SNAKE_CASE_ : Dict =is_training
SCREAMING_SNAKE_CASE_ : Any =use_input_mask
SCREAMING_SNAKE_CASE_ : Dict =use_token_type_ids
SCREAMING_SNAKE_CASE_ : List[Any] =use_labels
SCREAMING_SNAKE_CASE_ : Any =vocab_size
SCREAMING_SNAKE_CASE_ : Dict =hidden_size
SCREAMING_SNAKE_CASE_ : int =num_hidden_layers
SCREAMING_SNAKE_CASE_ : Any =num_attention_heads
SCREAMING_SNAKE_CASE_ : Union[str, Any] =intermediate_size
SCREAMING_SNAKE_CASE_ : Dict =hidden_act
SCREAMING_SNAKE_CASE_ : Any =hidden_dropout_prob
SCREAMING_SNAKE_CASE_ : Optional[int] =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ : str =max_position_embeddings
SCREAMING_SNAKE_CASE_ : Optional[Any] =type_vocab_size
SCREAMING_SNAKE_CASE_ : List[Any] =type_sequence_label_size
SCREAMING_SNAKE_CASE_ : Dict =initializer_range
SCREAMING_SNAKE_CASE_ : List[str] =num_labels
SCREAMING_SNAKE_CASE_ : Optional[int] =num_choices
SCREAMING_SNAKE_CASE_ : Optional[Any] =relative_attention
SCREAMING_SNAKE_CASE_ : Optional[Any] =position_biased_input
SCREAMING_SNAKE_CASE_ : Union[str, Any] =pos_att_type
SCREAMING_SNAKE_CASE_ : Tuple =scope
def _snake_case ( self ) -> Tuple:
SCREAMING_SNAKE_CASE_ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE_ : int =None
if self.use_input_mask:
SCREAMING_SNAKE_CASE_ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
SCREAMING_SNAKE_CASE_ : Tuple =None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE_ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE_ : Optional[Any] =None
SCREAMING_SNAKE_CASE_ : List[str] =None
SCREAMING_SNAKE_CASE_ : Optional[int] =None
if self.use_labels:
SCREAMING_SNAKE_CASE_ : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE_ : Optional[Any] =ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE_ : str =self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _snake_case ( self ) -> Dict:
return DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def _snake_case ( self , __A ) -> Tuple:
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[Any]:
SCREAMING_SNAKE_CASE_ : str =DebertaVaModel(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE_ : int =model(__A , attention_mask=__A , token_type_ids=__A )[0]
SCREAMING_SNAKE_CASE_ : Optional[Any] =model(__A , token_type_ids=__A )[0]
SCREAMING_SNAKE_CASE_ : int =model(__A )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> str:
SCREAMING_SNAKE_CASE_ : List[str] =DebertaVaForMaskedLM(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE_ : int =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[Any]:
SCREAMING_SNAKE_CASE_ : Tuple =self.num_labels
SCREAMING_SNAKE_CASE_ : Dict =DebertaVaForSequenceClassification(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE_ : List[str] =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(__A )
def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> Dict:
SCREAMING_SNAKE_CASE_ : str =self.num_labels
SCREAMING_SNAKE_CASE_ : int =DebertaVaForTokenClassification(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE_ : List[Any] =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> Tuple:
SCREAMING_SNAKE_CASE_ : Any =DebertaVaForQuestionAnswering(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE_ : Dict =model(
__A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[str]:
SCREAMING_SNAKE_CASE_ : Any =DebertaVaForMultipleChoice(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE_ : Optional[Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE_ : Tuple =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE_ : Any =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE_ : Dict =model(
__A , attention_mask=__A , token_type_ids=__A , labels=__A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self ) -> int:
SCREAMING_SNAKE_CASE_ : List[str] =self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) ,
) : Optional[Any] =config_and_inputs
SCREAMING_SNAKE_CASE_ : Dict ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowercase_ ( A , A , unittest.TestCase ):
__lowerCamelCase = (
(
DebertaVaModel,
DebertaVaForMaskedLM,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaForQuestionAnswering,
DebertaVaForMultipleChoice,
)
if is_torch_available()
else ()
)
__lowerCamelCase = (
{
"feature-extraction": DebertaVaModel,
"fill-mask": DebertaVaForMaskedLM,
"question-answering": DebertaVaForQuestionAnswering,
"text-classification": DebertaVaForSequenceClassification,
"token-classification": DebertaVaForTokenClassification,
"zero-shot": DebertaVaForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowerCamelCase = True
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
def _snake_case ( self ) -> List[str]:
SCREAMING_SNAKE_CASE_ : int =DebertaVaModelTester(self )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =ConfigTester(self , config_class=__A , hidden_size=37 )
def _snake_case ( self ) -> Tuple:
self.config_tester.run_common_tests()
def _snake_case ( self ) -> str:
SCREAMING_SNAKE_CASE_ : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*__A )
def _snake_case ( self ) -> Optional[int]:
SCREAMING_SNAKE_CASE_ : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*__A )
def _snake_case ( self ) -> Any:
SCREAMING_SNAKE_CASE_ : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*__A )
def _snake_case ( self ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*__A )
def _snake_case ( self ) -> List[str]:
SCREAMING_SNAKE_CASE_ : Optional[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*__A )
def _snake_case ( self ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_multiple_choice(*__A )
@slow
def _snake_case ( self ) -> Tuple:
for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE_ : Union[str, Any] =DebertaVaModel.from_pretrained(__A )
self.assertIsNotNone(__A )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase_ ( unittest.TestCase ):
@unittest.skip(reason='''Model not available yet''' )
def _snake_case ( self ) -> str:
pass
@slow
def _snake_case ( self ) -> str:
SCREAMING_SNAKE_CASE_ : List[Any] =DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' )
SCREAMING_SNAKE_CASE_ : List[str] =torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] )
SCREAMING_SNAKE_CASE_ : Tuple =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : Optional[Any] =model(__A , attention_mask=__A )[0]
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE_ : int =torch.tensor(
[[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4 ) , F'{output[:, 1:4, 1:4]}' )
| 431 | 1 |
"""simple docstring"""
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 102 |
"""simple docstring"""
import importlib.metadata
import operator
import re
import sys
from typing import Optional
from packaging import version
lowercase_ = {
"<": operator.lt,
"<=": operator.le,
"==": operator.eq,
"!=": operator.ne,
">=": operator.ge,
">": operator.gt,
}
def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict:
if got_ver is None or want_ver is None:
raise ValueError(
f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider'''
f''' reinstalling {pkg}.''' )
if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ):
raise ImportError(
f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' )
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None:
__a = f'''\n{hint}''' if hint is not None else ''''''
# non-versioned check
if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ):
__a , __a , __a = requirement, None, None
else:
__a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ )
if not match:
raise ValueError(
'''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but'''
f''' got {requirement}''' )
__a , __a = match[0]
__a = want_full.split(''',''' ) # there could be multiple requirements
__a = {}
for w in want_range:
__a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ )
if not match:
raise ValueError(
'''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,'''
f''' but got {requirement}''' )
__a , __a = match[0]
__a = want_ver
if op not in ops:
raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' )
# special case
if pkg == "python":
__a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] )
for op, want_ver in wanted.items():
_compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return
# check if any version is installed
try:
__a = importlib.metadata.version(lowerCAmelCase__ )
except importlib.metadata.PackageNotFoundError:
raise importlib.metadata.PackageNotFoundError(
f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' )
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]:
__a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main'''
return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
| 695 | 0 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
UpperCAmelCase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( A_ ):
def __init__( self : Optional[Any] , *_lowerCamelCase : Dict , **_lowerCamelCase : Optional[Any] ):
warnings.warn(
'''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PerceiverImageProcessor instead.''' , _lowerCamelCase , )
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
| 430 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class lowerCAmelCase__ :
def __init__( self : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any]=2 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Any=False , _lowerCamelCase : Optional[int]=10 , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : str=32 * 8 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Optional[Any]=4 , _lowerCamelCase : Union[str, Any]=64 , ):
_snake_case = parent
_snake_case = batch_size
_snake_case = is_training
_snake_case = use_auxiliary_loss
_snake_case = num_queries
_snake_case = num_channels
_snake_case = min_size
_snake_case = max_size
_snake_case = num_labels
_snake_case = hidden_dim
_snake_case = hidden_dim
def lowercase ( self : Optional[int] ):
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
_lowerCamelCase )
_snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase )
_snake_case = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5
).float()
_snake_case = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long()
_snake_case = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase ( self : Union[str, Any] ):
_snake_case = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
_snake_case = self.num_queries
_snake_case = self.num_labels
_snake_case = [1, 1, 1, 1]
_snake_case = self.num_channels
_snake_case = 64
_snake_case = 128
_snake_case = self.hidden_dim
_snake_case = self.hidden_dim
_snake_case = self.hidden_dim
return config
def lowercase ( self : Union[str, Any] ):
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.prepare_config_and_inputs()
_snake_case = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask}
return config, inputs_dict
def lowercase ( self : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ):
_snake_case = output.encoder_hidden_states
_snake_case = output.pixel_decoder_hidden_states
_snake_case = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers )
def lowercase ( self : Any , _lowerCamelCase : int , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Any=False ):
with torch.no_grad():
_snake_case = MaskaFormerModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
_snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase )
_snake_case = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase )
def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : List[Any] ):
_snake_case = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
def comm_check_on_output(_lowerCamelCase : List[str] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase )
_snake_case = model(_lowerCamelCase )
comm_check_on_output(_lowerCamelCase )
_snake_case = model(
pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase )
comm_check_on_output(_lowerCamelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ):
__a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
__a = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {}
__a = False
__a = False
__a = False
__a = False
def lowercase ( self : Any ):
_snake_case = MaskaFormerModelTester(self )
_snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase )
def lowercase ( self : Dict ):
self.config_tester.run_common_tests()
def lowercase ( self : List[str] ):
_snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase )
def lowercase ( self : int ):
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase )
@unittest.skip(reason='''Mask2Former does not use inputs_embeds''' )
def lowercase ( self : Union[str, Any] ):
pass
@unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' )
def lowercase ( self : Optional[Any] ):
pass
@unittest.skip(reason='''Mask2Former is not a generative model''' )
def lowercase ( self : Optional[Any] ):
pass
@unittest.skip(reason='''Mask2Former does not use token embeddings''' )
def lowercase ( self : Dict ):
pass
@require_torch_multi_gpu
@unittest.skip(
reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def lowercase ( self : Tuple ):
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def lowercase ( self : Union[str, Any] ):
pass
def lowercase ( self : str ):
_snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(_lowerCamelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
@slow
def lowercase ( self : Dict ):
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
_snake_case = MaskaFormerModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def lowercase ( self : Tuple ):
_snake_case = (self.model_tester.min_size,) * 2
_snake_case = {
'''pixel_values''': torch.randn((2, 3, *size) , device=_lowerCamelCase ),
'''mask_labels''': torch.randn((2, 10, *size) , device=_lowerCamelCase ),
'''class_labels''': torch.zeros(2 , 10 , device=_lowerCamelCase ).long(),
}
_snake_case = self.model_tester.get_config()
_snake_case = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase )
_snake_case = model(**_lowerCamelCase )
self.assertTrue(outputs.loss is not None )
def lowercase ( self : List[str] ):
_snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase )
def lowercase ( self : Any ):
_snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase )
_snake_case = model(**_lowerCamelCase , output_attentions=_lowerCamelCase )
self.assertTrue(outputs.attentions is not None )
def lowercase ( self : int ):
if not self.model_tester.is_training:
return
_snake_case = self.all_model_classes[1]
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.train()
_snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss
loss.backward()
def lowercase ( self : Dict ):
_snake_case = self.all_model_classes[1]
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = True
_snake_case = True
_snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase )
model.train()
_snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase )
_snake_case = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_snake_case = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
_snake_case = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_snake_case = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=_lowerCamelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
UpperCAmelCase__ = 1e-4
def _UpperCAmelCase ( ) -> int:
_snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_vision
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
@cached_property
def lowercase ( self : Tuple ):
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def lowercase ( self : Optional[Any] ):
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def lowercase ( self : Any ):
_snake_case = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase )
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
_snake_case = inputs['''pixel_values'''].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) )
with torch.no_grad():
_snake_case = model(**_lowerCamelCase )
_snake_case = torch.tensor(
[[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_lowerCamelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) )
_snake_case = torch.tensor(
[[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_lowerCamelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) )
_snake_case = torch.tensor(
[[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_lowerCamelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) )
def lowercase ( self : List[Any] ):
_snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval()
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
_snake_case = inputs['''pixel_values'''].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) )
with torch.no_grad():
_snake_case = model(**_lowerCamelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
_snake_case = [
[-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1],
[-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1],
[-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5],
]
_snake_case = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[
[1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2],
[0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3],
[0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5],
] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) )
def lowercase ( self : List[str] ):
_snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval()
_snake_case = self.default_image_processor
_snake_case = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , )
_snake_case = inputs['''pixel_values'''].to(_lowerCamelCase )
_snake_case = [el.to(_lowerCamelCase ) for el in inputs['''mask_labels''']]
_snake_case = [el.to(_lowerCamelCase ) for el in inputs['''class_labels''']]
with torch.no_grad():
_snake_case = model(**_lowerCamelCase )
self.assertTrue(outputs.loss is not None )
| 430 | 1 |
'''simple docstring'''
import argparse
import os
import re
import tensorflow as tf
import torch
from transformers import BertConfig, BertModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : Dict = logging.get_logger(__name__)
def __lowerCamelCase ( A__ , A__ , A__ ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = os.path.abspath(A__ )
logger.info(F"""Converting TensorFlow checkpoint from {tf_path}""" )
# Load weights from TF model
UpperCamelCase = tf.train.list_variables(A__ )
UpperCamelCase = []
UpperCamelCase = []
UpperCamelCase = []
for full_name, shape in init_vars:
# logger.info(f"Loading TF weight {name} with shape {shape}")
UpperCamelCase = full_name.split('/' )
if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]:
logger.info(F"""Skipping non-model layer {full_name}""" )
continue
if "optimizer" in full_name:
logger.info(F"""Skipping optimization layer {full_name}""" )
continue
if name[0] == "model":
# ignore initial 'model'
UpperCamelCase = name[1:]
# figure out how many levels deep the name is
UpperCamelCase = 0
for _name in name:
if _name.startswith('layer_with_weights' ):
depth += 1
else:
break
layer_depth.append(A__ )
# read data
UpperCamelCase = tf.train.load_variable(A__ , A__ )
names.append('/'.join(A__ ) )
arrays.append(A__ )
logger.info(F"""Read a total of {len(A__ ):,} layers""" )
# Sanity check
if len(set(A__ ) ) != 1:
raise ValueError(F"""Found layer names with different depths (layer depth {list(set(A__ ) )})""" )
UpperCamelCase = list(set(A__ ) )[0]
if layer_depth != 1:
raise ValueError(
'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP'
' heads.' )
# convert layers
logger.info('Converting weights...' )
for full_name, array in zip(A__ , A__ ):
UpperCamelCase = full_name.split('/' )
UpperCamelCase = model
UpperCamelCase = []
for i, m_name in enumerate(A__ ):
if m_name == ".ATTRIBUTES":
# variable names end with .ATTRIBUTES/VARIABLE_VALUE
break
if m_name.startswith('layer_with_weights' ):
UpperCamelCase = int(m_name.split('-' )[-1] )
if layer_num <= 2:
# embedding layers
# layer_num 0: word_embeddings
# layer_num 1: position_embeddings
# layer_num 2: token_type_embeddings
continue
elif layer_num == 3:
# embedding LayerNorm
trace.extend(['embeddings', 'LayerNorm'] )
UpperCamelCase = getattr(A__ , 'embeddings' )
UpperCamelCase = getattr(A__ , 'LayerNorm' )
elif layer_num > 3 and layer_num < config.num_hidden_layers + 4:
# encoder layers
trace.extend(['encoder', 'layer', str(layer_num - 4 )] )
UpperCamelCase = getattr(A__ , 'encoder' )
UpperCamelCase = getattr(A__ , 'layer' )
UpperCamelCase = pointer[layer_num - 4]
elif layer_num == config.num_hidden_layers + 4:
# pooler layer
trace.extend(['pooler', 'dense'] )
UpperCamelCase = getattr(A__ , 'pooler' )
UpperCamelCase = getattr(A__ , 'dense' )
elif m_name == "embeddings":
trace.append('embeddings' )
UpperCamelCase = getattr(A__ , 'embeddings' )
if layer_num == 0:
trace.append('word_embeddings' )
UpperCamelCase = getattr(A__ , 'word_embeddings' )
elif layer_num == 1:
trace.append('position_embeddings' )
UpperCamelCase = getattr(A__ , 'position_embeddings' )
elif layer_num == 2:
trace.append('token_type_embeddings' )
UpperCamelCase = getattr(A__ , 'token_type_embeddings' )
else:
raise ValueError(F"""Unknown embedding layer with name {full_name}""" )
trace.append('weight' )
UpperCamelCase = getattr(A__ , 'weight' )
elif m_name == "_attention_layer":
# self-attention layer
trace.extend(['attention', 'self'] )
UpperCamelCase = getattr(A__ , 'attention' )
UpperCamelCase = getattr(A__ , 'self' )
elif m_name == "_attention_layer_norm":
# output attention norm
trace.extend(['attention', 'output', 'LayerNorm'] )
UpperCamelCase = getattr(A__ , 'attention' )
UpperCamelCase = getattr(A__ , 'output' )
UpperCamelCase = getattr(A__ , 'LayerNorm' )
elif m_name == "_attention_output_dense":
# output attention dense
trace.extend(['attention', 'output', 'dense'] )
UpperCamelCase = getattr(A__ , 'attention' )
UpperCamelCase = getattr(A__ , 'output' )
UpperCamelCase = getattr(A__ , 'dense' )
elif m_name == "_output_dense":
# output dense
trace.extend(['output', 'dense'] )
UpperCamelCase = getattr(A__ , 'output' )
UpperCamelCase = getattr(A__ , 'dense' )
elif m_name == "_output_layer_norm":
# output dense
trace.extend(['output', 'LayerNorm'] )
UpperCamelCase = getattr(A__ , 'output' )
UpperCamelCase = getattr(A__ , 'LayerNorm' )
elif m_name == "_key_dense":
# attention key
trace.append('key' )
UpperCamelCase = getattr(A__ , 'key' )
elif m_name == "_query_dense":
# attention query
trace.append('query' )
UpperCamelCase = getattr(A__ , 'query' )
elif m_name == "_value_dense":
# attention value
trace.append('value' )
UpperCamelCase = getattr(A__ , 'value' )
elif m_name == "_intermediate_dense":
# attention intermediate dense
trace.extend(['intermediate', 'dense'] )
UpperCamelCase = getattr(A__ , 'intermediate' )
UpperCamelCase = getattr(A__ , 'dense' )
elif m_name == "_output_layer_norm":
# output layer norm
trace.append('output' )
UpperCamelCase = getattr(A__ , 'output' )
# weights & biases
elif m_name in ["bias", "beta"]:
trace.append('bias' )
UpperCamelCase = getattr(A__ , 'bias' )
elif m_name in ["kernel", "gamma"]:
trace.append('weight' )
UpperCamelCase = getattr(A__ , 'weight' )
else:
logger.warning(F"""Ignored {m_name}""" )
# for certain layers reshape is necessary
UpperCamelCase = '.'.join(A__ )
if re.match(R'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , A__ ) or re.match(
R'(\S+)\.attention\.output\.dense\.weight' , A__ ):
UpperCamelCase = array.reshape(pointer.data.shape )
if "kernel" in full_name:
UpperCamelCase = array.transpose()
if pointer.shape == array.shape:
UpperCamelCase = torch.from_numpy(A__ )
else:
raise ValueError(
F"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:"""
F""" {array.shape}""" )
logger.info(F"""Successfully set variable {full_name} to PyTorch layer {trace}""" )
return model
def __lowerCamelCase ( A__ , A__ , A__ ) -> Tuple:
"""simple docstring"""
# Instantiate model
logger.info(F"""Loading model based on config from {config_path}...""" )
UpperCamelCase = BertConfig.from_json_file(A__ )
UpperCamelCase = BertModel(A__ )
# Load weights from checkpoint
logger.info(F"""Loading weights from checkpoint {tf_checkpoint_path}...""" )
load_tfa_weights_in_bert(A__ , A__ , A__ )
# Save pytorch-model
logger.info(F"""Saving PyTorch model to {pytorch_dump_path}...""" )
torch.save(model.state_dict() , A__ )
if __name__ == "__main__":
_lowerCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model (must include filename).",
)
_lowerCamelCase : str = parser.parse_args()
convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 430 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
def A ( self : Dict ):
"""simple docstring"""
UpperCamelCase = tempfile.mkdtemp()
UpperCamelCase = BlipImageProcessor()
UpperCamelCase = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' )
UpperCamelCase = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' )
UpperCamelCase = InstructBlipProcessor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
processor.save_pretrained(self.tmpdirname )
def A ( self : Tuple , **UpperCamelCase__ : str ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).tokenizer
def A ( self : Any , **UpperCamelCase__ : Tuple ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor
def A ( self : List[Any] , **UpperCamelCase__ : Optional[Any] ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).qformer_tokenizer
def A ( self : Any ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def A ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
UpperCamelCase = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def A ( self : Any ):
"""simple docstring"""
UpperCamelCase = InstructBlipProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , )
processor.save_pretrained(self.tmpdirname )
UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
UpperCamelCase = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 )
UpperCamelCase = InstructBlipProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCamelCase__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCamelCase__ )
self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase__ )
def A ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.get_image_processor()
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = self.get_qformer_tokenizer()
UpperCamelCase = InstructBlipProcessor(
tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ )
UpperCamelCase = self.prepare_image_inputs()
UpperCamelCase = image_processor(UpperCamelCase__ , return_tensors='np' )
UpperCamelCase = processor(images=UpperCamelCase__ , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def A ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self.get_image_processor()
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = self.get_qformer_tokenizer()
UpperCamelCase = InstructBlipProcessor(
tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ )
UpperCamelCase = 'lower newer'
UpperCamelCase = processor(text=UpperCamelCase__ )
UpperCamelCase = tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ )
UpperCamelCase = qformer_tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] , encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] )
def A ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.get_image_processor()
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = self.get_qformer_tokenizer()
UpperCamelCase = InstructBlipProcessor(
tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ )
UpperCamelCase = 'lower newer'
UpperCamelCase = self.prepare_image_inputs()
UpperCamelCase = processor(text=UpperCamelCase__ , images=UpperCamelCase__ )
self.assertListEqual(
list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
# test if it raises when no input is passed
with pytest.raises(UpperCamelCase__ ):
processor()
def A ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = self.get_image_processor()
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = self.get_qformer_tokenizer()
UpperCamelCase = InstructBlipProcessor(
tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ )
UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCamelCase = processor.batch_decode(UpperCamelCase__ )
UpperCamelCase = tokenizer.batch_decode(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
def A ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self.get_image_processor()
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = self.get_qformer_tokenizer()
UpperCamelCase = InstructBlipProcessor(
tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ )
UpperCamelCase = 'lower newer'
UpperCamelCase = self.prepare_image_inputs()
UpperCamelCase = processor(text=UpperCamelCase__ , images=UpperCamelCase__ )
self.assertListEqual(
list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
| 430 | 1 |
def lowerCamelCase_ ( lowerCAmelCase: int = 3 , lowerCAmelCase: int = 7 , lowerCAmelCase: int = 1_00_00_00 )-> int:
_snake_case : int = 0
_snake_case : Optional[Any] = 1
for current_denominator in range(1 , limit + 1 ):
_snake_case : str = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
_snake_case : List[Any] = current_numerator
_snake_case : Optional[int] = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=100_0000))
| 669 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any:
_snake_case : int = False
_snake_case : Any = search_prob
_snake_case : Tuple = start_temperate
_snake_case : Any = []
_snake_case : List[str] = 0
_snake_case : Optional[Any] = None
while not search_end:
_snake_case : List[Any] = current_state.score()
if best_state is None or current_score > best_state.score():
_snake_case : Dict = current_state
scores.append(lowerCAmelCase )
iterations += 1
_snake_case : Optional[int] = None
_snake_case : Union[str, Any] = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
_snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor
_snake_case : int = neighbors.pop(lowerCAmelCase )
_snake_case : Union[str, Any] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
_snake_case : Union[str, Any] = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
_snake_case : Union[str, Any] = picked_neighbor
else:
_snake_case : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
_snake_case : int = picked_neighbor
_snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
_snake_case : List[str] = True
else:
_snake_case : Union[str, Any] = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(lowerCAmelCase ) , lowerCAmelCase )
plt.xlabel('Iterations' )
plt.ylabel('Function values' )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
lowerCAmelCase_ = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
# starting the problem with initial coordinates (12, 47)
lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
lowerCAmelCase_ = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict:
return (3 * x**2) - (6 * y)
lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F"""{local_min.score()}"""
)
lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F"""{local_min.score()}"""
)
| 669 | 1 |
'''simple docstring'''
import functools
def lowerCamelCase__ ( a__ , a__) -> int:
"""simple docstring"""
if not isinstance(a__ , a__) or not all(isinstance(a__ , a__) for day in days):
raise ValueError('The parameter days should be a list of integers')
if len(a__) != 3 or not all(isinstance(a__ , a__) for cost in costs):
raise ValueError('The parameter costs should be a list of three integers')
if len(a__) == 0:
return 0
if min(a__) <= 0:
raise ValueError('All days elements should be greater than 0')
if max(a__) >= 3_6_6:
raise ValueError('All days elements should be less than 366')
_snake_case : Optional[Any] = set(a__)
@functools.cache
def dynamic_programming(a__) -> int:
if index > 3_6_5:
return 0
if index not in days_set:
return dynamic_programming(index + 1)
return min(
costs[0] + dynamic_programming(index + 1) , costs[1] + dynamic_programming(index + 7) , costs[2] + dynamic_programming(index + 3_0) , )
return dynamic_programming(1)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 517 |
'''simple docstring'''
_UpperCamelCase : Dict = range(2, 20 + 1)
_UpperCamelCase : str = [10**k for k in range(ks[-1] + 1)]
_UpperCamelCase : dict[int, dict[int, list[list[int]]]] = {}
def __UpperCAmelCase ( A : List[Any] , A : str , A : Union[str, Any] , A : Union[str, Any] ) -> Optional[Any]:
UpperCAmelCase_ : Optional[Any] = sum(a_i[j] for j in range(A , len(A ) ) )
UpperCAmelCase_ : Union[str, Any] = sum(a_i[j] * base[j] for j in range(min(len(A ) , A ) ) )
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = 0, 0
UpperCAmelCase_ : str = n - i
UpperCAmelCase_ : Union[str, Any] = memo.get(A )
if sub_memo is not None:
UpperCAmelCase_ : Dict = sub_memo.get(A )
if jumps is not None and len(A ) > 0:
# find and make the largest jump without going over
UpperCAmelCase_ : str = -1
for _k in range(len(A ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
UpperCAmelCase_ : Any = _k
break
if max_jump >= 0:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = jumps[max_jump]
# since the difference between jumps is cached, add c
UpperCAmelCase_ : Union[str, Any] = diff + c
for j in range(min(A , len(A ) ) ):
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = divmod(A , 1_0 )
if new_c > 0:
add(A , A , A )
else:
UpperCAmelCase_ : Tuple = []
else:
UpperCAmelCase_ : List[str] = {c: []}
UpperCAmelCase_ : List[str] = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = next_term(A , k - 1 , i + dn , A )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
UpperCAmelCase_ , UpperCAmelCase_ : int = compute(A , A , i + dn , A )
diff += _diff
dn += terms_jumped
UpperCAmelCase_ : List[str] = sub_memo[c]
# keep jumps sorted by # of terms skipped
UpperCAmelCase_ : List[Any] = 0
while j < len(A ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(A , (diff, dn, k) )
return (diff, dn)
def __UpperCAmelCase ( A : List[str] , A : Dict , A : List[str] , A : Union[str, Any] ) -> str:
if i >= n:
return 0, i
if k > len(A ):
a_i.extend([0 for _ in range(k - len(A ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
UpperCAmelCase_ : int = i
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = 0, 0, 0
for j in range(len(A ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
UpperCAmelCase_ : Optional[int] = ds_c + ds_b
diff += addend
UpperCAmelCase_ : Any = 0
for j in range(A ):
UpperCAmelCase_ : Dict = a_i[j] + addend
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = divmod(A , 1_0 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(A , A , A )
return diff, i - start_i
def __UpperCAmelCase ( A : Dict , A : Union[str, Any] , A : str ) -> List[Any]:
for j in range(A , len(A ) ):
UpperCAmelCase_ : List[str] = digits[j] + addend
if s >= 1_0:
UpperCAmelCase_ , UpperCAmelCase_ : Any = divmod(A , 1_0 )
UpperCAmelCase_ : str = addend // 1_0 + quotient
else:
UpperCAmelCase_ : Any = s
UpperCAmelCase_ : Any = addend // 1_0
if addend == 0:
break
while addend > 0:
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = divmod(A , 1_0 )
digits.append(A )
def __UpperCAmelCase ( A : int = 1_0**1_5 ) -> int:
UpperCAmelCase_ : Any = [1]
UpperCAmelCase_ : Union[str, Any] = 1
UpperCAmelCase_ : List[Any] = 0
while True:
UpperCAmelCase_ , UpperCAmelCase_ : str = next_term(A , 2_0 , i + dn , A )
dn += terms_jumped
if dn == n - i:
break
UpperCAmelCase_ : Any = 0
for j in range(len(A ) ):
a_n += digits[j] * 1_0**j
return a_n
if __name__ == "__main__":
print(f'''{solution() = }''')
| 541 | 0 |
from __future__ import annotations
__a = """Muhammad Umer Farooq"""
__a = """MIT"""
__a = """1.0.0"""
__a = """Muhammad Umer Farooq"""
__a = """[email protected]"""
__a = """Alpha"""
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class UpperCamelCase__( _UpperCamelCase ):
"""simple docstring"""
def __init__( self : List[Any] , snake_case__ : str ):
"""simple docstring"""
super().__init__()
A =[]
A =domain
def _a ( self : List[Any] , snake_case__ : str , snake_case__ : list[tuple[str, str | None]] ):
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
A =parse.urljoin(self.domain , __a )
self.urls.append(__a )
def UpperCamelCase_ ( a_ ) ->str:
return ".".join(get_sub_domain_name(lowercase_ ).split("." )[-2:] )
def UpperCamelCase_ ( a_ ) ->str:
return parse.urlparse(lowercase_ ).netloc
def UpperCamelCase_ ( a_ = "https://github.com" ) ->list[str]:
A =get_domain_name(lowercase_ )
# Initialize the parser
A =Parser(lowercase_ )
try:
# Open URL
A =requests.get(lowercase_ )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
A =set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
A =requests.get(lowercase_ )
# Get the valid email.
A =re.findall("[a-zA-Z0-9]+@" + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(lowercase_ )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(lowercase_ )
if __name__ == "__main__":
__a = emails_from_url("""https://github.com""")
print(F'''{len(emails)} emails found:''')
print("""\n""".join(sorted(emails)))
| 707 |
from __future__ import annotations
def UpperCamelCase_ ( a_ ) ->None:
create_state_space_tree(a_ , [] , 0 , [0 for i in range(len(a_ ) )] )
def UpperCamelCase_ ( a_ , a_ , a_ , a_ , ) ->None:
if index == len(a_ ):
print(a_ )
return
for i in range(len(a_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
A =True
create_state_space_tree(a_ , a_ , index + 1 , a_ )
current_sequence.pop()
A =False
__a = [3, 1, 2, 4]
generate_all_permutations(sequence)
__a = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 689 | 0 |
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE ( snake_case ) -> Union[str, Any]:
_UpperCAmelCase = OrderedDict()
for key, value in state_dict.items():
if key.startswith("""module.encoder""" ):
_UpperCAmelCase = key.replace("""module.encoder""" , """glpn.encoder""" )
if key.startswith("""module.decoder""" ):
_UpperCAmelCase = key.replace("""module.decoder""" , """decoder.stages""" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase = key[key.find("""patch_embed""" ) + len("""patch_embed""" )]
_UpperCAmelCase = key.replace(f"patch_embed{idx}" , f"patch_embeddings.{int(snake_case )-1}" )
if "norm" in key:
_UpperCAmelCase = key.replace("""norm""" , """layer_norm""" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )]
_UpperCAmelCase = key.replace(f"layer_norm{idx}" , f"layer_norm.{int(snake_case )-1}" )
if "layer_norm1" in key:
_UpperCAmelCase = key.replace("""layer_norm1""" , """layer_norm_1""" )
if "layer_norm2" in key:
_UpperCAmelCase = key.replace("""layer_norm2""" , """layer_norm_2""" )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase = key[key.find("""block""" ) + len("""block""" )]
_UpperCAmelCase = key.replace(f"block{idx}" , f"block.{int(snake_case )-1}" )
if "attn.q" in key:
_UpperCAmelCase = key.replace("""attn.q""" , """attention.self.query""" )
if "attn.proj" in key:
_UpperCAmelCase = key.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in key:
_UpperCAmelCase = key.replace("""attn""" , """attention.self""" )
if "fc1" in key:
_UpperCAmelCase = key.replace("""fc1""" , """dense1""" )
if "fc2" in key:
_UpperCAmelCase = key.replace("""fc2""" , """dense2""" )
if "linear_pred" in key:
_UpperCAmelCase = key.replace("""linear_pred""" , """classifier""" )
if "linear_fuse" in key:
_UpperCAmelCase = key.replace("""linear_fuse.conv""" , """linear_fuse""" )
_UpperCAmelCase = key.replace("""linear_fuse.bn""" , """batch_norm""" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase = key[key.find("""linear_c""" ) + len("""linear_c""" )]
_UpperCAmelCase = key.replace(f"linear_c{idx}" , f"linear_c.{int(snake_case )-1}" )
if "bot_conv" in key:
_UpperCAmelCase = key.replace("""bot_conv""" , """0.convolution""" )
if "skip_conv1" in key:
_UpperCAmelCase = key.replace("""skip_conv1""" , """1.convolution""" )
if "skip_conv2" in key:
_UpperCAmelCase = key.replace("""skip_conv2""" , """2.convolution""" )
if "fusion1" in key:
_UpperCAmelCase = key.replace("""fusion1""" , """1.fusion""" )
if "fusion2" in key:
_UpperCAmelCase = key.replace("""fusion2""" , """2.fusion""" )
if "fusion3" in key:
_UpperCAmelCase = key.replace("""fusion3""" , """3.fusion""" )
if "fusion" in key and "conv" in key:
_UpperCAmelCase = key.replace("""conv""" , """convolutional_layer""" )
if key.startswith("""module.last_layer_depth""" ):
_UpperCAmelCase = key.replace("""module.last_layer_depth""" , """head.head""" )
_UpperCAmelCase = value
return new_state_dict
def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Tuple:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.weight" )
_UpperCAmelCase = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.bias" )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase = kv_bias[config.hidden_sizes[i] :]
def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]:
_UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
_UpperCAmelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw )
return image
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case=False , snake_case=None ) -> Optional[Any]:
_UpperCAmelCase = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] )
# load image processor (only resize + rescale)
_UpperCAmelCase = GLPNImageProcessor()
# prepare image
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=snake_case , return_tensors="""pt""" ).pixel_values
logger.info("""Converting model...""" )
# load original state dict
_UpperCAmelCase = torch.load(snake_case , map_location=torch.device("""cpu""" ) )
# rename keys
_UpperCAmelCase = rename_keys(snake_case )
# key and value matrices need special treatment
read_in_k_v(snake_case , snake_case )
# create HuggingFace model and load state dict
_UpperCAmelCase = GLPNForDepthEstimation(snake_case )
model.load_state_dict(snake_case )
model.eval()
# forward pass
_UpperCAmelCase = model(snake_case )
_UpperCAmelCase = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_UpperCAmelCase = torch.tensor(
[[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] )
elif "kitti" in model_name:
_UpperCAmelCase = torch.tensor(
[[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] )
else:
raise ValueError(f"Unknown model name: {model_name}" )
_UpperCAmelCase = torch.Size([1, 4_8_0, 6_4_0] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] , snake_case , atol=1E-4 )
print("""Looks ok!""" )
# finally, push to hub if required
if push_to_hub:
logger.info("""Pushing model and image processor to the hub...""" )
model.push_to_hub(
repo_path_or_name=Path(snake_case , snake_case ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=snake_case , )
image_processor.push_to_hub(
repo_path_or_name=Path(snake_case , snake_case ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=snake_case , )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path",
default=None,
type=str,
help="Path to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub."
)
parser.add_argument(
"--model_name",
default="glpn-kitti",
type=str,
help="Name of the model in case you're pushing to the hub.",
)
a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 518 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
a = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def _SCREAMING_SNAKE_CASE ( snake_case = "mumbai" ) -> Generator[tuple[str, str], None, None]:
_UpperCAmelCase = BeautifulSoup(requests.get(url + location ).content , """html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ):
_UpperCAmelCase = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
_UpperCAmelCase = job.find("""span""" , {"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(F'Job {i:>2} is {job[0]} at {job[1]}') | 518 | 1 |
"""simple docstring"""
def A_ ( __lowercase ):
if number > 0:
raise ValueError('input must be a negative integer' )
UpperCamelCase_ : Optional[Any] =len(bin(__lowercase )[3:] )
UpperCamelCase_ : str =bin(abs(__lowercase ) - (1 << binary_number_length) )[3:]
UpperCamelCase_ : Tuple =(
(
'1'
+ '0' * (binary_number_length - len(__lowercase ))
+ twos_complement_number
)
if number < 0
else '0'
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 395 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class a__ ( A__ ):
def lowerCamelCase_ ( self :Any ):
'''simple docstring'''
UpperCamelCase_ : List[str] =self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_lowerCamelCase , 'tf_padding' ) )
self.parent.assertTrue(hasattr(_lowerCamelCase , 'depth_multiplier' ) )
class a__ :
def __init__( self :Tuple , _lowerCamelCase :int , _lowerCamelCase :Optional[Any]=13 , _lowerCamelCase :List[Any]=3 , _lowerCamelCase :Optional[Any]=32 , _lowerCamelCase :str=0.25 , _lowerCamelCase :str=8 , _lowerCamelCase :str=8 , _lowerCamelCase :Tuple=6 , _lowerCamelCase :Optional[Any]=32 , _lowerCamelCase :Union[str, Any]=True , _lowerCamelCase :int=True , _lowerCamelCase :Optional[int]=True , _lowerCamelCase :Tuple="relu6" , _lowerCamelCase :List[Any]=1_280 , _lowerCamelCase :Optional[int]=0.1 , _lowerCamelCase :Optional[Any]=0.02 , _lowerCamelCase :Dict=True , _lowerCamelCase :List[str]=True , _lowerCamelCase :List[str]=10 , _lowerCamelCase :List[Any]=None , ):
'''simple docstring'''
UpperCamelCase_ : Optional[Any] =parent
UpperCamelCase_ : Optional[Any] =batch_size
UpperCamelCase_ : List[str] =num_channels
UpperCamelCase_ : Union[str, Any] =image_size
UpperCamelCase_ : Union[str, Any] =depth_multiplier
UpperCamelCase_ : Optional[Any] =depth_divisible_by
UpperCamelCase_ : Optional[Any] =min_depth
UpperCamelCase_ : List[Any] =expand_ratio
UpperCamelCase_ : Any =tf_padding
UpperCamelCase_ : List[str] =output_stride
UpperCamelCase_ : Tuple =first_layer_is_expansion
UpperCamelCase_ : Any =finegrained_output
UpperCamelCase_ : Dict =hidden_act
UpperCamelCase_ : int =last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier )
UpperCamelCase_ : Optional[int] =classifier_dropout_prob
UpperCamelCase_ : str =use_labels
UpperCamelCase_ : List[Any] =is_training
UpperCamelCase_ : Tuple =num_labels
UpperCamelCase_ : Optional[int] =initializer_range
UpperCamelCase_ : Union[str, Any] =scope
def lowerCamelCase_ ( self :str ):
'''simple docstring'''
UpperCamelCase_ : str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase_ : Dict =None
UpperCamelCase_ : Dict =None
if self.use_labels:
UpperCamelCase_ : List[str] =ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase_ : List[Any] =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCamelCase_ : Any =self.get_config()
return config, pixel_values, labels, pixel_labels
def lowerCamelCase_ ( self :Any ):
'''simple docstring'''
return MobileNetVaConfig(
num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def lowerCamelCase_ ( self :List[str] , _lowerCamelCase :Optional[int] , _lowerCamelCase :str , _lowerCamelCase :Tuple , _lowerCamelCase :List[str] ):
'''simple docstring'''
UpperCamelCase_ : List[Any] =MobileNetVaModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_ : List[Any] =model(_lowerCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
self.parent.assertEqual(
result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , )
def lowerCamelCase_ ( self :Dict , _lowerCamelCase :int , _lowerCamelCase :Optional[Any] , _lowerCamelCase :str , _lowerCamelCase :Optional[Any] ):
'''simple docstring'''
UpperCamelCase_ : Tuple =self.num_labels
UpperCamelCase_ : List[str] =MobileNetVaForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_ : List[str] =model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase_ ( self :Any , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :str , _lowerCamelCase :Dict ):
'''simple docstring'''
UpperCamelCase_ : Tuple =self.num_labels
UpperCamelCase_ : int =MobileNetVaForSemanticSegmentation(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_ : Dict =model(_lowerCamelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
UpperCamelCase_ : int =model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowerCamelCase_ ( self :Any ):
'''simple docstring'''
UpperCamelCase_ : str =self.prepare_config_and_inputs()
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : int =config_and_inputs
UpperCamelCase_ : Dict ={'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a__ ( A__ , A__ , unittest.TestCase ):
UpperCAmelCase__ = (
(MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCAmelCase__ = (
{
'''feature-extraction''': MobileNetVaModel,
'''image-classification''': MobileNetVaForImageClassification,
'''image-segmentation''': MobileNetVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def lowerCamelCase_ ( self :Union[str, Any] ):
'''simple docstring'''
UpperCamelCase_ : Dict =MobileNetVaModelTester(self )
UpperCamelCase_ : Any =MobileNetVaConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase )
def lowerCamelCase_ ( self :int ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileNetV2 does not use inputs_embeds' )
def lowerCamelCase_ ( self :int ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileNetV2 does not support input and output embeddings' )
def lowerCamelCase_ ( self :str ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileNetV2 does not output attentions' )
def lowerCamelCase_ ( self :int ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self :List[Any] ):
'''simple docstring'''
UpperCamelCase_ , UpperCamelCase_ : List[str] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_ : Tuple =model_class(_lowerCamelCase )
UpperCamelCase_ : Dict =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase_ : Optional[int] =[*signature.parameters.keys()]
UpperCamelCase_ : List[str] =['pixel_values']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def lowerCamelCase_ ( self :List[str] ):
'''simple docstring'''
UpperCamelCase_ : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def lowerCamelCase_ ( self :Dict ):
'''simple docstring'''
def check_hidden_states_output(_lowerCamelCase :List[Any] , _lowerCamelCase :List[Any] , _lowerCamelCase :List[Any] ):
UpperCamelCase_ : List[str] =model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
with torch.no_grad():
UpperCamelCase_ : str =model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
UpperCamelCase_ : Optional[Any] =outputs.hidden_states
UpperCamelCase_ : List[str] =16
self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase )
UpperCamelCase_ , UpperCamelCase_ : str =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_ : Dict =True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase_ : Dict =True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_ ( self :Any ):
'''simple docstring'''
UpperCamelCase_ : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase )
def lowerCamelCase_ ( self :Optional[Any] ):
'''simple docstring'''
UpperCamelCase_ : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase )
@slow
def lowerCamelCase_ ( self :str ):
'''simple docstring'''
for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase_ : List[str] =MobileNetVaModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def A_ ( ):
UpperCamelCase_ : Dict =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class a__ ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self :Tuple ):
'''simple docstring'''
return (
MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None
)
@slow
def lowerCamelCase_ ( self :Tuple ):
'''simple docstring'''
UpperCamelCase_ : Optional[int] =MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_lowerCamelCase )
UpperCamelCase_ : List[Any] =self.default_image_processor
UpperCamelCase_ : List[Any] =prepare_img()
UpperCamelCase_ : List[str] =image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCamelCase_ : List[Any] =model(**_lowerCamelCase )
# verify the logits
UpperCamelCase_ : Optional[int] =torch.Size((1, 1_001) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
UpperCamelCase_ : Optional[Any] =torch.tensor([0.2445, -1.1993, 0.1905] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) )
@slow
def lowerCamelCase_ ( self :Tuple ):
'''simple docstring'''
UpperCamelCase_ : Dict =MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' )
UpperCamelCase_ : Optional[int] =model.to(_lowerCamelCase )
UpperCamelCase_ : Dict =MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' )
UpperCamelCase_ : Any =prepare_img()
UpperCamelCase_ : List[Any] =image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCamelCase_ : Any =model(**_lowerCamelCase )
UpperCamelCase_ : Any =outputs.logits
# verify the logits
UpperCamelCase_ : Optional[int] =torch.Size((1, 21, 65, 65) )
self.assertEqual(logits.shape , _lowerCamelCase )
UpperCamelCase_ : List[Any] =torch.tensor(
[
[[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]],
[[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]],
[[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]],
] , device=_lowerCamelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1E-4 ) )
| 395 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ = {
"configuration_blip_2": [
"BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Blip2Config",
"Blip2QFormerConfig",
"Blip2VisionConfig",
],
"processing_blip_2": ["Blip2Processor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Blip2Model",
"Blip2QFormerModel",
"Blip2PreTrainedModel",
"Blip2ForConditionalGeneration",
"Blip2VisionModel",
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 574 |
"""simple docstring"""
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
lowerCamelCase__ = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def _SCREAMING_SNAKE_CASE ( UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Any=None , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : Dict=None , UpperCamelCase : Tuple=None , ):
if attention_mask is None:
A__ = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
A__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
A__ = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
A__ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
A__ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _UpperCamelCase :
def __init__(self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=9_9 , lowerCamelCase__=1_6 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=3_2 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=0.0_2 , ):
"""simple docstring"""
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_labels
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = eos_token_id
A__ = pad_token_id
A__ = bos_token_id
A__ = initializer_range
def A (self ):
"""simple docstring"""
A__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
A__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
A__ = shift_tokens_right(lowerCamelCase__ , 1 , 2 )
A__ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , )
A__ = prepare_blenderbot_inputs_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
return config, inputs_dict
def A (self ):
"""simple docstring"""
A__ ,A__ = self.prepare_config_and_inputs()
return config, inputs_dict
def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
A__ = 2_0
A__ = model_class_name(lowerCamelCase__ )
A__ = model.encode(inputs_dict["""input_ids"""] )
A__ ,A__ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
A__ = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ )
A__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
A__ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
A__ = model.decode(
decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , )
A__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
A__ = model.decode(
decoder_input_ids[:, -1:] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase__ , )
A__ = model.decode(lowerCamelCase__ , lowerCamelCase__ )
A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
A__ = 2_0
A__ = model_class_name(lowerCamelCase__ )
A__ = model.encode(inputs_dict["""input_ids"""] )
A__ ,A__ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
A__ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
A__ = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ )
A__ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
A__ = model.decode(
decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , )
A__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
A__ = model.decode(
decoder_input_ids[:, -1:] , lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , )
A__ = model.decode(lowerCamelCase__ , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ )
A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
@require_flax
class _UpperCamelCase ( unittest.TestCase):
__lowerCamelCase = 9_9
def A (self ):
"""simple docstring"""
A__ = np.array(
[
[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2],
[6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2],
[5, 9_7, 1_7, 3_9, 9_4, 4_0, 2],
[7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2],
[8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2],
[5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding
[6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2],
[5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2],
[4_8, 6_1, 9, 2_4, 7_1, 8_2, 2],
[2_6, 1, 6_0, 4_8, 2_2, 1_3, 2],
[2_1, 5, 6_2, 2_8, 1_4, 7_6, 2],
[4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2],
[7_0, 7_0, 5_0, 9, 2_8, 0, 2],
] , dtype=np.intaa , )
A__ = input_ids.shape[0]
A__ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def A (self ):
"""simple docstring"""
A__ ,A__ ,A__ = self._get_config_and_data()
A__ = FlaxBlenderbotForConditionalGeneration(lowerCamelCase__ )
A__ = lm_model(input_ids=lowerCamelCase__ )
A__ = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCamelCase__ )
def A (self ):
"""simple docstring"""
A__ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , )
A__ = FlaxBlenderbotForConditionalGeneration(lowerCamelCase__ )
A__ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa )
A__ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa )
A__ = lm_model(input_ids=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ )
A__ = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCamelCase__ )
def A (self ):
"""simple docstring"""
A__ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa )
A__ = shift_tokens_right(lowerCamelCase__ , 1 , 2 )
A__ = np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum()
A__ = np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(lowerCamelCase__ , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class _UpperCamelCase ( __snake_case , unittest.TestCase , __snake_case):
__lowerCamelCase = True
__lowerCamelCase = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
__lowerCamelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def A (self ):
"""simple docstring"""
A__ = FlaxBlenderbotModelTester(self )
def A (self ):
"""simple docstring"""
A__ ,A__ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def A (self ):
"""simple docstring"""
A__ ,A__ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def A (self ):
"""simple docstring"""
A__ ,A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
A__ = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ )
A__ = model_class(lowerCamelCase__ )
@jax.jit
def encode_jitted(lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ):
return model.encode(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ )
with self.subTest("""JIT Enabled""" ):
A__ = encode_jitted(**lowerCamelCase__ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
A__ = encode_jitted(**lowerCamelCase__ ).to_tuple()
self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) )
for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
def A (self ):
"""simple docstring"""
A__ ,A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
A__ = model_class(lowerCamelCase__ )
A__ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
A__ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
return model.decode(
decoder_input_ids=lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , encoder_outputs=lowerCamelCase__ , )
with self.subTest("""JIT Enabled""" ):
A__ = decode_jitted(**lowerCamelCase__ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
A__ = decode_jitted(**lowerCamelCase__ ).to_tuple()
self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) )
for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def A (self ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
A__ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
A__ = np.ones((1, 1) ) * model.config.eos_token_id
A__ = model(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" )
@slow
def A (self ):
"""simple docstring"""
A__ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5}
A__ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
A__ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCamelCase__ )
A__ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" )
A__ = ["""Sam"""]
A__ = tokenizer(lowerCamelCase__ , return_tensors="""jax""" )
A__ = model.generate(**lowerCamelCase__ , **lowerCamelCase__ )
A__ = """Sam is a great name. It means \"sun\" in Gaelic."""
A__ = tokenizer.batch_decode(lowerCamelCase__ , **lowerCamelCase__ )
assert generated_txt[0].strip() == tgt_text
| 574 | 1 |
"""simple docstring"""
import logging
import os
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from accelerate.utils.imports import (
is_abit_bnb_available,
is_abit_bnb_available,
is_bnb_available,
)
from ..big_modeling import dispatch_model, init_empty_weights
from .dataclasses import BnbQuantizationConfig
from .modeling import (
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
load_checkpoint_in_model,
offload_weight,
set_module_tensor_to_device,
)
if is_bnb_available():
import bitsandbytes as bnb
from copy import deepcopy
SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__)
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = None, SCREAMING_SNAKE_CASE__ = None, SCREAMING_SNAKE_CASE__ = None, SCREAMING_SNAKE_CASE__ = None, SCREAMING_SNAKE_CASE__ = None, SCREAMING_SNAKE_CASE__ = False, ) -> Optional[int]:
a_ : Dict = bnb_quantization_config.load_in_abit
a_ : Dict = bnb_quantization_config.load_in_abit
if load_in_abit and not is_abit_bnb_available():
raise ImportError(
"You have a version of `bitsandbytes` that is not compatible with 8bit quantization,"
" make sure you have the latest version of `bitsandbytes` installed." )
if load_in_abit and not is_abit_bnb_available():
raise ValueError(
"You have a version of `bitsandbytes` that is not compatible with 4bit quantization,"
"make sure you have the latest version of `bitsandbytes` installed." )
a_ : str = []
# custom device map
if isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) and len(device_map.keys() ) > 1:
a_ : Any = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if bnb_quantization_config.skip_modules is None:
a_ : Optional[Any] = get_keys_to_not_convert(SCREAMING_SNAKE_CASE__ )
# add cpu modules to skip modules only for 4-bit modules
if load_in_abit:
bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE__ )
a_ : str = bnb_quantization_config.skip_modules
# We add the modules we want to keep in full precision
if bnb_quantization_config.keep_in_fpaa_modules is None:
a_ : Any = []
a_ : Tuple = bnb_quantization_config.keep_in_fpaa_modules
modules_to_not_convert.extend(SCREAMING_SNAKE_CASE__ )
# compatibility with peft
a_ : int = load_in_abit
a_ : Optional[int] = load_in_abit
a_ : Optional[Any] = get_parameter_device(SCREAMING_SNAKE_CASE__ )
if model_device.type != "meta":
# quantization of an already loaded model
logger.warning(
"It is not recommended to quantize a loaded model. "
"The model should be instantiated under the `init_empty_weights` context manager." )
a_ : Tuple = replace_with_bnb_layers(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, modules_to_not_convert=SCREAMING_SNAKE_CASE__ )
# convert param to the right dtype
a_ : Any = bnb_quantization_config.torch_dtype
for name, param in model.state_dict().items():
if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ):
param.to(torch.floataa )
if param.dtype != torch.floataa:
a_ : Optional[int] = name.replace(".weight", "" ).replace(".bias", "" )
a_ : List[Any] = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if param is not None:
param.to(torch.floataa )
elif torch.is_floating_point(SCREAMING_SNAKE_CASE__ ):
param.to(SCREAMING_SNAKE_CASE__ )
if model_device.type == "cuda":
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
model.cuda(torch.cuda.current_device() )
torch.cuda.empty_cache()
elif torch.cuda.is_available():
model.to(torch.cuda.current_device() )
else:
raise RuntimeError("No GPU found. A GPU is needed for quantization." )
logger.info(
F"""The model device type is {model_device.type}. However, cuda is needed for quantization."""
"We move the model to cuda." )
return model
elif weights_location is None:
raise RuntimeError(
F"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ )
else:
with init_empty_weights():
a_ : str = replace_with_bnb_layers(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, modules_to_not_convert=SCREAMING_SNAKE_CASE__ )
a_ : Optional[Any] = get_quantized_model_device_map(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, max_memory=SCREAMING_SNAKE_CASE__, no_split_module_classes=SCREAMING_SNAKE_CASE__, )
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
a_ : List[str] = True
a_ : str = any(x in list(device_map.values() ) for x in ["cpu", "disk"] )
load_checkpoint_in_model(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, dtype=bnb_quantization_config.torch_dtype, offload_folder=SCREAMING_SNAKE_CASE__, offload_state_dict=SCREAMING_SNAKE_CASE__, keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules, offload_abit_bnb=load_in_abit and offload, )
return dispatch_model(SCREAMING_SNAKE_CASE__, device_map=SCREAMING_SNAKE_CASE__, offload_dir=SCREAMING_SNAKE_CASE__ )
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__=None, SCREAMING_SNAKE_CASE__=None, SCREAMING_SNAKE_CASE__=None ) -> List[str]:
if device_map is None:
if torch.cuda.is_available():
a_ : Tuple = {"": torch.cuda.current_device()}
else:
raise RuntimeError("No GPU found. A GPU is needed for quantization." )
logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." )
if isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
"'sequential'." )
a_ : Any = {}
special_dtypes.update(
{
name: bnb_quantization_config.torch_dtype
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.skip_modules )
} )
special_dtypes.update(
{
name: torch.floataa
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules )
} )
a_ : Optional[Any] = {}
a_ : Optional[Any] = special_dtypes
a_ : Union[str, Any] = no_split_module_classes
a_ : Union[str, Any] = bnb_quantization_config.target_dtype
# get max_memory for each device.
if device_map != "sequential":
a_ : int = get_balanced_memory(
SCREAMING_SNAKE_CASE__, low_zero=(device_map == "balanced_low_0"), max_memory=SCREAMING_SNAKE_CASE__, **SCREAMING_SNAKE_CASE__, )
a_ : List[Any] = max_memory
a_ : Union[str, Any] = infer_auto_device_map(SCREAMING_SNAKE_CASE__, **SCREAMING_SNAKE_CASE__ )
if isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
# check if don't have any quantized module on the cpu
a_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules
a_ : Optional[Any] = {
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
}
for device in ["cpu", "disk"]:
if device in device_map_without_some_modules.values():
if bnb_quantization_config.load_in_abit:
raise ValueError(
"\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " )
else:
logger.info(
"Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" )
del device_map_without_some_modules
return device_map
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__=None, SCREAMING_SNAKE_CASE__=None ) -> List[Any]:
if modules_to_not_convert is None:
a_ : List[Any] = []
a_ , a_ : List[Any] = _replace_with_bnb_layers(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if not has_been_replaced:
logger.warning(
"You are loading your model in 8bit or 4bit but no linear modules were found in your model."
" this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers."
" Please double check your model architecture, or submit an issue on github if you think this is"
" a bug." )
return model
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__=None, SCREAMING_SNAKE_CASE__=None, ) -> Tuple:
a_ : Optional[Any] = False
for name, module in model.named_children():
if current_key_name is None:
a_ : Optional[Any] = []
current_key_name.append(SCREAMING_SNAKE_CASE__ )
if isinstance(SCREAMING_SNAKE_CASE__, nn.Linear ) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
a_ : str = ".".join(SCREAMING_SNAKE_CASE__ )
a_ : List[str] = True
for key in modules_to_not_convert:
if (
(key in current_key_name_str) and (key + "." in current_key_name_str)
) or key == current_key_name_str:
a_ : int = False
break
if proceed:
# Load bnb module with empty weight and replace ``nn.Linear` module
if bnb_quantization_config.load_in_abit:
a_ : Optional[Any] = bnb.nn.LinearabitLt(
module.in_features, module.out_features, module.bias is not None, has_fpaa_weights=SCREAMING_SNAKE_CASE__, threshold=bnb_quantization_config.llm_inta_threshold, )
elif bnb_quantization_config.load_in_abit:
a_ : str = bnb.nn.Linearabit(
module.in_features, module.out_features, module.bias is not None, bnb_quantization_config.bnb_abit_compute_dtype, compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant, quant_type=bnb_quantization_config.bnb_abit_quant_type, )
else:
raise ValueError("load_in_8bit and load_in_4bit can't be both False" )
a_ : Tuple = module.weight.data
if module.bias is not None:
a_ : str = module.bias.data
bnb_module.requires_grad_(SCREAMING_SNAKE_CASE__ )
setattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
a_ : str = True
if len(list(module.children() ) ) > 0:
a_ , a_ : int = _replace_with_bnb_layers(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
a_ : Tuple = has_been_replaced | _has_been_replaced
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Tuple:
# Create a copy of the model
with init_empty_weights():
a_ : Optional[int] = deepcopy(SCREAMING_SNAKE_CASE__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
a_ : Tuple = find_tied_parameters(SCREAMING_SNAKE_CASE__ )
# For compatibility with Accelerate < 0.18
if isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
a_ : Optional[int] = sum(list(tied_params.values() ), [] ) + list(tied_params.keys() )
else:
a_ : List[str] = sum(SCREAMING_SNAKE_CASE__, [] )
a_ : List[Any] = len(SCREAMING_SNAKE_CASE__ ) > 0
# Check if it is a base model
a_ : Any = False
if hasattr(SCREAMING_SNAKE_CASE__, "base_model_prefix" ):
a_ : Tuple = not hasattr(SCREAMING_SNAKE_CASE__, model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
a_ : int = list(model.named_children() )
a_ : str = [list_modules[-1][0]]
# add last module together with tied weights
a_ : Dict = set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ )
a_ : Union[str, Any] = list(set(SCREAMING_SNAKE_CASE__ ) ) + list(SCREAMING_SNAKE_CASE__ )
# remove ".weight" from the keys
a_ : Union[str, Any] = [".weight", ".bias"]
a_ : Optional[int] = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
a_ : List[Any] = name.replace(SCREAMING_SNAKE_CASE__, "" )
filtered_module_names.append(SCREAMING_SNAKE_CASE__ )
return filtered_module_names
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Tuple:
for m in model.modules():
if isinstance(SCREAMING_SNAKE_CASE__, bnb.nn.Linearabit ):
return True
return False
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> str:
return next(parameter.parameters() ).device
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Optional[Any]:
# if it is not quantized, we quantize and offload the quantized weights and the SCB stats
if fpaa_statistics is None:
set_module_tensor_to_device(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, 0, dtype=SCREAMING_SNAKE_CASE__, value=SCREAMING_SNAKE_CASE__ )
a_ : List[str] = param_name
a_ : Dict = model
if "." in tensor_name:
a_ : Union[str, Any] = tensor_name.split("." )
for split in splits[:-1]:
a_ : List[Any] = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if new_module is None:
raise ValueError(F"""{module} has no attribute {split}.""" )
a_ : List[Any] = new_module
a_ : int = splits[-1]
# offload weights
a_ : Dict = False
offload_weight(module._parameters[tensor_name], SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, index=SCREAMING_SNAKE_CASE__ )
if hasattr(module._parameters[tensor_name], "SCB" ):
offload_weight(
module._parameters[tensor_name].SCB, param_name.replace("weight", "SCB" ), SCREAMING_SNAKE_CASE__, index=SCREAMING_SNAKE_CASE__, )
else:
offload_weight(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, index=SCREAMING_SNAKE_CASE__ )
offload_weight(SCREAMING_SNAKE_CASE__, param_name.replace("weight", "SCB" ), SCREAMING_SNAKE_CASE__, index=SCREAMING_SNAKE_CASE__ )
set_module_tensor_to_device(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, "meta", dtype=SCREAMING_SNAKE_CASE__, value=torch.empty(*param.size() ) ) | 370 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json"""
),
"""google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""",
"""google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""",
"""google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""",
"""google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""",
# See all REALM models at https://huggingface.co/models?filter=realm
}
class snake_case_ ( a_ ):
__lowerCAmelCase = "realm"
def __init__( self , a_=3_0_5_2_2 , a_=7_6_8 , a_=1_2_8 , a_=1_2 , a_=1_2 , a_=8 , a_=3_0_7_2 , a_="gelu_new" , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=2 , a_=0.02 , a_=1e-12 , a_=2_5_6 , a_=1_0 , a_=1e-3 , a_=5 , a_=3_2_0 , a_=1_3_3_5_3_7_1_8 , a_=5_0_0_0 , a_=1 , a_=0 , a_=2 , **a_ , ):
super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ )
# Common config
a_ : Optional[int] = vocab_size
a_ : List[Any] = max_position_embeddings
a_ : Optional[Any] = hidden_size
a_ : Optional[Any] = retriever_proj_size
a_ : List[str] = num_hidden_layers
a_ : List[Any] = num_attention_heads
a_ : Tuple = num_candidates
a_ : str = intermediate_size
a_ : Optional[int] = hidden_act
a_ : List[str] = hidden_dropout_prob
a_ : List[str] = attention_probs_dropout_prob
a_ : Tuple = initializer_range
a_ : Tuple = type_vocab_size
a_ : str = layer_norm_eps
# Reader config
a_ : str = span_hidden_size
a_ : Union[str, Any] = max_span_width
a_ : Tuple = reader_layer_norm_eps
a_ : List[Any] = reader_beam_size
a_ : str = reader_seq_len
# Retrieval config
a_ : str = num_block_records
a_ : int = searcher_beam_size | 370 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> str:
lowercase__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") )
# embeddings
rename_keys.extend(
[
# text embeddings
('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'),
(
'text_embeddings.position_embeddings.weight',
'vilt.embeddings.text_embeddings.position_embeddings.weight',
),
('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'),
(
'text_embeddings.token_type_embeddings.weight',
'vilt.embeddings.text_embeddings.token_type_embeddings.weight',
),
('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'),
('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'),
# patch embeddings
('transformer.cls_token', 'vilt.embeddings.cls_token'),
('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'),
('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'),
('transformer.pos_embed', 'vilt.embeddings.position_embeddings'),
# token type embeddings
('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'),
] )
# final layernorm + pooler
rename_keys.extend(
[
('transformer.norm.weight', 'vilt.layernorm.weight'),
('transformer.norm.bias', 'vilt.layernorm.bias'),
('pooler.dense.weight', 'vilt.pooler.dense.weight'),
('pooler.dense.bias', 'vilt.pooler.dense.bias'),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('vqa_classifier.0.weight', 'classifier.0.weight'),
('vqa_classifier.0.bias', 'classifier.0.bias'),
('vqa_classifier.1.weight', 'classifier.1.weight'),
('vqa_classifier.1.bias', 'classifier.1.bias'),
('vqa_classifier.3.weight', 'classifier.3.weight'),
('vqa_classifier.3.bias', 'classifier.3.bias'),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('nlvr2_classifier.0.weight', 'classifier.0.weight'),
('nlvr2_classifier.0.bias', 'classifier.0.bias'),
('nlvr2_classifier.1.weight', 'classifier.1.weight'),
('nlvr2_classifier.1.bias', 'classifier.1.bias'),
('nlvr2_classifier.3.weight', 'classifier.3.weight'),
('nlvr2_classifier.3.bias', 'classifier.3.bias'),
] )
else:
pass
return rename_keys
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
for i in range(config.num_hidden_layers ):
lowercase__ = "vilt."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase__ = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" )
lowercase__ = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
lowercase__ = in_proj_weight[
: config.hidden_size, :
]
lowercase__ = in_proj_bias[: config.hidden_size]
lowercase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase__ = in_proj_weight[
-config.hidden_size :, :
]
lowercase__ = in_proj_bias[-config.hidden_size :]
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[int]:
lowercase__ = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
lowercase__ = dct.pop(_SCREAMING_SNAKE_CASE )
lowercase__ = val
@torch.no_grad()
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
lowercase__ = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_SCREAMING_SNAKE_CASE )
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
if "vqa" in checkpoint_url:
lowercase__ = True
lowercase__ = 3129
lowercase__ = "huggingface/label-files"
lowercase__ = "vqa2-id2label.json"
lowercase__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
lowercase__ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowercase__ = idalabel
lowercase__ = {v: k for k, v in idalabel.items()}
lowercase__ = ViltForQuestionAnswering(_SCREAMING_SNAKE_CASE )
elif "nlvr" in checkpoint_url:
lowercase__ = True
lowercase__ = 2
lowercase__ = {0: "False", 1: "True"}
lowercase__ = {v: k for k, v in config.idalabel.items()}
lowercase__ = 3
lowercase__ = ViltForImagesAndTextClassification(_SCREAMING_SNAKE_CASE )
elif "irtr" in checkpoint_url:
lowercase__ = True
lowercase__ = ViltForImageAndTextRetrieval(_SCREAMING_SNAKE_CASE )
elif "mlm_itm" in checkpoint_url:
lowercase__ = True
lowercase__ = ViltForMaskedLM(_SCREAMING_SNAKE_CASE )
else:
raise ValueError('Unknown model type' )
# load state_dict of original model, remove and rename some keys
lowercase__ = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='cpu' )["state_dict"]
lowercase__ = create_rename_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if mlm_model or irtr_model:
lowercase__ = ["itm_score.fc.weight", "itm_score.fc.bias"]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
lowercase__ = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(_SCREAMING_SNAKE_CASE )
# Define processor
lowercase__ = ViltImageProcessor(size=384 )
lowercase__ = BertTokenizer.from_pretrained('bert-base-uncased' )
lowercase__ = ViltProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Forward pass on example inputs (image + text)
if nlvr_model:
lowercase__ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_SCREAMING_SNAKE_CASE ).raw )
lowercase__ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_SCREAMING_SNAKE_CASE ).raw )
lowercase__ = (
"The left image contains twice the number of dogs as the right image, and at least two dogs in total are"
" standing."
)
lowercase__ = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' )
lowercase__ = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' )
lowercase__ = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
lowercase__ = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=_SCREAMING_SNAKE_CASE ).raw )
if mlm_model:
lowercase__ = "a bunch of [MASK] laying on a [MASK]."
else:
lowercase__ = "How many cats are there?"
lowercase__ = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' )
lowercase__ = model(**_SCREAMING_SNAKE_CASE )
# Verify outputs
if mlm_model:
lowercase__ = torch.Size([1, 11, 30522] )
lowercase__ = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
# verify masked token prediction equals "cats"
lowercase__ = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
lowercase__ = torch.Size([1, 3129] )
lowercase__ = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] )
assert torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
# verify vqa prediction equals "2"
lowercase__ = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
lowercase__ = torch.Size([1, 2] )
lowercase__ = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] )
assert torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
print(F"""Saving model and processor to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""",
type=str,
help="""URL of the checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
lowercase_ = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 235 |
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
_lowerCAmelCase : Optional[Any] =logging.getLogger(__name__)
@dataclass
class __UpperCamelCase :
'''simple docstring'''
__magic_name__ = field(
default=1_2_8 ,metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} ,)
__magic_name__ = field(
default=_a ,metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
__magic_name__ = field(
default=_a ,metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} ,)
__magic_name__ = field(
default=_a ,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} ,)
__magic_name__ = field(
default=_a ,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} ,)
__magic_name__ = field(
default=_a ,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
} ,)
@dataclass
class __UpperCamelCase :
'''simple docstring'''
__magic_name__ = field(
default=_a ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
__magic_name__ = field(
default=_a ,metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} )
__magic_name__ = field(
default=_a ,metadata={"help": "Train language if it is different from the evaluation language."} )
__magic_name__ = field(
default=_a ,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__magic_name__ = field(
default=_a ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
__magic_name__ = field(
default=_a ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,)
__magic_name__ = field(
default=_a ,metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} ,)
__magic_name__ = field(
default=_a ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,)
__magic_name__ = field(
default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,)
__magic_name__ = field(
default=_a ,metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} ,)
__magic_name__ = field(
default=_a ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,)
def _A ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase__: Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__: List[Any] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_xnli" ,SCREAMING_SNAKE_CASE )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,handlers=[logging.StreamHandler(sys.stdout )] ,)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
UpperCAmelCase__: int = training_args.get_process_log_level()
logger.setLevel(SCREAMING_SNAKE_CASE )
datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE )
transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
UpperCAmelCase__: Tuple = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase__: Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
UpperCAmelCase__: Optional[int] = load_dataset(
"xnli" ,model_args.language ,split="train" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,)
else:
UpperCAmelCase__: Optional[Any] = load_dataset(
"xnli" ,model_args.train_language ,split="train" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,)
UpperCAmelCase__: List[Any] = train_dataset.features["label"].names
if training_args.do_eval:
UpperCAmelCase__: List[Any] = load_dataset(
"xnli" ,model_args.language ,split="validation" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,)
UpperCAmelCase__: Tuple = eval_dataset.features["label"].names
if training_args.do_predict:
UpperCAmelCase__: Optional[Any] = load_dataset(
"xnli" ,model_args.language ,split="test" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,)
UpperCAmelCase__: List[Any] = predict_dataset.features["label"].names
# Labels
UpperCAmelCase__: Union[str, Any] = len(SCREAMING_SNAKE_CASE )
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase__: Optional[int] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=SCREAMING_SNAKE_CASE ,idalabel={str(SCREAMING_SNAKE_CASE ): label for i, label in enumerate(SCREAMING_SNAKE_CASE )} ,labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE )} ,finetuning_task="xnli" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
UpperCAmelCase__: Dict = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,do_lower_case=model_args.do_lower_case ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
UpperCAmelCase__: Optional[Any] = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path ,from_tf=bool(".ckpt" in model_args.model_name_or_path ) ,config=SCREAMING_SNAKE_CASE ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,)
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
UpperCAmelCase__: Union[str, Any] = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
UpperCAmelCase__: Union[str, Any] = False
def preprocess_function(SCREAMING_SNAKE_CASE ):
# Tokenize the texts
return tokenizer(
examples["premise"] ,examples["hypothesis"] ,padding=SCREAMING_SNAKE_CASE ,max_length=data_args.max_seq_length ,truncation=SCREAMING_SNAKE_CASE ,)
if training_args.do_train:
if data_args.max_train_samples is not None:
UpperCAmelCase__: Optional[Any] = min(len(SCREAMING_SNAKE_CASE ) ,data_args.max_train_samples )
UpperCAmelCase__: Optional[Any] = train_dataset.select(range(SCREAMING_SNAKE_CASE ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
UpperCAmelCase__: Dict = train_dataset.map(
SCREAMING_SNAKE_CASE ,batched=SCREAMING_SNAKE_CASE ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on train dataset" ,)
# Log a few random samples from the training set:
for index in random.sample(range(len(SCREAMING_SNAKE_CASE ) ) ,3 ):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}." )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
UpperCAmelCase__: Optional[int] = min(len(SCREAMING_SNAKE_CASE ) ,data_args.max_eval_samples )
UpperCAmelCase__: List[Any] = eval_dataset.select(range(SCREAMING_SNAKE_CASE ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
UpperCAmelCase__: Optional[Any] = eval_dataset.map(
SCREAMING_SNAKE_CASE ,batched=SCREAMING_SNAKE_CASE ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on validation dataset" ,)
if training_args.do_predict:
if data_args.max_predict_samples is not None:
UpperCAmelCase__: Dict = min(len(SCREAMING_SNAKE_CASE ) ,data_args.max_predict_samples )
UpperCAmelCase__: Optional[Any] = predict_dataset.select(range(SCREAMING_SNAKE_CASE ) )
with training_args.main_process_first(desc="prediction dataset map pre-processing" ):
UpperCAmelCase__: int = predict_dataset.map(
SCREAMING_SNAKE_CASE ,batched=SCREAMING_SNAKE_CASE ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on prediction dataset" ,)
# Get the metric function
UpperCAmelCase__: str = evaluate.load("xnli" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(SCREAMING_SNAKE_CASE ):
UpperCAmelCase__: str = p.predictions[0] if isinstance(p.predictions ,SCREAMING_SNAKE_CASE ) else p.predictions
UpperCAmelCase__: Union[str, Any] = np.argmax(SCREAMING_SNAKE_CASE ,axis=1 )
return metric.compute(predictions=SCREAMING_SNAKE_CASE ,references=p.label_ids )
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
UpperCAmelCase__: Any = default_data_collator
elif training_args.fpaa:
UpperCAmelCase__: Any = DataCollatorWithPadding(SCREAMING_SNAKE_CASE ,pad_to_multiple_of=8 )
else:
UpperCAmelCase__: Tuple = None
# Initialize our Trainer
UpperCAmelCase__: Dict = Trainer(
model=SCREAMING_SNAKE_CASE ,args=SCREAMING_SNAKE_CASE ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=SCREAMING_SNAKE_CASE ,tokenizer=SCREAMING_SNAKE_CASE ,data_collator=SCREAMING_SNAKE_CASE ,)
# Training
if training_args.do_train:
UpperCAmelCase__: Any = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase__: str = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase__: Any = last_checkpoint
UpperCAmelCase__: Dict = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE )
UpperCAmelCase__: List[Any] = train_result.metrics
UpperCAmelCase__: Union[str, Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE )
)
UpperCAmelCase__: Tuple = min(SCREAMING_SNAKE_CASE ,len(SCREAMING_SNAKE_CASE ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train" ,SCREAMING_SNAKE_CASE )
trainer.save_metrics("train" ,SCREAMING_SNAKE_CASE )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
UpperCAmelCase__: Any = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE )
UpperCAmelCase__: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE )
UpperCAmelCase__: int = min(SCREAMING_SNAKE_CASE ,len(SCREAMING_SNAKE_CASE ) )
trainer.log_metrics("eval" ,SCREAMING_SNAKE_CASE )
trainer.save_metrics("eval" ,SCREAMING_SNAKE_CASE )
# Prediction
if training_args.do_predict:
logger.info("*** Predict ***" )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__: Union[str, Any] = trainer.predict(SCREAMING_SNAKE_CASE ,metric_key_prefix="predict" )
UpperCAmelCase__: Optional[Any] = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(SCREAMING_SNAKE_CASE )
)
UpperCAmelCase__: Union[str, Any] = min(SCREAMING_SNAKE_CASE ,len(SCREAMING_SNAKE_CASE ) )
trainer.log_metrics("predict" ,SCREAMING_SNAKE_CASE )
trainer.save_metrics("predict" ,SCREAMING_SNAKE_CASE )
UpperCAmelCase__: Any = np.argmax(SCREAMING_SNAKE_CASE ,axis=1 )
UpperCAmelCase__: Optional[int] = os.path.join(training_args.output_dir ,"predictions.txt" )
if trainer.is_world_process_zero():
with open(SCREAMING_SNAKE_CASE ,"w" ) as writer:
writer.write("index\tprediction\n" )
for index, item in enumerate(SCREAMING_SNAKE_CASE ):
UpperCAmelCase__: int = label_list[item]
writer.write(f"{index}\t{item}\n" )
if __name__ == "__main__":
main() | 113 | 0 |
"""simple docstring"""
from ....utils import logging
a__ : List[str] = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCamelCase):
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : str=2_0_4_8 ) -> int:
__SCREAMING_SNAKE_CASE = config.__dict__
__SCREAMING_SNAKE_CASE = modal_hidden_size
if num_labels:
__SCREAMING_SNAKE_CASE = num_labels
| 709 |
"""simple docstring"""
from __future__ import annotations
def UpperCAmelCase__ (lowerCAmelCase_ ):
'''simple docstring'''
if len(lowerCAmelCase_ ) < 2:
raise ValueError("Monogons and Digons are not polygons in the Euclidean space" )
if any(i <= 0 for i in nums ):
raise ValueError("All values must be greater than 0" )
__SCREAMING_SNAKE_CASE = nums.copy()
copy_nums.sort()
return copy_nums[-1] < sum(copy_nums[:-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 553 | 0 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class lowerCAmelCase_ ( unittest.TestCase ):
def __snake_case ( self : int ):
lowerCAmelCase__ = 10
def __snake_case ( self : int ):
lowerCAmelCase__ = [1, 2, 3, 4]
lowerCAmelCase__ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(lowercase__ , self.block_size , 0 ) , lowercase__ )
def __snake_case ( self : Tuple ):
lowerCAmelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
lowerCAmelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(lowercase__ , self.block_size , 0 ) , lowercase__ )
def __snake_case ( self : int ):
lowerCAmelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
lowerCAmelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(lowercase__ , self.block_size , 0 ) , lowercase__ )
def __snake_case ( self : Optional[Any] ):
lowerCAmelCase__ = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this."
lowerCAmelCase__ = process_story(lowercase__ )
self.assertEqual(lowercase__ , [] )
def __snake_case ( self : List[Any] ):
lowerCAmelCase__ = ""
lowerCAmelCase__ = process_story(lowercase__ )
self.assertEqual(lowercase__ , [] )
self.assertEqual(lowercase__ , [] )
def __snake_case ( self : Optional[Any] ):
lowerCAmelCase__ = (
"It was the year of Our Lord one thousand seven hundred and "
"seventy-five\n\nSpiritual revelations were conceded to England "
"at that favoured period, as at this.\n@highlight\n\nIt was the best of times"
)
lowerCAmelCase__ = process_story(lowercase__ )
lowerCAmelCase__ = [
"It was the year of Our Lord one thousand seven hundred and seventy-five.",
"Spiritual revelations were conceded to England at that favoured period, as at this.",
]
self.assertEqual(lowercase__ , lowercase__ )
lowerCAmelCase__ = ["It was the best of times."]
self.assertEqual(lowercase__ , lowercase__ )
def __snake_case ( self : List[Any] ):
lowerCAmelCase__ = torch.tensor([1, 2, 3, 4] )
lowerCAmelCase__ = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(lowercase__ , 0 ).numpy() , expected.numpy() )
def __snake_case ( self : int ):
lowerCAmelCase__ = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
lowerCAmelCase__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(lowercase__ , 23 ).numpy() , expected.numpy() )
def __snake_case ( self : List[Any] ):
lowerCAmelCase__ = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
lowerCAmelCase__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(lowercase__ , 1 ).numpy() , expected.numpy() )
def __snake_case ( self : Any ):
lowerCAmelCase__ = 101
lowerCAmelCase__ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
lowerCAmelCase__ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
lowerCAmelCase__ = compute_token_type_ids(lowercase__ , lowercase__ )
np.testing.assert_array_equal(lowercase__ , lowercase__ )
| 668 |
'''simple docstring'''
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
@staticmethod
@abstractmethod
def __lowerCamelCase ( lowercase__ ):
"""simple docstring"""
raise NotImplementedError()
@abstractmethod
def __lowerCamelCase ( self ):
"""simple docstring"""
raise NotImplementedError()
| 421 | 0 |
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase (a_ :list , a_ :int , a_ :int , a_ :int) -> list:
lowercase :List[Any] = []
lowercase :List[str] = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0))
lowercase :Optional[int] = result + left + right
return input_list
def lowerCamelCase (a_ :list) -> list:
if len(a_) <= 1:
return input_list
lowercase :Optional[Any] = list(a_)
# iteration for two-way merging
lowercase :Optional[Any] = 2
while p <= len(a_):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(a_) , a_):
lowercase :Any = i
lowercase :List[Any] = i + p - 1
lowercase :Dict = (low + high + 1) // 2
lowercase :Union[str, Any] = merge(a_ , a_ , a_ , a_)
# final merge of last two parts
if p * 2 >= len(a_):
lowercase :Optional[Any] = i
lowercase :int = merge(a_ , 0 , a_ , len(a_) - 1)
break
p *= 2
return input_list
if __name__ == "__main__":
UpperCAmelCase = input('''Enter numbers separated by a comma:\n''').strip()
if user_input == "":
UpperCAmelCase = []
else:
UpperCAmelCase = [int(item.strip()) for item in user_input.split(''',''')]
print(iter_merge_sort(unsorted))
| 706 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def lowerCamelCase (a_ :Dict) -> Dict:
lowercase :Tuple = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(a_ , a_)
def lowerCamelCase (a_ :Union[str, Any]) -> str:
lowercase , lowercase :Tuple = emb.weight.shape
lowercase :List[str] = nn.Linear(a_ , a_ , bias=a_)
lowercase :List[str] = emb.weight.data
return lin_layer
def lowerCamelCase (a_ :int , a_ :Union[str, Any]="facebook/mbart-large-en-ro" , a_ :Union[str, Any]=False , a_ :List[Any]=False) -> List[Any]:
lowercase :List[Any] = torch.load(a_ , map_location='''cpu''')['''model''']
remove_ignore_keys_(a_)
lowercase :Dict = state_dict['''encoder.embed_tokens.weight'''].shape[0]
lowercase :Tuple = MBartConfig.from_pretrained(a_ , vocab_size=a_)
if mbart_aa and finetuned:
lowercase :List[Any] = '''relu'''
lowercase :Optional[int] = state_dict['''decoder.embed_tokens.weight''']
lowercase :Union[str, Any] = MBartForConditionalGeneration(a_)
model.model.load_state_dict(a_)
if finetuned:
lowercase :Dict = make_linear_from_emb(model.model.shared)
return model
if __name__ == "__main__":
UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'''
)
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--hf_config''',
default='''facebook/mbart-large-cc25''',
type=str,
help='''Which huggingface architecture to use: mbart-large''',
)
parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''')
parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''')
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 475 | 0 |
"""simple docstring"""
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
'''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , A , )
class _SCREAMING_SNAKE_CASE( A ):
SCREAMING_SNAKE_CASE_ : List[Any] = RobertaConfig
SCREAMING_SNAKE_CASE_ : Optional[int] = '''roberta'''
def __init__( self ,SCREAMING_SNAKE_CASE__ ) -> List[str]:
"""simple docstring"""
super().__init__(__lowerCamelCase )
__SCREAMING_SNAKE_CASE :List[str] = RobertaEmbeddings(__lowerCamelCase )
self.init_weights()
@add_start_docstrings(
'''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,
also takes care of multi-layer training. ''' , A , )
class _SCREAMING_SNAKE_CASE( A ):
SCREAMING_SNAKE_CASE_ : Any = RobertaConfig
SCREAMING_SNAKE_CASE_ : List[str] = '''roberta'''
def __init__( self ,SCREAMING_SNAKE_CASE__ ) -> Tuple:
"""simple docstring"""
super().__init__(__lowerCamelCase )
__SCREAMING_SNAKE_CASE :List[Any] = config.num_labels
__SCREAMING_SNAKE_CASE :Dict = config.num_hidden_layers
__SCREAMING_SNAKE_CASE :Tuple = DeeRobertaModel(__lowerCamelCase )
__SCREAMING_SNAKE_CASE :Optional[int] = nn.Dropout(config.hidden_dropout_prob )
__SCREAMING_SNAKE_CASE :List[str] = nn.Linear(config.hidden_size ,self.config.num_labels )
@add_start_docstrings_to_model_forward(__lowerCamelCase )
def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=-1 ,SCREAMING_SNAKE_CASE__=False ,) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :List[Any] = self.num_layers
try:
__SCREAMING_SNAKE_CASE :Union[str, Any] = self.roberta(
__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,position_ids=__lowerCamelCase ,head_mask=__lowerCamelCase ,inputs_embeds=__lowerCamelCase ,)
__SCREAMING_SNAKE_CASE :Dict = outputs[1]
__SCREAMING_SNAKE_CASE :Dict = self.dropout(__lowerCamelCase )
__SCREAMING_SNAKE_CASE :Optional[Any] = self.classifier(__lowerCamelCase )
__SCREAMING_SNAKE_CASE :List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
__SCREAMING_SNAKE_CASE :Optional[Any] = e.message
__SCREAMING_SNAKE_CASE :Optional[int] = e.exit_layer
__SCREAMING_SNAKE_CASE :Tuple = outputs[0]
if not self.training:
__SCREAMING_SNAKE_CASE :Optional[int] = entropy(__lowerCamelCase )
__SCREAMING_SNAKE_CASE :List[str] = []
__SCREAMING_SNAKE_CASE :str = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
__SCREAMING_SNAKE_CASE :int = MSELoss()
__SCREAMING_SNAKE_CASE :Any = loss_fct(logits.view(-1 ) ,labels.view(-1 ) )
else:
__SCREAMING_SNAKE_CASE :int = CrossEntropyLoss()
__SCREAMING_SNAKE_CASE :Optional[int] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) )
# work with highway exits
__SCREAMING_SNAKE_CASE :Dict = []
for highway_exit in outputs[-1]:
__SCREAMING_SNAKE_CASE :int = highway_exit[0]
if not self.training:
highway_logits_all.append(__lowerCamelCase )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
__SCREAMING_SNAKE_CASE :List[str] = MSELoss()
__SCREAMING_SNAKE_CASE :Any = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) )
else:
__SCREAMING_SNAKE_CASE :List[Any] = CrossEntropyLoss()
__SCREAMING_SNAKE_CASE :Any = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) )
highway_losses.append(__lowerCamelCase )
if train_highway:
__SCREAMING_SNAKE_CASE :str = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
__SCREAMING_SNAKE_CASE :Union[str, Any] = (loss,) + outputs
if not self.training:
__SCREAMING_SNAKE_CASE :Tuple = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
__SCREAMING_SNAKE_CASE :str = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy | 498 |
'''simple docstring'''
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
lowerCamelCase_ = 1.0_5457_1817e-34 # unit of ℏ : J * s
lowerCamelCase_ = 3e8 # unit of c : m * s^-1
def SCREAMING_SNAKE_CASE_ ( __A : float , __A : float , __A : float ) -> dict[str, float]:
if (force, area, distance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if force < 0:
raise ValueError("Magnitude of force can not be negative" )
if distance < 0:
raise ValueError("Distance can not be negative" )
if area < 0:
raise ValueError("Area can not be negative" )
if force == 0:
_SCREAMING_SNAKE_CASE = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
2_40 * (distance) ** 4
)
return {"force": force}
elif area == 0:
_SCREAMING_SNAKE_CASE = (2_40 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
_SCREAMING_SNAKE_CASE = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError("One and only one argument must be 0" )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 418 | 0 |
"""simple docstring"""
def _UpperCamelCase ( UpperCamelCase = 3 , UpperCamelCase = 7 , UpperCamelCase = 100_0000 ) -> Optional[Any]:
"""simple docstring"""
__UpperCAmelCase : Optional[int] = 0
__UpperCAmelCase : Optional[Any] = 1
for current_denominator in range(1 , limit + 1 ):
__UpperCAmelCase : str = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
__UpperCAmelCase : str = current_numerator
__UpperCAmelCase : List[Any] = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1_000_000))
| 714 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A = logging.get_logger(__name__)
A = {
"""bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""",
}
class a__ ( __magic_name__ ):
lowercase_ = "gpt_bigcode"
lowercase_ = ["past_key_values"]
lowercase_ = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Any , UpperCamelCase_ : Tuple=50257 , UpperCamelCase_ : Dict=1024 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : Any=12 , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : List[Any]="gelu_pytorch_tanh" , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Tuple=1e-5 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : str=50256 , UpperCamelCase_ : Union[str, Any]=50256 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Union[str, Any]=True , **UpperCamelCase_ : Union[str, Any] , ):
"""simple docstring"""
__UpperCAmelCase : Tuple = vocab_size
__UpperCAmelCase : Optional[int] = n_positions
__UpperCAmelCase : Tuple = n_embd
__UpperCAmelCase : str = n_layer
__UpperCAmelCase : Dict = n_head
__UpperCAmelCase : Optional[Any] = n_inner
__UpperCAmelCase : Optional[Any] = activation_function
__UpperCAmelCase : List[str] = resid_pdrop
__UpperCAmelCase : List[Any] = embd_pdrop
__UpperCAmelCase : Optional[Any] = attn_pdrop
__UpperCAmelCase : Dict = layer_norm_epsilon
__UpperCAmelCase : List[str] = initializer_range
__UpperCAmelCase : int = scale_attn_weights
__UpperCAmelCase : Tuple = use_cache
__UpperCAmelCase : List[Any] = attention_softmax_in_fpaa
__UpperCAmelCase : Any = scale_attention_softmax_in_fpaa
__UpperCAmelCase : str = multi_query
__UpperCAmelCase : int = bos_token_id
__UpperCAmelCase : str = eos_token_id
super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_)
| 487 | 0 |
'''simple docstring'''
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class __a ( _snake_case, _snake_case, _snake_case, unittest.TestCase ):
__UpperCamelCase : Any = StableUnCLIPPipeline
__UpperCamelCase : Tuple = TEXT_TO_IMAGE_PARAMS
__UpperCamelCase : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS
__UpperCamelCase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__UpperCamelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
__UpperCamelCase : List[str] = False
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 32
__SCREAMING_SNAKE_CASE = embedder_hidden_size
# prior components
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=lowerCamelCase ,projection_dim=lowerCamelCase ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = PriorTransformer(
num_attention_heads=2 ,attention_head_dim=12 ,embedding_dim=lowerCamelCase ,num_layers=1 ,)
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = DDPMScheduler(
variance_type="""fixed_small_log""" ,prediction_type="""sample""" ,num_train_timesteps=1000 ,clip_sample=lowerCamelCase ,clip_sample_range=5.0 ,beta_schedule="""squaredcos_cap_v2""" ,)
# regular denoising components
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase )
__SCREAMING_SNAKE_CASE = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=lowerCamelCase ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = UNetaDConditionModel(
sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") ,up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") ,block_out_channels=(32, 64) ,attention_head_dim=(2, 4) ,class_embed_type="""projection""" ,projection_class_embeddings_input_dim=embedder_projection_dim * 2 ,cross_attention_dim=lowerCamelCase ,layers_per_block=1 ,upcast_attention=lowerCamelCase ,use_linear_projection=lowerCamelCase ,)
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = DDIMScheduler(
beta_schedule="""scaled_linear""" ,beta_start=0.00_085 ,beta_end=0.012 ,prediction_type="""v_prediction""" ,set_alpha_to_one=lowerCamelCase ,steps_offset=1 ,)
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = AutoencoderKL()
__SCREAMING_SNAKE_CASE = {
# prior components
"""prior_tokenizer""": prior_tokenizer,
"""prior_text_encoder""": prior_text_encoder,
"""prior""": prior,
"""prior_scheduler""": prior_scheduler,
# image noising components
"""image_normalizer""": image_normalizer,
"""image_noising_scheduler""": image_noising_scheduler,
# regular denoising components
"""tokenizer""": tokenizer,
"""text_encoder""": text_encoder,
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
}
return components
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : int ,lowerCamelCase : Tuple=0 ):
'''simple docstring'''
if str(lowerCamelCase ).startswith("""mps""" ):
__SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase )
else:
__SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
__SCREAMING_SNAKE_CASE = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""prior_num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = torch_device == """cpu"""
self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = torch_device in ["""cpu""", """mps"""]
self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase )
@slow
@require_torch_gpu
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" )
__SCREAMING_SNAKE_CASE = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" ,torch_dtype=torch.floataa )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe("""anime turle""" ,generator=lowerCamelCase ,output_type="""np""" )
__SCREAMING_SNAKE_CASE = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase ,lowerCamelCase )
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__SCREAMING_SNAKE_CASE = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" ,torch_dtype=torch.floataa )
__SCREAMING_SNAKE_CASE = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__SCREAMING_SNAKE_CASE = pipe(
"""anime turtle""" ,prior_num_inference_steps=2 ,num_inference_steps=2 ,output_type="""np""" ,)
__SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 109 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase ):
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
lowerCamelCase__: Optional[Any] = 1
lowerCamelCase__: Union[str, Any] = 3
lowerCamelCase__: str = (32, 32)
lowerCamelCase__: str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a )
return image
@property
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__: Dict = UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__a , only_cross_attention=(True, True, False) , num_class_embeds=100 , )
return model
@property
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__: Dict = AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__: str = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , )
return CLIPTextModel(__a )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__: str = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCamelCase__: List[str] = self.dummy_cond_unet_upscale
lowerCamelCase__: Optional[Any] = DDPMScheduler()
lowerCamelCase__: Union[str, Any] = DDIMScheduler(prediction_type="""v_prediction""" )
lowerCamelCase__: Tuple = self.dummy_vae
lowerCamelCase__: Optional[int] = self.dummy_text_encoder
lowerCamelCase__: Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
lowerCamelCase__: Dict = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__: Optional[Any] = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
lowerCamelCase__: List[str] = StableDiffusionUpscalePipeline(
unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , )
lowerCamelCase__: Any = sd_pipe.to(__a )
sd_pipe.set_progress_bar_config(disable=__a )
lowerCamelCase__: List[str] = """A painting of a squirrel eating a burger"""
lowerCamelCase__: Dict = torch.Generator(device=__a ).manual_seed(0 )
lowerCamelCase__: Any = sd_pipe(
[prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
lowerCamelCase__: List[str] = output.images
lowerCamelCase__: Union[str, Any] = torch.Generator(device=__a ).manual_seed(0 )
lowerCamelCase__: List[str] = sd_pipe(
[prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__a , )[0]
lowerCamelCase__: Tuple = image[0, -3:, -3:, -1]
lowerCamelCase__: int = image_from_tuple[0, -3:, -3:, -1]
lowerCamelCase__: int = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
lowerCamelCase__: List[str] = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
lowerCamelCase__: Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCamelCase__: List[str] = self.dummy_cond_unet_upscale
lowerCamelCase__: Optional[int] = DDPMScheduler()
lowerCamelCase__: Any = DDIMScheduler(prediction_type="""v_prediction""" )
lowerCamelCase__: List[str] = self.dummy_vae
lowerCamelCase__: Optional[Any] = self.dummy_text_encoder
lowerCamelCase__: Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
lowerCamelCase__: str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__: List[str] = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
lowerCamelCase__: Tuple = StableDiffusionUpscalePipeline(
unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , )
lowerCamelCase__: List[str] = sd_pipe.to(__a )
sd_pipe.set_progress_bar_config(disable=__a )
lowerCamelCase__: Any = """A painting of a squirrel eating a burger"""
lowerCamelCase__: str = sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
lowerCamelCase__: Any = output.images
assert image.shape[0] == 2
lowerCamelCase__: Optional[Any] = torch.Generator(device=__a ).manual_seed(0 )
lowerCamelCase__: Dict = sd_pipe(
[prompt] , image=__a , generator=__a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
lowerCamelCase__: Tuple = output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__: int = self.dummy_cond_unet_upscale
lowerCamelCase__: Dict = DDPMScheduler()
lowerCamelCase__: Union[str, Any] = DDIMScheduler(prediction_type="""v_prediction""" )
lowerCamelCase__: List[str] = self.dummy_vae
lowerCamelCase__: Tuple = self.dummy_text_encoder
lowerCamelCase__: int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
lowerCamelCase__: Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__: Union[str, Any] = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
lowerCamelCase__: Optional[int] = unet.half()
lowerCamelCase__: Optional[Any] = text_encoder.half()
# make sure here that pndm scheduler skips prk
lowerCamelCase__: List[str] = StableDiffusionUpscalePipeline(
unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , )
lowerCamelCase__: List[Any] = sd_pipe.to(__a )
sd_pipe.set_progress_bar_config(disable=__a )
lowerCamelCase__: Tuple = """A painting of a squirrel eating a burger"""
lowerCamelCase__: Optional[int] = torch.manual_seed(0 )
lowerCamelCase__: Optional[Any] = sd_pipe(
[prompt] , image=__a , generator=__a , num_inference_steps=2 , output_type="""np""" , ).images
lowerCamelCase__: Optional[int] = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__: Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
lowerCamelCase__: List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat.npy""" )
lowerCamelCase__: Dict = """stabilityai/stable-diffusion-x4-upscaler"""
lowerCamelCase__: Optional[int] = StableDiffusionUpscalePipeline.from_pretrained(__a )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
lowerCamelCase__: List[Any] = """a cat sitting on a park bench"""
lowerCamelCase__: Dict = torch.manual_seed(0 )
lowerCamelCase__: Any = pipe(
prompt=__a , image=__a , generator=__a , output_type="""np""" , )
lowerCamelCase__: Dict = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__: Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
lowerCamelCase__: int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat_fp16.npy""" )
lowerCamelCase__: int = """stabilityai/stable-diffusion-x4-upscaler"""
lowerCamelCase__: List[str] = StableDiffusionUpscalePipeline.from_pretrained(
__a , torch_dtype=torch.floataa , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
lowerCamelCase__: Any = """a cat sitting on a park bench"""
lowerCamelCase__: Tuple = torch.manual_seed(0 )
lowerCamelCase__: Optional[int] = pipe(
prompt=__a , image=__a , generator=__a , output_type="""np""" , )
lowerCamelCase__: int = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowerCamelCase__: Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
lowerCamelCase__: Tuple = """stabilityai/stable-diffusion-x4-upscaler"""
lowerCamelCase__: Optional[int] = StableDiffusionUpscalePipeline.from_pretrained(
__a , torch_dtype=torch.floataa , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
lowerCamelCase__: str = """a cat sitting on a park bench"""
lowerCamelCase__: int = torch.manual_seed(0 )
lowerCamelCase__: Optional[Any] = pipe(
prompt=__a , image=__a , generator=__a , num_inference_steps=5 , output_type="""np""" , )
lowerCamelCase__: Optional[int] = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 306 | 0 |
'''simple docstring'''
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def _SCREAMING_SNAKE_CASE ( snake_case ) -> List[str]:
_UpperCAmelCase = int(number**0.5 )
return number == sq * sq
def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Union[str, Any]:
_UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
_UpperCAmelCase = x_den * y_den * z_den
_UpperCAmelCase = gcd(lowerCamelCase_ , lowerCamelCase_ )
top //= hcf
bottom //= hcf
return top, bottom
def _SCREAMING_SNAKE_CASE ( snake_case = 3_5 ) -> Tuple:
_UpperCAmelCase = set()
_UpperCAmelCase = 4_2
_UpperCAmelCase = Fraction(0 )
_UpperCAmelCase = 4_2
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
_UpperCAmelCase = x_num * y_den + x_den * y_num
_UpperCAmelCase = x_den * y_den
_UpperCAmelCase = gcd(lowerCamelCase_ , lowerCamelCase_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
unique_s.add(lowerCamelCase_ )
# n=2
_UpperCAmelCase = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
_UpperCAmelCase = x_den * x_den * y_den * y_den
if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ):
_UpperCAmelCase = int(sqrt(lowerCamelCase_ ) )
_UpperCAmelCase = int(sqrt(lowerCamelCase_ ) )
_UpperCAmelCase = gcd(lowerCamelCase_ , lowerCamelCase_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
unique_s.add(lowerCamelCase_ )
# n=-1
_UpperCAmelCase = x_num * y_num
_UpperCAmelCase = x_den * y_num + x_num * y_den
_UpperCAmelCase = gcd(lowerCamelCase_ , lowerCamelCase_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
unique_s.add(lowerCamelCase_ )
# n=2
_UpperCAmelCase = x_num * x_num * y_num * y_num
_UpperCAmelCase = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ):
_UpperCAmelCase = int(sqrt(lowerCamelCase_ ) )
_UpperCAmelCase = int(sqrt(lowerCamelCase_ ) )
_UpperCAmelCase = gcd(lowerCamelCase_ , lowerCamelCase_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
unique_s.add(lowerCamelCase_ )
for num, den in unique_s:
total += Fraction(lowerCamelCase_ , lowerCamelCase_ )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F'{solution() = }') | 712 |
# flake8: noqa
# Lint as: python3
a = [
"VerificationMode",
"Version",
"disable_progress_bar",
"enable_progress_bar",
"is_progress_bar_enabled",
"experimental",
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental | 175 | 0 |
from __future__ import annotations
def _a ( __UpperCamelCase : list ,__UpperCamelCase : int | None = None ,__UpperCamelCase : int | None = None ):
if start is None:
lowerCAmelCase__ : str = 0
if end is None:
lowerCAmelCase__ : List[Any] = len(__UpperCamelCase ) - 1
if start >= end:
return
lowerCAmelCase__ : List[str] = (start + end) // 2
slowsort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
slowsort(__UpperCamelCase ,mid + 1 ,__UpperCamelCase )
if sequence[end] < sequence[mid]:
lowerCAmelCase__ , lowerCAmelCase__ : Dict = sequence[mid], sequence[end]
slowsort(__UpperCamelCase ,__UpperCamelCase ,end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 233 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A__ : Dict = {
"""configuration_blip_2""": [
"""BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Blip2Config""",
"""Blip2QFormerConfig""",
"""Blip2VisionConfig""",
],
"""processing_blip_2""": ["""Blip2Processor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : int = [
"""BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Blip2Model""",
"""Blip2QFormerModel""",
"""Blip2PreTrainedModel""",
"""Blip2ForConditionalGeneration""",
"""Blip2VisionModel""",
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
A__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 233 | 1 |
"""simple docstring"""
from __future__ import annotations
def _lowerCamelCase ( UpperCAmelCase_ : list[int | float], UpperCAmelCase_ : int, UpperCAmelCase_ : int ) -> int | float:
"""simple docstring"""
if len(UpperCAmelCase_ ) == 0:
raise ValueError("find_max() arg is an empty sequence" )
if (
left >= len(UpperCAmelCase_ )
or left < -len(UpperCAmelCase_ )
or right >= len(UpperCAmelCase_ )
or right < -len(UpperCAmelCase_ )
):
raise IndexError("list index out of range" )
if left == right:
return nums[left]
A__ = (left + right) >> 1 # the middle
A__ = find_max(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) # find max in range[left, mid]
A__ = find_max(UpperCAmelCase_, mid + 1, UpperCAmelCase_ ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 705 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase = {
"""configuration_mobilebert""": [
"""MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""MobileBertConfig""",
"""MobileBertOnnxConfig""",
],
"""tokenization_mobilebert""": ["""MobileBertTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["""MobileBertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"""MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MobileBertForMaskedLM""",
"""MobileBertForMultipleChoice""",
"""MobileBertForNextSentencePrediction""",
"""MobileBertForPreTraining""",
"""MobileBertForQuestionAnswering""",
"""MobileBertForSequenceClassification""",
"""MobileBertForTokenClassification""",
"""MobileBertLayer""",
"""MobileBertModel""",
"""MobileBertPreTrainedModel""",
"""load_tf_weights_in_mobilebert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"""TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFMobileBertForMaskedLM""",
"""TFMobileBertForMultipleChoice""",
"""TFMobileBertForNextSentencePrediction""",
"""TFMobileBertForPreTraining""",
"""TFMobileBertForQuestionAnswering""",
"""TFMobileBertForSequenceClassification""",
"""TFMobileBertForTokenClassification""",
"""TFMobileBertMainLayer""",
"""TFMobileBertModel""",
"""TFMobileBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mobilebert import (
MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileBertConfig,
MobileBertOnnxConfig,
)
from .tokenization_mobilebert import MobileBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mobilebert_fast import MobileBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilebert import (
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertLayer,
MobileBertModel,
MobileBertPreTrainedModel,
load_tf_weights_in_mobilebert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilebert import (
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertMainLayer,
TFMobileBertModel,
TFMobileBertPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 562 | 0 |
from __future__ import annotations
import math
_lowercase = '''2020.9.26'''
_lowercase = '''xcodz-dot, cclaus, dhruvmanila'''
def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__):
if not all(isinstance(snake_case__ , (float, int)) for val in locals().values()):
lowerCAmelCase_ : Optional[int] = F'''Input values must either be float or int: {list(locals().values())}'''
raise TypeError(snake_case__)
lowerCAmelCase_ : List[str] = ((x * distance) / (z + distance)) * scale
lowerCAmelCase_ : Optional[Any] = ((y * distance) / (z + distance)) * scale
return projected_x, projected_y
def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__):
if not isinstance(snake_case__ , snake_case__):
raise TypeError("Axis must be a str")
lowerCAmelCase_ : int = locals()
del input_variables["axis"]
if not all(isinstance(snake_case__ , (float, int)) for val in input_variables.values()):
lowerCAmelCase_ : Union[str, Any] = (
"Input values except axis must either be float or int: "
F'''{list(input_variables.values())}'''
)
raise TypeError(snake_case__)
lowerCAmelCase_ : str = (angle % 3_60) / 4_50 * 1_80 / math.pi
if axis == "z":
lowerCAmelCase_ : Optional[Any] = x * math.cos(snake_case__) - y * math.sin(snake_case__)
lowerCAmelCase_ : Any = y * math.cos(snake_case__) + x * math.sin(snake_case__)
lowerCAmelCase_ : Optional[int] = z
elif axis == "x":
lowerCAmelCase_ : Union[str, Any] = y * math.cos(snake_case__) - z * math.sin(snake_case__)
lowerCAmelCase_ : Tuple = z * math.cos(snake_case__) + y * math.sin(snake_case__)
lowerCAmelCase_ : Tuple = x
elif axis == "y":
lowerCAmelCase_ : Union[str, Any] = x * math.cos(snake_case__) - z * math.sin(snake_case__)
lowerCAmelCase_ : Dict = z * math.cos(snake_case__) + x * math.sin(snake_case__)
lowerCAmelCase_ : Tuple = y
else:
raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'")
return new_x, new_y, new_z
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }")
print(f"{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }")
| 659 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
PNDMScheduler,
StableDiffusionLDMaDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import nightly, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
enable_full_determinism()
class __snake_case ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = StableDiffusionLDMaDPipeline
UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS
UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS
def UpperCAmelCase_ ( self : Tuple ) -> str:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,)
lowerCAmelCase_ : Any = DDIMScheduler(
beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=lowerCAmelCase__ ,set_alpha_to_one=lowerCAmelCase__ ,)
torch.manual_seed(0 )
lowerCAmelCase_ : str = AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=6 ,out_channels=6 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,)
torch.manual_seed(0 )
lowerCAmelCase_ : Optional[Any] = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,)
lowerCAmelCase_ : Optional[int] = CLIPTextModel(lowerCAmelCase__ )
lowerCAmelCase_ : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
lowerCAmelCase_ : List[Any] = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : List[str]=0 ) -> Dict:
'''simple docstring'''
if str(lowerCAmelCase__ ).startswith("mps" ):
lowerCAmelCase_ : Optional[int] = torch.manual_seed(lowerCAmelCase__ )
else:
lowerCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
lowerCAmelCase_ : str = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def UpperCAmelCase_ ( self : Any ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ : List[str] = self.get_dummy_components()
lowerCAmelCase_ : Union[str, Any] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ )
lowerCAmelCase_ : List[Any] = ldmad_pipe.to(lowerCAmelCase__ )
ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
lowerCAmelCase_ : Any = self.get_dummy_inputs(lowerCAmelCase__ )
lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ )
lowerCAmelCase_ , lowerCAmelCase_ : Any = output.rgb, output.depth
lowerCAmelCase_ : Dict = rgb[0, -3:, -3:, -1]
lowerCAmelCase_ : Tuple = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
lowerCAmelCase_ : Optional[Any] = np.array(
[0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] )
lowerCAmelCase_ : Tuple = np.array([103.46_727, 85.812_004, 87.849_236] )
assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2
assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2
def UpperCAmelCase_ ( self : int ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : Dict = self.get_dummy_components()
lowerCAmelCase_ : List[str] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ )
lowerCAmelCase_ : List[Any] = ldmad_pipe.to(lowerCAmelCase__ )
ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ )
lowerCAmelCase_ : str = 3 * [inputs["prompt"]]
# forward
lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = output.rgb, output.depth
lowerCAmelCase_ : str = rgb_slice_a[0, -3:, -3:, -1]
lowerCAmelCase_ : List[str] = depth_slice_a[0, -3:, -1]
lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ )
lowerCAmelCase_ : Tuple = 3 * [inputs.pop("prompt" )]
lowerCAmelCase_ : str = ldmad_pipe.tokenizer(
lowerCAmelCase__ ,padding="max_length" ,max_length=ldmad_pipe.tokenizer.model_max_length ,truncation=lowerCAmelCase__ ,return_tensors="pt" ,)
lowerCAmelCase_ : Union[str, Any] = text_inputs["input_ids"].to(lowerCAmelCase__ )
lowerCAmelCase_ : Optional[int] = ldmad_pipe.text_encoder(lowerCAmelCase__ )[0]
lowerCAmelCase_ : Optional[int] = prompt_embeds
# forward
lowerCAmelCase_ : str = ldmad_pipe(**lowerCAmelCase__ )
lowerCAmelCase_ , lowerCAmelCase_ : str = output.rgb, output.depth
lowerCAmelCase_ : Optional[Any] = rgb_slice_a[0, -3:, -3:, -1]
lowerCAmelCase_ : Tuple = depth_slice_a[0, -3:, -1]
assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4
assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Any = "cpu" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ : Optional[int] = self.get_dummy_components()
lowerCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
lowerCAmelCase_ : Union[str, Any] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ )
lowerCAmelCase_ : Any = ldmad_pipe.to(lowerCAmelCase__ )
ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
lowerCAmelCase_ : List[str] = self.get_dummy_inputs(lowerCAmelCase__ )
lowerCAmelCase_ : List[Any] = "french fries"
lowerCAmelCase_ : Optional[int] = ldmad_pipe(**lowerCAmelCase__ ,negative_prompt=lowerCAmelCase__ )
lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = output.rgb, output.depth
lowerCAmelCase_ : Any = rgb[0, -3:, -3:, -1]
lowerCAmelCase_ : Tuple = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
lowerCAmelCase_ : int = np.array(
[0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] )
lowerCAmelCase_ : Union[str, Any] = np.array([107.84_738, 84.62_802, 89.962_135] )
assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2
assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict="cpu" ,lowerCAmelCase__ : Union[str, Any]=torch.floataa ,lowerCAmelCase__ : List[str]=0 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
lowerCAmelCase_ : List[str] = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) )
lowerCAmelCase_ : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ,dtype=lowerCAmelCase__ )
lowerCAmelCase_ : Union[str, Any] = {
"prompt": "a photograph of an astronaut riding a horse",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def UpperCAmelCase_ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" )
lowerCAmelCase_ : List[str] = ldmad_pipe.to(lowerCAmelCase__ )
ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
lowerCAmelCase_ : Dict = self.get_inputs(lowerCAmelCase__ )
lowerCAmelCase_ : List[str] = ldmad_pipe(**lowerCAmelCase__ )
lowerCAmelCase_ , lowerCAmelCase_ : Dict = output.rgb, output.depth
lowerCAmelCase_ : List[str] = rgb[0, -3:, -3:, -1].flatten()
lowerCAmelCase_ : Optional[int] = rgb[0, -3:, -1].flatten()
assert rgb.shape == (1, 5_12, 5_12, 3)
assert depth.shape == (1, 5_12, 5_12)
lowerCAmelCase_ : int = np.array(
[0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] )
lowerCAmelCase_ : Optional[Any] = np.array(
[0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] )
assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3
assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3
@nightly
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict="cpu" ,lowerCAmelCase__ : List[str]=torch.floataa ,lowerCAmelCase__ : Optional[int]=0 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
lowerCAmelCase_ : Tuple = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) )
lowerCAmelCase_ : Any = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ,dtype=lowerCAmelCase__ )
lowerCAmelCase_ : int = {
"prompt": "a photograph of an astronaut riding a horse",
"latents": latents,
"generator": generator,
"num_inference_steps": 50,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def UpperCAmelCase_ ( self : Dict ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(lowerCAmelCase__ )
ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
lowerCAmelCase_ : Union[str, Any] = self.get_inputs(lowerCAmelCase__ )
lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ )
lowerCAmelCase_ , lowerCAmelCase_ : Any = output.rgb, output.depth
lowerCAmelCase_ : Dict = 0.495_586
lowerCAmelCase_ : Optional[Any] = 0.33_795_515
lowerCAmelCase_ : Any = 112.48_518
lowerCAmelCase_ : List[Any] = 98.489_746
assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3
assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3
assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3
assert np.abs(expected_depth_std - depth.std() ) < 1e-3
def UpperCAmelCase_ ( self : Tuple ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : int = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(lowerCAmelCase__ )
ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
lowerCAmelCase_ : str = self.get_inputs(lowerCAmelCase__ )
lowerCAmelCase_ : Tuple = ldmad_pipe(**lowerCAmelCase__ )
lowerCAmelCase_ , lowerCAmelCase_ : Tuple = output.rgb, output.depth
lowerCAmelCase_ : List[str] = 0.4_194_127
lowerCAmelCase_ : List[str] = 0.35_375_586
lowerCAmelCase_ : str = 0.5_638_502
lowerCAmelCase_ : Optional[Any] = 0.34_686_103
assert rgb.shape == (1, 5_12, 5_12, 3)
assert depth.shape == (1, 5_12, 5_12, 1)
assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3
assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3
assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3
assert np.abs(expected_depth_std - depth.std() ) < 1e-3
| 659 | 1 |
'''simple docstring'''
def __snake_case ( _UpperCAmelCase : str = "The quick brown fox jumps over the lazy dog", ):
UpperCamelCase = set()
# Replace all the whitespace in our sentence
UpperCamelCase = input_str.replace(''' ''', '''''')
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower())
return len(a_) == 26
def __snake_case ( _UpperCAmelCase : str = "The quick brown fox jumps over the lazy dog", ):
UpperCamelCase = [False] * 26
for char in input_str:
if char.islower():
UpperCamelCase = True
elif char.isupper():
UpperCamelCase = True
return all(a_)
def __snake_case ( _UpperCAmelCase : str = "The quick brown fox jumps over the lazy dog", ):
return len({char for char in input_str.lower() if char.isalpha()}) == 26
def __snake_case ( ):
from timeit import timeit
UpperCamelCase = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest'''
print(timeit('''is_pangram()''', setup=a_))
print(timeit('''is_pangram_faster()''', setup=a_))
print(timeit('''is_pangram_fastest()''', setup=a_))
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 705 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
snake_case_ : Any = {
'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'],
'tokenization_electra': ['ElectraTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Union[str, Any] = ['ElectraTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Tuple = [
'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'ElectraForCausalLM',
'ElectraForMaskedLM',
'ElectraForMultipleChoice',
'ElectraForPreTraining',
'ElectraForQuestionAnswering',
'ElectraForSequenceClassification',
'ElectraForTokenClassification',
'ElectraModel',
'ElectraPreTrainedModel',
'load_tf_weights_in_electra',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : int = [
'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFElectraForMaskedLM',
'TFElectraForMultipleChoice',
'TFElectraForPreTraining',
'TFElectraForQuestionAnswering',
'TFElectraForSequenceClassification',
'TFElectraForTokenClassification',
'TFElectraModel',
'TFElectraPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[int] = [
'FlaxElectraForCausalLM',
'FlaxElectraForMaskedLM',
'FlaxElectraForMultipleChoice',
'FlaxElectraForPreTraining',
'FlaxElectraForQuestionAnswering',
'FlaxElectraForSequenceClassification',
'FlaxElectraForTokenClassification',
'FlaxElectraModel',
'FlaxElectraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 350 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
a_ = logging.get_logger(__name__)
a_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
a_ = {
"""vocab_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt"""
),
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt"""
),
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""",
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json"""
),
"""bert-base-multilingual-cased""": (
"""https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json"""
),
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-cased""": (
"""https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json"""
),
},
}
a_ = {
"""bert-base-uncased""": 512,
"""bert-large-uncased""": 512,
"""bert-base-cased""": 512,
"""bert-large-cased""": 512,
"""bert-base-multilingual-uncased""": 512,
"""bert-base-multilingual-cased""": 512,
"""bert-base-chinese""": 512,
"""bert-base-german-cased""": 512,
"""bert-large-uncased-whole-word-masking""": 512,
"""bert-large-cased-whole-word-masking""": 512,
"""bert-large-uncased-whole-word-masking-finetuned-squad""": 512,
"""bert-large-cased-whole-word-masking-finetuned-squad""": 512,
"""bert-base-cased-finetuned-mrpc""": 512,
"""bert-base-german-dbmdz-cased""": 512,
"""bert-base-german-dbmdz-uncased""": 512,
"""TurkuNLP/bert-base-finnish-cased-v1""": 512,
"""TurkuNLP/bert-base-finnish-uncased-v1""": 512,
"""wietsedv/bert-base-dutch-cased""": 512,
}
a_ = {
"""bert-base-uncased""": {"""do_lower_case""": True},
"""bert-large-uncased""": {"""do_lower_case""": True},
"""bert-base-cased""": {"""do_lower_case""": False},
"""bert-large-cased""": {"""do_lower_case""": False},
"""bert-base-multilingual-uncased""": {"""do_lower_case""": True},
"""bert-base-multilingual-cased""": {"""do_lower_case""": False},
"""bert-base-chinese""": {"""do_lower_case""": False},
"""bert-base-german-cased""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False},
"""bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-cased""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True},
"""TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False},
"""TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True},
"""wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False},
}
class __lowerCAmelCase ( lowerCAmelCase__ ):
lowerCAmelCase__ = VOCAB_FILES_NAMES
lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION
lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ = BertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
__lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars
):
__lowerCamelCase = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) )
__lowerCamelCase = do_lower_case
__lowerCamelCase = strip_accents
__lowerCamelCase = tokenize_chinese_chars
__lowerCamelCase = normalizer_class(**__UpperCAmelCase )
__lowerCamelCase = do_lower_case
def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ):
'''simple docstring'''
__lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
__lowerCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 175 |
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
a_ = {
"""iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""",
"""iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""",
"""iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""",
"""mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""",
"""mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""",
"""mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""",
"""mask_downscaling.0""": """mask_embed.conv1""",
"""mask_downscaling.1""": """mask_embed.layer_norm1""",
"""mask_downscaling.3""": """mask_embed.conv2""",
"""mask_downscaling.4""": """mask_embed.layer_norm2""",
"""mask_downscaling.6""": """mask_embed.conv3""",
"""point_embeddings""": """point_embed""",
"""pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""",
"""image_encoder""": """vision_encoder""",
"""neck.0""": """neck.conv1""",
"""neck.1""": """neck.layer_norm1""",
"""neck.2""": """neck.conv2""",
"""neck.3""": """neck.layer_norm2""",
"""patch_embed.proj""": """patch_embed.projection""",
""".norm""": """.layer_norm""",
"""blocks""": """layers""",
}
def a__ ( _UpperCamelCase : Optional[Any] ):
__lowerCamelCase = {}
state_dict.pop('''pixel_mean''' ,_UpperCamelCase )
state_dict.pop('''pixel_std''' ,_UpperCamelCase )
__lowerCamelCase = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*'''
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
__lowerCamelCase = key.replace(_UpperCamelCase ,_UpperCamelCase )
if re.match(_UpperCamelCase ,_UpperCamelCase ):
__lowerCamelCase = int(re.match(_UpperCamelCase ,_UpperCamelCase ).group(2 ) )
if layer_nb == 0:
__lowerCamelCase = key.replace('''layers.0''' ,'''proj_in''' )
elif layer_nb == 1:
__lowerCamelCase = key.replace('''layers.1''' ,'''layers.0''' )
elif layer_nb == 2:
__lowerCamelCase = key.replace('''layers.2''' ,'''proj_out''' )
__lowerCamelCase = value
__lowerCamelCase = model_state_dict[
'''prompt_encoder.shared_embedding.positional_embedding'''
]
return model_state_dict
def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : Dict ,_UpperCamelCase : Any ,_UpperCamelCase : Optional[int]="ybelkada/segment-anything" ):
__lowerCamelCase = hf_hub_download(_UpperCamelCase ,F"""checkpoints/{model_name}.pth""" )
if "sam_vit_b" in model_name:
__lowerCamelCase = SamConfig()
elif "sam_vit_l" in model_name:
__lowerCamelCase = SamVisionConfig(
hidden_size=10_24 ,num_hidden_layers=24 ,num_attention_heads=16 ,global_attn_indexes=[5, 11, 17, 23] ,)
__lowerCamelCase = SamConfig(
vision_config=_UpperCamelCase ,)
elif "sam_vit_h" in model_name:
__lowerCamelCase = SamVisionConfig(
hidden_size=12_80 ,num_hidden_layers=32 ,num_attention_heads=16 ,global_attn_indexes=[7, 15, 23, 31] ,)
__lowerCamelCase = SamConfig(
vision_config=_UpperCamelCase ,)
__lowerCamelCase = torch.load(_UpperCamelCase ,map_location='''cpu''' )
__lowerCamelCase = replace_keys(_UpperCamelCase )
__lowerCamelCase = SamImageProcessor()
__lowerCamelCase = SamProcessor(image_processor=_UpperCamelCase )
__lowerCamelCase = SamModel(_UpperCamelCase )
hf_model.load_state_dict(_UpperCamelCase )
__lowerCamelCase = hf_model.to('''cuda''' )
__lowerCamelCase = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png'''
__lowerCamelCase = Image.open(requests.get(_UpperCamelCase ,stream=_UpperCamelCase ).raw ).convert('''RGB''' )
__lowerCamelCase = [[[4_00, 6_50]]]
__lowerCamelCase = [[1]]
__lowerCamelCase = processor(images=np.array(_UpperCamelCase ) ,return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
__lowerCamelCase = hf_model(**_UpperCamelCase )
__lowerCamelCase = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.579_890_251_159_668
__lowerCamelCase = processor(
images=np.array(_UpperCamelCase ) ,input_points=_UpperCamelCase ,input_labels=_UpperCamelCase ,return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
__lowerCamelCase = hf_model(**_UpperCamelCase )
__lowerCamelCase = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9_712_603_092_193_604
__lowerCamelCase = ((75, 2_75, 17_25, 8_50),)
__lowerCamelCase = processor(images=np.array(_UpperCamelCase ) ,input_boxes=_UpperCamelCase ,return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
__lowerCamelCase = hf_model(**_UpperCamelCase )
__lowerCamelCase = output.iou_scores.squeeze()
assert scores[-1].item() == 0.8_686_015_605_926_514
# Test with 2 points and 1 image.
__lowerCamelCase = [[[4_00, 6_50], [8_00, 6_50]]]
__lowerCamelCase = [[1, 1]]
__lowerCamelCase = processor(
images=np.array(_UpperCamelCase ) ,input_points=_UpperCamelCase ,input_labels=_UpperCamelCase ,return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
__lowerCamelCase = hf_model(**_UpperCamelCase )
__lowerCamelCase = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9_936_047_792_434_692
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
a_ = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""]
parser.add_argument(
"""--model_name""",
default="""sam_vit_h_4b8939""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
parser.add_argument(
"""--model_hub_id""",
default="""ybelkada/segment-anything""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
a_ = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 175 | 1 |
__lowercase = """\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"""
__lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
__lowercase = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 717 |
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__lowercase = re.compile(r"""^(?P<major>\d+)""" r"""\.(?P<minor>\d+)""" r"""\.(?P<patch>\d+)$""")
@total_ordering
@dataclass
class _lowercase :
_lowercase : str
_lowercase : Optional[str] = None
_lowercase : Optional[Union[str, int]] = None
_lowercase : Optional[Union[str, int]] = None
_lowercase : Optional[Union[str, int]] = None
def UpperCamelCase ( self : Any ) -> Tuple:
"""simple docstring"""
A_ ,A_ ,A_ = _str_to_version_tuple(self.version_str )
def __repr__( self : Optional[int] ) -> Any:
"""simple docstring"""
return F"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}"
@property
def UpperCamelCase ( self : int ) -> Any:
"""simple docstring"""
return self.major, self.minor, self.patch
def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
return Version(lowerCamelCase__ )
elif isinstance(lowerCamelCase__ , lowerCamelCase__ ):
return other
raise TypeError(F"{other} (type {type(lowerCamelCase__ )}) cannot be compared to version." )
def __eq__( self : List[Any] , lowerCamelCase__ : int ) -> Optional[Any]:
"""simple docstring"""
try:
A_ = self._validate_operand(lowerCamelCase__ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : Optional[int] , lowerCamelCase__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
A_ = self._validate_operand(lowerCamelCase__ )
return self.tuple < other.tuple
def __hash__( self : List[str] ) -> List[str]:
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def UpperCamelCase ( cls : List[Any] , lowerCamelCase__ : Optional[Any] ) -> Any:
"""simple docstring"""
A_ = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def UpperCamelCase ( self : Dict ) -> str:
"""simple docstring"""
return self.version_str
def _lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A_ = _VERSION_REG.match(SCREAMING_SNAKE_CASE )
if not res:
raise ValueError(f"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." )
return tuple(int(SCREAMING_SNAKE_CASE ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] )
def _lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
return ".".join(str(SCREAMING_SNAKE_CASE ) for v in version_tuple )
| 563 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class _a ( unittest.TestCase ):
def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=18, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=True, ) -> Optional[Any]:
UpperCAmelCase_: List[Any] = parent
UpperCAmelCase_: List[Any] = batch_size
UpperCAmelCase_: Any = num_channels
UpperCAmelCase_: List[str] = image_size
UpperCAmelCase_: Dict = min_resolution
UpperCAmelCase_: List[str] = max_resolution
UpperCAmelCase_: str = do_resize
UpperCAmelCase_: int = size_divisor
UpperCAmelCase_: Optional[int] = do_rescale
def __snake_case (self ) -> Optional[Any]:
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class _a ( _lowerCAmelCase , unittest.TestCase ):
A = GLPNImageProcessor if is_vision_available() else None
def __snake_case (self ) -> Union[str, Any]:
UpperCAmelCase_: Dict = GLPNImageProcessingTester(self )
@property
def __snake_case (self ) -> List[str]:
return self.image_processor_tester.prepare_image_processor_dict()
def __snake_case (self ) -> str:
UpperCAmelCase_: Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase__, """do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase__, """size_divisor""" ) )
self.assertTrue(hasattr(lowerCamelCase__, """resample""" ) )
self.assertTrue(hasattr(lowerCamelCase__, """do_rescale""" ) )
def __snake_case (self ) -> List[str]:
pass
def __snake_case (self ) -> List[str]:
# Initialize image_processing
UpperCAmelCase_: int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_: str = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__, Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
UpperCAmelCase_: Tuple = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def __snake_case (self ) -> Optional[int]:
# Initialize image_processing
UpperCAmelCase_: str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase_: Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase__, numpify=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__, np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
UpperCAmelCase_: List[str] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def __snake_case (self ) -> Optional[int]:
# Initialize image_processing
UpperCAmelCase_: List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_: Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase__, torchify=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__, torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
UpperCAmelCase_: List[str] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 556 |
from __future__ import annotations
def A ( lowercase__ : list[int] ) -> bool:
return len(set(lowercase__ ) ) == len(lowercase__ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 45 | 0 |
"""simple docstring"""
from __future__ import annotations
def __UpperCAmelCase ( _snake_case : int, _snake_case : int ):
if partitions <= 0:
raise ValueError("partitions must be a positive number!" )
if partitions > number_of_bytes:
raise ValueError("partitions can not > number_of_bytes!" )
_lowercase = number_of_bytes // partitions
_lowercase = []
for i in range(lowerCamelCase_ ):
_lowercase = i * bytes_per_partition + 1
_lowercase = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(f"""{start_bytes}-{end_bytes}""" )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod() | 712 | """simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : Tuple = {
"configuration_poolformer": [
"POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"PoolFormerConfig",
"PoolFormerOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = ["PoolFormerFeatureExtractor"]
__UpperCamelCase : List[str] = ["PoolFormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"PoolFormerForImageClassification",
"PoolFormerModel",
"PoolFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
__UpperCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure) | 227 | 0 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.