code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' def snake_case_ (UpperCamelCase : list[list[int]] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : set ): '''simple docstring''' _a , _a = len(UpperCamelCase ), len(grid[0] ) if ( min(UpperCamelCase , UpperCamelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a = 0 count += depth_first_search(UpperCamelCase , row + 1 , UpperCamelCase , UpperCamelCase ) count += depth_first_search(UpperCamelCase , row - 1 , UpperCamelCase , UpperCamelCase ) count += depth_first_search(UpperCamelCase , UpperCamelCase , col + 1 , UpperCamelCase ) count += depth_first_search(UpperCamelCase , UpperCamelCase , col - 1 , UpperCamelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
22
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = {"vocab_file": "sentencepiece.bpe.model"} _UpperCAmelCase : List[Any] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } _UpperCAmelCase : Union[str, Any] = { "camembert-base": 512, } _UpperCAmelCase : Dict = "▁" class lowerCAmelCase_ ( snake_case__ ): UpperCamelCase_ :int = VOCAB_FILES_NAMES UpperCamelCase_ :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ :Dict = ['input_ids', 'attention_mask'] def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any="<s>" , SCREAMING_SNAKE_CASE_ : Tuple="</s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE_ : Optional[int]="<s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<unk>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE_ : str="<mask>" , SCREAMING_SNAKE_CASE_ : int=["<s>NOTUSED", "</s>NOTUSED"] , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE_ : str , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowerCAmelCase__ = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} lowerCAmelCase__ = len(self.fairseq_tokens_to_ids ) lowerCAmelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def __snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __snake_case ( self : List[Any] ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def __snake_case ( self : int ): lowerCAmelCase__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : str ): return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] ): lowerCAmelCase__ = [] lowerCAmelCase__ = '''''' lowerCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token lowerCAmelCase__ = True lowerCAmelCase__ = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def __getstate__( self : Optional[Any] ): lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : str , SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
668
0
def _lowerCAmelCase( __A ): UpperCAmelCase = len(__A ) UpperCAmelCase = len(matrix[0] ) UpperCAmelCase = min(__A , __A ) for row in range(__A ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , __A ): UpperCAmelCase = matrix[col][row] / matrix[row][row] for i in range(__A , __A ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCAmelCase = True for i in range(row + 1 , __A ): if matrix[i][row] != 0: UpperCAmelCase , UpperCAmelCase = matrix[i], matrix[row] UpperCAmelCase = False break if reduce: rank -= 1 for i in range(__A ): UpperCAmelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
702
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase__ = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowerCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowerCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowerCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _UpperCamelCase ( self : int ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Dict: import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=0.5 ) -> Any: if NLTK_VERSION >= version.Version("3.6.5" ): UpperCAmelCase = [ meteor_score.single_meteor_score( word_tokenize(lowerCAmelCase__ ) , word_tokenize(lowerCAmelCase__ ) , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ ) for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] else: UpperCAmelCase = [ meteor_score.single_meteor_score(lowerCAmelCase__ , lowerCAmelCase__ , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ ) for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] return {"meteor": np.mean(lowerCAmelCase__ )}
1
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowercase (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :Optional[Any] , _SCREAMING_SNAKE_CASE :List[Any] , _SCREAMING_SNAKE_CASE :List[Any] ): with open(UpperCamelCase__ ) as metadata_file: SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = LukeConfig(use_entity_aware_attention=UpperCamelCase__ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE : Tuple = torch.load(UpperCamelCase__ , map_location='''cpu''' )['''module'''] # Load the entity vocab file SCREAMING_SNAKE_CASE : List[str] = load_original_entity_vocab(UpperCamelCase__ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE : List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE : Tuple = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken('''<ent>''' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = AddedToken('''<ent2>''' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) , '''r''' ) as f: SCREAMING_SNAKE_CASE : Dict = json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = '''MLukeTokenizer''' with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = MLukeTokenizer.from_pretrained(UpperCamelCase__ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_tokens_to_ids(['''@'''] )[0] SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] SCREAMING_SNAKE_CASE : Any = state_dict['''embeddings.word_embeddings.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE : Any = word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE : str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE : Dict = state_dict[bias_name] SCREAMING_SNAKE_CASE : int = decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE : Dict = F'''encoder.layer.{layer_index}.attention.self.''' SCREAMING_SNAKE_CASE : Tuple = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE : int = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE : Optional[int] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE : str = state_dict['''entity_embeddings.entity_embeddings.weight'''] SCREAMING_SNAKE_CASE : List[str] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) SCREAMING_SNAKE_CASE : str = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE : Dict = state_dict['''entity_predictions.bias'''] SCREAMING_SNAKE_CASE : Union[str, Any] = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) SCREAMING_SNAKE_CASE : List[str] = torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE : Optional[int] = LukeForMaskedLM(config=UpperCamelCase__ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) SCREAMING_SNAKE_CASE : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): SCREAMING_SNAKE_CASE : Optional[Any] = state_dict[key] else: SCREAMING_SNAKE_CASE : List[Any] = state_dict[key] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) if set(UpperCamelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCamelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE : List[str] = MLukeTokenizer.from_pretrained(UpperCamelCase__ , task='''entity_classification''' ) SCREAMING_SNAKE_CASE : Optional[Any] = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' SCREAMING_SNAKE_CASE : Optional[int] = (0, 9) SCREAMING_SNAKE_CASE : Any = tokenizer(UpperCamelCase__ , entity_spans=[span] , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : str = model(**UpperCamelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 33, 7_68) ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 1, 7_68) ) SCREAMING_SNAKE_CASE : Any = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE : str = MLukeTokenizer.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = '''Tokyo is the capital of <mask>.''' SCREAMING_SNAKE_CASE : int = (24, 30) SCREAMING_SNAKE_CASE : int = tokenizer(UpperCamelCase__ , entity_spans=[span] , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = model(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = encoding['''input_ids'''][0].tolist() SCREAMING_SNAKE_CASE : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) SCREAMING_SNAKE_CASE : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE : Union[str, Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(UpperCamelCase__ ) ) model.save_pretrained(UpperCamelCase__ ) def __lowercase (_SCREAMING_SNAKE_CASE :str ): SCREAMING_SNAKE_CASE : int = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] SCREAMING_SNAKE_CASE : Dict = [json.loads(UpperCamelCase__ ) for line in open(UpperCamelCase__ )] SCREAMING_SNAKE_CASE : int = {} for entry in data: SCREAMING_SNAKE_CASE : Dict = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE : Tuple = entity_id break SCREAMING_SNAKE_CASE : List[str] = F'''{language}:{entity_name}''' SCREAMING_SNAKE_CASE : str = entity_id return new_mapping if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) snake_case_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
507
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : str ) -> List[str]: """simple docstring""" __lowerCamelCase = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCamelCase = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } __lowerCamelCase = F"""{src_lang}-{tgt_lang}""" __lowerCamelCase = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) __lowerCamelCase = os.path.join(UpperCamelCase__ , 'README.md' ) print(F"""Generating {path}""" ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(UpperCamelCase__ ) # make sure we are under the root of the project __A = Path(__file__).resolve().parent.parent.parent __A = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __A = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
469
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class A__ ( UpperCamelCase_ ): lowercase = "efficientnet" def __init__( self , UpperCamelCase__ = 3 , UpperCamelCase__ = 600 , UpperCamelCase__ = 2.0 , UpperCamelCase__ = 3.1 , UpperCamelCase__ = 8 , UpperCamelCase__ = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase__ = [32, 16, 24, 40, 80, 112, 192] , UpperCamelCase__ = [16, 24, 40, 80, 112, 192, 320] , UpperCamelCase__ = [] , UpperCamelCase__ = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase__ = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase__ = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase__ = 0.25 , UpperCamelCase__ = "swish" , UpperCamelCase__ = 2560 , UpperCamelCase__ = "mean" , UpperCamelCase__ = 0.02 , UpperCamelCase__ = 0.001 , UpperCamelCase__ = 0.99 , UpperCamelCase__ = 0.5 , UpperCamelCase__ = 0.2 , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = num_channels A_ = image_size A_ = width_coefficient A_ = depth_coefficient A_ = depth_divisor A_ = kernel_sizes A_ = in_channels A_ = out_channels A_ = depthwise_padding A_ = strides A_ = num_block_repeats A_ = expand_ratios A_ = squeeze_expansion_ratio A_ = hidden_act A_ = hidden_dim A_ = pooling_type A_ = initializer_range A_ = batch_norm_eps A_ = batch_norm_momentum A_ = dropout_rate A_ = drop_connect_rate A_ = sum(UpperCamelCase__ ) * 4 class A__ ( UpperCamelCase_ ): lowercase = version.parse("1.11" ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def snake_case_ ( self ) -> float: '''simple docstring''' return 1e-5
719
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __UpperCAmelCase = 250_004 __UpperCAmelCase = 250_020 @require_sentencepiece @require_tokenizers class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : List[str] = MBartaaTokenizer lowercase__ : Union[str, Any] = MBartaaTokenizerFast lowercase__ : Tuple = True lowercase__ : Optional[Any] = True def __SCREAMING_SNAKE_CASE ( self ) -> Any: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = '''<s>''' lowerCAmelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCAmelCase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> int: # fmt: off lowerCAmelCase__ = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __SCREAMING_SNAKE_CASE ( self ) -> str: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase__ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCAmelCase__ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): '''simple docstring''' lowercase__ : Union[str, Any] = "facebook/mbart-large-50-one-to-many-mmt" lowercase__ : List[Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] lowercase__ : int = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] lowercase__ : Tuple = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def __SCREAMING_SNAKE_CASE ( cls ) -> int: lowerCAmelCase__ = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) lowerCAmelCase__ = 1 return cls def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) lowerCAmelCase__ = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] lowerCAmelCase__ = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) lowerCAmelCase__ = 10 lowerCAmelCase__ = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase__ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowerCAmelCase__ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCAmelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) lowerCAmelCase__ = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) lowerCAmelCase__ = targets['''input_ids'''] lowerCAmelCase__ = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
90
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __UpperCAmelCase = False class a__ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe.dual_guided( prompt='''first prompt''' , image=lowerCamelCase_ , text_to_image_strength=0.75 , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase_ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = generator.manual_seed(0 ) lowerCAmelCase__ = pipe.dual_guided( prompt='''first prompt''' , image=lowerCamelCase_ , text_to_image_strength=0.75 , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = '''cyberpunk 2077''' lowerCAmelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe.dual_guided( prompt=lowerCamelCase_ , image=lowerCamelCase_ , text_to_image_strength=0.75 , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images lowerCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowerCAmelCase__ = '''A painting of a squirrel eating a burger ''' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe.text_to_image( prompt=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images lowerCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowerCAmelCase__ = pipe.image_variation(lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''numpy''' ).images lowerCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
90
1
'''simple docstring''' import numpy as np import qiskit def lowerCamelCase ( UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : int | None = None ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = np.random.default_rng(seed=UpperCAmelCase__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. SCREAMING_SNAKE_CASE__ :Tuple = 6 * key_len # Measurement basis for Alice's qubits. SCREAMING_SNAKE_CASE__ :Optional[Any] = rng.integers(2 , size=UpperCAmelCase__ ) # The set of states Alice will prepare. SCREAMING_SNAKE_CASE__ :Union[str, Any] = rng.integers(2 , size=UpperCAmelCase__ ) # Measurement basis for Bob's qubits. SCREAMING_SNAKE_CASE__ :Optional[Any] = rng.integers(2 , size=UpperCAmelCase__ ) # Quantum Circuit to simulate BB84 SCREAMING_SNAKE_CASE__ :Union[str, Any] = qiskit.QuantumCircuit(UpperCAmelCase__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(UpperCAmelCase__ ): if alice_state[index] == 1: bbaa_circ.x(UpperCAmelCase__ ) if alice_basis[index] == 1: bbaa_circ.h(UpperCAmelCase__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(UpperCAmelCase__ ): if bob_basis[index] == 1: bbaa_circ.h(UpperCAmelCase__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. SCREAMING_SNAKE_CASE__ :Tuple = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. SCREAMING_SNAKE_CASE__ :Optional[int] = qiskit.execute(UpperCAmelCase__ , UpperCAmelCase__ , shots=1 , seed_simulator=UpperCAmelCase__ ) # Returns the result of measurement. SCREAMING_SNAKE_CASE__ :Optional[int] = job.result().get_counts(UpperCAmelCase__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. SCREAMING_SNAKE_CASE__ :Tuple = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. SCREAMING_SNAKE_CASE__ :List[Any] = gen_key[:key_len] if len(UpperCAmelCase__ ) >= key_len else gen_key.ljust(UpperCAmelCase__ , '0' ) return key if __name__ == "__main__": print(f"The generated key is : {bbaa(8, seed=0)}") from doctest import testmod testmod()
320
'''simple docstring''' from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): def __init__( self : Tuple , UpperCamelCase_ : NestedDataStructureLike[PathLike] , UpperCamelCase_ : Optional[NamedSplit] = None , UpperCamelCase_ : Optional[Features] = None , UpperCamelCase_ : str = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[int] = None , **UpperCamelCase_ : List[str] , ) -> str: super().__init__( UpperCamelCase_ , split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ :int = path_or_paths if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE__ :List[Any] = Text( cache_dir=UpperCamelCase_ , data_files=UpperCamelCase_ , features=UpperCamelCase_ , **UpperCamelCase_ , ) def __lowerCamelCase ( self : Optional[Any] ) -> Optional[Any]: # Build iterable dataset if self.streaming: SCREAMING_SNAKE_CASE__ :int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE__ :str = None SCREAMING_SNAKE_CASE__ :Union[str, Any] = None SCREAMING_SNAKE_CASE__ :Optional[int] = None SCREAMING_SNAKE_CASE__ :Tuple = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE__ :int = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset
320
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[str] = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCamelCase (_lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] )-> Optional[Any]: '''simple docstring''' __snake_case = [] for part_id in partition_order: __snake_case = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(_lowerCamelCase ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Any: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(1_00 ).repartition(1 ) __snake_case = Spark(_lowerCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Tuple: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(10 ).repartition(2 ) __snake_case = [1, 0] __snake_case = _generate_iterable_examples(_lowerCamelCase , _lowerCamelCase ) # Reverse the partitions. __snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , _lowerCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __snake_case , __snake_case = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> int: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(10 ).repartition(1 ) __snake_case = SparkExamplesIterable(_lowerCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Union[str, Any]: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: __snake_case = lambda _lowerCamelCase : x.reverse() __snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , [2, 1, 0] ) __snake_case = SparkExamplesIterable(_lowerCamelCase ).shuffle_data_sources(_lowerCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): __snake_case , __snake_case = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Tuple: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __snake_case = SparkExamplesIterable(_lowerCamelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): __snake_case , __snake_case = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __snake_case = SparkExamplesIterable(_lowerCamelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): __snake_case , __snake_case = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Optional[int]: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(1_00 ).repartition(1 ) __snake_case = Spark(_lowerCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
24
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __magic_name__ = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
__magic_name__ = range(2, 20 + 1) __magic_name__ = [10**k for k in range(ks[-1] + 1)] __magic_name__ = {} def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowercase = sum(a_i[j] for j in range(_UpperCAmelCase , len(_UpperCAmelCase ) ) ) lowercase = sum(a_i[j] * base[j] for j in range(min(len(_UpperCAmelCase ) , _UpperCAmelCase ) ) ) lowercase , lowercase = 0, 0 lowercase = n - i lowercase = memo.get(_UpperCAmelCase ) if sub_memo is not None: lowercase = sub_memo.get(_UpperCAmelCase ) if jumps is not None and len(_UpperCAmelCase ) > 0: # find and make the largest jump without going over lowercase = -1 for _k in range(len(_UpperCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase = _k break if max_jump >= 0: lowercase , lowercase , lowercase = jumps[max_jump] # since the difference between jumps is cached, add c lowercase = diff + c for j in range(min(_UpperCAmelCase , len(_UpperCAmelCase ) ) ): lowercase , lowercase = divmod(_UpperCAmelCase , 10 ) if new_c > 0: add(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: lowercase = [] else: lowercase = {c: []} lowercase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase , lowercase = next_term(_UpperCAmelCase , k - 1 , i + dn , _UpperCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase , lowercase = compute(_UpperCAmelCase , _UpperCAmelCase , i + dn , _UpperCAmelCase ) diff += _diff dn += terms_jumped lowercase = sub_memo[c] # keep jumps sorted by # of terms skipped lowercase = 0 while j < len(_UpperCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_UpperCAmelCase , (diff, dn, k) ) return (diff, dn) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if i >= n: return 0, i if k > len(_UpperCAmelCase ): a_i.extend([0 for _ in range(k - len(_UpperCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase = i lowercase , lowercase , lowercase = 0, 0, 0 for j in range(len(_UpperCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase = ds_c + ds_b diff += addend lowercase = 0 for j in range(_UpperCAmelCase ): lowercase = a_i[j] + addend lowercase , lowercase = divmod(_UpperCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return diff, i - start_i def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" for j in range(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowercase = digits[j] + addend if s >= 10: lowercase , lowercase = divmod(_UpperCAmelCase , 10 ) lowercase = addend // 10 + quotient else: lowercase = s lowercase = addend // 10 if addend == 0: break while addend > 0: lowercase , lowercase = divmod(_UpperCAmelCase , 10 ) digits.append(_UpperCAmelCase ) def __snake_case ( _UpperCAmelCase = 10**15 ): """simple docstring""" lowercase = [1] lowercase = 1 lowercase = 0 while True: lowercase , lowercase = next_term(_UpperCAmelCase , 20 , i + dn , _UpperCAmelCase ) dn += terms_jumped if dn == n - i: break lowercase = 0 for j in range(len(_UpperCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
314
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=False ) -> Any: """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]=False ) -> Optional[int]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = "" else: lowerCAmelCase__ = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ = DeiTConfig() # all deit models have fine-tuned heads lowerCAmelCase__ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} lowerCAmelCase__ = int(deit_name[-6:-4] ) lowerCAmelCase__ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): lowerCAmelCase__ = 192 lowerCAmelCase__ = 768 lowerCAmelCase__ = 12 lowerCAmelCase__ = 3 elif deit_name[9:].startswith("small" ): lowerCAmelCase__ = 384 lowerCAmelCase__ = 1_536 lowerCAmelCase__ = 12 lowerCAmelCase__ = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 # load original model from timm lowerCAmelCase__ = timm.create_model(UpperCamelCase_ , pretrained=UpperCamelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase__ = timm_model.state_dict() lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # load HuggingFace model lowerCAmelCase__ = DeiTForImageClassificationWithTeacher(UpperCamelCase_ ).eval() model.load_state_dict(UpperCamelCase_ ) # Check outputs on an image, prepared by DeiTImageProcessor lowerCAmelCase__ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowerCAmelCase__ = DeiTImageProcessor(size=UpperCamelCase_ , crop_size=config.image_size ) lowerCAmelCase__ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCAmelCase__ = encoding["pixel_values"] lowerCAmelCase__ = model(UpperCamelCase_ ) lowerCAmelCase__ = timm_model(UpperCamelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCamelCase_ , outputs.logits , atol=1e-3 ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(F"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
339
from math import factorial def _a ( UpperCamelCase_ : int = 20 ) -> int: """simple docstring""" lowerCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... lowerCAmelCase__ = n // 2 return int(factorial(UpperCamelCase_ ) / (factorial(UpperCamelCase_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
339
1
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 16 UpperCamelCase__ = 32 def _UpperCamelCase (a__ :Accelerator , a__ :DatasetDict , a__ :List[int] , a__ :List[int] , a__ :int = 16 ): """simple docstring""" UpperCamelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase__ = DatasetDict( { """train""": dataset["""train"""].select(a__ ), """validation""": dataset["""train"""].select(a__ ), """test""": dataset["""validation"""], } ) def tokenize_function(a__ :Optional[int] ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=a__ , max_length=a__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase__ = datasets.map( a__ , batched=a__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(a__ :int ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase__ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase__ = 8 else: UpperCamelCase__ = None return tokenizer.pad( a__ , padding="""longest""" , max_length=a__ , pad_to_multiple_of=a__ , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCamelCase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) UpperCamelCase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) UpperCamelCase__ = DataLoader( tokenized_datasets["""test"""] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) return train_dataloader, eval_dataloader, test_dataloader def _UpperCamelCase (a__ :Any , a__ :int ): """simple docstring""" UpperCamelCase__ = [] # Download the dataset UpperCamelCase__ = load_dataset("""glue""" , """mrpc""" ) # Create our splits UpperCamelCase__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCamelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ = config["""lr"""] UpperCamelCase__ = int(config["""num_epochs"""] ) UpperCamelCase__ = int(config["""seed"""] ) UpperCamelCase__ = int(config["""batch_size"""] ) UpperCamelCase__ = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation UpperCamelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase__ = batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase__ = MAX_GPU_BATCH_SIZE set_seed(a__ ) # New Code # # Create our folds: UpperCamelCase__ = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) UpperCamelCase__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(a__ ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = get_fold_dataloaders( a__ , a__ , a__ , a__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=a__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase__ = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase__ = AdamW(params=model.parameters() , lr=a__ ) # Instantiate scheduler UpperCamelCase__ = get_linear_schedule_with_warmup( optimizer=a__ , num_warmup_steps=100 , num_training_steps=(len(a__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = accelerator.prepare( a__ , a__ , a__ , a__ , a__ ) # Now we train the model for epoch in range(a__ ): model.train() for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase__ = model(**a__ ) UpperCamelCase__ = outputs.loss UpperCamelCase__ = loss / gradient_accumulation_steps accelerator.backward(a__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ = model(**a__ ) UpperCamelCase__ = outputs.logits.argmax(dim=-1 ) UpperCamelCase__ , UpperCamelCase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=a__ , references=a__ , ) UpperCamelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , a__ ) # New Code # # We also run predictions on the test set at the very end UpperCamelCase__ = [] for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ = model(**a__ ) UpperCamelCase__ = outputs.logits UpperCamelCase__ , UpperCamelCase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(a__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCamelCase__ = torch.cat(a__ , dim=0 ) UpperCamelCase__ = torch.stack(a__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCamelCase__ = metric.compute(predictions=a__ , references=a__ ) accelerator.print("""Average test metrics from all folds:""" , a__ ) def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=a__ , default=a__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=a__ , default=3 , help="""The number of splits to perform across the dataset""" ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(a__ , a__ ) if __name__ == "__main__": main()
548
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case : Union[str, Any] = MODEL_FOR_CAUSAL_LM_MAPPING snake_case : List[str] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output UpperCamelCase__ = text_generator("""This is a test""" , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) UpperCamelCase__ = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( __lowerCAmelCase , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) UpperCamelCase__ = text_generator("""This is a test""" , do_sample=__lowerCAmelCase , num_return_sequences=2 , return_tensors=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ {"""generated_token_ids""": ANY(__lowerCAmelCase )}, {"""generated_token_ids""": ANY(__lowerCAmelCase )}, ] , ) UpperCamelCase__ = text_generator.model.config.eos_token_id UpperCamelCase__ = """<pad>""" UpperCamelCase__ = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=__lowerCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__lowerCAmelCase , ) self.assertEqual( __lowerCAmelCase , [ [ {"""generated_token_ids""": ANY(__lowerCAmelCase )}, {"""generated_token_ids""": ANY(__lowerCAmelCase )}, ], [ {"""generated_token_ids""": ANY(__lowerCAmelCase )}, {"""generated_token_ids""": ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output UpperCamelCase__ = text_generator("""This is a test""" , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) UpperCamelCase__ = text_generator(["""This is a test""", """This is a second test"""] , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = TextGenerationPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) return text_generator, ["This is a test", "Another test"] def _lowerCamelCase ( self ): UpperCamelCase__ = """Hello I believe in""" UpperCamelCase__ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase__ = text_generator(__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) UpperCamelCase__ = text_generator(__lowerCAmelCase , stop_sequence=""" fe""" ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": """Hello I believe in fe"""}] ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = text_generator.model UpperCamelCase__ = text_generator.tokenizer UpperCamelCase__ = text_generator("""This is a test""" ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) UpperCamelCase__ = text_generator("""This is a test""" , return_full_text=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) UpperCamelCase__ = pipeline(task="""text-generation""" , model=__lowerCAmelCase , tokenizer=__lowerCAmelCase , return_full_text=__lowerCAmelCase ) UpperCamelCase__ = text_generator("""This is a test""" ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) UpperCamelCase__ = text_generator("""This is a test""" , return_full_text=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) UpperCamelCase__ = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ [{"""generated_text""": ANY(__lowerCAmelCase )}, {"""generated_text""": ANY(__lowerCAmelCase )}], [{"""generated_text""": ANY(__lowerCAmelCase )}, {"""generated_text""": ANY(__lowerCAmelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCamelCase__ = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ [{"""generated_text""": ANY(__lowerCAmelCase )}, {"""generated_text""": ANY(__lowerCAmelCase )}], [{"""generated_text""": ANY(__lowerCAmelCase )}, {"""generated_text""": ANY(__lowerCAmelCase )}], ] , ) with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = text_generator("""test""" , return_full_text=__lowerCAmelCase , return_text=__lowerCAmelCase ) with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = text_generator("""test""" , return_full_text=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = text_generator("""test""" , return_text=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCamelCase__ = text_generator("""""" ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCamelCase__ = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCamelCase__ = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 500 , max_new_tokens=20 ) UpperCamelCase__ = text_generator("""This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__lowerCAmelCase ): text_generator( """This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _lowerCamelCase ( self ): import torch # Classic `model_kwargs` UpperCamelCase__ = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase__ = pipe("""This is a test""" ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCamelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase__ = pipe("""This is a test""" ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCamelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCamelCase__ = pipe("""This is a test""" ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def _lowerCamelCase ( self ): import torch UpperCamelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def _lowerCamelCase ( self ): import torch UpperCamelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=__lowerCAmelCase , top_p=0.5 ) def _lowerCamelCase ( self ): UpperCamelCase__ = """Hello world""" UpperCamelCase__ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": UpperCamelCase__ = logging.get_logger("""transformers.generation.tf_utils""" ) else: UpperCamelCase__ = logging.get_logger("""transformers.generation.utils""" ) UpperCamelCase__ = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__lowerCAmelCase ) as cl: UpperCamelCase__ = text_generator(__lowerCAmelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(__lowerCAmelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(__lowerCAmelCase ) as cl: UpperCamelCase__ = text_generator(__lowerCAmelCase , max_new_tokens=1 ) self.assertNotIn(__lowerCAmelCase , cl.out ) with CaptureLogger(__lowerCAmelCase ) as cl: UpperCamelCase__ = text_generator(__lowerCAmelCase , max_length=10 ) self.assertNotIn(__lowerCAmelCase , cl.out )
548
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : Optional[Any] = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = "tester" _lowerCamelCase : Optional[Any] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) ,1 ) _lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) ,0 ) _lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self: str ): '''simple docstring''' pass
46
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Tuple ): __magic_name__ , __magic_name__ = set(_SCREAMING_SNAKE_CASE ), [start] while stack: __magic_name__ = stack.pop() explored.add(_SCREAMING_SNAKE_CASE ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_SCREAMING_SNAKE_CASE ) return explored a_ : List[str] = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
702
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): __magic_name__ = SwinConfig(image_size=192 ) if "base" in model_name: __magic_name__ = 6 __magic_name__ = 128 __magic_name__ = (2, 2, 18, 2) __magic_name__ = (4, 8, 16, 32) elif "large" in model_name: __magic_name__ = 12 __magic_name__ = 192 __magic_name__ = (2, 2, 18, 2) __magic_name__ = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) __magic_name__ = window_size __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = num_heads return config def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): if "encoder.mask_token" in name: __magic_name__ = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: __magic_name__ = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: __magic_name__ = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: __magic_name__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __magic_name__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __magic_name__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __magic_name__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __magic_name__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __magic_name__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __magic_name__ = '''layernorm.weight''' if name == "encoder.norm.bias": __magic_name__ = '''layernorm.bias''' if "decoder" in name: pass else: __magic_name__ = '''swin.''' + name return name def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Any ): for key in orig_state_dict.copy().keys(): __magic_name__ = orig_state_dict.pop(snake_case_ ) if "attn_mask" in key: pass elif "qkv" in key: __magic_name__ = key.split('''.''' ) __magic_name__ = int(key_split[2] ) __magic_name__ = int(key_split[4] ) __magic_name__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __magic_name__ = val[:dim, :] __magic_name__ = val[ dim : dim * 2, : ] __magic_name__ = val[-dim:, :] else: __magic_name__ = val[ :dim ] __magic_name__ = val[ dim : dim * 2 ] __magic_name__ = val[ -dim: ] else: __magic_name__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : Any , snake_case_ : str ): __magic_name__ = torch.load(snake_case_ , map_location='''cpu''' )['''model'''] __magic_name__ = get_swin_config(snake_case_ ) __magic_name__ = SwinForMaskedImageModeling(snake_case_ ) model.eval() __magic_name__ = convert_state_dict(snake_case_ , snake_case_ ) model.load_state_dict(snake_case_ ) __magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) __magic_name__ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) __magic_name__ = image_processor(images=snake_case_ , return_tensors='''pt''' ) with torch.no_grad(): __magic_name__ = model(**snake_case_ ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
678
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a :List[Any] = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :Tuple = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :List[str] = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :str = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
680
"""simple docstring""" def _lowercase ( __lowerCAmelCase = 200_0000 ) -> int: SCREAMING_SNAKE_CASE__ : int = [0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE__ : str = 1 SCREAMING_SNAKE_CASE__ : str = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Any = 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 for i in range(__lowerCAmelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'{solution() = }')
680
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : List[str] = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Tuple = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __UpperCAmelCase : Dict = dict(zip(lowercase__ , range(len(lowercase__)))) __UpperCAmelCase : Dict = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __UpperCAmelCase : Tuple = {'''unk_token''': '''<unk>'''} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(lowercase__) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(lowercase__)) __UpperCAmelCase : List[str] = { '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __UpperCAmelCase : Any = os.path.join(self.tmpdirname , lowercase__) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(lowercase__ , lowercase__) def A( self , **lowercase__): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase__) def A( self , **lowercase__): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase__) def A( self , **lowercase__): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase__) def A( self): shutil.rmtree(self.tmpdirname) def A( self): __UpperCAmelCase : str = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)] __UpperCAmelCase : Dict = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1)) for x in image_inputs] return image_inputs def A( self): __UpperCAmelCase : Any = self.get_tokenizer() __UpperCAmelCase : Dict = self.get_rust_tokenizer() __UpperCAmelCase : str = self.get_image_processor() __UpperCAmelCase : Dict = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) processor_slow.save_pretrained(self.tmpdirname) __UpperCAmelCase : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase__) __UpperCAmelCase : List[str] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) processor_fast.save_pretrained(self.tmpdirname) __UpperCAmelCase : Union[str, Any] = OwlViTProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , lowercase__) self.assertIsInstance(processor_fast.tokenizer , lowercase__) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , lowercase__) self.assertIsInstance(processor_fast.image_processor , lowercase__) def A( self): __UpperCAmelCase : Any = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __UpperCAmelCase : Optional[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') __UpperCAmelCase : Tuple = self.get_image_processor(do_normalize=lowercase__) __UpperCAmelCase : Optional[int] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase__) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase__) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase__) def A( self): __UpperCAmelCase : int = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : Dict = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : Tuple = self.prepare_image_inputs() __UpperCAmelCase : int = image_processor(lowercase__ , return_tensors='''np''') __UpperCAmelCase : Tuple = processor(images=lowercase__ , return_tensors='''np''') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def A( self): __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : Any = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : List[str] = '''lower newer''' __UpperCAmelCase : Dict = processor(text=lowercase__ , return_tensors='''np''') __UpperCAmelCase : Optional[int] = tokenizer(lowercase__ , return_tensors='''np''') for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist()) def A( self): __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = self.get_tokenizer() __UpperCAmelCase : List[Any] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : Union[str, Any] = '''lower newer''' __UpperCAmelCase : Union[str, Any] = self.prepare_image_inputs() __UpperCAmelCase : Optional[Any] = processor(text=lowercase__ , images=lowercase__) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(lowercase__): processor() def A( self): __UpperCAmelCase : Tuple = '''google/owlvit-base-patch32''' __UpperCAmelCase : Tuple = OwlViTProcessor.from_pretrained(lowercase__) __UpperCAmelCase : Dict = ['''cat''', '''nasa badge'''] __UpperCAmelCase : List[Any] = processor(text=lowercase__) __UpperCAmelCase : Any = 1_6 self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length)) # test if it raises when no input is passed with pytest.raises(lowercase__): processor() def A( self): __UpperCAmelCase : List[str] = '''google/owlvit-base-patch32''' __UpperCAmelCase : Optional[Any] = OwlViTProcessor.from_pretrained(lowercase__) __UpperCAmelCase : Optional[int] = [['''cat''', '''nasa badge'''], ['''person''']] __UpperCAmelCase : Any = processor(text=lowercase__) __UpperCAmelCase : int = 1_6 __UpperCAmelCase : int = len(lowercase__) __UpperCAmelCase : int = max([len(lowercase__) for texts in input_texts]) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length)) # test if it raises when no input is passed with pytest.raises(lowercase__): processor() def A( self): __UpperCAmelCase : List[Any] = '''google/owlvit-base-patch32''' __UpperCAmelCase : Tuple = OwlViTProcessor.from_pretrained(lowercase__) __UpperCAmelCase : Optional[int] = ['''cat''', '''nasa badge'''] __UpperCAmelCase : List[Any] = processor(text=lowercase__) __UpperCAmelCase : Optional[int] = 1_6 __UpperCAmelCase : Optional[Any] = inputs['''input_ids'''] __UpperCAmelCase : str = [ [4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length)) self.assertListEqual(list(input_ids[0]) , predicted_ids[0]) self.assertListEqual(list(input_ids[1]) , predicted_ids[1]) def A( self): __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : Optional[int] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : str = self.prepare_image_inputs() __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : int = processor(images=lowercase__ , query_images=lowercase__) self.assertListEqual(list(inputs.keys()) , ['''query_pixel_values''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(lowercase__): processor() def A( self): __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : int = self.get_tokenizer() __UpperCAmelCase : List[Any] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : int = processor.batch_decode(lowercase__) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(lowercase__) self.assertListEqual(lowercase__ , lowercase__)
675
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class snake_case__ : @staticmethod def A ( *UpperCamelCase_ , **UpperCamelCase_ ) -> List[str]: """simple docstring""" pass def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Image ): """simple docstring""" a_ : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class snake_case__ ( unittest.TestCase ): UpperCAmelCase : str = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def A ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: """simple docstring""" a_ : str = DepthEstimationPipeline(model=UpperCamelCase_ , image_processor=UpperCamelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def A ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: """simple docstring""" a_ : List[str] = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , UpperCamelCase_ ) import datasets a_ : str = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) a_ : int = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , UpperCamelCase_ , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def A ( self ) -> List[str]: """simple docstring""" pass @slow @require_torch def A ( self ) -> Optional[Any]: """simple docstring""" a_ : List[str] = """Intel/dpt-large""" a_ : Any = pipeline("""depth-estimation""" , model=UpperCamelCase_ ) a_ : str = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) a_ : List[str] = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def A ( self ) -> List[Any]: """simple docstring""" self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
419
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } SCREAMING_SNAKE_CASE : Tuple = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } SCREAMING_SNAKE_CASE : Tuple = "</w>" SCREAMING_SNAKE_CASE : int = "@@ " def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" a_ : int = set() a_ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a_ : Union[str, Any] = char return pairs # Speech2Text2 has no max input length SCREAMING_SNAKE_CASE : int = {"facebook/s2t-wav2vec2-large-en-de": 10_24} class snake_case__ ( __A ): UpperCAmelCase : Tuple = VOCAB_FILES_NAMES UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="<pad>" , UpperCamelCase_="</s>" , UpperCamelCase_="<unk>" , UpperCamelCase_=False , UpperCamelCase_=None , **UpperCamelCase_ , ) -> Dict: """simple docstring""" super().__init__( unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , **UpperCamelCase_ , ) a_ : str = do_lower_case with open(UpperCamelCase_ , encoding="""utf-8""" ) as vocab_handle: a_ : Any = json.load(UpperCamelCase_ ) a_ : List[Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) a_ : str = None a_ : Tuple = None else: with open(UpperCamelCase_ , encoding="""utf-8""" ) as merges_handle: a_ : Any = merges_handle.read().split("""\n""" )[:-1] a_ : Optional[int] = [tuple(merge.split()[:2] ) for merge in merges] a_ : Optional[int] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) a_ : Union[str, Any] = {} @property def A ( self ) -> int: """simple docstring""" return len(self.decoder ) def A ( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def A ( self , UpperCamelCase_ ) -> List[str]: """simple docstring""" a_ : Union[str, Any] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] a_ : Dict = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: a_ : Optional[Any] = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break a_ , a_ : List[Any] = bigram a_ : Any = [] a_ : Any = 0 while i < len(UpperCamelCase_ ): try: a_ : int = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a_ : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a_ : str = tuple(UpperCamelCase_ ) a_ : List[str] = new_word if len(UpperCamelCase_ ) == 1: break else: a_ : Union[str, Any] = get_pairs(UpperCamelCase_ ) a_ : str = """ """.join(UpperCamelCase_ ) if word == "\n " + BPE_TOKEN_MERGES: a_ : Tuple = """\n""" + BPE_TOKEN_MERGES if word.endswith(UpperCamelCase_ ): a_ : int = word.replace(UpperCamelCase_ , """""" ) a_ : List[str] = word.replace(""" """ , UpperCamelCase_ ) a_ : int = word return word def A ( self , UpperCamelCase_ ) -> int: """simple docstring""" if self.bpe_ranks is None: raise ValueError( """This tokenizer was instantiated without a `merges.txt` file, so""" """ that it can only be used for decoding, not for encoding.""" """Make sure to provide `merges.txt` file at instantiation to enable """ """encoding.""" ) if self.do_lower_case: a_ : str = text.lower() a_ : List[Any] = text.split() a_ : str = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(""" """ ) ) ) return split_tokens def A ( self , UpperCamelCase_ ) -> int: """simple docstring""" return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def A ( self , UpperCamelCase_ ) -> str: """simple docstring""" a_ : int = self.decoder.get(UpperCamelCase_ , self.unk_token ) return result def A ( self , UpperCamelCase_ ) -> str: """simple docstring""" a_ : Optional[Any] = """ """.join(UpperCamelCase_ ) # make sure @@ tokens are concatenated a_ : str = """""".join(string.split(UpperCamelCase_ ) ) return string def A ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a_ : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) a_ : Dict = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + """\n""" ) a_ : Optional[Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) a_ : List[Any] = token_index writer.write(""" """.join(UpperCamelCase_ ) + """\n""" ) index += 1 return (vocab_file, merges_file)
419
1
import os from distutils.util import strtobool def __UpperCAmelCase( lowercase_ , lowercase_ ): for e in env_keys: _lowerCamelCase : List[str] = int(os.environ.get(lowercase_ , -1 ) ) if val >= 0: return val return default def __UpperCAmelCase( lowercase_ , lowercase_=False ): _lowerCamelCase : int = os.environ.get(lowercase_ , str(lowercase_ ) ) return strtobool(lowercase_ ) == 1 # As its name indicates `strtobool` actually returns an int... def __UpperCAmelCase( lowercase_ , lowercase_="no" ): _lowerCamelCase : int = os.environ.get(lowercase_ , str(lowercase_ ) ) return value
613
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCamelCase = logging.getLogger(__name__) @dataclass class __A : """simple docstring""" UpperCAmelCase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCAmelCase__ = field( default=lowerCamelCase__ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCAmelCase__ = field( default="""NER""" ,metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) UpperCAmelCase__ = field( default=lowerCamelCase__ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCAmelCase__ = field(default=lowerCamelCase__ ,metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCAmelCase__ = field( default=lowerCamelCase__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) @dataclass class __A : """simple docstring""" UpperCAmelCase__ = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) UpperCAmelCase__ = field( default=lowerCamelCase__ ,metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} ,) UpperCAmelCase__ = field( default=128 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) UpperCAmelCase__ = field( default=lowerCamelCase__ ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __UpperCAmelCase( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowerCamelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) _lowerCamelCase : Optional[Any] = import_module('''tasks''' ) try: _lowerCamelCase : Dict = getattr(lowercase_ , model_args.task_type ) _lowerCamelCase : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowercase_ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _lowerCamelCase : List[str] = token_classification_task.get_labels(data_args.labels ) _lowerCamelCase : Dict[int, str] = dict(enumerate(lowercase_ ) ) _lowerCamelCase : Any = len(lowercase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase_ , idalabel=lowercase_ , labelaid={label: i for i, label in enumerate(lowercase_ )} , cache_dir=model_args.cache_dir , ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _lowerCamelCase : Tuple = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , ) # Get datasets _lowerCamelCase : Optional[int] = ( TokenClassificationDataset( token_classification_task=lowercase_ , data_dir=data_args.data_dir , tokenizer=lowercase_ , labels=lowercase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _lowerCamelCase : Dict = ( TokenClassificationDataset( token_classification_task=lowercase_ , data_dir=data_args.data_dir , tokenizer=lowercase_ , labels=lowercase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowercase_ , lowercase_ ) -> Tuple[List[int], List[int]]: _lowerCamelCase : List[Any] = np.argmax(lowercase_ , axis=2 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = preds.shape _lowerCamelCase : Optional[Any] = [[] for _ in range(lowercase_ )] _lowerCamelCase : str = [[] for _ in range(lowercase_ )] for i in range(lowercase_ ): for j in range(lowercase_ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowercase_ ) -> Dict: _lowerCamelCase, _lowerCamelCase : Union[str, Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } # Data collator _lowerCamelCase : Optional[int] = DataCollatorWithPadding(lowercase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _lowerCamelCase : List[Any] = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , compute_metrics=lowercase_ , data_collator=lowercase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCamelCase : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _lowerCamelCase : str = trainer.evaluate() _lowerCamelCase : Any = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(lowercase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , lowercase_ , lowercase_ ) writer.write('''%s = %s\n''' % (key, value) ) results.update(lowercase_ ) # Predict if training_args.do_predict: _lowerCamelCase : Union[str, Any] = TokenClassificationDataset( token_classification_task=lowercase_ , data_dir=data_args.data_dir , tokenizer=lowercase_ , labels=lowercase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = trainer.predict(lowercase_ ) _lowerCamelCase, _lowerCamelCase : Tuple = align_predictions(lowercase_ , lowercase_ ) _lowerCamelCase : Tuple = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(lowercase_ , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , lowercase_ , lowercase_ ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions _lowerCamelCase : List[str] = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(lowercase_ , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(lowercase_ , lowercase_ , lowercase_ ) return results def __UpperCAmelCase( lowercase_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
613
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __UpperCamelCase ( unittest.TestCase ): __A : List[Any] = inspect.getfile(accelerate.test_utils ) __A : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) __A : Optional[int] = ["""accelerate""", """launch"""] __A : Any = Path.home() / """.cache/huggingface/accelerate""" __A : Any = """default_config.yaml""" __A : Union[str, Any] = config_folder / config_file __A : List[Any] = config_folder / """_default_config.yaml""" __A : Union[str, Any] = Path("""tests/test_configs""" ) @classmethod def UpperCamelCase( cls ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCamelCase( cls ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCamelCase( self ): _UpperCAmelCase = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def UpperCamelCase( self ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_UpperCamelCase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_UpperCamelCase ), self.test_file_path] , env=os.environ.copy() ) def UpperCamelCase( self ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class __UpperCamelCase ( unittest.TestCase ): __A : Dict = """test-tpu""" __A : Optional[Any] = """us-central1-a""" __A : int = """ls""" __A : Tuple = ["""accelerate""", """tpu-config"""] __A : Union[str, Any] = """cd /usr/share""" __A : Optional[Any] = """tests/test_samples/test_command_file.sh""" __A : Any = """Running gcloud compute tpus tpu-vm ssh""" def UpperCamelCase( self ): _UpperCAmelCase = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCamelCase , ) def UpperCamelCase( self ): _UpperCAmelCase = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCamelCase , ) def UpperCamelCase( self ): _UpperCAmelCase = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_UpperCamelCase ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCamelCase , ) def UpperCamelCase( self ): _UpperCAmelCase = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCamelCase , ) def UpperCamelCase( self ): _UpperCAmelCase = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , _UpperCamelCase , ) def UpperCamelCase( self ): _UpperCAmelCase = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCamelCase , ) def UpperCamelCase( self ): _UpperCAmelCase = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCamelCase , ) def UpperCamelCase( self ): _UpperCAmelCase = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCamelCase , ) def UpperCamelCase( self ): _UpperCAmelCase = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_UpperCamelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCamelCase , )
32
'''simple docstring''' __UpperCAmelCase = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
379
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCamelCase_ = None UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } UpperCamelCase_ = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off UpperCamelCase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[int] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = PRETRAINED_VOCAB_FILES_MAP A : Tuple = ['''input_ids''', '''attention_mask'''] A : Tuple = MBartTokenizer A : List[int] = [] A : List[int] = [] def __init__( self, A=None, A=None, A="<s>", A="</s>", A="</s>", A="<s>", A="<unk>", A="<pad>", A="<mask>", A=None, A=None, A=None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(A, lstrip=A, rstrip=A ) if isinstance(A, A ) else mask_token super().__init__( vocab_file=A, tokenizer_file=A, bos_token=A, eos_token=A, sep_token=A, cls_token=A, unk_token=A, pad_token=A, mask_token=A, src_lang=A, tgt_lang=A, additional_special_tokens=A, **A, ) SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : str = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : int = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : Tuple = { lang_code: self.convert_tokens_to_ids(A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : Tuple = src_lang if src_lang is not None else 'en_XX' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self, A, A, A, A, **A ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) SCREAMING_SNAKE_CASE : Optional[Any] = src_lang SCREAMING_SNAKE_CASE : Optional[Any] = self(A, add_special_tokens=A, return_tensors=A, **A ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : str = tgt_lang_id return inputs def UpperCamelCase_ ( self, A, A = "en_XX", A = None, A = "ro_RO", **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : str = tgt_lang return super().prepare_seqaseq_batch(A, A, **A ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : int = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return SCREAMING_SNAKE_CASE : List[str] = os.path.join( A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file, A ) return (out_vocab_file,)
713
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] UpperCamelCase_ = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks SCREAMING_SNAKE_CASE : Optional[Any] = int(re.match(r'.*layer_(\d*).*' ,__UpperCamelCase )[1] ) layer_number -= 3 return f"h.{layer_number}." + key def lowercase__( __UpperCamelCase: Any ): """simple docstring""" if dtype == torch.bool: return 1 / 8 SCREAMING_SNAKE_CASE : Union[str, Any] = re.search(r'[^\d](\d+)$' ,str(__UpperCamelCase ) ) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}." ) SCREAMING_SNAKE_CASE : str = int(bit_search.groups()[0] ) return bit_size // 8 def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ,__UpperCamelCase: List[str] ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: Union[str, Any] ): """simple docstring""" if bloom_config_file == "": SCREAMING_SNAKE_CASE : Union[str, Any] = BloomConfig() else: SCREAMING_SNAKE_CASE : List[Any] = BloomConfig.from_json_file(__UpperCamelCase ) if shard_model: SCREAMING_SNAKE_CASE : int = os.listdir(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = sorted(filter(lambda __UpperCamelCase : s.startswith('layer' ) and "model_00" in s ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = {'weight_map': {}, 'metadata': {}} SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : int = BloomConfig() for j, file in enumerate(__UpperCamelCase ): print('Processing file: {}'.format(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[Any] = None for i in range(__UpperCamelCase ): # load all TP files SCREAMING_SNAKE_CASE : Optional[Any] = file.replace('model_00' ,f"model_0{i}" ) SCREAMING_SNAKE_CASE : Any = torch.load(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ,map_location='cpu' ) # Rename keys in the transformers names SCREAMING_SNAKE_CASE : Dict = list(temp.keys() ) for key in keys: SCREAMING_SNAKE_CASE : int = temp.pop(__UpperCamelCase ) if tensors is None: SCREAMING_SNAKE_CASE : Optional[Any] = temp else: for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel SCREAMING_SNAKE_CASE : List[str] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([tensors[key], temp[key]] ,dim=__UpperCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): SCREAMING_SNAKE_CASE : int = tensors[key] / pretraining_tp torch.save( __UpperCamelCase ,os.path.join( __UpperCamelCase ,'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) ,str(len(__UpperCamelCase ) ).zfill(5 ) ) ,) ,) for key in tensors.keys(): SCREAMING_SNAKE_CASE : str = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: SCREAMING_SNAKE_CASE : Dict = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) ,str(len(__UpperCamelCase ) ).zfill(5 ) ) SCREAMING_SNAKE_CASE : Any = BloomConfig() SCREAMING_SNAKE_CASE : Optional[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME SCREAMING_SNAKE_CASE : int = total_size with open(__UpperCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(__UpperCamelCase ,WEIGHTS_NAME + '.index.json' ) ,'w' ,encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE : Union[str, Any] = json.dumps(__UpperCamelCase ,indent=2 ,sort_keys=__UpperCamelCase ) + '\n' f.write(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : Tuple = BloomModel(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = os.listdir(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = sorted(filter(lambda __UpperCamelCase : s.startswith('layer' ) and "model_00" in s ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Tuple = None for i, file in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = None for i in range(__UpperCamelCase ): # load all TP files SCREAMING_SNAKE_CASE : List[Any] = file.replace('model_00' ,f"model_0{i}" ) SCREAMING_SNAKE_CASE : Any = torch.load(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ,map_location='cpu' ) # Rename keys in the transformers names SCREAMING_SNAKE_CASE : int = list(temp.keys() ) for key in keys: SCREAMING_SNAKE_CASE : str = temp.pop(__UpperCamelCase ) if tensors is None: SCREAMING_SNAKE_CASE : List[Any] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel SCREAMING_SNAKE_CASE : str = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks SCREAMING_SNAKE_CASE : str = torch.cat([tensors[key], temp[key]] ,dim=__UpperCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): SCREAMING_SNAKE_CASE : Any = tensors[key] / pretraining_tp SCREAMING_SNAKE_CASE : Optional[Any] = model.load_state_dict(__UpperCamelCase ,strict=__UpperCamelCase ) assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: SCREAMING_SNAKE_CASE : List[Any] = set(other_keys.missing_keys ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = pytorch_dump_folder_path + '/' + WEIGHTS_NAME SCREAMING_SNAKE_CASE : Optional[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) if config.torch_dtype is not None: SCREAMING_SNAKE_CASE : int = model.to(config.torch_dtype ) torch.save(model.state_dict() ,__UpperCamelCase ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(__UpperCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) UpperCamelCase_ = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
508
0
'''simple docstring''' import argparse import os import re __lowerCamelCase = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __lowerCamelCase = re.compile(R'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings __lowerCamelCase = re.compile(R'''\s*\(\s*"(\S[^"]+)"''') def a__ ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : bool = False ): with open(UpperCamelCase_, '''r''', encoding='''utf-8''' ) as f: UpperCAmelCase__ :int = f.read() UpperCAmelCase__ :Any = content.split('''\n''' ) UpperCAmelCase__ :Union[str, Any] = [] UpperCAmelCase__ :Tuple = 0 while line_idx < len(UpperCamelCase_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: UpperCAmelCase__ :Dict = len(re.search(r'''^(\s*)\S''', lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 UpperCAmelCase__ :Dict = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": UpperCAmelCase__ :str = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers UpperCAmelCase__ :Optional[Any] = sorted(UpperCamelCase_, key=lambda UpperCamelCase_ : _re_identifier.search(UpperCamelCase_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(UpperCamelCase_, '''w''', encoding='''utf-8''' ) as f: f.write('''\n'''.join(UpperCamelCase_ ) ) elif "\n".join(UpperCamelCase_ ) != content: return True def a__ ( UpperCamelCase_ : bool = False ): UpperCAmelCase__ :Dict = [os.path.join(UpperCamelCase_, UpperCamelCase_ ) for f in os.listdir(UpperCamelCase_ ) if f.endswith('''.py''' )] UpperCAmelCase__ :Optional[int] = [sort_auto_mapping(UpperCamelCase_, overwrite=UpperCamelCase_ ) for fname in fnames] if not overwrite and any(UpperCamelCase_ ): UpperCAmelCase__ :Any = [f for f, d in zip(UpperCamelCase_, UpperCamelCase_ ) if d] raise ValueError( F'''The following files have auto mappings that need sorting: {", ".join(UpperCamelCase_ )}. Run `make style` to fix''' ''' this.''' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') __lowerCamelCase = parser.parse_args() sort_all_auto_mappings(not args.check_only)
467
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=_snake_case ): UpperCAmelCase = ["speech"] def __init__( self : List[Any] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ): requires_backends(self , ['''speech'''] ) class UpperCAmelCase ( metaclass=_snake_case ): UpperCAmelCase = ["speech"] def __init__( self : int , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ): requires_backends(self , ['''speech'''] )
467
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __UpperCamelCase : Tuple = None __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : Any = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCamelCase : Tuple = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } __UpperCamelCase : Optional[Any] = { "camembert-base": 512, } __UpperCamelCase : Optional[Any] = "▁" class __magic_name__ ( __lowerCAmelCase): A: int = VOCAB_FILES_NAMES A: Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A: List[str] = ["input_ids", "attention_mask"] A: Dict = CamembertTokenizer def __init__( self : int , lowerCamelCase__ : Any=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : Dict="<s>" , lowerCamelCase__ : List[str]="</s>" , lowerCamelCase__ : int="</s>" , lowerCamelCase__ : List[str]="<s>" , lowerCamelCase__ : Optional[int]="<unk>" , lowerCamelCase__ : Union[str, Any]="<pad>" , lowerCamelCase__ : List[Any]="<mask>" , lowerCamelCase__ : List[Any]=["<s>NOTUSED", "</s>NOTUSED"] , **lowerCamelCase__ : Optional[int] , ) -> str: '''simple docstring''' UpperCamelCase__ : List[str] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase__ : Tuple = vocab_file UpperCamelCase__ : Optional[Any] = False if not self.vocab_file else True def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ : Any = [self.cls_token_id] UpperCamelCase__ : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = [self.sep_token_id] UpperCamelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase__ : List[str] = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
106
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model"} __UpperCamelCase : List[Any] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } __UpperCamelCase : int = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } __UpperCamelCase : int = "▁" class __magic_name__ ( __lowerCAmelCase): A: Tuple = VOCAB_FILES_NAMES A: Optional[int] = PRETRAINED_VOCAB_FILES_MAP A: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A: Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple="<s>" , lowerCamelCase__ : Tuple="</s>" , lowerCamelCase__ : int="</s>" , lowerCamelCase__ : Optional[Any]="<s>" , lowerCamelCase__ : List[str]="<unk>" , lowerCamelCase__ : str="<pad>" , lowerCamelCase__ : int="<mask>" , lowerCamelCase__ : Optional[Dict[str, Any]] = None , **lowerCamelCase__ : Any , ) -> None: '''simple docstring''' UpperCamelCase__ : str = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token UpperCamelCase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) UpperCamelCase__ : Any = vocab_file UpperCamelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) UpperCamelCase__ : Any = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCamelCase__ : Tuple = len(self.sp_model ) - 1 UpperCamelCase__ : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ : List[str] = [self.cls_token_id] UpperCamelCase__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCamelCase__ : int = [self.sep_token_id] UpperCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Tuple = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self : int , lowerCamelCase__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase__ : List[str] = self.sp_model.PieceToId(lowerCamelCase__ ) return spm_id if spm_id else self.unk_token_id def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : int ) -> List[str]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCamelCase__ ) def UpperCAmelCase__ ( self : str , lowerCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Any = '''''' UpperCamelCase__ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token UpperCamelCase__ : str = True UpperCamelCase__ : Tuple = [] else: current_sub_tokens.append(lowerCamelCase__ ) UpperCamelCase__ : Any = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def __getstate__( self : Tuple ) -> Dict: '''simple docstring''' UpperCamelCase__ : str = self.__dict__.copy() UpperCamelCase__ : int = None return state def __setstate__( self : Tuple , lowerCamelCase__ : Any ) -> str: '''simple docstring''' UpperCamelCase__ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase__ : Any = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , '''wb''' ) as fi: UpperCamelCase__ : int = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
106
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : Union[str, Any] = tree def A_ ( self , lowercase ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
630
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """layoutlmv3""" def __init__( self , lowercase=50265 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-5 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase=1024 , lowercase=128 , lowercase=128 , lowercase=True , lowercase=32 , lowercase=128 , lowercase=64 , lowercase=256 , lowercase=True , lowercase=True , lowercase=True , lowercase=224 , lowercase=3 , lowercase=16 , lowercase=None , **lowercase , ): super().__init__( vocab_size=lowercase , hidden_size=lowercase , num_hidden_layers=lowercase , num_attention_heads=lowercase , intermediate_size=lowercase , hidden_act=lowercase , hidden_dropout_prob=lowercase , attention_probs_dropout_prob=lowercase , max_position_embeddings=lowercase , type_vocab_size=lowercase , initializer_range=lowercase , layer_norm_eps=lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase , ) _lowerCamelCase : List[str] = max_ad_position_embeddings _lowerCamelCase : Optional[Any] = coordinate_size _lowerCamelCase : int = shape_size _lowerCamelCase : Optional[Any] = has_relative_attention_bias _lowerCamelCase : Dict = rel_pos_bins _lowerCamelCase : Tuple = max_rel_pos _lowerCamelCase : int = has_spatial_attention_bias _lowerCamelCase : Optional[int] = rel_ad_pos_bins _lowerCamelCase : List[Any] = max_rel_ad_pos _lowerCamelCase : Any = text_embed _lowerCamelCase : List[Any] = visual_embed _lowerCamelCase : str = input_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Optional[int] = classifier_dropout class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = version.parse("""1.12""" ) @property def A_ ( self ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def A_ ( self ): return 1E-5 @property def A_ ( self ): return 12 def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , lowercase = 3 , lowercase = 40 , lowercase = 40 , ): setattr(processor.image_processor , 'apply_ocr' , lowercase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCamelCase : Any = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCamelCase : Tuple = processor.tokenizer.num_special_tokens_to_add(lowercase ) _lowerCamelCase : Any = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence _lowerCamelCase : List[Any] = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _lowerCamelCase : List[str] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _lowerCamelCase : Tuple = self._generate_dummy_images(lowercase , lowercase , lowercase , lowercase ) _lowerCamelCase : str = dict( processor( lowercase , text=lowercase , boxes=lowercase , return_tensors=lowercase , ) ) return inputs
630
1
def snake_case (): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = 1 while len(_lowerCAmelCase ) < 1e6: constant.append(str(_lowerCAmelCase ) ) i += 1 lowerCamelCase__ = "".join(_lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
716
from string import ascii_lowercase, ascii_uppercase def snake_case (UpperCamelCase : str ): '''simple docstring''' if not sentence: return "" lowerCamelCase__ = dict(zip(UpperCamelCase , UpperCamelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
235
0
def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" if not numbers: return 0 if not isinstance(__a , (list, tuple) ) or not all( isinstance(__a , __a ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) SCREAMING_SNAKE_CASE : Optional[Any] =numbers[0] for i in range(1 , len(__a ) ): # update the maximum and minimum subarray products SCREAMING_SNAKE_CASE : Union[str, Any] =numbers[i] if number < 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] =min_till_now, max_till_now SCREAMING_SNAKE_CASE : Optional[Any] =max(__a , max_till_now * number ) SCREAMING_SNAKE_CASE : List[str] =min(__a , min_till_now * number ) # update the maximum product found till now SCREAMING_SNAKE_CASE : Dict =max(__a , __a ) return max_prod
258
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any =HfArgumentParser(__a ) SCREAMING_SNAKE_CASE : int =parser.parse_args_into_dataclasses()[0] SCREAMING_SNAKE_CASE : int =TensorFlowBenchmark(args=__a ) try: SCREAMING_SNAKE_CASE : Dict =parser.parse_args_into_dataclasses()[0] except ValueError as e: SCREAMING_SNAKE_CASE : Any ='''Arg --no_{0} is no longer used, please use --no-{0} instead.''' SCREAMING_SNAKE_CASE : str =''' '''.join(str(__a ).split(''' ''' )[:-1] ) SCREAMING_SNAKE_CASE : Dict ='''''' SCREAMING_SNAKE_CASE : Tuple =eval(str(__a ).split(''' ''' )[-1] ) SCREAMING_SNAKE_CASE : List[str] =[] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__a ) if len(__a ) > 0: SCREAMING_SNAKE_CASE : Union[str, Any] =full_error_msg + begin_error_msg + str(__a ) raise ValueError(__a ) benchmark.run() if __name__ == "__main__": main()
258
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=a__ ) class UpperCAmelCase__ ( a__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"audio": Audio()} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"labels": ClassLabel} ) _SCREAMING_SNAKE_CASE : str = "audio" _SCREAMING_SNAKE_CASE : str = "labels" def lowerCAmelCase__ ( self , _lowerCAmelCase ): if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCamelCase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) a =copy.deepcopy(self ) a =self.label_schema.copy() a =features[self.label_column] a =label_schema return task_template @property def lowerCAmelCase__ ( self ): return { self.audio_column: "audio", self.label_column: "labels", }
710
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCamelCase ( UpperCAmelCase_ : str = "laptop" )-> DataFrame: """simple docstring""" a =F'''https://www.amazon.in/laptop/s?k={product}''' a ={ """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } a =BeautifulSoup(requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).text ) # Initialize a Pandas dataframe with the column titles a =DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: a =item.ha.text a ="""https://www.amazon.in/""" + item.ha.a["""href"""] a =item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: a =item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: a ="""Not available""" try: a =( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: a ="""""" try: a =float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 100 ) except ValueError: a =float("""nan""" ) except AttributeError: pass a =[ product_title, product_link, product_price, product_rating, product_mrp, discount, ] a =""" """ a =""" """ data_frame.index += 1 return data_frame if __name__ == "__main__": _lowerCamelCase = '''headphones''' get_amazon_product_data(product).to_csv(f"""Amazon Product Data for {product}.csv""")
321
0
from __future__ import annotations from collections.abc import Iterator class A__ : def __init__( self : Any , _a : int ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE =value _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None class A__ : def __init__( self : List[Any] , _a : Node ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE =tree def __UpperCamelCase ( self : Union[str, Any] , _a : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
691
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCamelCase( a__ ,a__ ,a__ ,a__): _SCREAMING_SNAKE_CASE ={ '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] _SCREAMING_SNAKE_CASE ={ '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } _SCREAMING_SNAKE_CASE =f"{src_lang}-{tgt_lang}" _SCREAMING_SNAKE_CASE =f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=a__ ,exist_ok=a__) _SCREAMING_SNAKE_CASE =os.path.join(a__ ,'''README.md''') print(f"Generating {path}") with open(a__ ,'''w''' ,encoding='''utf-8''') as f: f.write(a__) # make sure we are under the root of the project snake_case_ : Any = Path(__file__).resolve().parent.parent.parent snake_case_ : Tuple = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: snake_case_ : Union[str, Any] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
691
1
"""simple docstring""" from __future__ import annotations class snake_case : """simple docstring""" def __init__( self : Dict ,lowerCamelCase__ : list[list[int]] ): UpperCAmelCase__ = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(lowerCamelCase__ ) != 0: UpperCAmelCase__ = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCamelCase__ ) != cols: raise error for value in row: if not isinstance(lowerCamelCase__ ,(int, float) ): raise error UpperCAmelCase__ = rows else: UpperCAmelCase__ = [] def __lowerCAmelCase ( self : Union[str, Any] ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def __lowerCAmelCase ( self : str ): return len(self.rows ) @property def __lowerCAmelCase ( self : List[Any] ): return len(self.rows[0] ) @property def __lowerCAmelCase ( self : Any ): return (self.num_rows, self.num_columns) @property def __lowerCAmelCase ( self : Optional[int] ): return self.order[0] == self.order[1] def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCamelCase__ ) def __lowerCAmelCase ( self : str ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def __lowerCAmelCase ( self : List[str] ): return bool(self.determinant() ) def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : int ,lowerCamelCase__ : int ): UpperCAmelCase__ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCamelCase__ ).determinant() def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ): if (row + column) % 2 == 0: return self.get_minor(lowerCamelCase__ ,lowerCamelCase__ ) return -1 * self.get_minor(lowerCamelCase__ ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Union[str, Any] ): return Matrix( [ [self.get_minor(lowerCamelCase__ ,lowerCamelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def __lowerCAmelCase ( self : int ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[Any] ): return str(self.rows ) def __str__( self : List[str] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(lowerCamelCase__ ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : list[int] ,lowerCamelCase__ : int | None = None ): UpperCAmelCase__ = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): raise type_error for value in row: if not isinstance(lowerCamelCase__ ,(int, float) ): raise type_error if len(lowerCamelCase__ ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(lowerCamelCase__ ) else: UpperCAmelCase__ = self.rows[0:position] + [row] + self.rows[position:] def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : list[int] ,lowerCamelCase__ : int | None = None ): UpperCAmelCase__ = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): raise type_error for value in column: if not isinstance(lowerCamelCase__ ,(int, float) ): raise type_error if len(lowerCamelCase__ ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: UpperCAmelCase__ = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: UpperCAmelCase__ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : List[Any] ,lowerCamelCase__ : object ): if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self : Any ,lowerCamelCase__ : object ): return not self == other def __neg__( self : Dict ): return self * -1 def __add__( self : str ,lowerCamelCase__ : Matrix ): if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : List[str] ,lowerCamelCase__ : Matrix ): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : List[str] ,lowerCamelCase__ : Matrix | int | float ): if isinstance(lowerCamelCase__ ,(int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCamelCase__ ,lowerCamelCase__ ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(lowerCamelCase__ ,lowerCamelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : Optional[int] ,lowerCamelCase__ : int ): if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) UpperCAmelCase__ = self for _ in range(other - 1 ): result *= self return result @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,lowerCamelCase__ : list[int] ,lowerCamelCase__ : list[int] ): return sum(row[i] * column[i] for i in range(len(lowerCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
702
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" snake_case__ = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : str ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : int = 50_257 ,lowerCamelCase__ : int = 1_024 ,lowerCamelCase__ : int = 768 ,lowerCamelCase__ : int = 12 ,lowerCamelCase__ : int = 12 ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : str = "gelu_new" ,lowerCamelCase__ : float = 0.1 ,lowerCamelCase__ : float = 0.1 ,lowerCamelCase__ : float = 0.1 ,lowerCamelCase__ : float = 1e-5 ,lowerCamelCase__ : float = 0.0_2 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : bool = False ,): super().__init__() UpperCAmelCase__ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) UpperCAmelCase__ = prefix_inner_dim UpperCAmelCase__ = prefix_hidden_dim UpperCAmelCase__ = ( nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ = ( nn.Linear(self.prefix_hidden_dim ,lowerCamelCase__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ = GPTaConfig( vocab_size=lowerCamelCase__ ,n_positions=lowerCamelCase__ ,n_embd=lowerCamelCase__ ,n_layer=lowerCamelCase__ ,n_head=lowerCamelCase__ ,n_inner=lowerCamelCase__ ,activation_function=lowerCamelCase__ ,resid_pdrop=lowerCamelCase__ ,embd_pdrop=lowerCamelCase__ ,attn_pdrop=lowerCamelCase__ ,layer_norm_epsilon=lowerCamelCase__ ,initializer_range=lowerCamelCase__ ,scale_attn_weights=lowerCamelCase__ ,use_cache=lowerCamelCase__ ,scale_attn_by_inverse_layer_idx=lowerCamelCase__ ,reorder_and_upcast_attn=lowerCamelCase__ ,) UpperCAmelCase__ = GPTaLMHeadModel(lowerCamelCase__ ) def __lowerCAmelCase ( self : str ,lowerCamelCase__ : torch.Tensor ,lowerCamelCase__ : torch.Tensor ,lowerCamelCase__ : Optional[torch.Tensor] = None ,lowerCamelCase__ : Optional[torch.Tensor] = None ,): UpperCAmelCase__ = self.transformer.transformer.wte(lowerCamelCase__ ) UpperCAmelCase__ = self.encode_prefix(lowerCamelCase__ ) UpperCAmelCase__ = self.decode_prefix(lowerCamelCase__ ) UpperCAmelCase__ = torch.cat((prefix_embeds, embedding_text) ,dim=1 ) if labels is not None: UpperCAmelCase__ = self.get_dummy_token(input_ids.shape[0] ,input_ids.device ) UpperCAmelCase__ = torch.cat((dummy_token, input_ids) ,dim=1 ) UpperCAmelCase__ = self.transformer(inputs_embeds=lowerCamelCase__ ,labels=lowerCamelCase__ ,attention_mask=lowerCamelCase__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : torch.device ): return torch.zeros(lowerCamelCase__ ,self.prefix_length ,dtype=torch.intaa ,device=lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : List[str] ): return self.encode_prefix(lowerCamelCase__ ) @torch.no_grad() def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[int] ): UpperCAmelCase__ = torch.split(lowerCamelCase__ ,1 ,dim=0 ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] for feature in features: UpperCAmelCase__ = self.decode_prefix(feature.to(lowerCamelCase__ ) ) # back to the clip feature # Only support beam search for now UpperCAmelCase__ , UpperCAmelCase__ = self.generate_beam( input_embeds=lowerCamelCase__ ,device=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) UpperCAmelCase__ = torch.stack(lowerCamelCase__ ) UpperCAmelCase__ = torch.stack(lowerCamelCase__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : str=None ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : int = 5 ,lowerCamelCase__ : int = 67 ,lowerCamelCase__ : float = 1.0 ,lowerCamelCase__ : Optional[int] = None ,): UpperCAmelCase__ = eos_token_id UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = torch.ones(lowerCamelCase__ ,device=lowerCamelCase__ ,dtype=torch.int ) UpperCAmelCase__ = torch.zeros(lowerCamelCase__ ,device=lowerCamelCase__ ,dtype=torch.bool ) if input_embeds is not None: UpperCAmelCase__ = input_embeds else: UpperCAmelCase__ = self.transformer.transformer.wte(lowerCamelCase__ ) for i in range(lowerCamelCase__ ): UpperCAmelCase__ = self.transformer(inputs_embeds=lowerCamelCase__ ) UpperCAmelCase__ = outputs.logits UpperCAmelCase__ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCAmelCase__ = logits.softmax(-1 ).log() if scores is None: UpperCAmelCase__ , UpperCAmelCase__ = logits.topk(lowerCamelCase__ ,-1 ) UpperCAmelCase__ = generated.expand(lowerCamelCase__ ,*generated.shape[1:] ) UpperCAmelCase__ , UpperCAmelCase__ = next_tokens.permute(1 ,0 ), scores.squeeze(0 ) if tokens is None: UpperCAmelCase__ = next_tokens else: UpperCAmelCase__ = tokens.expand(lowerCamelCase__ ,*tokens.shape[1:] ) UpperCAmelCase__ = torch.cat((tokens, next_tokens) ,dim=1 ) else: UpperCAmelCase__ = -float(np.inf ) UpperCAmelCase__ = 0 UpperCAmelCase__ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCAmelCase__ = scores_sum / seq_lengths[:, None] UpperCAmelCase__ , UpperCAmelCase__ = scores_sum_average.view(-1 ).topk(lowerCamelCase__ ,-1 ) UpperCAmelCase__ = next_tokens // scores_sum.shape[1] UpperCAmelCase__ = seq_lengths[next_tokens_source] UpperCAmelCase__ = next_tokens % scores_sum.shape[1] UpperCAmelCase__ = next_tokens.unsqueeze(1 ) UpperCAmelCase__ = tokens[next_tokens_source] UpperCAmelCase__ = torch.cat((tokens, next_tokens) ,dim=1 ) UpperCAmelCase__ = generated[next_tokens_source] UpperCAmelCase__ = scores_sum_average * seq_lengths UpperCAmelCase__ = is_stopped[next_tokens_source] UpperCAmelCase__ = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] ,1 ,-1 ) UpperCAmelCase__ = torch.cat((generated, next_token_embed) ,dim=1 ) UpperCAmelCase__ = is_stopped + next_tokens.eq(lowerCamelCase__ ).squeeze() if is_stopped.all(): break UpperCAmelCase__ = scores / seq_lengths UpperCAmelCase__ = scores.argsort(descending=lowerCamelCase__ ) # tokens tensors are already padded to max_seq_length UpperCAmelCase__ = [tokens[i] for i in order] UpperCAmelCase__ = torch.stack(lowerCamelCase__ ,dim=0 ) UpperCAmelCase__ = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype ) return output_texts, seq_lengths
632
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class a ( a__ ): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
4
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int SCREAMING_SNAKE_CASE__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _UpperCamelCase( datasets.BuilderConfig ): __SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None def UpperCAmelCase__ ( lowerCamelCase_ : "pyspark.sql.DataFrame" , lowerCamelCase_ : List[int] , ): import pyspark def generate_fn(): __a : List[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: __a : Optional[int] = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) __a : Optional[Any] = partition_df.collect() __a : Union[str, Any] = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class _UpperCamelCase( _BaseExamplesIterable ): def __init__( self : Any , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : Dict=None , ): '''simple docstring''' __a : List[str] = df __a : Tuple = partition_order or range(self.df.rdd.getNumPartitions() ) __a : List[Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Tuple ): '''simple docstring''' yield from self.generate_examples_fn() def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : np.random.Generator ): '''simple docstring''' __a : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Union[str, Any] = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return len(self.partition_order ) class _UpperCamelCase( datasets.DatasetBuilder ): __SCREAMING_SNAKE_CASE : List[str] = SparkConfig def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): '''simple docstring''' import pyspark __a : int = pyspark.sql.SparkSession.builder.getOrCreate() __a : Optional[int] = df __a : List[Any] = working_dir super().__init__( cache_dir=SCREAMING_SNAKE_CASE__ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' def create_cache_and_write_probe(SCREAMING_SNAKE_CASE__ : List[str] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) __a : List[Any] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(SCREAMING_SNAKE_CASE__ , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __a : List[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : datasets.download.download_manager.DownloadManager ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' import pyspark def get_arrow_batch_size(SCREAMING_SNAKE_CASE__ : int ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) __a : List[str] = self.df.count() __a : Dict = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __a : List[str] = ( self.df.limit(SCREAMING_SNAKE_CASE__ ) .repartition(1 ) .mapInArrow(SCREAMING_SNAKE_CASE__ , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __a : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __a : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , int(approx_total_size / max_shard_size ) ) __a : int = self.df.repartition(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , ): '''simple docstring''' import pyspark __a : Any = ParquetWriter if file_format == 'parquet' else ArrowWriter __a : Union[str, Any] = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) if self._working_dir else fpath __a : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __a : List[str] = self.config.features __a : int = self._writer_batch_size __a : Union[str, Any] = self._fs.storage_options def write_arrow(SCREAMING_SNAKE_CASE__ : Optional[int] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __a : Any = pyspark.TaskContext().taskAttemptId() __a : str = next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) __a : Any = 0 __a : List[str] = writer_class( features=SCREAMING_SNAKE_CASE__ , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) __a : Optional[Any] = pa.Table.from_batches([first_batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __a , __a : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 __a : Optional[Any] = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) __a : Union[str, Any] = pa.Table.from_batches([batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) if writer._num_bytes > 0: __a , __a : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ): __a : Any = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) shutil.move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Dict = ( self.df.mapInArrow(SCREAMING_SNAKE_CASE__ , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , SCREAMING_SNAKE_CASE__ : str = "arrow" , SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' self._validate_cache_dir() __a : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = not is_remote_filesystem(self._fs ) __a : Optional[Any] = os.path.join if is_local else posixpath.join __a : Any = '-TTTTT-SSSSS-of-NNNNN' __a : Union[str, Any] = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' __a : Any = path_join(self._output_dir , SCREAMING_SNAKE_CASE__ ) __a : Any = 0 __a : Dict = 0 __a : int = 0 __a : List[str] = [] __a : Optional[int] = [] for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Optional[int] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(SCREAMING_SNAKE_CASE__ ) __a : List[str] = total_num_examples __a : Optional[int] = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: __a : Any = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __a : Dict = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ): rename( SCREAMING_SNAKE_CASE__ , fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''' ).replace('NNNNN' , f'''{total_shards:05d}''' ) , ) __a : Union[str, Any] = [] __a : List[str] = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __a , __a : Union[str, Any] = task_id_and_num_shards[i] for shard_id in range(SCREAMING_SNAKE_CASE__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ).map(lambda SCREAMING_SNAKE_CASE__ : _rename_shard(*SCREAMING_SNAKE_CASE__ ) ).collect() else: # don't use any pattern __a : List[Any] = 0 __a : Any = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace(SCREAMING_SNAKE_CASE__ , '' ) , ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , ): '''simple docstring''' return SparkExamplesIterable(self.df )
47
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class __snake_case( unittest.TestCase ): @slow def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) _SCREAMING_SNAKE_CASE = { '''input_ids''': tf.convert_to_tensor([[0, 2_646, 10_269, 83, 99_942, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } _SCREAMING_SNAKE_CASE = model(_UpperCAmelCase )['''last_hidden_state'''] _SCREAMING_SNAKE_CASE = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
713
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) def A__ ( UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _SCREAMING_SNAKE_CASE = 128 elif "12-12" in model_name: _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = 12 elif "14-14" in model_name: _SCREAMING_SNAKE_CASE = 14 _SCREAMING_SNAKE_CASE = 14 elif "16-16" in model_name: _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 16 else: raise ValueError('''Model not supported''' ) _SCREAMING_SNAKE_CASE = '''huggingface/label-files''' if "speech-commands" in model_name: _SCREAMING_SNAKE_CASE = 35 _SCREAMING_SNAKE_CASE = '''speech-commands-v2-id2label.json''' else: _SCREAMING_SNAKE_CASE = 527 _SCREAMING_SNAKE_CASE = '''audioset-id2label.json''' _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) _SCREAMING_SNAKE_CASE = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def A__ ( UpperCamelCase__ ): '''simple docstring''' if "module.v" in name: _SCREAMING_SNAKE_CASE = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: _SCREAMING_SNAKE_CASE = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: _SCREAMING_SNAKE_CASE = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: _SCREAMING_SNAKE_CASE = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: _SCREAMING_SNAKE_CASE = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: _SCREAMING_SNAKE_CASE = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: _SCREAMING_SNAKE_CASE = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _SCREAMING_SNAKE_CASE = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _SCREAMING_SNAKE_CASE = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _SCREAMING_SNAKE_CASE = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _SCREAMING_SNAKE_CASE = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _SCREAMING_SNAKE_CASE = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _SCREAMING_SNAKE_CASE = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: _SCREAMING_SNAKE_CASE = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: _SCREAMING_SNAKE_CASE = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def A__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: _SCREAMING_SNAKE_CASE = key.split('''.''' ) _SCREAMING_SNAKE_CASE = int(key_split[3] ) _SCREAMING_SNAKE_CASE = config.hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[dim : dim * 2] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = val return orig_state_dict def A__ ( UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) @torch.no_grad() def A__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' _SCREAMING_SNAKE_CASE = get_audio_spectrogram_transformer_config(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict _SCREAMING_SNAKE_CASE = model_name_to_url[model_name] _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' ) # remove some keys remove_keys(UpperCamelCase__ ) # rename some keys _SCREAMING_SNAKE_CASE = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) # load 🤗 model _SCREAMING_SNAKE_CASE = ASTForAudioClassification(UpperCamelCase__ ) model.eval() model.load_state_dict(UpperCamelCase__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _SCREAMING_SNAKE_CASE = -4.2_67_73_93 if '''speech-commands''' not in model_name else -6.84_59_78 _SCREAMING_SNAKE_CASE = 4.5_68_99_74 if '''speech-commands''' not in model_name else 5.5_65_45_26 _SCREAMING_SNAKE_CASE = 1_024 if '''speech-commands''' not in model_name else 128 _SCREAMING_SNAKE_CASE = ASTFeatureExtractor(mean=UpperCamelCase__ , std=UpperCamelCase__ , max_length=UpperCamelCase__ ) if "speech-commands" in model_name: _SCREAMING_SNAKE_CASE = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) _SCREAMING_SNAKE_CASE = dataset[0]['''audio''']['''array'''] else: _SCREAMING_SNAKE_CASE = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = torchaudio.load(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = waveform.squeeze().numpy() _SCREAMING_SNAKE_CASE = feature_extractor(UpperCamelCase__ , sampling_rate=16_000 , return_tensors='''pt''' ) # forward pass _SCREAMING_SNAKE_CASE = model(**UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _SCREAMING_SNAKE_CASE = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _SCREAMING_SNAKE_CASE = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _SCREAMING_SNAKE_CASE = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _SCREAMING_SNAKE_CASE = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _SCREAMING_SNAKE_CASE = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _SCREAMING_SNAKE_CASE = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _SCREAMING_SNAKE_CASE = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": _SCREAMING_SNAKE_CASE = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase : List[str] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
168
0
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _SCREAMING_SNAKE_CASE = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def __a(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = _TestCommandArgs(dataset=SCREAMING_SNAKE_CASE_ , all_configs=SCREAMING_SNAKE_CASE_ , save_infos=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = TestCommand(*SCREAMING_SNAKE_CASE_ ) test_command.run() _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , "README.md" ) assert os.path.exists(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 2351563, "num_examples": 10000, }, { "name": "validation", "num_bytes": 238418, "num_examples": 1000, }, ] , download_size=3940680 , dataset_size=2589981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: _lowerCAmelCase , _lowerCAmelCase = getattr(dataset_infos["default"] , SCREAMING_SNAKE_CASE_ ), getattr(expected_dataset_infos["default"] , SCREAMING_SNAKE_CASE_ ) if key == "num_bytes": assert is_apercent_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif key == "splits": assert list(SCREAMING_SNAKE_CASE_ ) == list(SCREAMING_SNAKE_CASE_ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
18
from collections.abc import Iterable from typing import Generic, TypeVar UpperCamelCase = TypeVar('_T') class _A ( Generic[_T] ): def __init__( self : int , lowerCamelCase__ : Iterable[_T] | None = None ): """simple docstring""" __UpperCamelCase : list[_T] = list(iterable or [] ) __UpperCamelCase : list[_T] = [] def __len__( self : str ): """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self : Dict ): """simple docstring""" return f'Queue({tuple(self._stacka[::-1] + self._stacka )})' def a ( self : Union[str, Any] , lowerCamelCase__ : _T ): """simple docstring""" self._stacka.append(lowerCamelCase__ ) def a ( self : Union[str, Any] ): """simple docstring""" __UpperCamelCase : Any = self._stacka.pop __UpperCamelCase : int = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
269
0
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Tuple = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : Tuple = concatenate_datasets A_ : List[str] = DownloadConfig A_ : int = DownloadManager A_ : Optional[Any] = DownloadMode A_ : Optional[int] = DownloadConfig A_ : List[Any] = DownloadMode A_ : Any = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
616
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) A_ : Tuple = logging.getLogger(__name__) A_ : Tuple = "Hello world! cécé herlolip" A_ : Dict = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = BertAbsConfig( temp_dir=""".""" , finetune_bert=snake_case__ , large=snake_case__ , share_emb=snake_case__ , use_bert_emb=snake_case__ , encoder="""bert""" , max_pos=5_12 , enc_layers=6 , enc_hidden_size=5_12 , enc_heads=8 , enc_ff_size=5_12 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_68 , dec_heads=8 , dec_ff_size=20_48 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE__ = torch.load(snake_case__ , lambda snake_case__ , snake_case__ : storage ) SCREAMING_SNAKE_CASE__ = AbsSummarizer(snake_case__ , torch.device("""cpu""" ) , snake_case__ ) original.eval() SCREAMING_SNAKE_CASE__ = BertAbsSummarizer(snake_case__ , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) SCREAMING_SNAKE_CASE__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs SCREAMING_SNAKE_CASE__ = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(snake_case__ )) ) SCREAMING_SNAKE_CASE__ = torch.tensor(snake_case__ ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(snake_case__ )) ) SCREAMING_SNAKE_CASE__ = torch.tensor(snake_case__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass SCREAMING_SNAKE_CASE__ = encoder_input_ids SCREAMING_SNAKE_CASE__ = decoder_input_ids SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE__ = original(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )[0] SCREAMING_SNAKE_CASE__ = original.generator(snake_case__ ) SCREAMING_SNAKE_CASE__ = new_model( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )[0] SCREAMING_SNAKE_CASE__ = new_model.generator(snake_case__ ) SCREAMING_SNAKE_CASE__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(snake_case__ ) ) SCREAMING_SNAKE_CASE__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(snake_case__ ) ) SCREAMING_SNAKE_CASE__ = torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) A_ : Tuple = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
616
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models __lowercase ='''lm_head''' __lowercase =getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: __lowercase =getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: __lowercase =hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowercase =value elif weight_type == "weight_g": __lowercase =value elif weight_type == "weight_v": __lowercase =value elif weight_type == "bias": __lowercase =value else: __lowercase =value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =[] __lowercase =fairseq_model.state_dict() __lowercase =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): __lowercase =False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == 'group' , ) __lowercase =True else: for key, mapped_key in MAPPING.items(): __lowercase ='''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowercase =True if "*" in mapped_key: __lowercase =name.split(UpperCAmelCase_ )[0].split('.' )[-2] __lowercase =mapped_key.replace('*' , UpperCAmelCase_ ) if "weight_g" in name: __lowercase ='''weight_g''' elif "weight_v" in name: __lowercase ='''weight_v''' elif "bias" in name: __lowercase ='''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase ='''weight''' else: __lowercase =None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =full_name.split('conv_layers.' )[-1] __lowercase =name.split('.' ) __lowercase =int(items[0] ) __lowercase =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowercase =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowercase =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowercase =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowercase =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase_ ) @torch.no_grad() def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True ): """simple docstring""" if config_path is not None: __lowercase =UniSpeechConfig.from_pretrained(UpperCAmelCase_ ) else: __lowercase =UniSpeechConfig() if is_finetuned: if dict_path: __lowercase =Dictionary.load_from_json(UpperCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase =target_dict.pad_index __lowercase =target_dict.bos_index __lowercase =target_dict.eos_index __lowercase =len(target_dict.symbols ) __lowercase =os.path.join(UpperCAmelCase_ , 'vocab.json' ) if not os.path.isdir(UpperCAmelCase_ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase_ ) ) return os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) __lowercase =target_dict.indices # fairseq has the <pad> and <s> switched __lowercase =42 __lowercase =43 with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) __lowercase =WavaVecaPhonemeCTCTokenizer( UpperCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase_ , ) __lowercase =True if config.feat_extract_norm == '''layer''' else False __lowercase =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) __lowercase =WavaVecaProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) __lowercase =UniSpeechForCTC(UpperCAmelCase_ ) else: __lowercase =UniSpeechForPreTraining(UpperCAmelCase_ ) if is_finetuned: __lowercase =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: __lowercase =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __lowercase =model[0].eval() recursively_load_weights(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) hf_unispeech.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
474
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Optional[int] = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'unispeech' def __init__( self , _lowerCamelCase=32 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase="group" , _lowerCamelCase="gelu" , _lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCamelCase=False , _lowerCamelCase=128 , _lowerCamelCase=16 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.05 , _lowerCamelCase=10 , _lowerCamelCase=2 , _lowerCamelCase=0.0 , _lowerCamelCase=10 , _lowerCamelCase=0 , _lowerCamelCase=320 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=100 , _lowerCamelCase=256 , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase="mean" , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=256 , _lowerCamelCase=80 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=0.5 , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase ) a :Any = hidden_size a :str = feat_extract_norm a :List[Any] = feat_extract_activation a :Tuple = list(_lowerCamelCase ) a :Any = list(_lowerCamelCase ) a :List[Any] = list(_lowerCamelCase ) a :Union[str, Any] = conv_bias a :str = num_conv_pos_embeddings a :str = num_conv_pos_embedding_groups a :Tuple = len(self.conv_dim ) a :int = num_hidden_layers a :Any = intermediate_size a :Optional[Any] = hidden_act a :Tuple = num_attention_heads a :Any = hidden_dropout a :Any = attention_dropout a :Optional[Any] = activation_dropout a :Optional[Any] = feat_proj_dropout a :Any = final_dropout a :int = layerdrop a :int = layer_norm_eps a :Dict = initializer_range a :Dict = num_ctc_classes a :Optional[Any] = vocab_size a :str = do_stable_layer_norm a :Tuple = use_weighted_layer_sum a :Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a :List[Any] = apply_spec_augment a :Any = mask_time_prob a :Union[str, Any] = mask_time_length a :str = mask_time_min_masks a :Tuple = mask_feature_prob a :Dict = mask_feature_length a :int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations a :Union[str, Any] = num_codevectors_per_group a :Dict = num_codevector_groups a :List[Any] = contrastive_logits_temperature a :Union[str, Any] = feat_quantizer_dropout a :Optional[Any] = num_negatives a :Tuple = codevector_dim a :Optional[Any] = proj_codevector_dim a :Union[str, Any] = diversity_loss_weight # ctc loss a :List[Any] = ctc_loss_reduction a :Union[str, Any] = ctc_zero_infinity # pretraining loss a :int = replace_prob @property def SCREAMING_SNAKE_CASE__ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
445
0
import math def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict) -> Tuple: '''simple docstring''' __UpperCamelCase : Any = [True] * n __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[str] = False __UpperCamelCase : Any = True for i in range(3 , int(n**0.5 + 1) , 2): __UpperCamelCase : Union[str, Any] = i * 2 while index < n: __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = index + i __UpperCamelCase : Union[str, Any] = [2] for i in range(3 , _lowerCamelCase , 2): if is_prime[i]: primes.append(_lowerCamelCase) return primes def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] = 999_966_663_333) -> Tuple: '''simple docstring''' __UpperCamelCase : int = math.floor(math.sqrt(_lowerCamelCase)) + 100 __UpperCamelCase : Union[str, Any] = prime_sieve(_lowerCamelCase) __UpperCamelCase : List[Any] = 0 __UpperCamelCase : Union[str, Any] = 0 __UpperCamelCase : int = primes[prime_index] while (last_prime**2) <= limit: __UpperCamelCase : Any = primes[prime_index + 1] __UpperCamelCase : Dict = last_prime**2 __UpperCamelCase : str = next_prime**2 # Get numbers divisible by lps(current) __UpperCamelCase : int = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __UpperCamelCase : str = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __UpperCamelCase : Dict = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __UpperCamelCase : Optional[int] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
716
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any]) -> List[Any]: '''simple docstring''' __UpperCamelCase : Tuple = BertConfig.from_json_file(_lowerCamelCase) print(F'Building PyTorch model from configuration: {config}') __UpperCamelCase : List[Any] = BertForPreTraining(_lowerCamelCase) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}') torch.save(model.state_dict() , _lowerCamelCase) if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
94
0
from __future__ import annotations from typing import Any class lowerCamelCase_ ( _lowercase ): pass class lowerCamelCase_ : def __init__( self : Optional[int] , __A : Any ): __A : Any = data __A : Node | None = None def __iter__( self : Dict ): __A : Optional[Any] = self __A : Optional[int] = [] while node: if node in visited: raise ContainsLoopError visited.append(__A ) yield node.data __A : Optional[Any] = node.next_node @property def lowerCAmelCase_ ( self : Tuple ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCAmelCase_ : List[str] = Node(1) UpperCAmelCase_ : List[Any] = Node(2) UpperCAmelCase_ : Optional[int] = Node(3) UpperCAmelCase_ : List[Any] = Node(4) print(root_node.has_loop) # False UpperCAmelCase_ : str = root_node.next_node print(root_node.has_loop) # True UpperCAmelCase_ : int = Node(5) UpperCAmelCase_ : Dict = Node(6) UpperCAmelCase_ : Any = Node(5) UpperCAmelCase_ : Union[str, Any] = Node(6) print(root_node.has_loop) # False UpperCAmelCase_ : Union[str, Any] = Node(1) print(root_node.has_loop) # False
17
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE = namedtuple("covid_data", "cases deaths recovered") def snake_case__ ( __SCREAMING_SNAKE_CASE = "https://www.worldometers.info/coronavirus/" ) -> covid_data: UpperCAmelCase_ = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
579
0
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCamelCase_ ( snake_case_ ): pass class lowerCamelCase_ : def __init__( self : Union[str, Any] , lowerCAmelCase__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = data SCREAMING_SNAKE_CASE : Node | None = None def __iter__( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self SCREAMING_SNAKE_CASE : Optional[int] = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCAmelCase__ ) yield node.data SCREAMING_SNAKE_CASE : str = node.next_node @property def __lowercase ( self : str ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": lowerCAmelCase_ : Optional[int] = Node(1) lowerCAmelCase_ : Any = Node(2) lowerCAmelCase_ : Tuple = Node(3) lowerCAmelCase_ : Optional[int] = Node(4) print(root_node.has_loop) # False lowerCAmelCase_ : Union[str, Any] = root_node.next_node print(root_node.has_loop) # True lowerCAmelCase_ : str = Node(5) lowerCAmelCase_ : str = Node(6) lowerCAmelCase_ : Optional[int] = Node(5) lowerCAmelCase_ : Optional[int] = Node(6) print(root_node.has_loop) # False lowerCAmelCase_ : List[Any] = Node(1) print(root_node.has_loop) # False
464
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ : def __init__( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str=13 , lowerCAmelCase__ : List[Any]=7 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Dict=99 , lowerCAmelCase__ : List[str]=32 , lowerCAmelCase__ : str=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Any=37 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : str=5_12 , lowerCAmelCase__ : List[str]=16 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Tuple=4 , lowerCAmelCase__ : List[Any]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : Optional[int] = is_training SCREAMING_SNAKE_CASE : Tuple = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : str = type_vocab_size SCREAMING_SNAKE_CASE : int = type_sequence_label_size SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : List[Any] = num_choices SCREAMING_SNAKE_CASE : Any = scope def __lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Dict = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : str = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : List[Any] ): """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def __lowercase ( self : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = BioGptModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BioGptForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : str , *lowerCAmelCase__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BioGptModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # create attention mask SCREAMING_SNAKE_CASE : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.seq_length // 2 SCREAMING_SNAKE_CASE : Any = 0 # first forward pass SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ).to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids SCREAMING_SNAKE_CASE : List[Any] = ids_tensor((1,) , lowerCAmelCase__ ).item() + 1 SCREAMING_SNAKE_CASE : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) SCREAMING_SNAKE_CASE : str = random_other_next_tokens # append to next input_ids and attn_mask SCREAMING_SNAKE_CASE : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE : str = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowerCAmelCase__ )] , dim=1 , ) # get two different outputs SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )['''last_hidden_state'''] SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach() SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) def __lowercase ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , *lowerCAmelCase__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : str = BioGptModel(config=lowerCAmelCase__ ).to(lowerCAmelCase__ ).eval() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase__ ) # first forward pass SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )['''last_hidden_state'''] SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[ '''last_hidden_state''' ] # select random slice SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) def __lowercase ( self : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , *lowerCAmelCase__ : Any , lowerCAmelCase__ : int=False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = BioGptForCausalLM(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) if gradient_checkpointing: model.gradient_checkpointing_enable() SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __lowercase ( self : Any , lowerCAmelCase__ : str , *lowerCAmelCase__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BioGptModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def __lowercase ( self : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , *lowerCAmelCase__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : Tuple = BioGptForTokenClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): _lowerCAmelCase : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : Optional[Any] = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : List[str] = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : Dict = False def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BioGptModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def __lowercase ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def __lowercase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __lowercase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : Optional[Any] = type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __lowercase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowerCAmelCase__ ) def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowerCAmelCase__ , gradient_checkpointing=lowerCAmelCase__ ) def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowerCAmelCase__ ) def __lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowerCAmelCase__ ) def __lowercase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowerCAmelCase__ ) @slow def __lowercase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''left''' # Define PAD Token = EOS Token = 50256 SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE : Dict = model.config.eos_token_id # use different length sentences to test batching SCREAMING_SNAKE_CASE : Any = [ '''Hello, my dog is a little''', '''Today, I''', ] SCREAMING_SNAKE_CASE : List[str] = tokenizer(lowerCAmelCase__ , return_tensors='''pt''' , padding=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = inputs['''input_ids'''].to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate( input_ids=lowerCAmelCase__ , attention_mask=inputs['''attention_mask'''].to(lowerCAmelCase__ ) , ) SCREAMING_SNAKE_CASE : int = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = model.generate(input_ids=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() SCREAMING_SNAKE_CASE : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate(input_ids=lowerCAmelCase__ , max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) @slow def __lowercase ( self : Tuple ): """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[Any] = BioGptModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = 3 SCREAMING_SNAKE_CASE : Dict = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE : str = input_ids.ne(1 ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = BioGptForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowercase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Optional[Any] = '''multi_label_classification''' SCREAMING_SNAKE_CASE : Any = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE : Any = input_ids.ne(1 ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE : List[Any] = BioGptForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) SCREAMING_SNAKE_CASE : str = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE : Tuple = 4_23_84 SCREAMING_SNAKE_CASE : List[Any] = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def __lowercase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : int = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) SCREAMING_SNAKE_CASE : Optional[Any] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(lowerCAmelCase__ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate( **lowerCAmelCase__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
464
1
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowercase_ = logging.get_logger(__name__) class A__ : def __init__( self , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=None , lowerCamelCase=None ) -> str: """simple docstring""" if not conversation_id: __magic_name__ : Any = uuid.uuida() if past_user_inputs is None: __magic_name__ : Dict = [] if generated_responses is None: __magic_name__ : Tuple = [] __magic_name__ : uuid.UUID = conversation_id __magic_name__ : List[str] = past_user_inputs __magic_name__ : List[str] = generated_responses __magic_name__ : Optional[str] = text def __eq__( self , lowerCamelCase ) -> Tuple: """simple docstring""" if not isinstance(lowerCamelCase , lowerCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowercase ( self , lowerCamelCase , lowerCamelCase = False ) -> Tuple: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) __magic_name__ : Tuple = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: __magic_name__ : Union[str, Any] = text def lowercase ( self ) -> Tuple: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __magic_name__ : List[Any] = None def lowercase ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" self.generated_responses.append(lowerCamelCase ) def lowercase ( self ) -> Tuple: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ) -> Dict: """simple docstring""" __magic_name__ : List[Any] = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): __magic_name__ : str = '''user''' if is_user else '''bot''' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( __SCREAMING_SNAKE_CASE , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class A__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , *lowerCamelCase , **lowerCamelCase ) -> Tuple: """simple docstring""" super().__init__(*lowerCamelCase , **lowerCamelCase ) if self.tokenizer.pad_token_id is None: __magic_name__ : Optional[int] = self.tokenizer.eos_token def lowercase ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __magic_name__ : Dict = {} __magic_name__ : Union[str, Any] = {} __magic_name__ : List[str] = {} if min_length_for_response is not None: __magic_name__ : Any = min_length_for_response if minimum_tokens is not None: __magic_name__ : Any = minimum_tokens if "max_length" in generate_kwargs: __magic_name__ : Optional[Any] = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __magic_name__ : Optional[int] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , lowerCamelCase , lowerCamelCase=0 , **lowerCamelCase ) -> Tuple: """simple docstring""" __magic_name__ : Tuple = super().__call__(lowerCamelCase , num_workers=lowerCamelCase , **lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) and len(lowerCamelCase ) == 1: return outputs[0] return outputs def lowercase ( self , lowerCamelCase , lowerCamelCase=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __magic_name__ : int = self.tokenizer._build_conversation_input_ids(lowerCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __magic_name__ : Union[str, Any] = self._legacy_parse_and_tokenize(lowerCamelCase ) if self.framework == "pt": __magic_name__ : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __magic_name__ : List[Any] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowercase ( self , lowerCamelCase , lowerCamelCase=10 , **lowerCamelCase ) -> Dict: """simple docstring""" __magic_name__ : List[str] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __magic_name__ : Union[str, Any] = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) __magic_name__ : Optional[Any] = max_length - minimum_tokens __magic_name__ : int = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __magic_name__ : Tuple = model_inputs['''attention_mask'''][:, -trim:] __magic_name__ : List[str] = model_inputs.pop('''conversation''' ) __magic_name__ : Tuple = max_length __magic_name__ : List[Any] = self.model.generate(**lowerCamelCase , **lowerCamelCase ) if self.model.config.is_encoder_decoder: __magic_name__ : Optional[int] = 1 else: __magic_name__ : List[str] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowercase ( self , lowerCamelCase , lowerCamelCase=True ) -> Optional[Any]: """simple docstring""" __magic_name__ : List[Any] = model_outputs['''output_ids'''] __magic_name__ : Any = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase , ) __magic_name__ : str = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(lowerCamelCase ) return conversation def lowercase ( self , lowerCamelCase ) -> Dict: """simple docstring""" __magic_name__ : List[Any] = self.tokenizer.eos_token_id __magic_name__ : int = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) if len(lowerCamelCase ) > self.tokenizer.model_max_length: __magic_name__ : Tuple = input_ids[-self.tokenizer.model_max_length :] return input_ids
154
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase_ = logging.get_logger(__name__) lowercase_ = TypeVar('''DatasetType''', Dataset, IterableDataset) def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase = None, UpperCAmelCase = None, UpperCAmelCase = None, UpperCAmelCase = None, UpperCAmelCase = "first_exhausted", ) ->DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(UpperCAmelCase ): if not isinstance(UpperCAmelCase, (Dataset, IterableDataset) ): if isinstance(UpperCAmelCase, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' '''is an empty dataset dictionary.''' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(UpperCAmelCase )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCAmelCase ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCAmelCase ).__name__}.''' ) if i == 0: __magic_name__ , __magic_name__ : Union[str, Any] = ( (Dataset, IterableDataset) if isinstance(UpperCAmelCase, UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCAmelCase, UpperCAmelCase ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, info=UpperCAmelCase, split=UpperCAmelCase, stopping_strategy=UpperCAmelCase ) else: return _interleave_iterable_datasets( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, info=UpperCAmelCase, split=UpperCAmelCase, stopping_strategy=UpperCAmelCase ) def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase = None, UpperCAmelCase = None, UpperCAmelCase = 0, ) ->DatasetType: """simple docstring""" if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(UpperCAmelCase ): if not isinstance(UpperCAmelCase, (Dataset, IterableDataset) ): if isinstance(UpperCAmelCase, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' '''is an empty dataset dictionary.''' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(UpperCAmelCase )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCAmelCase ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCAmelCase ).__name__}.''' ) if i == 0: __magic_name__ , __magic_name__ : int = ( (Dataset, IterableDataset) if isinstance(UpperCAmelCase, UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCAmelCase, UpperCAmelCase ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCAmelCase, info=UpperCAmelCase, split=UpperCAmelCase, axis=UpperCAmelCase ) else: return _concatenate_iterable_datasets(UpperCAmelCase, info=UpperCAmelCase, split=UpperCAmelCase, axis=UpperCAmelCase )
154
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase =logging.get_logger(__name__) lowercase ={ 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="blip_2_vision_model" def __init__( self , snake_case=1_4_0_8 , snake_case=6_1_4_4 , snake_case=3_9 , snake_case=1_6 , snake_case=2_2_4 , snake_case=1_4 , snake_case="gelu" , snake_case=0.0_00_01 , snake_case=0.0 , snake_case=1E-1_0 , snake_case=True , **snake_case , ) -> List[str]: '''simple docstring''' super().__init__(**snake_case) _UpperCAmelCase : Any =hidden_size _UpperCAmelCase : int =intermediate_size _UpperCAmelCase : List[Any] =num_hidden_layers _UpperCAmelCase : int =num_attention_heads _UpperCAmelCase : List[str] =patch_size _UpperCAmelCase : Optional[int] =image_size _UpperCAmelCase : Any =initializer_range _UpperCAmelCase : Any =attention_dropout _UpperCAmelCase : Optional[int] =layer_norm_eps _UpperCAmelCase : Any =hidden_act _UpperCAmelCase : Dict =qkv_bias @classmethod def lowerCAmelCase ( cls , snake_case , **snake_case) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(snake_case) _UpperCAmelCase : List[str] =cls.get_config_dict(snake_case , **snake_case) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type') == "blip-2": _UpperCAmelCase : Any =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(snake_case , **snake_case) class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="blip_2_qformer" def __init__( self , snake_case=3_0_5_2_2 , snake_case=7_6_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=0.02 , snake_case=1E-1_2 , snake_case=0 , snake_case="absolute" , snake_case=2 , snake_case=1_4_0_8 , **snake_case , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=snake_case , **snake_case) _UpperCAmelCase : int =vocab_size _UpperCAmelCase : Dict =hidden_size _UpperCAmelCase : List[Any] =num_hidden_layers _UpperCAmelCase : Optional[int] =num_attention_heads _UpperCAmelCase : Optional[Any] =hidden_act _UpperCAmelCase : int =intermediate_size _UpperCAmelCase : Tuple =hidden_dropout_prob _UpperCAmelCase : str =attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] =max_position_embeddings _UpperCAmelCase : Optional[Any] =initializer_range _UpperCAmelCase : List[str] =layer_norm_eps _UpperCAmelCase : Optional[int] =position_embedding_type _UpperCAmelCase : Optional[Any] =cross_attention_frequency _UpperCAmelCase : Dict =encoder_hidden_size @classmethod def lowerCAmelCase ( cls , snake_case , **snake_case) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(snake_case) _UpperCAmelCase : Tuple =cls.get_config_dict(snake_case , **snake_case) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type') == "blip-2": _UpperCAmelCase : Optional[Any] =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(snake_case , **snake_case) class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="blip-2" UpperCAmelCase =True def __init__( self , snake_case=None , snake_case=None , snake_case=None , snake_case=3_2 , **snake_case) -> str: '''simple docstring''' super().__init__(**snake_case) if vision_config is None: _UpperCAmelCase : List[str] ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.') if qformer_config is None: _UpperCAmelCase : Optional[int] ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.') if text_config is None: _UpperCAmelCase : int ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).') _UpperCAmelCase : Union[str, Any] =BlipaVisionConfig(**snake_case) _UpperCAmelCase : int =BlipaQFormerConfig(**snake_case) _UpperCAmelCase : int =text_config['model_type'] if 'model_type' in text_config else 'opt' _UpperCAmelCase : Union[str, Any] =CONFIG_MAPPING[text_model_type](**snake_case) _UpperCAmelCase : List[str] =self.text_config.tie_word_embeddings _UpperCAmelCase : str =self.text_config.is_encoder_decoder _UpperCAmelCase : str =num_query_tokens _UpperCAmelCase : Dict =self.vision_config.hidden_size _UpperCAmelCase : Optional[int] =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _UpperCAmelCase : Tuple =1.0 _UpperCAmelCase : List[Any] =0.02 @classmethod def lowerCAmelCase ( cls , snake_case , snake_case , snake_case , **snake_case , ) -> List[Any]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **snake_case , ) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : int =copy.deepcopy(self.__dict__) _UpperCAmelCase : Optional[int] =self.vision_config.to_dict() _UpperCAmelCase : Tuple =self.qformer_config.to_dict() _UpperCAmelCase : int =self.text_config.to_dict() _UpperCAmelCase : List[str] =self.__class__.model_type return output
716
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase =logging.get_logger(__name__) lowercase ={ 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="dpr" def __init__( self , snake_case=3_0_5_2_2 , snake_case=7_6_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=2 , snake_case=0.02 , snake_case=1E-1_2 , snake_case=0 , snake_case="absolute" , snake_case = 0 , **snake_case , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=snake_case , **snake_case) _UpperCAmelCase : int =vocab_size _UpperCAmelCase : Dict =hidden_size _UpperCAmelCase : List[Any] =num_hidden_layers _UpperCAmelCase : List[Any] =num_attention_heads _UpperCAmelCase : str =hidden_act _UpperCAmelCase : Optional[Any] =intermediate_size _UpperCAmelCase : Optional[Any] =hidden_dropout_prob _UpperCAmelCase : Tuple =attention_probs_dropout_prob _UpperCAmelCase : int =max_position_embeddings _UpperCAmelCase : Tuple =type_vocab_size _UpperCAmelCase : Union[str, Any] =initializer_range _UpperCAmelCase : Tuple =layer_norm_eps _UpperCAmelCase : int =projection_dim _UpperCAmelCase : List[Any] =position_embedding_type
331
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ): super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int =size if size is not None else {'shortest_edge': 224} SCREAMING_SNAKE_CASE_ : List[str] =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] =crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE_ : Tuple =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='crop_size' ) SCREAMING_SNAKE_CASE_ : int =do_resize SCREAMING_SNAKE_CASE_ : Optional[Any] =size SCREAMING_SNAKE_CASE_ : Any =resample SCREAMING_SNAKE_CASE_ : Union[str, Any] =do_center_crop SCREAMING_SNAKE_CASE_ : Optional[Any] =crop_size SCREAMING_SNAKE_CASE_ : Optional[Any] =do_rescale SCREAMING_SNAKE_CASE_ : Tuple =rescale_factor SCREAMING_SNAKE_CASE_ : List[Any] =do_normalize SCREAMING_SNAKE_CASE_ : str =image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE_ : str =image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE_ : Optional[Any] =do_convert_rgb def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Tuple =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE_ : List[Any] =get_resize_output_image_size(__UpperCAmelCase , size=size['shortest_edge'] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : List[str] =get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size['height'], size['width']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : List[Any] =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : int =size if size is not None else self.size SCREAMING_SNAKE_CASE_ : List[Any] =get_size_dict(__UpperCAmelCase , param_name='size' , default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : int =do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ : Any =crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ : Optional[Any] =get_size_dict(__UpperCAmelCase , param_name='crop_size' , default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple =do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : List[str] =rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : Optional[Any] =do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : Tuple =image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : int =image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : List[str] =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE_ : str =make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE_ : Optional[int] =[convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : List[str] =[to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : List[str] =[self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ : int =[self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : str =[self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : int =[self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ : Optional[Any] =[to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ : Tuple ={'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
220
import logging from transformers.configuration_utils import PretrainedConfig __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = 'masked_bert' def __init__( self , __UpperCAmelCase=30_522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="topK" , __UpperCAmelCase="constant" , __UpperCAmelCase=0.0 , **__UpperCAmelCase , ): super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple =vocab_size SCREAMING_SNAKE_CASE_ : Any =hidden_size SCREAMING_SNAKE_CASE_ : Dict =num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] =num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] =hidden_act SCREAMING_SNAKE_CASE_ : List[Any] =intermediate_size SCREAMING_SNAKE_CASE_ : str =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] =max_position_embeddings SCREAMING_SNAKE_CASE_ : Any =type_vocab_size SCREAMING_SNAKE_CASE_ : int =initializer_range SCREAMING_SNAKE_CASE_ : Dict =layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple =pruning_method SCREAMING_SNAKE_CASE_ : Optional[Any] =mask_init SCREAMING_SNAKE_CASE_ : Optional[int] =mask_scale
220
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __lowercase ): def __init__( self : Tuple , *_A : Union[str, Any] , **_A : Optional[int] ): warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
71
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : Any ): _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=_A ).to(_A ) _UpperCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _UpperCamelCase = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids _UpperCamelCase = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids _UpperCamelCase = model(input_ids.to(_A ) , labels=labels.to(_A ) ).loss _UpperCamelCase = -(labels.shape[-1] * loss.item()) _UpperCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
71
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase :Tuple = None lowerCAmelCase :Any = logging.get_logger(__name__) lowerCAmelCase :int = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase :int = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } lowerCAmelCase :Any = { '''facebook/mbart-large-en-ro''': 1_0_2_4, '''facebook/mbart-large-cc25''': 1_0_2_4, } # fmt: off lowerCAmelCase :Optional[Any] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class _lowerCamelCase ( A__ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Tuple = PRETRAINED_VOCAB_FILES_MAP A_ : int = ["""input_ids""", """attention_mask"""] A_ : Union[str, Any] = MBartTokenizer A_ : Optional[int] = [] A_ : int = [] def __init__( self : Optional[int] , _A : List[str]=None , _A : int=None , _A : Optional[int]="<s>" , _A : str="</s>" , _A : Optional[Any]="</s>" , _A : Optional[int]="<s>" , _A : int="<unk>" , _A : Any="<pad>" , _A : Tuple="<mask>" , _A : int=None , _A : int=None , _A : Any=None , **_A : List[Any] , ) -> Any: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) __magic_name__ : Optional[int] = vocab_file __magic_name__ : Dict = False if not self.vocab_file else True __magic_name__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __magic_name__ : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __magic_name__ : int = src_lang if src_lang is not None else 'en_XX' __magic_name__ : Tuple = self.convert_tokens_to_ids(self._src_lang ) __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self : int ) -> str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self : Dict , _A : str ) -> None: __magic_name__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self : Any , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self : List[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : Optional[Any] , _A : Any , _A : str , _A : Optional[str] , _A : Optional[str] , **_A : List[str] ) -> List[Any]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __magic_name__ : Any = src_lang __magic_name__ : Optional[Any] = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) __magic_name__ : Any = self.convert_tokens_to_ids(__lowerCamelCase ) __magic_name__ : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self : List[Any] , _A : List[str] , _A : str = "en_XX" , _A : Optional[List[str]] = None , _A : str = "ro_RO" , **_A : Dict , ) -> BatchEncoding: __magic_name__ : Tuple = src_lang __magic_name__ : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self : Optional[Any] ) -> Any: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self : List[str] , _A : str ) -> None: __magic_name__ : Tuple = self.convert_tokens_to_ids(__lowerCamelCase ) __magic_name__ : Optional[Any] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] __magic_name__ : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) __magic_name__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) __magic_name__ : int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self : str , _A : str ) -> None: __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(__lowerCamelCase ) __magic_name__ : List[str] = [] __magic_name__ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] __magic_name__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) __magic_name__ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) __magic_name__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self : int , _A : str , _A : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__lowerCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return __magic_name__ : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) return (out_vocab_file,)
561
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _SCREAMING_SNAKE_CASE : List[Any] = imread(r'''digital_image_processing/image_data/lena_small.jpg''') _SCREAMING_SNAKE_CASE : Tuple = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = cn.convert_to_negative(_A ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase_ ( ): '''simple docstring''' with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(_A , 1_10 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() SCREAMING_SNAKE_CASE__ = canny.canny(_A ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase_ ( ): '''simple docstring''' assert gg.gaussian_filter(_A , 5 , sigma=0.9 ).all() def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) SCREAMING_SNAKE_CASE__ = conv.img_convolve(_A , _A ).astype(_A ) assert res.any() def UpperCAmelCase_ ( ): '''simple docstring''' assert med.median_filter(_A , 3 ).any() def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = sob.sobel_filter(_A ) assert grad.any() and theta.any() def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = sp.make_sepia(_A , 20 ) assert sepia.all() def UpperCAmelCase_ ( _A = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = bs.Burkes(imread(_A , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase_ ( _A = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = rs.NearestNeighbour(imread(_A , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. SCREAMING_SNAKE_CASE__ = imread(_A , 0 ) # Test for get_neighbors_pixel function() return not None SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = image[x_coordinate][y_coordinate] SCREAMING_SNAKE_CASE__ = lbp.get_neighbors_pixel( _A , _A , _A , _A ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image SCREAMING_SNAKE_CASE__ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): SCREAMING_SNAKE_CASE__ = lbp.local_binary_value(_A , _A , _A ) assert lbp_image.any()
493
0
UpperCamelCase = 8.3_144_598 def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> float: """simple docstring""" if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example UpperCamelCase = 300 UpperCamelCase = 28 UpperCamelCase = rms_speed_of_molecule(temperature, molar_mass) print(f"Vrms of Nitrogen gas at 300 K is {vrms} m/s")
702
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = KandinskyInpaintPipeline __snake_case : Dict = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] __snake_case : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] __snake_case : int = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __snake_case : Optional[int] = False @property def UpperCamelCase ( self: Dict ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: int ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: Tuple ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase ( self: Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase ( self: str ): '''simple docstring''' return 100 @property def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def UpperCamelCase ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) _SCREAMING_SNAKE_CASE = MultilingualCLIP(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = text_encoder.eval() return text_encoder @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _SCREAMING_SNAKE_CASE = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def UpperCamelCase ( self: List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = self.dummy_tokenizer _SCREAMING_SNAKE_CASE = self.dummy_unet _SCREAMING_SNAKE_CASE = self.dummy_movq _SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase ( self: int , UpperCAmelCase_: Any , UpperCAmelCase_: str=0 ): '''simple docstring''' _SCREAMING_SNAKE_CASE = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCAmelCase_ ) # create init_image _SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("""RGB""" ).resize((256, 256) ) # create mask _SCREAMING_SNAKE_CASE = np.ones((64, 64) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def UpperCamelCase ( self: str ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _SCREAMING_SNAKE_CASE = np.ones((768, 768) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = """a hat""" _SCREAMING_SNAKE_CASE = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _SCREAMING_SNAKE_CASE = pipeline( UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
569
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ : Optional[int] = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Dict = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowerCAmelCase_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
527
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class _lowerCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 1_3 , lowerCAmelCase_ = 6_4 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = 1_2_8 , lowerCAmelCase_=[1_6, 3_2, 6_4, 1_2_8] , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 3_7 , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 1_0 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1_2_8 , lowerCAmelCase_ = [2, 2, 2, 2] , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = parent _SCREAMING_SNAKE_CASE : Optional[Any] = batch_size _SCREAMING_SNAKE_CASE : List[Any] = image_size _SCREAMING_SNAKE_CASE : int = patch_size _SCREAMING_SNAKE_CASE : List[str] = num_channels _SCREAMING_SNAKE_CASE : List[Any] = is_training _SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size _SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : Dict = num_attention_heads _SCREAMING_SNAKE_CASE : Any = intermediate_size _SCREAMING_SNAKE_CASE : str = hidden_act _SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Union[str, Any] = type_sequence_label_size _SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range _SCREAMING_SNAKE_CASE : int = encoder_stride _SCREAMING_SNAKE_CASE : Tuple = num_attention_outputs _SCREAMING_SNAKE_CASE : Any = embed_dim _SCREAMING_SNAKE_CASE : str = embed_dim + 1 _SCREAMING_SNAKE_CASE : Union[str, Any] = resolution _SCREAMING_SNAKE_CASE : int = depths _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_sizes _SCREAMING_SNAKE_CASE : Optional[Any] = dim _SCREAMING_SNAKE_CASE : Any = mlp_expansion_ratio def A ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def A ( self ) -> List[str]: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _SCREAMING_SNAKE_CASE : Optional[Any] = TFEfficientFormerModel(config=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = self.type_sequence_label_size _SCREAMING_SNAKE_CASE : Any = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _SCREAMING_SNAKE_CASE : Tuple = 1 _SCREAMING_SNAKE_CASE : Any = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = config_and_inputs _SCREAMING_SNAKE_CASE : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_: List[str] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_: List[str] = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_: List[Any] = False SCREAMING_SNAKE_CASE_: Optional[Any] = False SCREAMING_SNAKE_CASE_: List[str] = False SCREAMING_SNAKE_CASE_: Optional[Any] = False SCREAMING_SNAKE_CASE_: str = False def A ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Union[str, Any] = TFEfficientFormerModelTester(self ) _SCREAMING_SNAKE_CASE : List[str] = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def A ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def A ( self ) -> Dict: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def A ( self ) -> Optional[Any]: pass def A ( self ) -> Any: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : List[Any] = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def A ( self ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _SCREAMING_SNAKE_CASE : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) if hasattr(self.model_tester , 'encoder_seq_length' ): _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: _SCREAMING_SNAKE_CASE : Tuple = seq_length * self.model_tester.chunk_length else: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _SCREAMING_SNAKE_CASE : List[str] = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = getattr(self.model_tester , 'decoder_seq_length' , lowerCAmelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Any: _SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A ( self ) -> str: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def A ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def A ( self ) -> str: _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def A ( self ) -> List[str]: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE : str = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def A ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Optional[int] = True _SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : int = getattr(self.model_tester , 'encoder_seq_length' , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , 'key_length' , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : int = getattr(self.model_tester , 'chunk_length' , lowerCAmelCase_ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): _SCREAMING_SNAKE_CASE : List[str] = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def A ( self ) -> Any: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _SCREAMING_SNAKE_CASE : int = model_class(lowerCAmelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _SCREAMING_SNAKE_CASE : Optional[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase_ ) self.assertTrue(outputs_dict is not None ) def lowercase__ ( ): _SCREAMING_SNAKE_CASE : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def A ( self ) -> str: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def A ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[int] = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) _SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor _SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() _SCREAMING_SNAKE_CASE : int = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _SCREAMING_SNAKE_CASE : Dict = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _SCREAMING_SNAKE_CASE : Optional[Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def A ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.default_image_processor _SCREAMING_SNAKE_CASE : List[str] = prepare_img() _SCREAMING_SNAKE_CASE : List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _SCREAMING_SNAKE_CASE : List[Any] = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
621
0
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _snake_case (_snake_case : Union[str, Any]) -> int: _lowercase =r'''\w+[.]\d+''' _lowercase =re.findall(_a , _a) for pat in pats: _lowercase =key.replace(_a , '_'.join(pat.split('.'))) return key def _snake_case (_snake_case : str , _snake_case : List[Any] , _snake_case : Dict) -> int: _lowercase =pt_tuple_key[:-1] + ('''scale''',) if ( any('norm' in str_ for str_ in pt_tuple_key) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _lowercase =pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _lowercase =pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _lowercase =pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer _lowercase =pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _lowercase =pt_tensor.transpose(2 , 3 , 1 , 0) return renamed_pt_tuple_key, pt_tensor # linear layer _lowercase =pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": _lowercase =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _lowercase =pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _lowercase =pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _snake_case (_snake_case : int , _snake_case : Tuple , _snake_case : int=42) -> Optional[int]: # Step 1: Convert pytorch tensor to numpy _lowercase ={k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _lowercase =flax_model.init_weights(PRNGKey(_a)) _lowercase =flatten_dict(_a) _lowercase ={} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowercase =rename_key(_a) _lowercase =tuple(renamed_pt_key.split('.')) # Correctly rename weight parameters _lowercase =rename_key_and_reshape_tensor(_a , _a , _a) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''') # also add unexpected weight so that warning is thrown _lowercase =jnp.asarray(_a) return unflatten_dict(_a)
181
"""simple docstring""" import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 16 lowercase__ : Optional[Any] = 32 def __lowercase ( _a , _a = 16 ): snake_case_ : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case_ : Dict = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_a ): # max_length=None => use the model max length (it's actually the default) snake_case_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_a , max_length=_a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ : Optional[Any] = datasets.map( _a , batched=_a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_a ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ : Dict = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": snake_case_ : Optional[Any] = 8 else: snake_case_ : Union[str, Any] = None return tokenizer.pad( _a , padding='''longest''' , max_length=_a , pad_to_multiple_of=_a , return_tensors='''pt''' , ) # Instantiate dataloaders. snake_case_ : int = DataLoader( tokenized_datasets['''train'''] , shuffle=_a , collate_fn=_a , batch_size=_a , drop_last=_a ) snake_case_ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=_a , collate_fn=_a , batch_size=_a , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def __lowercase ( _a , _a ): # Initialize accelerator snake_case_ : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ : Union[str, Any] = config['''lr'''] snake_case_ : str = int(config['''num_epochs'''] ) snake_case_ : Optional[Any] = int(config['''seed'''] ) snake_case_ : Tuple = int(config['''batch_size'''] ) snake_case_ : str = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation snake_case_ : Dict = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case_ : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE snake_case_ : Any = MAX_GPU_BATCH_SIZE set_seed(_a ) snake_case_, snake_case_ : Union[str, Any] = get_dataloaders(_a , _a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ : int = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer snake_case_ : Any = AdamW(params=model.parameters() , lr=_a ) # Instantiate scheduler snake_case_ : Any = get_linear_schedule_with_warmup( optimizer=_a , num_warmup_steps=100 , num_training_steps=(len(_a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ : Tuple = accelerator.prepare( _a , _a , _a , _a , _a ) # Now we train the model for epoch in range(_a ): model.train() for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case_ : List[Any] = model(**_a ) snake_case_ : Optional[int] = outputs.loss snake_case_ : int = loss / gradient_accumulation_steps accelerator.backward(_a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : int = model(**_a ) snake_case_ : Optional[Any] = outputs.logits.argmax(dim=-1 ) snake_case_, snake_case_ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_a , references=_a , ) snake_case_ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _a ) def __lowercase ( ): snake_case_ : Dict = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_a , default=_a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) snake_case_ : int = parser.parse_args() snake_case_ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_a , _a ) if __name__ == "__main__": main()
123
0
UpperCAmelCase_ = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] )->list[str]: _lowerCAmelCase = set() # keep track of all the paths to be checked _lowerCAmelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _lowerCAmelCase = queue.pop(0 ) # get the last node from the path _lowerCAmelCase = path[-1] if node not in explored: _lowerCAmelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) new_path.append(_SCREAMING_SNAKE_CASE ) queue.append(_SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] )->int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _lowerCAmelCase = [start] _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. _lowerCAmelCase = {start: 0, target: -1} while queue: _lowerCAmelCase = queue.pop(0 ) if node == target: _lowerCAmelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_SCREAMING_SNAKE_CASE ) queue.append(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
718
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph UpperCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
664
0
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class A( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , A_ : Tuple , A_ : int=2 , A_ : Optional[int]=56 , A_ : Dict=True , A_ : List[Any]=True , A_ : Any=True , A_ : List[str]=True , A_ : Tuple=99 , A_ : Tuple=32 , A_ : List[Any]=2 , A_ : Any=2 , A_ : List[Any]=7 , A_ : Dict="gelu_new" , A_ : int=0.1 , A_ : int=0.1 , A_ : Union[str, Any]=512 , A_ : Tuple=16 , A_ : Union[str, Any]=2 , A_ : List[str]=0.02 , A_ : str=4 , A_ : Union[str, Any]="block_sparse" , A_ : Union[str, Any]=True , A_ : Optional[Any]=False , A_ : Tuple=2 , A_ : Dict=3 , ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_attention_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_choices lowerCamelCase_ = rescale_embeddings lowerCamelCase_ = attention_type lowerCamelCase_ = use_bias lowerCamelCase_ = block_size lowerCamelCase_ = num_random_blocks def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_attention_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCamelCase = False UpperCamelCase = False def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a__ ( self : int ) -> List[str]: """simple docstring""" super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a__ ( self : int ) -> List[Any]: """simple docstring""" super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a__ ( self : Dict ) -> List[str]: """simple docstring""" super().test_hidden_states_output() @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_class_name in self.all_model_classes: lowerCamelCase_ = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase_ = model_class(lowerCamelCase_ ) @jax.jit def model_jitted(A_ : Dict , A_ : int=None , **A_ : List[str] ): return model(input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ , **lowerCamelCase_ ) with self.subTest('JIT Enabled' ): lowerCamelCase_ = model_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCamelCase_ = model_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a__ ( self : int , A_ : Any , A_ : str , A_ : Union[str, Any] , A_ : int=1E-5 , A_ : Any="outputs" , A_ : Any=None ) -> Optional[int]: """simple docstring""" if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
70
from __future__ import annotations __lowerCAmelCase = [] def _lowercase ( a__ : list[list[int]] , a__ : int , a__ : int ) -> bool: """simple docstring""" for i in range(len(a__ ) ): if board[row][i] == 1: return False for i in range(len(a__ ) ): if board[i][column] == 1: return False for i, j in zip(range(a__ , -1 , -1 ) , range(a__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(a__ , -1 , -1 ) , range(a__ , len(a__ ) ) ): if board[i][j] == 1: return False return True def _lowercase ( a__ : list[list[int]] , a__ : int ) -> bool: """simple docstring""" if row >= len(a__ ): solution.append(a__ ) printboard(a__ ) print() return True for i in range(len(a__ ) ): if is_safe(a__ , a__ , a__ ): _UpperCamelCase = 1 solve(a__ , row + 1 ) _UpperCamelCase = 0 return False def _lowercase ( a__ : list[list[int]] ) -> None: """simple docstring""" for i in range(len(a__ ) ): for j in range(len(a__ ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) __lowerCAmelCase = 8 __lowerCAmelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
147
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int =ViTImageProcessor if is_vision_available() else None @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): __lowerCAmelCase = (3, 32, 1_28) __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on __lowerCAmelCase = dict(zip(__a , range(len(__a ) ) ) ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) __lowerCAmelCase = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 1_28}, } __lowerCAmelCase = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__a , __a ) def snake_case ( self , **__a ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self , **__a ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): __lowerCAmelCase = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) __lowerCAmelCase = Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) return image_input def snake_case ( self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def snake_case ( self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __lowerCAmelCase = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) __lowerCAmelCase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__a , return_tensors="np" ) __lowerCAmelCase = processor(images=__a , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = "test" __lowerCAmelCase = processor(text=__a ) __lowerCAmelCase = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = "test" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.char_decode(__a ) __lowerCAmelCase = tokenizer.batch_decode(__a ) __lowerCAmelCase = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(__a , __a ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = None __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = torch.randn(1 , 27 , 38 ) __lowerCAmelCase = torch.randn(1 , 27 , 5_02_57 ) __lowerCAmelCase = torch.randn(1 , 27 , 3_05_22 ) __lowerCAmelCase = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
701
"""simple docstring""" from itertools import product def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = sides_number __lowerCAmelCase = max_face_number * dice_number __lowerCAmelCase = [0] * (max_total + 1) __lowerCAmelCase = 1 __lowerCAmelCase = range(_UpperCamelCase , max_face_number + 1 ) for dice_numbers in product(_UpperCamelCase , repeat=_UpperCamelCase ): __lowerCAmelCase = sum(_UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) __lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) __lowerCAmelCase = 0 __lowerCAmelCase = 9 __lowerCAmelCase = 4 * 9 __lowerCAmelCase = 6 for peter_total in range(_UpperCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __lowerCAmelCase = (4**9) * (6**6) __lowerCAmelCase = peter_wins_count / total_games_number __lowerCAmelCase = round(_UpperCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
282
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( lowercase_ : list[list[int]] ) -> bool: '''simple docstring''' lowercase =len(_UpperCamelCase ) # We need to create solution object to save path. lowercase =[[0 for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase )] lowercase =run_maze(_UpperCamelCase , 0 , 0 , _UpperCamelCase ) if solved: print('''\n'''.join(str(_UpperCamelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def UpperCamelCase ( lowercase_ : list[list[int]] , lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> bool: '''simple docstring''' lowercase =len(_UpperCamelCase ) # Final check point. if i == j == (size - 1): lowercase =1 return True lowercase =(not i < 0) and (not j < 0) # Check lower bounds lowercase =(i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowercase =(not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowercase =1 # check for directions if ( run_maze(_UpperCamelCase , i + 1 , _UpperCamelCase , _UpperCamelCase ) or run_maze(_UpperCamelCase , _UpperCamelCase , j + 1 , _UpperCamelCase ) or run_maze(_UpperCamelCase , i - 1 , _UpperCamelCase , _UpperCamelCase ) or run_maze(_UpperCamelCase , _UpperCamelCase , j - 1 , _UpperCamelCase ) ): return True lowercase =0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
72
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer UpperCAmelCase : str = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase : Tuple = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } UpperCAmelCase : List[Any] = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] __a = BartTokenizer def __init__( self : int , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[str]=None , UpperCamelCase : Tuple="replace" , UpperCamelCase : Optional[int]="<s>" , UpperCamelCase : str="</s>" , UpperCamelCase : str="</s>" , UpperCamelCase : Optional[Any]="<s>" , UpperCamelCase : Optional[int]="<unk>" , UpperCamelCase : Dict="<pad>" , UpperCamelCase : Any="<mask>" , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Tuple=True , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__( UpperCamelCase , UpperCamelCase , tokenizer_file=UpperCamelCase , errors=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , add_prefix_space=UpperCamelCase , trim_offsets=UpperCamelCase , **UpperCamelCase , ) __UpperCAmelCase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCamelCase ) != add_prefix_space: __UpperCAmelCase : List[str] = getattr(UpperCamelCase , pre_tok_state.pop("""type""" ) ) __UpperCAmelCase : int = add_prefix_space __UpperCAmelCase : List[Any] = pre_tok_class(**UpperCamelCase ) __UpperCAmelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __UpperCAmelCase : Union[str, Any] = """post_processor""" __UpperCAmelCase : Union[str, Any] = getattr(self.backend_tokenizer , UpperCamelCase , UpperCamelCase ) if tokenizer_component_instance: __UpperCAmelCase : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCAmelCase : int = tuple(state["""sep"""] ) if "cls" in state: __UpperCAmelCase : Optional[int] = tuple(state["""cls"""] ) __UpperCAmelCase : int = False if state.get("""add_prefix_space""" , UpperCamelCase ) != add_prefix_space: __UpperCAmelCase : Dict = add_prefix_space __UpperCAmelCase : Optional[int] = True if state.get("""trim_offsets""" , UpperCamelCase ) != trim_offsets: __UpperCAmelCase : str = trim_offsets __UpperCAmelCase : int = True if changes_to_apply: __UpperCAmelCase : List[str] = getattr(UpperCamelCase , state.pop("""type""" ) ) __UpperCAmelCase : Tuple = component_class(**UpperCamelCase ) setattr(self.backend_tokenizer , UpperCamelCase , UpperCamelCase ) @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Dict = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else value __UpperCAmelCase : Any = value def lowerCamelCase__ ( self : Optional[Any] , *UpperCamelCase : int , **UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : str = kwargs.get("""is_split_into_words""" , UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = kwargs.get("""is_split_into_words""" , UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' __UpperCAmelCase : List[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : int , UpperCamelCase : Dict=None ): '''simple docstring''' __UpperCAmelCase : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
139
0
"""simple docstring""" from typing import Any def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> list: _validation( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) # Creates data structures and fill initial step __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = {} for state in states_space: __SCREAMING_SNAKE_CASE = observations_space[0] __SCREAMING_SNAKE_CASE = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __SCREAMING_SNAKE_CASE = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(UpperCAmelCase__ ) ): __SCREAMING_SNAKE_CASE = observations_space[o] __SCREAMING_SNAKE_CASE = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __SCREAMING_SNAKE_CASE = '''''' __SCREAMING_SNAKE_CASE = -1 for k_state in states_space: __SCREAMING_SNAKE_CASE = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __SCREAMING_SNAKE_CASE = probability __SCREAMING_SNAKE_CASE = k_state # Update probabilities and pointers dicts __SCREAMING_SNAKE_CASE = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __SCREAMING_SNAKE_CASE = arg_max # The final observation __SCREAMING_SNAKE_CASE = observations_space[len(UpperCAmelCase__ ) - 1] # argmax for given final observation __SCREAMING_SNAKE_CASE = '''''' __SCREAMING_SNAKE_CASE = -1 for k_state in states_space: __SCREAMING_SNAKE_CASE = probabilities[(k_state, final_observation)] if probability > max_probability: __SCREAMING_SNAKE_CASE = probability __SCREAMING_SNAKE_CASE = k_state __SCREAMING_SNAKE_CASE = arg_max # Process pointers backwards __SCREAMING_SNAKE_CASE = last_state __SCREAMING_SNAKE_CASE = [] for o in range(len(UpperCAmelCase__ ) - 1 , -1 , -1 ): result.append(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pointers[previous, observations_space[o]] result.reverse() return result def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> None: _validate_not_empty( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) _validate_lists(UpperCAmelCase__ , UpperCAmelCase__ ) _validate_dicts( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> None: _validate_list(UpperCAmelCase__ , '''observations_space''' ) _validate_list(UpperCAmelCase__ , '''states_space''' ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> None: if not isinstance(_object , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = f"""{var_name} must be a list""" raise ValueError(UpperCAmelCase__ ) else: for x in _object: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = f"""{var_name} must be a list of strings""" raise ValueError(UpperCAmelCase__ ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> None: _validate_dict(UpperCAmelCase__ , '''initial_probabilities''' , UpperCAmelCase__ ) _validate_nested_dict(UpperCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(UpperCAmelCase__ , '''emission_probabilities''' ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> None: _validate_dict(_object , UpperCAmelCase__ , UpperCAmelCase__ ) for x in _object.values(): _validate_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False ) -> None: if not isinstance(_object , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = f"""{var_name} must be a dict""" raise ValueError(UpperCAmelCase__ ) if not all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for x in _object ): __SCREAMING_SNAKE_CASE = f"""{var_name} all keys must be strings""" raise ValueError(UpperCAmelCase__ ) if not all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for x in _object.values() ): __SCREAMING_SNAKE_CASE = '''nested dictionary ''' if nested else '''''' __SCREAMING_SNAKE_CASE = f"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(UpperCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
702
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = XLMRobertaTokenizer lowerCAmelCase = XLMRobertaTokenizerFast lowerCAmelCase = True lowerCAmelCase = True def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<pad>''' __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_02 ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def _a ( self : int ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _a ( self : int ) -> Tuple: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @cached_property def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pickle.dumps(__SCREAMING_SNAKE_CASE ) pickle.loads(__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _a ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = '''Hello World!''' __SCREAMING_SNAKE_CASE = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __SCREAMING_SNAKE_CASE = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
690
0
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : List[str] = int(__lowerCAmelCase ) assert noofclusters < len(__lowerCAmelCase ) # Find out the dimensionality SCREAMING_SNAKE_CASE__ : Optional[int] = len(vectors[0] ) # Will help select random centroids from among the available vectors SCREAMING_SNAKE_CASE__ : Optional[Any] = list(range(len(__lowerCAmelCase ) ) ) shuffle(__lowerCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. SCREAMING_SNAKE_CASE__ : int = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION SCREAMING_SNAKE_CASE__ : Tuple = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points SCREAMING_SNAKE_CASE__ : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__lowerCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values SCREAMING_SNAKE_CASE__ : Tuple = tf.placeholder("""float64""" , [dim] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for centroid in centroids: cent_assigns.append(tf.assign(__lowerCAmelCase , __lowerCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) SCREAMING_SNAKE_CASE__ : Dict = [tf.Variable(0 ) for i in range(len(__lowerCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value SCREAMING_SNAKE_CASE__ : int = tf.placeholder("""int32""" ) SCREAMING_SNAKE_CASE__ : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(__lowerCAmelCase , __lowerCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input SCREAMING_SNAKE_CASE__ : str = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors SCREAMING_SNAKE_CASE__ : str = tf.reduce_mean(__lowerCAmelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.placeholder("""float""" , [dim] ) SCREAMING_SNAKE_CASE__ : Dict = tf.placeholder("""float""" , [dim] ) SCREAMING_SNAKE_CASE__ : List[str] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__lowerCAmelCase , __lowerCAmelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.placeholder("""float""" , [noofclusters] ) SCREAMING_SNAKE_CASE__ : Any = tf.argmin(__lowerCAmelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(__lowerCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. SCREAMING_SNAKE_CASE__ : Tuple = 100 for _ in range(__lowerCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__lowerCAmelCase ) ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. SCREAMING_SNAKE_CASE__ : List[str] = [ sess.run(__lowerCAmelCase , feed_dict={va: vect, va: sess.run(__lowerCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input SCREAMING_SNAKE_CASE__ : List[str] = sess.run( __lowerCAmelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__lowerCAmelCase ): # Collect all the vectors assigned to this cluster SCREAMING_SNAKE_CASE__ : Dict = [ vectors[i] for i in range(len(__lowerCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location SCREAMING_SNAKE_CASE__ : List[str] = sess.run( __lowerCAmelCase , feed_dict={mean_input: array(__lowerCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments SCREAMING_SNAKE_CASE__ : Dict = sess.run(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = sess.run(__lowerCAmelCase ) return centroids, assignments
680
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) a :Union[str, Any] = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :str = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :str = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys a :Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
680
1
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = CodeGenTokenizer lowerCamelCase__ : Tuple = CodeGenTokenizerFast lowerCamelCase__ : Any = True lowerCamelCase__ : List[str] = {'add_prefix_space': True} lowerCamelCase__ : Union[str, Any] = False def a__ (self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] lowerCamelCase__ : str = dict(zip(lowerCamelCase_, range(len(lowerCamelCase_ ) ) ) ) lowerCamelCase__ : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCamelCase__ : Optional[int] = {'unk_token': '<unk>'} lowerCamelCase__ : List[str] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase_ ) ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = 'lower newer' lowerCamelCase__ : int = 'lower newer' return input_text, output_text def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = CodeGenTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowerCamelCase__ : Dict = 'lower newer' lowerCamelCase__ : str = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowerCamelCase__ : Tuple = tokenizer.tokenize(lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : str = tokens + [tokenizer.unk_token] lowerCamelCase__ : Union[str, Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ), lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : Dict = self.get_rust_tokenizer(add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : str = 'lower newer' # Testing tokenization lowerCamelCase__ : Tuple = tokenizer.tokenize(lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) # Testing conversion to ids without special tokens lowerCamelCase__ : Any = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = rust_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) # Testing conversion to ids with special tokens lowerCamelCase__ : Dict = self.get_rust_tokenizer(add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : Dict = tokenizer.encode(lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) # Testing the unknown token lowerCamelCase__ : List[str] = tokens + [rust_tokenizer.unk_token] lowerCamelCase__ : Optional[int] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCamelCase_ ), lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' pass def a__ (self, lowerCamelCase_=1_5 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase__ : List[str] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_, **lowerCamelCase_ ) # Simple input lowerCamelCase__ : Optional[int] = 'This is a simple input' lowerCamelCase__ : Any = ['This is a simple input 1', 'This is a simple input 2'] lowerCamelCase__ : Tuple = ('This is a simple input', 'This is a pair') lowerCamelCase__ : Dict = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowerCamelCase_, tokenizer_r.encode, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length' ) # Simple input self.assertRaises(lowerCamelCase_, tokenizer_r.encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length' ) # Simple input self.assertRaises( lowerCamelCase_, tokenizer_r.batch_encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length', ) # Pair input self.assertRaises(lowerCamelCase_, tokenizer_r.encode, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length' ) # Pair input self.assertRaises(lowerCamelCase_, tokenizer_r.encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length' ) # Pair input self.assertRaises( lowerCamelCase_, tokenizer_r.batch_encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length', ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = CodeGenTokenizer.from_pretrained(self.tmpdirname, pad_token='<pad>' ) # Simple input lowerCamelCase__ : Optional[Any] = 'This is a simple input' lowerCamelCase__ : Any = ['This is a simple input looooooooong', 'This is a simple input'] lowerCamelCase__ : Tuple = ('This is a simple input', 'This is a pair') lowerCamelCase__ : List[str] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] lowerCamelCase__ : Union[str, Any] = tokenizer.pad_token_id lowerCamelCase__ : Union[str, Any] = tokenizer(lowerCamelCase_, padding='max_length', max_length=3_0, return_tensors='np' ) lowerCamelCase__ : int = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, truncate=lowerCamelCase_, return_tensors='np' ) lowerCamelCase__ : Optional[int] = tokenizer(*lowerCamelCase_, padding='max_length', max_length=6_0, return_tensors='np' ) lowerCamelCase__ : Optional[int] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, truncate=lowerCamelCase_, return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1], 3_0 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1], 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1], 6_0 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1], 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = '$$$' lowerCamelCase__ : Optional[int] = CodeGenTokenizer.from_pretrained(self.tmpdirname, bos_token=lowerCamelCase_, add_bos_token=lowerCamelCase_ ) lowerCamelCase__ : List[str] = 'This is a simple input' lowerCamelCase__ : Any = ['This is a simple input 1', 'This is a simple input 2'] lowerCamelCase__ : Dict = tokenizer.bos_token_id lowerCamelCase__ : Optional[int] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : int = tokenizer(lowerCamelCase_ ) self.assertEqual(out_s.input_ids[0], lowerCamelCase_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCamelCase__ : Tuple = tokenizer.decode(out_s.input_ids ) lowerCamelCase__ : Dict = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0], lowerCamelCase_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) lowerCamelCase__ : str = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' lowerCamelCase__ : int = '\nif len_a > len_b: result = a\nelse: result = b' lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] lowerCamelCase__ : List[Any] = tokenizer.decode(lowerCamelCase_, truncate_before_pattern=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' pass
696
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = analyze_text(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : Tuple = single_char_strings[ch] lowerCamelCase__ : Union[str, Any] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowerCamelCase__ : Dict = sum(two_char_strings.values() ) lowerCamelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : int = cha + cha if sequence in two_char_strings: lowerCamelCase__ : int = two_char_strings[sequence] lowerCamelCase__ : Tuple = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
696
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''image_processor''', '''tokenizer'''] lowerCAmelCase = '''LayoutLMv2ImageProcessor''' lowerCAmelCase = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __A : str = kwargs.pop('feature_extractor') __A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_UpperCAmelCase , _UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.') if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.') # first, apply the image processor __A : Dict = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Optional[int] = [text] # add batch dimension (as the image processor always adds a batch dimension) __A : Dict = features['words'] __A : Any = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __A : Dict = features.pop('pixel_values') if return_overflowing_tokens is True: __A : str = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping']) __A : str = images return encoded_inputs def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(_UpperCAmelCase) != len(_UpperCAmelCase): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F' {len(_UpperCAmelCase)} and {len(_UpperCAmelCase)}') return images_with_overflow def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
8
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' a_ = UniSpeechSatForSequenceClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["projector.weight"] a_ = downstream_dict["projector.bias"] a_ = downstream_dict["model.post_net.linear.weight"] a_ = downstream_dict["model.post_net.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Dict: '''simple docstring''' a_ = UniSpeechSatForAudioFrameClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["model.linear.weight"] a_ = downstream_dict["model.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[Any]: '''simple docstring''' a_ = UniSpeechSatForXVector.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["connector.weight"] a_ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a_ = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a_ = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] a_ = downstream_dict["objective.W"] return model @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> List[str]: '''simple docstring''' a_ = torch.load(lowercase__ ,map_location="cpu" ) a_ = checkpoint["Downstream"] a_ = UniSpeechSatConfig.from_pretrained(lowercase__ ) a_ = WavaVecaFeatureExtractor.from_pretrained( lowercase__ ,return_attention_mask=lowercase__ ,do_normalize=lowercase__ ) a_ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): a_ = convert_classification(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForAudioFrameClassification" ): a_ = convert_diarization(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForXVector" ): a_ = convert_xvector(lowercase__ ,lowercase__ ,lowercase__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a_ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') a_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
685
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCamelCase__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__="None" , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> Any: """simple docstring""" _UpperCamelCase :int =parent _UpperCamelCase :Any =batch_size _UpperCamelCase :List[str] =seq_length _UpperCamelCase :Dict =is_training _UpperCamelCase :Optional[Any] =use_input_mask _UpperCamelCase :Optional[Any] =use_token_type_ids _UpperCamelCase :str =use_labels _UpperCamelCase :List[str] =vocab_size _UpperCamelCase :str =hidden_size _UpperCamelCase :List[str] =num_hidden_layers _UpperCamelCase :str =num_attention_heads _UpperCamelCase :Dict =intermediate_size _UpperCamelCase :Union[str, Any] =hidden_act _UpperCamelCase :str =hidden_dropout_prob _UpperCamelCase :Union[str, Any] =attention_probs_dropout_prob _UpperCamelCase :Union[str, Any] =max_position_embeddings _UpperCamelCase :List[str] =type_vocab_size _UpperCamelCase :List[Any] =type_sequence_label_size _UpperCamelCase :Optional[Any] =initializer_range _UpperCamelCase :int =num_labels _UpperCamelCase :Optional[Any] =num_choices _UpperCamelCase :Any =relative_attention _UpperCamelCase :str =position_biased_input _UpperCamelCase :Any =pos_att_type _UpperCamelCase :List[Any] =scope def _UpperCamelCase ( self ) -> Dict: """simple docstring""" _UpperCamelCase :Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase :List[Any] =None if self.use_input_mask: _UpperCamelCase :Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase :List[str] =None if self.use_token_type_ids: _UpperCamelCase :List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase :Tuple =None _UpperCamelCase :List[Any] =None _UpperCamelCase :str =None if self.use_labels: _UpperCamelCase :Any =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase :List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase :List[Any] =DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: """simple docstring""" _UpperCamelCase :List[Any] =TFDebertaVaModel(config=UpperCamelCase_ ) _UpperCamelCase :Dict ={"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCamelCase :int =[input_ids, input_mask] _UpperCamelCase :Any =model(UpperCamelCase_ ) _UpperCamelCase :Any =model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: """simple docstring""" _UpperCamelCase :Union[str, Any] =TFDebertaVaForMaskedLM(config=UpperCamelCase_ ) _UpperCamelCase :Optional[int] ={ "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _UpperCamelCase :Any =model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: """simple docstring""" _UpperCamelCase :List[Any] =self.num_labels _UpperCamelCase :Any =TFDebertaVaForSequenceClassification(config=UpperCamelCase_ ) _UpperCamelCase :List[str] ={ "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _UpperCamelCase :Optional[Any] =model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: """simple docstring""" _UpperCamelCase :Union[str, Any] =self.num_labels _UpperCamelCase :str =TFDebertaVaForTokenClassification(config=UpperCamelCase_ ) _UpperCamelCase :List[str] ={ "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _UpperCamelCase :Dict =model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :Union[str, Any] =TFDebertaVaForQuestionAnswering(config=UpperCamelCase_ ) _UpperCamelCase :Tuple ={ "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _UpperCamelCase :Union[str, Any] =model(UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :Tuple =self.prepare_config_and_inputs() ( _UpperCamelCase ) :int =config_and_inputs _UpperCamelCase :int ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( __snake_case , __snake_case , unittest.TestCase ): __UpperCAmelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __UpperCAmelCase = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase :List[Any] =TFDebertaVaModelTester(self ) _UpperCamelCase :Any =ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Any: """simple docstring""" _UpperCamelCase :int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" _UpperCamelCase :Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def _UpperCamelCase ( self ) -> str: """simple docstring""" _UpperCamelCase :Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ ) def _UpperCamelCase ( self ) -> int: """simple docstring""" _UpperCamelCase :Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" _UpperCamelCase :Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) @slow def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :Union[str, Any] =TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCamelCase_ ) @require_tf class lowerCamelCase__ ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass @slow def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :Any =TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _UpperCamelCase :Optional[Any] =tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _UpperCamelCase :Dict =tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCamelCase :List[str] =model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] _UpperCamelCase :Any =tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCamelCase_ , atol=1e-4 )
710
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata _lowerCamelCase : str = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class lowerCamelCase__ ( tr.AbstractTransform ): def __init__( self , lowerCAmelCase__ = " " ) -> Optional[int]: """simple docstring""" _UpperCamelCase :Dict =sentence_delimiter def _UpperCamelCase ( self , lowerCAmelCase__ ) -> Dict: """simple docstring""" return list(lowerCAmelCase__ ) def _UpperCamelCase ( self , lowerCAmelCase__ ) -> Optional[int]: """simple docstring""" _UpperCamelCase :int =[] for sent_idx, sentence in enumerate(lowerCAmelCase__ ): chars.extend(self.process_string(lowerCAmelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCAmelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars _lowerCamelCase : Any = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _lowerCamelCase : str = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _lowerCamelCase : int = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ _lowerCamelCase : Tuple = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ _lowerCamelCase : Optional[int] = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Optional[int]: """simple docstring""" if concatenate_texts: return jiwer.compute_measures( lowerCAmelCase__ , lowerCAmelCase__ , truth_transform=lowerCAmelCase__ , hypothesis_transform=lowerCAmelCase__ , )["wer"] _UpperCamelCase :str =0 _UpperCamelCase :Tuple =0 for prediction, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase :Optional[int] =jiwer.compute_measures( lowerCAmelCase__ , lowerCAmelCase__ , truth_transform=lowerCAmelCase__ , hypothesis_transform=lowerCAmelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
512
0
def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
483
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase_ ( unittest.TestCase): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self ): """simple docstring""" a_ = 1 a_ = 3 a_ = (32, 32) a_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCAmelCase ) return image @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) a_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) a_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) a_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(_UpperCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" def extract(*_UpperCAmelCase , **_UpperCAmelCase ): class lowercase_ : """simple docstring""" def __init__( self ): """simple docstring""" a_ = torch.ones([0] ) def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" self.pixel_values.to(_UpperCAmelCase ) return self return Out() return extract def lowercase__ ( self ): """simple docstring""" a_ = """cpu""" # ensure determinism for the device-dependent torch.Generator a_ = self.dummy_cond_unet a_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) a_ = self.dummy_vae a_ = self.dummy_text_encoder a_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk a_ = StableDiffusionPipeline( unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , ) a_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) a_ = """A painting of a squirrel eating a burger""" a_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) a_ = sd_pipe([prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) a_ = output.images a_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) a_ = sd_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=_UpperCAmelCase , )[0] a_ = image[0, -3:, -3:, -1] a_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a_ = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" a_ = """cpu""" # ensure determinism for the device-dependent torch.Generator a_ = self.dummy_cond_unet a_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) a_ = self.dummy_vae a_ = self.dummy_text_encoder a_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk a_ = StableDiffusionPipeline( unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , ) a_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) a_ = """A painting of a squirrel eating a burger""" a_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) a_ = sd_pipe([prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) a_ = output.images a_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) a_ = sd_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=_UpperCAmelCase , )[0] a_ = image[0, -3:, -3:, -1] a_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a_ = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" a_ = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert isinstance(pipe.scheduler , _UpperCAmelCase ) assert pipe.safety_checker is None a_ = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) a_ = StableDiffusionPipeline.from_pretrained(_UpperCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None a_ = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowercase__ ( self ): """simple docstring""" a_ = self.dummy_cond_unet a_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) a_ = self.dummy_vae a_ = self.dummy_text_encoder a_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 a_ = unet.half() a_ = vae.half() a_ = bert.half() # make sure here that pndm scheduler skips prk a_ = StableDiffusionPipeline( unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , ) a_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) a_ = """A painting of a squirrel eating a burger""" a_ = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase_ ( unittest.TestCase): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" a_ = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=_UpperCAmelCase ) a_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) a_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) a_ = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) a_ = 4_003_660_346 a_ = 7 # without safety guidance (sld_guidance_scale = 0) a_ = torch.manual_seed(_UpperCAmelCase ) a_ = sd_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) a_ = output.images a_ = image[0, -3:, -3:, -1] a_ = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) a_ = torch.manual_seed(_UpperCAmelCase ) a_ = sd_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ = output.images a_ = image[0, -3:, -3:, -1] a_ = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" a_ = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=_UpperCAmelCase ) a_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) a_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) a_ = """padme amidala taking a bath artwork, safe for work, no nudity""" a_ = 2_734_971_755 a_ = 7 a_ = torch.manual_seed(_UpperCAmelCase ) a_ = sd_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) a_ = output.images a_ = image[0, -3:, -3:, -1] a_ = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 a_ = torch.manual_seed(_UpperCAmelCase ) a_ = sd_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ = output.images a_ = image[0, -3:, -3:, -1] a_ = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" a_ = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) a_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) a_ = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) a_ = 1_044_355_234 a_ = 12 a_ = torch.manual_seed(_UpperCAmelCase ) a_ = sd_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) a_ = output.images a_ = image[0, -3:, -3:, -1] a_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 a_ = torch.manual_seed(_UpperCAmelCase ) a_ = sd_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ = output.images a_ = image[0, -3:, -3:, -1] a_ = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
483
1
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING _lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class UpperCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type(_lowerCAmelCase ) def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self , **_lowerCAmelCase ): return {}, {}, {} def lowerCAmelCase__ ( self , _lowerCAmelCase ): a =load_image(_lowerCAmelCase ) a =image.size a =self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCAmelCase__ ( self , _lowerCAmelCase ): a =self.model(**_lowerCAmelCase ) return model_outputs def lowerCAmelCase__ ( self , _lowerCAmelCase ): a =model_outputs.predicted_depth a =torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=_lowerCAmelCase ) a =prediction.squeeze().cpu().numpy() a =(output * 255 / np.max(_lowerCAmelCase )).astype("""uint8""" ) a =Image.fromarray(_lowerCAmelCase ) a ={} a =predicted_depth a =depth return output_dict
321
_lowerCamelCase = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def lowerCamelCase ( )-> None: """simple docstring""" a =input("""Enter message: """ ) a =input("""Enter key [alphanumeric]: """ ) a =input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): a ="""encrypt""" a =encrypt_message(UpperCAmelCase_ , UpperCAmelCase_ ) elif mode.lower().startswith("""d""" ): a ="""decrypt""" a =decrypt_message(UpperCAmelCase_ , UpperCAmelCase_ ) print(F'''\n{mode.title()}ed message:''' ) print(UpperCAmelCase_ ) def lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str )-> str: """simple docstring""" return translate_message(UpperCAmelCase_ , UpperCAmelCase_ , """encrypt""" ) def lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str )-> str: """simple docstring""" return translate_message(UpperCAmelCase_ , UpperCAmelCase_ , """decrypt""" ) def lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str )-> str: """simple docstring""" a =[] a =0 a =key.upper() for symbol in message: a =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(UpperCAmelCase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(UpperCAmelCase_ ): a =0 else: translated.append(UpperCAmelCase_ ) return "".join(UpperCAmelCase_ ) if __name__ == "__main__": main()
321
1
from __future__ import annotations import math from collections.abc import Callable def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 100 , ) -> float: snake_case__ = x_start snake_case__ = fnc(__lowerCAmelCase ) snake_case__ = 0.0 for _ in range(__lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length snake_case__ = (x_end - x_start) / steps + xa snake_case__ = fnc(__lowerCAmelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step snake_case__ = xa snake_case__ = fxa return length if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") lowerCamelCase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"""With {i} steps: {line_length(f, -1_0, 1_0, i)}""") i *= 1_0
33
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
1
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a__ : Union[str, Any] = logging.get_logger(__name__) class lowercase ( __lowercase ): """simple docstring""" snake_case_ = ['pixel_values'] def __init__( self : Optional[int] , a_ : bool = True , a_ : int = 32 , a_ : Dict=PILImageResampling.BILINEAR , a_ : bool = True , **a_ : Union[str, Any] , ): """simple docstring""" lowerCamelCase__ = do_resize lowerCamelCase__ = do_rescale lowerCamelCase__ = size_divisor lowerCamelCase__ = resample super().__init__(**a_ ) def _UpperCamelCase ( self : List[str] , a_ : np.ndarray , a_ : int , a_ : str , a_ : Optional[ChannelDimension] = None , **a_ : List[str] ): """simple docstring""" lowerCamelCase__ = get_image_size(a_ ) # Rounds the height and width down to the closest multiple of size_divisor lowerCamelCase__ = height // size_divisor * size_divisor lowerCamelCase__ = width // size_divisor * size_divisor lowerCamelCase__ = resize(a_ , (new_h, new_w) , resample=a_ , data_format=a_ , **a_ ) return image def _UpperCamelCase ( self : str , a_ : np.ndarray , a_ : float , a_ : Optional[ChannelDimension] = None , **a_ : Union[str, Any] ): """simple docstring""" return rescale(image=a_ , scale=a_ , data_format=a_ , **a_ ) def _UpperCamelCase ( self : Union[str, Any] , a_ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , a_ : Optional[bool] = None , a_ : Optional[int] = None , a_ : Tuple=None , a_ : Optional[bool] = None , a_ : Optional[Union[TensorType, str]] = None , a_ : ChannelDimension = ChannelDimension.FIRST , **a_ : Dict , ): """simple docstring""" lowerCamelCase__ = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ = size_divisor if size_divisor is not None else self.size_divisor lowerCamelCase__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) lowerCamelCase__ = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. lowerCamelCase__ = [to_numpy_array(a_ ) for img in images] if do_resize: lowerCamelCase__ = [self.resize(a_ , size_divisor=a_ , resample=a_ ) for image in images] if do_rescale: lowerCamelCase__ = [self.rescale(a_ , scale=1 / 2_55 ) for image in images] lowerCamelCase__ = [to_channel_dimension_format(a_ , a_ ) for image in images] lowerCamelCase__ = {"pixel_values": images} return BatchFeature(data=a_ , tensor_type=a_ )
706
from __future__ import annotations from scipy.special import comb # type: ignore class lowercase : """simple docstring""" def __init__( self : Optional[int] , a_ : list[tuple[float, float]] ): """simple docstring""" lowerCamelCase__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowerCamelCase__ = len(a_ ) - 1 def _UpperCamelCase ( self : Union[str, Any] , a_ : float ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , a_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(a_ ) , 5 ) == 1 return output_values def _UpperCamelCase ( self : int , a_ : float ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase__ = self.basis_function(a_ ) lowerCamelCase__ = 0.0 lowerCamelCase__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _UpperCamelCase ( self : str , a_ : float = 0.0_1 ): """simple docstring""" from matplotlib import pyplot as plt # type: ignore lowerCamelCase__ = [] # x coordinates of points to plot lowerCamelCase__ = [] # y coordinates of points to plot lowerCamelCase__ = 0.0 while t <= 1: lowerCamelCase__ = self.bezier_curve_function(a_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowerCamelCase__ = [i[0] for i in self.list_of_points] lowerCamelCase__ = [i[1] for i in self.list_of_points] plt.plot( a_ , a_ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(a_ , a_ , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
235
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowerCAmelCase ( __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Tuple = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = StableDiffusionLatentUpscalePipeline __lowerCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } __lowerCAmelCase : str = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} __lowerCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCAmelCase : Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowerCAmelCase : int = frozenset([] ) __lowerCAmelCase : Union[str, Any] = True @property def __lowerCamelCase ( self :int ): snake_case__ : str = 1 snake_case__ : str = 4 snake_case__ : Any = (1_6, 1_6) snake_case__ : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(__lowercase ) return image def __lowerCamelCase ( self :Any ): torch.manual_seed(0 ) snake_case__ : str = UNetaDConditionModel( act_fn='''gelu''' ,attention_head_dim=8 ,norm_num_groups=__lowercase ,block_out_channels=[3_2, 3_2, 6_4, 6_4] ,time_cond_proj_dim=1_6_0 ,conv_in_kernel=1 ,conv_out_kernel=1 ,cross_attention_dim=3_2 ,down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) ,in_channels=8 ,mid_block_type=__lowercase ,only_cross_attention=__lowercase ,out_channels=5 ,resnet_time_scale_shift='''scale_shift''' ,time_embedding_type='''fourier''' ,timestep_post_act='''gelu''' ,up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') ,) snake_case__ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) snake_case__ : Any = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''quick_gelu''' ,projection_dim=5_1_2 ,) snake_case__ : Any = CLIPTextModel(__lowercase ) snake_case__ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ : List[str] = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def __lowerCamelCase ( self :Dict ,__lowercase :Dict ,__lowercase :List[Any]=0 ): if str(__lowercase ).startswith('''mps''' ): snake_case__ : Tuple = torch.manual_seed(__lowercase ) else: snake_case__ : Optional[Any] = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) snake_case__ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Tuple = '''cpu''' snake_case__ : Any = self.get_dummy_components() snake_case__ : Optional[Any] = self.pipeline_class(**__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : Dict = self.get_dummy_inputs(__lowercase ) snake_case__ : str = pipe(**__lowercase ).images snake_case__ : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 2_5_6, 2_5_6, 3) ) snake_case__ : Dict = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] ) snake_case__ : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowercase ,1e-3 ) def __lowerCamelCase ( self :List[Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def __lowerCamelCase ( self :str ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def __lowerCamelCase ( self :str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCamelCase ( self :Tuple ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def __lowerCamelCase ( self :int ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def __lowerCamelCase ( self :Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCamelCase ( self :List[str] ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCamelCase ( self :int ): snake_case__ : Dict = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ : Dict = self.get_dummy_components() snake_case__ : Tuple = self.pipeline_class(**__lowercase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : Dict = self.get_dummy_inputs(__lowercase ) snake_case__ : str = 2 snake_case__ : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ : Any = getattr(__lowercase ,scheduler_enum.name ) snake_case__ : Any = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ : List[Any] = pipe(**__lowercase )[0] outputs.append(__lowercase ) assert check_same_shape(__lowercase ) @require_torch_gpu @slow class a ( unittest.TestCase ): def __lowerCamelCase ( self :str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[int] = torch.manual_seed(3_3 ) snake_case__ : Any = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ,torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ : Any = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' ,torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ : Union[str, Any] = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ : List[Any] = pipe(__lowercase ,generator=__lowercase ,output_type='''latent''' ).images snake_case__ : Tuple = upscaler( prompt=__lowercase ,image=__lowercase ,num_inference_steps=2_0 ,guidance_scale=0 ,generator=__lowercase ,output_type='''np''' ,).images[0] snake_case__ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def __lowerCamelCase ( self :List[Any] ): snake_case__ : int = torch.manual_seed(3_3 ) snake_case__ : Tuple = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' ,torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ : Union[str, Any] = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ : str = upscaler( prompt=__lowercase ,image=__lowercase ,num_inference_steps=2_0 ,guidance_scale=0 ,generator=__lowercase ,output_type='''np''' ,).images[0] snake_case__ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
252
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class a ( __lowerCamelCase ): __lowerCAmelCase : Any = """data2vec-vision""" def __init__( self :int ,__lowercase :Optional[int]=7_6_8 ,__lowercase :Any=1_2 ,__lowercase :Optional[Any]=1_2 ,__lowercase :List[Any]=3_0_7_2 ,__lowercase :str="gelu" ,__lowercase :Optional[int]=0.0 ,__lowercase :Optional[Any]=0.0 ,__lowercase :List[str]=0.02 ,__lowercase :Tuple=1e-1_2 ,__lowercase :Dict=2_2_4 ,__lowercase :Union[str, Any]=1_6 ,__lowercase :List[str]=3 ,__lowercase :Tuple=False ,__lowercase :Tuple=False ,__lowercase :Optional[int]=False ,__lowercase :Tuple=False ,__lowercase :List[Any]=0.1 ,__lowercase :Dict=0.1 ,__lowercase :str=True ,__lowercase :Dict=[3, 5, 7, 1_1] ,__lowercase :Dict=[1, 2, 3, 6] ,__lowercase :List[str]=True ,__lowercase :Tuple=0.4 ,__lowercase :str=2_5_6 ,__lowercase :Optional[Any]=1 ,__lowercase :Tuple=False ,__lowercase :int=2_5_5 ,**__lowercase :Optional[int] ,): super().__init__(**__lowercase ) snake_case__ : Optional[Any] = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : Optional[Any] = num_attention_heads snake_case__ : str = intermediate_size snake_case__ : int = hidden_act snake_case__ : Dict = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : int = initializer_range snake_case__ : str = layer_norm_eps snake_case__ : Union[str, Any] = image_size snake_case__ : int = patch_size snake_case__ : Optional[int] = num_channels snake_case__ : str = use_mask_token snake_case__ : Union[str, Any] = use_absolute_position_embeddings snake_case__ : List[str] = use_relative_position_bias snake_case__ : List[str] = use_shared_relative_position_bias snake_case__ : Optional[int] = layer_scale_init_value snake_case__ : Tuple = drop_path_rate snake_case__ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ : Dict = out_indices snake_case__ : Any = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ : Union[str, Any] = use_auxiliary_head snake_case__ : Optional[Any] = auxiliary_loss_weight snake_case__ : Dict = auxiliary_channels snake_case__ : Any = auxiliary_num_convs snake_case__ : Any = auxiliary_concat_input snake_case__ : Dict = semantic_loss_ignore_index class a ( __lowerCamelCase ): __lowerCAmelCase : Optional[Any] = version.parse("""1.11""" ) @property def __lowerCamelCase ( self :str ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCamelCase ( self :Dict ): return 1e-4
252
1
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( lowercase_ : List[str] , lowercase_ : Dict ): '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase_ ( lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE : Optional[Any] = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE : int = TextDatasetReader(lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read() _check_text_dataset(lowercase_ , lowercase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def lowerCAmelCase_ ( lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : str = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE : Any = {'''text''': '''string'''} __SCREAMING_SNAKE_CASE : Tuple = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE : int = ( Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE : List[str] = TextDatasetReader(lowercase_ , features=lowercase_ , cache_dir=lowercase_ ).read() _check_text_dataset(lowercase_ , lowercase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase_ ( lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE : Any = {'''text''': '''string'''} __SCREAMING_SNAKE_CASE : Optional[int] = TextDatasetReader(lowercase_ , cache_dir=lowercase_ , split=lowercase_ ).read() _check_text_dataset(lowercase_ , lowercase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase_ ( lowercase_ : str , lowercase_ : Dict , lowercase_ : Optional[Any] ): '''simple docstring''' if issubclass(lowercase_ , lowercase_ ): __SCREAMING_SNAKE_CASE : str = text_path elif issubclass(lowercase_ , lowercase_ ): __SCREAMING_SNAKE_CASE : Any = [text_path] __SCREAMING_SNAKE_CASE : List[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE : List[Any] = {'''text''': '''string'''} __SCREAMING_SNAKE_CASE : List[Any] = TextDatasetReader(lowercase_ , cache_dir=lowercase_ ).read() _check_text_dataset(lowercase_ , lowercase_ ) def lowerCAmelCase_ ( lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any]=("train",) ): '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) for split in splits: __SCREAMING_SNAKE_CASE : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase_ ( lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE : int = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE : Optional[int] = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE : Optional[Any] = TextDatasetReader({'''train''': text_path} , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read() _check_text_datasetdict(lowercase_ , lowercase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def lowerCAmelCase_ ( lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __SCREAMING_SNAKE_CASE : str = {'''text''': '''string'''} __SCREAMING_SNAKE_CASE : Optional[Any] = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE : Dict = ( Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE : List[Any] = TextDatasetReader({'''train''': text_path} , features=lowercase_ , cache_dir=lowercase_ ).read() _check_text_datasetdict(lowercase_ , lowercase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : str , lowercase_ : Optional[Any] ): '''simple docstring''' if split: __SCREAMING_SNAKE_CASE : Tuple = {split: text_path} else: __SCREAMING_SNAKE_CASE : Union[str, Any] = '''train''' __SCREAMING_SNAKE_CASE : List[str] = {'''train''': text_path, '''test''': text_path} __SCREAMING_SNAKE_CASE : Any = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE : List[str] = {'''text''': '''string'''} __SCREAMING_SNAKE_CASE : Optional[Any] = TextDatasetReader(lowercase_ , cache_dir=lowercase_ ).read() _check_text_datasetdict(lowercase_ , lowercase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
401
"""simple docstring""" def lowerCAmelCase_ ( lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : int , lowercase_ : Optional[int] ): '''simple docstring''' if index == r: for j in range(lowercase_ ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __SCREAMING_SNAKE_CASE : str = arr[i] combination_util(lowercase_ , lowercase_ , lowercase_ , index + 1 , lowercase_ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase_ , lowercase_ , lowercase_ , 0 , lowercase_ , 0 ) if __name__ == "__main__": # Driver code to check the function above _lowerCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
401
1
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __UpperCAmelCase ( __a ): def UpperCAmelCase_ ( self ): lowerCAmelCase_ = tempfile.mkdtemp() lowerCAmelCase_ = 8 # DPR tok lowerCAmelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCAmelCase_ = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(_snake_case , exist_ok=_snake_case ) lowerCAmelCase_ = os.path.join(_snake_case , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok lowerCAmelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) lowerCAmelCase_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCAmelCase_ = {'''unk_token''': '''<unk>'''} lowerCAmelCase_ = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(_snake_case , exist_ok=_snake_case ) lowerCAmelCase_ = os.path.join(_snake_case , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase_ = os.path.join(_snake_case , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) def UpperCAmelCase_ ( self ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def UpperCAmelCase_ ( self ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def UpperCAmelCase_ ( self ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def UpperCAmelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.get_dummy_dataset() lowerCAmelCase_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: lowerCAmelCase_ = dataset lowerCAmelCase_ = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = self.get_dummy_dataset() lowerCAmelCase_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: lowerCAmelCase_ = os.path.join(self.tmpdirname , '''dataset''' ) lowerCAmelCase_ = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset lowerCAmelCase_ = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowerCAmelCase_ = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _snake_case ) , ) return retriever def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase_ = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) lowerCAmelCase_ = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) lowerCAmelCase_ = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(_snake_case , open(_snake_case , '''wb''' ) ) lowerCAmelCase_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) lowerCAmelCase_ = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def UpperCAmelCase_ ( self ): lowerCAmelCase_ = 1 lowerCAmelCase_ = self.get_dummy_canonical_hf_index_retriever() lowerCAmelCase_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _snake_case ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: lowerCAmelCase_ = self.get_dummy_dataset() retriever.save_pretrained(_snake_case ) lowerCAmelCase_ = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) lowerCAmelCase_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase_ = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = 1 lowerCAmelCase_ = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) lowerCAmelCase_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _snake_case ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) lowerCAmelCase_ = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) lowerCAmelCase_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase_ = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = 1 lowerCAmelCase_ = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) lowerCAmelCase_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _snake_case ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) lowerCAmelCase_ = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) lowerCAmelCase_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase_ = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = 1 lowerCAmelCase_ = self.get_dummy_legacy_index_retriever() lowerCAmelCase_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , _snake_case ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) lowerCAmelCase_ = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) lowerCAmelCase_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase_ = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase_ ( self ): import torch lowerCAmelCase_ = 1 lowerCAmelCase_ = self.get_dummy_canonical_hf_index_retriever() lowerCAmelCase_ = [[5, 7], [10, 11]] lowerCAmelCase_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase_ = retriever(_snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case ) lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_snake_case , _snake_case ) self.assertIsInstance(_snake_case , _snake_case ) self.assertIsInstance(_snake_case , np.ndarray ) lowerCAmelCase_ = retriever( _snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case , return_tensors='''pt''' , ) lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_snake_case , torch.Tensor ) self.assertIsInstance(_snake_case , torch.Tensor ) self.assertIsInstance(_snake_case , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.get_dpr_ctx_encoder_tokenizer() lowerCAmelCase_ = 1 lowerCAmelCase_ = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) retriever.set_ctx_encoder_tokenizer(_snake_case ) lowerCAmelCase_ = [[5, 7], [10, 11]] lowerCAmelCase_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase_ = retriever(_snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case ) self.assertEqual( len(_snake_case ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , _snake_case ) # check for doc token related keys in dictionary.
274
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = CustomTokenizer pass
316
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) snake_case__ : Dict = logging.getLogger(__name__) snake_case__ : List[str] = 'Hello world! cécé herlolip' snake_case__ : Union[str, Any] = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->List[Any]: _UpperCAmelCase =BertAbsConfig( temp_dir="." , finetune_bert=_lowerCamelCase , large=_lowerCamelCase , share_emb=_lowerCamelCase , use_bert_emb=_lowerCamelCase , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) _UpperCAmelCase =torch.load(_lowerCamelCase , lambda _lowerCamelCase , _lowerCamelCase : storage ) _UpperCAmelCase =AbsSummarizer(_lowerCamelCase , torch.device("cpu" ) , _lowerCamelCase ) original.eval() _UpperCAmelCase =BertAbsSummarizer(_lowerCamelCase , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) _UpperCAmelCase =BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs _UpperCAmelCase =tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_lowerCamelCase )) ) _UpperCAmelCase =torch.tensor(_lowerCamelCase ).unsqueeze(0 ) _UpperCAmelCase =tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_lowerCamelCase )) ) _UpperCAmelCase =torch.tensor(_lowerCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _UpperCAmelCase =encoder_input_ids _UpperCAmelCase =decoder_input_ids _UpperCAmelCase =_UpperCAmelCase =None _UpperCAmelCase =None _UpperCAmelCase =_UpperCAmelCase =None _UpperCAmelCase =_UpperCAmelCase =None _UpperCAmelCase =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _UpperCAmelCase =original(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )[0] _UpperCAmelCase =original.generator(_lowerCamelCase ) _UpperCAmelCase =new_model( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )[0] _UpperCAmelCase =new_model.generator(_lowerCamelCase ) _UpperCAmelCase =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(_lowerCamelCase ) ) _UpperCAmelCase =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(_lowerCamelCase ) ) _UpperCAmelCase =torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": snake_case__ : List[Any] = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) snake_case__ : List[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
592
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ="ylacombe/bark-small" _UpperCAmelCase =tempfile.mkdtemp() _UpperCAmelCase ="en_speaker_1" _UpperCAmelCase ="This is a test string" _UpperCAmelCase ="speaker_embeddings_path.json" _UpperCAmelCase ="speaker_embeddings" def SCREAMING_SNAKE_CASE ( self , **_snake_case ): return AutoTokenizer.from_pretrained(self.checkpoint , **_snake_case ) def SCREAMING_SNAKE_CASE ( self ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_tokenizer() _UpperCAmelCase =BarkProcessor(tokenizer=_snake_case ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase =BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _UpperCAmelCase =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase =BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _UpperCAmelCase =35 _UpperCAmelCase =2 _UpperCAmelCase =8 _UpperCAmelCase ={ "semantic_prompt": np.ones(_snake_case ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _UpperCAmelCase =processor(text=self.input_string , voice_preset=_snake_case ) _UpperCAmelCase =inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_snake_case , np.array([] ) ).tolist() ) # test loading voice preset from npz file _UpperCAmelCase =os.path.join(self.tmpdirname , "file.npz" ) np.savez(_snake_case , **_snake_case ) _UpperCAmelCase =processor(text=self.input_string , voice_preset=_snake_case ) _UpperCAmelCase =inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_snake_case , np.array([] ) ).tolist() ) # test loading voice preset from the hub _UpperCAmelCase =processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_tokenizer() _UpperCAmelCase =BarkProcessor(tokenizer=_snake_case ) _UpperCAmelCase =processor(text=self.input_string ) _UpperCAmelCase =tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=_snake_case , return_attention_mask=_snake_case , return_token_type_ids=_snake_case , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
592
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ :Tuple = logging.get_logger(__name__) a_ :Dict = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} a_ :Dict = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } a_ :Dict = { 'abeja/gpt-neox-japanese-2.7b': 20_48, } def a ( A__ , A__ ) -> str: '''simple docstring''' with open(A__ , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE__ : str = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ : str = collections.OrderedDict() SCREAMING_SNAKE_CASE__ : str = collections.OrderedDict() SCREAMING_SNAKE_CASE__ : str = collections.OrderedDict() with open(A__ , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE__ : int = f.readlines() SCREAMING_SNAKE_CASE__ : str = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = b SCREAMING_SNAKE_CASE__ : str = idx for wd in b: SCREAMING_SNAKE_CASE__ : List[str] = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = ['''input_ids''', '''attention_mask'''] def __init__( self : str , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Union[str, Any]="<|endoftext|>" , _lowercase : Optional[int]="<|endoftext|>" , _lowercase : Optional[Any]="<|startoftext|>" , _lowercase : Any="<|endoftext|>" , _lowercase : Optional[int]=False , **_lowercase : Optional[Any] , ): super().__init__( unk_token=_lowercase , pad_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , do_clean_text=_lowercase , **_lowercase , ) if not os.path.isfile(_lowercase ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(_lowercase ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) SCREAMING_SNAKE_CASE__ : str = do_clean_text SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = load_vocab_and_emoji(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def lowercase__ ( self : Optional[Any] ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def lowercase__ ( self : Optional[int] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def lowercase__ ( self : List[Any] , _lowercase : Dict ): return self.subword_tokenizer.tokenize(_lowercase , clean=self.do_clean_text ) def lowercase__ ( self : List[str] , _lowercase : List[Any] ): return self.vocab.get(_lowercase , self.vocab.get(self.unk_token ) ) def lowercase__ ( self : str , _lowercase : int ): return self.subword_tokenizer.convert_id_to_token(_lowercase ) def lowercase__ ( self : Union[str, Any] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : Optional[int] = ''''''.join(_lowercase ).strip() return out_string def lowercase__ ( self : Dict , _lowercase : "Conversation" ): SCREAMING_SNAKE_CASE__ : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowercase , add_special_tokens=_lowercase ) + [self.eos_token_id] ) if len(_lowercase ) > self.model_max_length: SCREAMING_SNAKE_CASE__ : List[str] = input_ids[-self.model_max_length :] return input_ids def lowercase__ ( self : str , _lowercase : str , _lowercase : Optional[str] = None ): SCREAMING_SNAKE_CASE__ : List[Any] = 0 if os.path.isdir(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: SCREAMING_SNAKE_CASE__ : Tuple = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) SCREAMING_SNAKE_CASE__ : List[str] = token_index writer.write(''','''.join(_lowercase ) + '''\n''' ) index += 1 with open(_lowercase , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , _lowercase ) return vocab_file, emoji_file class lowercase ( _UpperCAmelCase ): def __init__( self : Optional[int] , _lowercase : Optional[int] , _lowercase : int , _lowercase : Dict ): SCREAMING_SNAKE_CASE__ : Any = vocab # same as swe SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE__ : List[str] = emoji SCREAMING_SNAKE_CASE__ : List[str] = np.max([len(_lowercase ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE__ : List[Any] = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) SCREAMING_SNAKE_CASE__ : str = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) SCREAMING_SNAKE_CASE__ : Tuple = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) SCREAMING_SNAKE_CASE__ : List[Any] = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) SCREAMING_SNAKE_CASE__ : List[str] = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' SCREAMING_SNAKE_CASE__ : Any = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self : List[str] ): return len(self.ids_to_tokens ) def lowercase__ ( self : Any , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Dict = self.content_repattera.sub('''<URL>''' , _lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = self.content_repattera.sub('''<EMAIL>''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.content_repattera.sub('''<TEL>''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Dict = self.content_repattera.sub('''<DATE>''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.content_repattera.sub('''<DATE>''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.content_repattera.sub('''<PRICE>''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Dict = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE__ : Any = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def lowercase__ ( self : Optional[int] , _lowercase : Tuple , _lowercase : Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ : List[str] = text.replace(''' ''' , '''<SP>''' ) SCREAMING_SNAKE_CASE__ : int = text.replace(''' ''' , '''<SP>''' ) SCREAMING_SNAKE_CASE__ : int = text.replace('''\r\n''' , '''<BR>''' ) SCREAMING_SNAKE_CASE__ : Dict = text.replace('''\n''' , '''<BR>''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = text.replace('''\r''' , '''<BR>''' ) SCREAMING_SNAKE_CASE__ : Any = text.replace('''\t''' , '''<TAB>''' ) SCREAMING_SNAKE_CASE__ : List[str] = text.replace('''—''' , '''ー''' ) SCREAMING_SNAKE_CASE__ : Dict = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE__ : Optional[Any] = text.replace(_lowercase , _lowercase ) if clean: SCREAMING_SNAKE_CASE__ : str = self.clean_text(_lowercase ) def check_simbol(_lowercase : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = x.encode() if len(_lowercase ) == 1 and len(_lowercase ) == 2: SCREAMING_SNAKE_CASE__ : Any = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc_2_a_1 and c <= 0Xc_2_b_f) or (c >= 0Xc_7_8_0 and c <= 0Xc_7_8_3) or (c >= 0Xc_a_b_9 and c <= 0Xc_b_b_f) or (c >= 0Xc_c_8_0 and c <= 0Xc_d_a_2) ): return True return False def checkuae(_lowercase : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[int] = x.encode() if len(_lowercase ) == 1 and len(_lowercase ) == 3: SCREAMING_SNAKE_CASE__ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe_2_8_0_8_0 and c <= 0Xe_2_b_0_7_f: return True return False SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = [] while pos < len(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = min(len(_lowercase ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 SCREAMING_SNAKE_CASE__ : Tuple = [] # (token_id, token, pos) for e in range(_lowercase , _lowercase , -1 ): SCREAMING_SNAKE_CASE__ : List[Any] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_lowercase ) > 2: SCREAMING_SNAKE_CASE__ : int = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_lowercase ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = sorted(_lowercase , key=lambda _lowercase : x[0] )[0] result.append(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = e else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = pos + 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = text[pos:end] if check_simbol(_lowercase ): result.append('''<KIGOU>''' ) elif checkuae(_lowercase ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = end return result def lowercase__ ( self : List[str] , _lowercase : Dict , _lowercase : int="\n" ): SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : int = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_lowercase ) > 0: words.append(bytearray(_lowercase ).decode('''utf-8''' , errors='''replace''' ) ) SCREAMING_SNAKE_CASE__ : List[str] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(_lowercase ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(_lowercase ) if len(_lowercase ) > 0: words.append(bytearray(_lowercase ).decode('''utf-8''' , errors='''replace''' ) ) SCREAMING_SNAKE_CASE__ : List[Any] = ''''''.join(_lowercase ) return text
35
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a_ :List[Any] = logging.getLogger(__name__) @dataclass class lowercase : lowerCamelCase : str lowerCamelCase : List[str] lowerCamelCase : Optional[List[str]] @dataclass class lowercase : lowerCamelCase : List[int] lowerCamelCase : List[int] lowerCamelCase : Optional[List[int]] = None lowerCamelCase : Optional[List[int]] = None class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = '''train''' lowerCamelCase : Tuple = '''dev''' lowerCamelCase : Any = '''test''' class lowercase : @staticmethod def lowercase__ ( _lowercase : Any , _lowercase : Union[Split, str] ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : str ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , _lowercase : int=False , _lowercase : Optional[Any]="[CLS]" , _lowercase : Tuple=1 , _lowercase : Optional[Any]="[SEP]" , _lowercase : Tuple=False , _lowercase : Optional[Any]=False , _lowercase : List[Any]=0 , _lowercase : Optional[int]=0 , _lowercase : Optional[Any]=-1_00 , _lowercase : Tuple=0 , _lowercase : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE__ : Tuple = {label: i for i, label in enumerate(_lowercase )} SCREAMING_SNAKE_CASE__ : Dict = [] for ex_index, example in enumerate(_lowercase ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , _lowercase , len(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for word, label in zip(example.words , example.labels ): SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.tokenize(_lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowercase ) > 0: tokens.extend(_lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.num_special_tokens_to_add() if len(_lowercase ) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE__ : List[str] = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE__ : Any = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [sequence_a_segment_id] * len(_lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [cls_token] + tokens SCREAMING_SNAKE_CASE__ : Tuple = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE__ : Tuple = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.convert_tokens_to_ids(_lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE__ : str = [1 if mask_padding_with_zero else 0] * len(_lowercase ) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE__ : List[str] = max_seq_length - len(_lowercase ) if pad_on_left: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE__ : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE__ : Tuple = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE__ : int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_lowercase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_lowercase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_lowercase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_lowercase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : List[Any] = None features.append( InputFeatures( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , label_ids=_lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[InputFeatures] lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : Optional[int]=False , _lowercase : Split = Split.train , ): # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ : Optional[int] = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) SCREAMING_SNAKE_CASE__ : Any = torch.load(_lowercase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) SCREAMING_SNAKE_CASE__ : str = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : Any = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _lowercase ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Optional[int] , _lowercase : List[str] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : lowerCamelCase : List[InputFeatures] lowerCamelCase : int = -100 def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : List[str]=False , _lowercase : Split = Split.train , ): SCREAMING_SNAKE_CASE__ : Optional[int] = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : List[str] = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Optional[Any] , _lowercase : Union[str, Any] ): return self.features[i]
35
1
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int ): A__ = [1] A__ = 0, 0, 0 A__ = ugly_nums[ia] * 2 A__ = ugly_nums[ia] * 3 A__ = ugly_nums[ia] * 5 for _ in range(1 , snake_case__ ): A__ = min(snake_case__ , snake_case__ , snake_case__ ) ugly_nums.append(snake_case__ ) if next_num == next_a: ia += 1 A__ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 A__ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 A__ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(2_0_0) = }""")
706
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class a ( _lowerCamelCase ): """simple docstring""" def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(UpperCamelCase , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(UpperCamelCase , """num_encoder_blocks""" ) ) class a : """simple docstring""" def __init__( self: str , UpperCamelCase: Dict , UpperCamelCase: int=13 , UpperCamelCase: Optional[int]=64 , UpperCamelCase: List[Any]=3 , UpperCamelCase: List[Any]=4 , UpperCamelCase: Optional[Any]=[2, 2, 2, 2] , UpperCamelCase: Any=[8, 4, 2, 1] , UpperCamelCase: Optional[int]=[16, 32, 64, 1_28] , UpperCamelCase: str=[1, 4, 8, 16] , UpperCamelCase: Dict=[1, 2, 4, 8] , UpperCamelCase: Optional[Any]=True , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: List[str]="gelu" , UpperCamelCase: Tuple=0.1 , UpperCamelCase: Optional[int]=0.1 , UpperCamelCase: Tuple=0.02 , UpperCamelCase: int=3 , UpperCamelCase: str=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_encoder_blocks A__ = sr_ratios A__ = depths A__ = hidden_sizes A__ = downsampling_rates A__ = num_attention_heads A__ = is_training A__ = use_labels A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = num_labels A__ = scope def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Tuple , UpperCamelCase: str , UpperCamelCase: Optional[Any] , UpperCamelCase: int ): """simple docstring""" A__ = SegformerModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase ) A__ = A__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Tuple , UpperCamelCase: str , UpperCamelCase: List[str] ): """simple docstring""" A__ = self.num_labels A__ = SegformerForSemanticSegmentation(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A__ = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: str , UpperCamelCase: Tuple ): """simple docstring""" A__ = 1 A__ = SegformerForSemanticSegmentation(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(UpperCamelCase ) A__ = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Any ): """simple docstring""" A__ = SegformerModelTester(self ) A__ = SegformerConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase ( self: Any ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase ( self: int ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*UpperCamelCase ) def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*UpperCamelCase ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def UpperCamelCase ( self: List[str] ): """simple docstring""" pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def UpperCamelCase ( self: str ): """simple docstring""" pass def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCamelCase ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.attentions A__ = sum(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A__ = (self.model_tester.image_size // 32) ** 2 A__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A__ = len(UpperCamelCase ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase ) ) A__ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" def check_hidden_states_output(UpperCamelCase: Dict , UpperCamelCase: Tuple , UpperCamelCase: Dict ): A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_encoder_blocks self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" if not self.model_tester.is_training: return A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase ): continue A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.train() A__ = self._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) A__ = model(**UpperCamelCase ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" pass @slow def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SegformerModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def _snake_case ( ): A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase ( self: Any ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase , align=UpperCamelCase , do_random_crop=UpperCamelCase ) A__ = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( UpperCamelCase ) A__ = prepare_img() A__ = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) A__ = encoded_inputs.pixel_values.to(UpperCamelCase ) with torch.no_grad(): A__ = model(UpperCamelCase ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) A__ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase , atol=1e-4 ) ) @slow def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase , align=UpperCamelCase , do_random_crop=UpperCamelCase ) A__ = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(UpperCamelCase ) A__ = prepare_img() A__ = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) A__ = encoded_inputs.pixel_values.to(UpperCamelCase ) with torch.no_grad(): A__ = model(UpperCamelCase ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) A__ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase , atol=1e-1 ) ) @slow def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase , align=UpperCamelCase , do_random_crop=UpperCamelCase ) A__ = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( UpperCamelCase ) A__ = prepare_img() A__ = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) A__ = encoded_inputs.pixel_values.to(UpperCamelCase ) with torch.no_grad(): A__ = model(UpperCamelCase ) A__ = outputs.logits.detach().cpu() A__ = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase , target_sizes=[(5_00, 3_00)] ) A__ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , UpperCamelCase ) A__ = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase ) A__ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , UpperCamelCase )
500
0
import math def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> bool: return math.sqrt(lowerCAmelCase__ ) * math.sqrt(lowerCAmelCase__ ) == num def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> bool: lowercase__ : Optional[Any] = 0 lowercase__ : List[Any] = n while left <= right: lowercase__ : int = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowercase__ : Dict = mid - 1 else: lowercase__ : List[Any] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
397
"""simple docstring""" def lowercase__ ( lowerCAmelCase__ : str ) -> list[int]: '''simple docstring''' a__ : List[str] = [0 for i in range(len(lowerCAmelCase__ ) )] # initialize interval's left pointer and right pointer a__ , a__ : int = 0, 0 for i in range(1 , len(lowerCAmelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: a__ : List[Any] = min(right_pointer - i + 1 , z_result[i - left_pointer] ) a__ : List[str] = min_edge while go_next(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: a__ , a__ : str = i, i + z_result[i] - 1 return z_result def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : str ) -> bool: '''simple docstring''' return i + z_result[i] < len(lowerCAmelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> int: '''simple docstring''' a__ : List[Any] = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string a__ : List[str] = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(lowerCAmelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
642
0
"""simple docstring""" def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : bool = False ): """simple docstring""" if not isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : Union[str, Any] =f'''Expected string as input, found {type(__lowerCamelCase )}''' raise ValueError(__lowerCamelCase ) if not isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : Tuple =f'''Expected boolean as use_pascal parameter, found {type(__lowerCamelCase )}''' raise ValueError(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =input_str.split('''_''' ) lowerCamelCase__ : Union[str, Any] =0 if use_pascal else 1 lowerCamelCase__ : Tuple =words[start_index:] lowerCamelCase__ : Optional[Any] =[word[0].upper() + word[1:] for word in words_to_capitalize] lowerCamelCase__ : Dict ='''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
625
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = StableUnCLIPImgaImgPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _a = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _a = frozenset([] ) def snake_case ( self : List[str] )-> str: lowerCamelCase__ : Dict =32 lowerCamelCase__ : Optional[Any] =embedder_hidden_size # image encoding components lowerCamelCase__ : Dict =CLIPImageProcessor(crop_size=32, size=32 ) torch.manual_seed(0 ) lowerCamelCase__ : List[Any] =CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase, projection_dim=lowerCamelCase, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, ) ) # regular denoising components torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] =StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) lowerCamelCase__ : Dict =DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) lowerCamelCase__ : Tuple =CLIPTextModel( CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=lowerCamelCase, projection_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) ) torch.manual_seed(0 ) lowerCamelCase__ : Dict =UNetaDConditionModel( sample_size=32, in_channels=4, out_channels=4, down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D'''), up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D'''), block_out_channels=(32, 64), attention_head_dim=(2, 4), class_embed_type='''projection''', projection_class_embeddings_input_dim=embedder_projection_dim * 2, cross_attention_dim=lowerCamelCase, layers_per_block=1, upcast_attention=lowerCamelCase, use_linear_projection=lowerCamelCase, ) torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] =DDIMScheduler( beta_schedule='''scaled_linear''', beta_start=0.00_085, beta_end=0.012, prediction_type='''v_prediction''', set_alpha_to_one=lowerCamelCase, steps_offset=1, ) torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] =AutoencoderKL() lowerCamelCase__ : int ={ # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def snake_case ( self : str, lowerCamelCase : Dict, lowerCamelCase : Any=0, lowerCamelCase : str=True )-> List[str]: if str(lowerCamelCase ).startswith('''mps''' ): lowerCamelCase__ : List[Any] =torch.manual_seed(lowerCamelCase ) else: lowerCamelCase__ : Any =torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowerCamelCase__ : Dict =floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: lowerCamelCase__ : int =input_image * 0.5 + 0.5 lowerCamelCase__ : Dict =input_image.clamp(0, 1 ) lowerCamelCase__ : List[str] =input_image.cpu().permute(0, 2, 3, 1 ).float().numpy() lowerCamelCase__ : Dict =DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def snake_case ( self : List[str] )-> Optional[Any]: lowerCamelCase__ : Dict ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : str =self.get_dummy_components() lowerCamelCase__ : int =StableUnCLIPImgaImgPipeline(**lowerCamelCase ) lowerCamelCase__ : Any =sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : Dict =self.get_dummy_inputs(lowerCamelCase ) inputs.update({'''image_embeds''': None} ) lowerCamelCase__ : Any =sd_pipe(**lowerCamelCase ).images lowerCamelCase__ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase__ : Union[str, Any] =np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case ( self : int )-> Tuple: lowerCamelCase__ : Tuple =torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def snake_case ( self : int )-> Optional[Any]: lowerCamelCase__ : List[Any] =torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available(), reason='''XFormers attention is only available with CUDA and `xformers` installed''', ) def snake_case ( self : List[str] )-> List[str]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : List[Any] )-> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Optional[int] )-> int: lowerCamelCase__ : Tuple =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) lowerCamelCase__ : Optional[int] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) lowerCamelCase__ : Optional[Any] =StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''', torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase__ : int =torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCamelCase__ : Any =pipe(lowerCamelCase, '''anime turle''', generator=lowerCamelCase, output_type='''np''' ) lowerCamelCase__ : List[Any] =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase ) def snake_case ( self : Optional[int] )-> Tuple: lowerCamelCase__ : Any =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) lowerCamelCase__ : str =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) lowerCamelCase__ : Optional[int] =StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''', torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase__ : str =torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCamelCase__ : Tuple =pipe(lowerCamelCase, '''anime turle''', generator=lowerCamelCase, output_type='''np''' ) lowerCamelCase__ : Tuple =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase ) def snake_case ( self : Optional[int] )-> List[str]: lowerCamelCase__ : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase__ : Any =StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''', torch_dtype=torch.floataa ) lowerCamelCase__ : Optional[Any] =pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase__ : List[Any] =pipe( lowerCamelCase, '''anime turtle''', num_inference_steps=2, output_type='''np''', ) lowerCamelCase__ : Optional[int] =torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
625
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _UpperCAmelCase : str = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , **snake_case_ ): super().__init__(**snake_case_ ) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , '''vision''' ) self.check_model_type(snake_case_ ) def __call__( self , snake_case_ , snake_case_ = None , **snake_case_ , ): if "text_queries" in kwargs: lowercase =kwargs.pop('''text_queries''' ) if isinstance(snake_case_ , (str, Image.Image) ): lowercase ={'''image''': image, '''candidate_labels''': candidate_labels} else: lowercase =image lowercase =super().__call__(snake_case_ , **snake_case_ ) return results def _A( self , **snake_case_ ): lowercase ={} if "threshold" in kwargs: lowercase =kwargs['''threshold'''] if "top_k" in kwargs: lowercase =kwargs['''top_k'''] return {}, {}, postprocess_params def _A( self , snake_case_ ): lowercase =load_image(inputs['''image'''] ) lowercase =inputs['''candidate_labels'''] if isinstance(snake_case_ , snake_case_ ): lowercase =candidate_labels.split(''',''' ) lowercase =torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case_ ): lowercase =self.tokenizer(snake_case_ , return_tensors=self.framework ) lowercase =self.image_processor(snake_case_ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _A( self , snake_case_ ): lowercase =model_inputs.pop('''target_size''' ) lowercase =model_inputs.pop('''candidate_label''' ) lowercase =model_inputs.pop('''is_last''' ) lowercase =self.model(**snake_case_ ) lowercase ={'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def _A( self , snake_case_ , snake_case_=0.1 , snake_case_=None ): lowercase =[] for model_output in model_outputs: lowercase =model_output['''candidate_label'''] lowercase =BaseModelOutput(snake_case_ ) lowercase =self.image_processor.post_process_object_detection( outputs=snake_case_ , threshold=snake_case_ , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): lowercase =outputs['''scores'''][index].item() lowercase =self._get_bounding_box(outputs['''boxes'''][index][0] ) lowercase ={'''score''': score, '''label''': label, '''box''': box} results.append(snake_case_ ) lowercase =sorted(snake_case_ , key=lambda snake_case_ : x["score"] , reverse=snake_case_ ) if top_k: lowercase =results[:top_k] return results def _A( self , snake_case_ ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) lowercase , lowercase , lowercase , lowercase =box.int().tolist() lowercase ={ '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
72
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( _a ): a : Optional[Any] = ['''image_processor''', '''tokenizer'''] a : Optional[Any] = '''ChineseCLIPImageProcessor''' a : List[str] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ): _lowercase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCamelCase , ) _lowercase = kwargs.pop("""feature_extractor""" ) _lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCamelCase , __UpperCamelCase ) _lowercase = self.image_processor def __call__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _lowercase = self.tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if images is not None: _lowercase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if text is not None and images is not None: _lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def UpperCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def UpperCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def UpperCamelCase_ ( self ): _lowercase = self.tokenizer.model_input_names _lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase_ ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCamelCase , ) return self.image_processor_class
287
0
from __future__ import annotations def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[tuple[int, int]]: UpperCAmelCase__ , UpperCAmelCase__ = position UpperCAmelCase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase__ = [] for position in positions: UpperCAmelCase__ , UpperCAmelCase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_SCREAMING_SNAKE_CASE ) return permissible_positions def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->bool: return not any(elem == 0 for row in board for elem in row ) def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->bool: if is_complete(_SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase__ , UpperCAmelCase__ = position if board[y][x] == 0: UpperCAmelCase__ = curr + 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , curr + 1 ): return True UpperCAmelCase__ = 0 return False def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->list[list[int]]: UpperCAmelCase__ = [[0 for i in range(_SCREAMING_SNAKE_CASE )] for j in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board UpperCAmelCase__ = 0 UpperCAmelCase__ = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase__ = tempfile.mkdtemp() # fmt: off UpperCAmelCase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCAmelCase__ = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } UpperCAmelCase__ = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowercase , __lowercase ) def A__ ( self , **__lowercase ): return BertTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def A__ ( self , **__lowercase ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def A__ ( self ): shutil.rmtree(self.tmpdirname ) def A__ ( self ): UpperCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase__ = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self ): UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def A__ ( self ): UpperCAmelCase__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase__ = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) UpperCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = image_processor(__lowercase , return_tensors="""np""" ) UpperCAmelCase__ = processor(images=__lowercase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = processor(text=__lowercase ) UpperCAmelCase__ = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(__lowercase ): processor() def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ = processor.batch_decode(__lowercase ) UpperCAmelCase__ = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
422
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __a ( _UpperCAmelCase ): """simple docstring""" _A : Any = "blenderbot-small" _A : Dict = ["past_key_values"] _A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Tuple ,_UpperCamelCase : Optional[int]=5_0_2_6_5 ,_UpperCamelCase : List[Any]=5_1_2 ,_UpperCamelCase : Union[str, Any]=8 ,_UpperCamelCase : List[Any]=2_0_4_8 ,_UpperCamelCase : List[str]=1_6 ,_UpperCamelCase : Union[str, Any]=8 ,_UpperCamelCase : Union[str, Any]=2_0_4_8 ,_UpperCamelCase : Dict=1_6 ,_UpperCamelCase : Dict=0.0 ,_UpperCamelCase : Tuple=0.0 ,_UpperCamelCase : Tuple=True ,_UpperCamelCase : Dict=True ,_UpperCamelCase : Union[str, Any]="gelu" ,_UpperCamelCase : Optional[Any]=5_1_2 ,_UpperCamelCase : Tuple=0.1 ,_UpperCamelCase : Optional[int]=0.0 ,_UpperCamelCase : List[Any]=0.0 ,_UpperCamelCase : Optional[int]=0.02 ,_UpperCamelCase : Tuple=1 ,_UpperCamelCase : int=False ,_UpperCamelCase : Optional[Any]=0 ,_UpperCamelCase : Dict=1 ,_UpperCamelCase : Optional[int]=2 ,_UpperCamelCase : Union[str, Any]=2 ,**_UpperCamelCase : List[str] ,) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ =vocab_size SCREAMING_SNAKE_CASE__ =max_position_embeddings SCREAMING_SNAKE_CASE__ =d_model SCREAMING_SNAKE_CASE__ =encoder_ffn_dim SCREAMING_SNAKE_CASE__ =encoder_layers SCREAMING_SNAKE_CASE__ =encoder_attention_heads SCREAMING_SNAKE_CASE__ =decoder_ffn_dim SCREAMING_SNAKE_CASE__ =decoder_layers SCREAMING_SNAKE_CASE__ =decoder_attention_heads SCREAMING_SNAKE_CASE__ =dropout SCREAMING_SNAKE_CASE__ =attention_dropout SCREAMING_SNAKE_CASE__ =activation_dropout SCREAMING_SNAKE_CASE__ =activation_function SCREAMING_SNAKE_CASE__ =init_std SCREAMING_SNAKE_CASE__ =encoder_layerdrop SCREAMING_SNAKE_CASE__ =decoder_layerdrop SCREAMING_SNAKE_CASE__ =use_cache SCREAMING_SNAKE_CASE__ =encoder_layers SCREAMING_SNAKE_CASE__ =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCAmelCase ,bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,is_encoder_decoder=_lowerCAmelCase ,decoder_start_token_id=_lowerCAmelCase ,forced_eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase ,) class __a ( _UpperCAmelCase ): """simple docstring""" @property def __A ( self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ ={0: """batch"""} SCREAMING_SNAKE_CASE__ ={0: """batch""", 1: """past_decoder_sequence + sequence"""} else: SCREAMING_SNAKE_CASE__ ={0: """batch""", 1: """decoder_sequence"""} SCREAMING_SNAKE_CASE__ ={0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE__ =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =self.num_layers for i in range(_lowerCAmelCase ): SCREAMING_SNAKE_CASE__ ={0: """batch""", 2: """past_sequence + sequence"""} SCREAMING_SNAKE_CASE__ ={0: """batch""", 2: """past_sequence + sequence"""} else: SCREAMING_SNAKE_CASE__ =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def __A ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ =super().outputs else: SCREAMING_SNAKE_CASE__ =super(_lowerCAmelCase ,self ).outputs if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =self.num_layers for i in range(_lowerCAmelCase ): SCREAMING_SNAKE_CASE__ ={0: """batch""", 2: """past_sequence + sequence"""} SCREAMING_SNAKE_CASE__ ={0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def __A ( self : List[Any] ,_UpperCamelCase : List[str] ,_UpperCamelCase : List[str] = -1 ,_UpperCamelCase : Any = -1 ,_UpperCamelCase : Tuple = False ,_UpperCamelCase : Any = None ,) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Generate decoder inputs SCREAMING_SNAKE_CASE__ =seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE__ =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ ={f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE__ =dict(**_lowerCAmelCase ,**_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =common_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE__ =common_inputs["""decoder_input_ids"""].shape[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =self.num_attention_heads SCREAMING_SNAKE_CASE__ =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ =decoder_seq_length + 3 SCREAMING_SNAKE_CASE__ =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE__ =torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase )] ,dim=1 ) SCREAMING_SNAKE_CASE__ =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =self.num_layers SCREAMING_SNAKE_CASE__ =min(_lowerCAmelCase ,_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ =max(_lowerCAmelCase ,_lowerCAmelCase ) - min_num_layers SCREAMING_SNAKE_CASE__ ="""encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE__ =encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowerCAmelCase ,_lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def __A ( self : Dict ,_UpperCamelCase : Optional[int] ,_UpperCamelCase : List[Any] = -1 ,_UpperCamelCase : List[str] = -1 ,_UpperCamelCase : Optional[int] = False ,_UpperCamelCase : Optional[Any] = None ,) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =common_inputs["""input_ids"""].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE__ =seqlen + 2 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =self.num_layers SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =self.num_attention_heads SCREAMING_SNAKE_CASE__ =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ =common_inputs["""attention_mask"""].dtype SCREAMING_SNAKE_CASE__ =torch.cat( [common_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 ) SCREAMING_SNAKE_CASE__ =[ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def __A ( self : List[str] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : str = -1 ,_UpperCamelCase : Optional[int] = -1 ,_UpperCamelCase : Any = False ,_UpperCamelCase : Optional[int] = None ,) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =compute_effective_axis_dimension( _lowerCAmelCase ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ =tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ =compute_effective_axis_dimension( _lowerCAmelCase ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ =[""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE__ =dict(tokenizer(_lowerCAmelCase ,return_tensors=_lowerCAmelCase ) ) return common_inputs def __A ( self : List[str] ,_UpperCamelCase : Dict ,_UpperCamelCase : Tuple = -1 ,_UpperCamelCase : str = -1 ,_UpperCamelCase : Tuple = False ,_UpperCamelCase : Dict = None ,) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ =self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE__ =self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) return common_inputs def __A ( self : Tuple ,_UpperCamelCase : Any ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : str ,_UpperCamelCase : List[str] ) -> Optional[int]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ =super()._flatten_past_key_values_(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ =super(_lowerCAmelCase ,self )._flatten_past_key_values_( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
151
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): lowercase = model.config lowercase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase = MBartConfig( is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , add_cross_attention=lowercase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase_ , add_final_layer_norm=lowercase_ , ) return encoder_config, decoder_config def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): if "encoder.model" in name: lowercase = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase = """encoder.""" + name if "attn.proj" in name: lowercase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase = """encoder.layernorm.bias""" return name def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = int(key_split[5] ) lowercase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : str=None , lowercase_ : Optional[Any]=False ): # load original model lowercase = DonutModel.from_pretrained(lowercase_ ).eval() # load HuggingFace model lowercase , lowercase = get_configs(lowercase_ ) lowercase = DonutSwinModel(lowercase_ ) lowercase = MBartForCausalLM(lowercase_ ) lowercase = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() lowercase = original_model.state_dict() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # verify results on scanned document lowercase = load_dataset("""hf-internal-testing/example-documents""" ) lowercase = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase = XLMRobertaTokenizerFast.from_pretrained(lowercase_ , from_slow=lowercase_ ) lowercase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase = DonutProcessor(lowercase_ , lowercase_ ) lowercase = processor(lowercase_ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase = """When is the coffee break?""" lowercase = task_prompt.replace("""{user_input}""" , lowercase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase = original_model.decoder.tokenizer(lowercase_ , add_special_tokens=lowercase_ , return_tensors="""pt""" )[ """input_ids""" ] lowercase = original_model.encoder.model.patch_embed(lowercase_ ) lowercase , lowercase = model.encoder.embeddings(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) # verify encoder hidden states lowercase = original_model.encoder(lowercase_ ) lowercase = model.encoder(lowercase_ ).last_hidden_state assert torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) # verify decoder hidden states lowercase = original_model(lowercase_ , lowercase_ , lowercase_ ).logits lowercase = model(lowercase_ , decoder_input_ids=lowercase_ ).logits assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": lowercase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''naver-clova-ix/donut-base-finetuned-docvqa''', required=False, type=str, help='''Name of the original model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, required=False, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub.''', ) lowercase_ : Dict = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
588
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : int = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = '''xmod''' def __init__( self :Union[str, Any] ,__UpperCAmelCase :Tuple=3_05_22 ,__UpperCAmelCase :int=7_68 ,__UpperCAmelCase :Tuple=12 ,__UpperCAmelCase :Tuple=12 ,__UpperCAmelCase :Tuple=30_72 ,__UpperCAmelCase :str="gelu" ,__UpperCAmelCase :str=0.1 ,__UpperCAmelCase :str=0.1 ,__UpperCAmelCase :str=5_12 ,__UpperCAmelCase :Optional[Any]=2 ,__UpperCAmelCase :Optional[int]=0.02 ,__UpperCAmelCase :Dict=1E-12 ,__UpperCAmelCase :List[str]=1 ,__UpperCAmelCase :str=0 ,__UpperCAmelCase :Any=2 ,__UpperCAmelCase :List[Any]="absolute" ,__UpperCAmelCase :Union[str, Any]=True ,__UpperCAmelCase :Optional[int]=None ,__UpperCAmelCase :int=False ,__UpperCAmelCase :Tuple=2 ,__UpperCAmelCase :Tuple=False ,__UpperCAmelCase :Dict=True ,__UpperCAmelCase :Tuple=True ,__UpperCAmelCase :str=("en_XX",) ,__UpperCAmelCase :int=None ,**__UpperCAmelCase :str ,) -> List[str]: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase ,bos_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : Optional[int] = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : int = hidden_act lowerCamelCase__ : Optional[Any] = intermediate_size lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Optional[Any] = layer_norm_eps lowerCamelCase__ : Optional[int] = position_embedding_type lowerCamelCase__ : Optional[Any] = use_cache lowerCamelCase__ : Optional[Any] = classifier_dropout lowerCamelCase__ : Optional[int] = pre_norm lowerCamelCase__ : Tuple = adapter_reduction_factor lowerCamelCase__ : Dict = adapter_layer_norm lowerCamelCase__ : Optional[Any] = adapter_reuse_layer_norm lowerCamelCase__ : Dict = ln_before_adapter lowerCamelCase__ : Dict = list(__UpperCAmelCase ) lowerCamelCase__ : List[Any] = default_language class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): '''simple docstring''' @property def lowercase_ ( self :List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCamelCase__ : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
714
"""simple docstring""" UpperCAmelCase : Tuple = 8.314_462 # Unit - J mol-1 K-1 def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
121
0
"""simple docstring""" def _A (__a ) -> int: """simple docstring""" if n == 1 or not isinstance(__a , __a ): return 0 elif n == 2: return 1 else: SCREAMING_SNAKE_CASE_ : Tuple = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _A (__a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 while digits < n: index += 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = len(str(fibonacci(__a ) ) ) return index def _A (__a = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
512
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[str] , lowercase_ : str , lowercase_ : List[str]=13 , lowercase_ : int=30 , lowercase_ : Optional[int]=2 , lowercase_ : List[str]=3 , lowercase_ : Optional[Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : Optional[int]=32 , lowercase_ : Tuple=5 , lowercase_ : str=4 , lowercase_ : Optional[int]=37 , lowercase_ : Tuple="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Dict=0.1 , lowercase_ : List[Any]=10 , lowercase_ : Optional[int]=0.02 , lowercase_ : List[str]=None , lowercase_ : Optional[Any]=2 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_size SCREAMING_SNAKE_CASE_ : int = patch_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_labels SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : Optional[Any] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ : Optional[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ : int = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Tuple = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = ViTModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ViTForMaskedImageModeling(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : List[str] = ViTForMaskedImageModeling(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : int = model(lowercase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ : Tuple = ViTForImageClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Tuple = ViTForImageClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : Dict = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) __UpperCamelCase = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = ViTModelTester(self) SCREAMING_SNAKE_CASE_ : Optional[Any] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[Any] = model_class(lowercase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[int] = model_class(lowercase_) SCREAMING_SNAKE_CASE_ : Any = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) @slow def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Optional[int] = ViTModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def _A () -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''') if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''').to(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.default_image_processor SCREAMING_SNAKE_CASE_ : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE_ : Any = image_processor(images=lowercase_ , return_tensors='''pt''').to(lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = model(**lowercase_) # verify the logits SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-0.27_44, 0.82_15, -0.08_36]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ViTModel.from_pretrained('''facebook/dino-vits8''').to(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=480) SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE_ : List[str] = image_processor(images=lowercase_ , return_tensors='''pt''') SCREAMING_SNAKE_CASE_ : int = inputs.pixel_values.to(lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_ , interpolate_pos_encoding=lowercase_) # verify the logits SCREAMING_SNAKE_CASE_ : int = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]]).to(lowercase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''') SCREAMING_SNAKE_CASE_ : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_ : Tuple = prepare_img() SCREAMING_SNAKE_CASE_ : List[str] = image_processor(images=lowercase_ , return_tensors='''pt''') SCREAMING_SNAKE_CASE_ : str = inputs.pixel_values.to(lowercase_) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = model(lowercase_)
512
1
"""simple docstring""" def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Any = abs(snake_case__ ) lowercase__ : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : List[str] = abs(snake_case__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def a_ ( _lowerCAmelCase : int ): '''simple docstring''' return sum(int(snake_case__ ) for c in str(abs(snake_case__ ) ) ) def a_ ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCAmelCase : Callable , _lowerCAmelCase : int ) -> None: lowercase__ : str = f"""{func.__name__}({value})""" lowercase__ : Any = timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(snake_case__ )} -- {timing:.4f} seconds""" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(snake_case__ , snake_case__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
700
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a_ ( _lowerCAmelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def a_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ): '''simple docstring''' lowercase__ : Any = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_lowerCAmelCase , _lowerCAmelCase ) # Predict target for test data lowercase__ : str = xgb.predict(_lowerCAmelCase ) lowercase__ : Union[str, Any] = predictions.reshape(len(_lowerCAmelCase ) , 1 ) return predictions def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = fetch_california_housing() lowercase__ , lowercase__ : str = data_handling(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = train_test_split( _lowerCAmelCase , _lowerCAmelCase , test_size=0.2_5 , random_state=1 ) lowercase__ : Any = xgboost(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
645
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> Optional[Any]: return F"gaussian_noise_s={seed}_shape={'_'.join([str(_lowercase ) for s in shape] )}.npy" def UpperCAmelCase_ ( self )-> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase_ ( self , _lowercase=0 , _lowercase=(4, 4, 64, 64) , _lowercase=False )-> Optional[Any]: UpperCamelCase_ = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase_ = jnp.array(load_hf_numpy(self.get_file_format(_lowercase , _lowercase ) ) , dtype=_lowercase ) return image def UpperCAmelCase_ ( self , _lowercase=False , _lowercase="CompVis/stable-diffusion-v1-4" )-> Optional[int]: UpperCamelCase_ = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase_ = "bf16" if fpaa else None UpperCamelCase_ , UpperCamelCase_ = FlaxUNetaDConditionModel.from_pretrained( _lowercase , subfolder="unet" , dtype=_lowercase , revision=_lowercase ) return model, params def UpperCAmelCase_ ( self , _lowercase=0 , _lowercase=(4, 77, 768) , _lowercase=False )-> Optional[int]: UpperCamelCase_ = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase_ = jnp.array(load_hf_numpy(self.get_file_format(_lowercase , _lowercase ) ) , dtype=_lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1_000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> List[Any]: UpperCamelCase_ , UpperCamelCase_ = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=_lowercase ) UpperCamelCase_ = self.get_latents(_lowercase , fpaa=_lowercase ) UpperCamelCase_ = self.get_encoder_hidden_states(_lowercase , fpaa=_lowercase ) UpperCamelCase_ = model.apply( {"params": params} , _lowercase , jnp.array(_lowercase , dtype=jnp.intaa ) , encoder_hidden_states=_lowercase , ).sample assert sample.shape == latents.shape UpperCamelCase_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCamelCase_ = jnp.array(_lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_lowercase , _lowercase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1_000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=_lowercase ) UpperCamelCase_ = self.get_latents(_lowercase , shape=(4, 4, 96, 96) , fpaa=_lowercase ) UpperCamelCase_ = self.get_encoder_hidden_states(_lowercase , shape=(4, 77, 1_024) , fpaa=_lowercase ) UpperCamelCase_ = model.apply( {"params": params} , _lowercase , jnp.array(_lowercase , dtype=jnp.intaa ) , encoder_hidden_states=_lowercase , ).sample assert sample.shape == latents.shape UpperCamelCase_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCamelCase_ = jnp.array(_lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_lowercase , _lowercase , atol=1e-2 )
628
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __magic_name__ ( snake_case ): UpperCamelCase_ :Dict = (KDPMaDiscreteScheduler,) UpperCamelCase_ :str = 1_0 def UpperCAmelCase_ ( self , **_lowercase )-> str: UpperCamelCase_ = { "num_train_timesteps": 1_100, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**_lowercase ) return config def UpperCAmelCase_ ( self )-> Union[str, Any]: for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def UpperCAmelCase_ ( self )-> int: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def UpperCAmelCase_ ( self )-> str: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowercase ) def UpperCAmelCase_ ( self )-> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config(prediction_type="v_prediction" ) UpperCamelCase_ = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase_ = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ = scheduler.scale_model_input(_lowercase , _lowercase ) UpperCamelCase_ = model(_lowercase , _lowercase ) UpperCamelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase ) UpperCamelCase_ = output.prev_sample UpperCamelCase_ = torch.sum(torch.abs(_lowercase ) ) UpperCamelCase_ = torch.mean(torch.abs(_lowercase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_002 ) < 1e-3 def UpperCAmelCase_ ( self )-> Dict: if torch_device == "mps": return UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase_ = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ = scheduler.scale_model_input(_lowercase , _lowercase ) UpperCamelCase_ = model(_lowercase , _lowercase ) UpperCamelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase ) UpperCamelCase_ = output.prev_sample UpperCamelCase_ = torch.sum(torch.abs(_lowercase ) ) UpperCamelCase_ = torch.mean(torch.abs(_lowercase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 def UpperCAmelCase_ ( self )-> Optional[int]: if torch_device == "mps": return UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowercase ) UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter.to(_lowercase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCamelCase_ = scheduler.scale_model_input(_lowercase , _lowercase ) UpperCamelCase_ = model(_lowercase , _lowercase ) UpperCamelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase ) UpperCamelCase_ = output.prev_sample UpperCamelCase_ = torch.sum(torch.abs(_lowercase ) ) UpperCamelCase_ = torch.mean(torch.abs(_lowercase ) ) if str(_lowercase ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3
628
1
"""simple docstring""" from collections import deque class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , _snake_case : str , _snake_case : int , _snake_case : int ) -> None: """simple docstring""" A_ = process_name # process name A_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A_ = arrival_time A_ = burst_time # remaining burst time A_ = 0 # total time of the process wait in ready queue A_ = 0 # time from arrival time to completion time class __lowerCAmelCase : """simple docstring""" def __init__( self : str , _snake_case : int , _snake_case : list[int] , _snake_case : deque[Process] , _snake_case : int , ) -> None: """simple docstring""" A_ = number_of_queues # time slice of queues that round robin algorithm applied A_ = time_slices # unfinished process is in this ready_queue A_ = queue # current time A_ = current_time # finished process is in this sequence queue A_ = deque() def lowerCamelCase__ ( self : List[str] ) -> list[str]: """simple docstring""" A_ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCamelCase__ ( self : str , _snake_case : list[Process] ) -> list[int]: """simple docstring""" A_ = [] for i in range(len(_snake_case ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCamelCase__ ( self : Tuple , _snake_case : list[Process] ) -> list[int]: """simple docstring""" A_ = [] for i in range(len(_snake_case ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCamelCase__ ( self : Tuple , _snake_case : list[Process] ) -> list[int]: """simple docstring""" A_ = [] for i in range(len(_snake_case ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCamelCase__ ( self : Optional[int] , _snake_case : deque[Process] ) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def lowerCamelCase__ ( self : int , _snake_case : Process ) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCamelCase__ ( self : Dict , _snake_case : deque[Process] ) -> deque[Process]: """simple docstring""" A_ = deque() # sequence deque of finished process while len(_snake_case ) != 0: A_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_snake_case ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A_ = 0 # set the process's turnaround time because it is finished A_ = self.current_time - cp.arrival_time # set the completion time A_ = self.current_time # add the process to queue that has finished queue finished.append(_snake_case ) self.finish_queue.extend(_snake_case ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCamelCase__ ( self : List[str] , _snake_case : deque[Process] , _snake_case : int ) -> tuple[deque[Process], deque[Process]]: """simple docstring""" A_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_snake_case ) ): A_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_snake_case ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_snake_case ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A_ = 0 # set the finish time A_ = self.current_time # update the process' turnaround time because it is finished A_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_snake_case ) self.finish_queue.extend(_snake_case ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCamelCase__ ( self : Any ) -> deque[Process]: """simple docstring""" # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): A_ , A_ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest UpperCamelCase_ : Tuple = Process('''P1''', 0, 53) UpperCamelCase_ : List[Any] = Process('''P2''', 0, 17) UpperCamelCase_ : Optional[int] = Process('''P3''', 0, 68) UpperCamelCase_ : Union[str, Any] = Process('''P4''', 0, 24) UpperCamelCase_ : Any = 3 UpperCamelCase_ : List[str] = [17, 25] UpperCamelCase_ : List[str] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) UpperCamelCase_ : str = Process('''P1''', 0, 53) UpperCamelCase_ : Dict = Process('''P2''', 0, 17) UpperCamelCase_ : List[Any] = Process('''P3''', 0, 68) UpperCamelCase_ : int = Process('''P4''', 0, 24) UpperCamelCase_ : Dict = 3 UpperCamelCase_ : str = [17, 25] UpperCamelCase_ : Optional[int] = deque([Pa, Pa, Pa, Pa]) UpperCamelCase_ : str = MLFQ(number_of_queues, time_slices, queue, 0) UpperCamelCase_ : int = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( F"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( F"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
702
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def lowerCamelCase__ ( *_snake_case : int , **_snake_case : Optional[Any] ) -> str: """simple docstring""" pass def A_ (__a ): '''simple docstring''' A_ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ (__a ): '''simple docstring''' A_ = np.array(__a ) A_ = npimg.shape return {"hash": hashimage(__a ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) snake_case = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self : List[Any] , _snake_case : List[str] , _snake_case : Dict , _snake_case : int ) -> str: """simple docstring""" A_ = MaskGenerationPipeline(model=_snake_case , image_processor=_snake_case ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self : int , _snake_case : int , _snake_case : Optional[Any] ) -> Dict: """simple docstring""" pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass @slow @require_torch def lowerCamelCase__ ( self : Tuple ) -> int: """simple docstring""" A_ = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) A_ = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing A_ = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_snake_case ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_2_1}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_0_5_3}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.9_9_6_7}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.9_9_3}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.9_9_0_9}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.9_8_7_9}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.9_8_3_4}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.9_7_1_6}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.9_6_1_2}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.9_5_9_9}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.9_5_5_2}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.9_5_3_2}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.9_5_1_6}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.9_4_9_9}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.9_4_8_3}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.9_4_6_4}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.9_4_3}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.9_4_3}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.9_4_0_8}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.9_3_3_5}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.9_3_2_6}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.9_2_6_2}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.8_9_9_9}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.8_9_8_6}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.8_9_8_4}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.8_8_7_3}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" A_ = "facebook/sam-vit-huge" A_ = pipeline("mask-generation" , model=_snake_case ) A_ = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing A_ = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_snake_case ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_2_1_0}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_0_5_3}, ] , )
482
0
def lowerCamelCase__ (_UpperCAmelCase = 50): SCREAMING_SNAKE_CASE = [[0] * 3 for _ in range(length + 1)] for row_length in range(length + 1): for tile_length in range(2 , 5): for tile_start in range(row_length - tile_length + 1): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length]) if __name__ == "__main__": print(f"""{solution() = }""")
73
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase : Any = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
457
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch a = random.Random() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=1.0 , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Dict: if rng is None: lowercase_ = global_rng lowercase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCamelCase__ ( unittest.TestCase ): def __init__( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=7 , UpperCamelCase__ : str=400 , UpperCamelCase__ : Union[str, Any]=2_000 , UpperCamelCase__ : Dict=10 , UpperCamelCase__ : Optional[Any]=160 , UpperCamelCase__ : Dict=8 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : List[Any]=4_000 , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[Any]=True , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = min_seq_length lowercase_ = max_seq_length lowercase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase_ = padding_value lowercase_ = sampling_rate lowercase_ = return_attention_mask lowercase_ = do_normalize lowercase_ = feature_size lowercase_ = chunk_length lowercase_ = hop_length def UpperCAmelCase__ ( self : str ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=False ): '''simple docstring''' def _flatten(UpperCamelCase__ : Optional[Any] ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: lowercase_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase_ = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = WhisperFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) lowercase_ = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) lowercase_ = feat_extract_first.to_dict() lowercase_ = feat_extract_second.to_dict() lowercase_ = feat_extract_first.mel_filters lowercase_ = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ = os.path.join(UpperCamelCase__ , """feat_extract.json""" ) feat_extract_first.to_json_file(UpperCamelCase__ ) lowercase_ = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) lowercase_ = feat_extract_first.to_dict() lowercase_ = feat_extract_second.to_dict() lowercase_ = feat_extract_first.mel_filters lowercase_ = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowercase_ = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test feature size lowercase_ = feature_extractor(UpperCamelCase__ , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowercase_ = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features lowercase_ = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test batched lowercase_ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features lowercase_ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowercase_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase_ = np.asarray(UpperCamelCase__ ) lowercase_ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features lowercase_ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test truncation required lowercase_ = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] lowercase_ = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] lowercase_ = [x[: feature_extractor.n_samples] for x in speech_inputs] lowercase_ = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs_truncated] lowercase_ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features lowercase_ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' import torch lowercase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ = np.random.rand(100 , 32 ).astype(np.floataa ) lowercase_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase_ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowercase_ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : Any ): '''simple docstring''' lowercase_ = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowercase_ = ds.sort("""id""" ).select(range(UpperCamelCase__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on lowercase_ = self._load_datasamples(1 ) lowercase_ = WhisperFeatureExtractor() lowercase_ = feature_extractor(UpperCamelCase__ , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , UpperCamelCase__ , atol=1e-4 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ = self._load_datasamples(1 )[0] lowercase_ = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue lowercase_ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=UpperCamelCase__ )[0] self.assertTrue(np.all(np.mean(UpperCamelCase__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase__ ) - 1 ) < 1e-3 ) )
712
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') a = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) __SCREAMING_SNAKE_CASE : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = {} if self.train_dir is not None: lowercase_ = self.train_dir if self.validation_dir is not None: lowercase_ = self.validation_dir lowercase_ = data_files if data_files else None @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : str = field(default=__magic_name__ , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={'help': 'Stride to use for the encoder.'} , ) class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : List[Any]=192 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : str=0.6 ): '''simple docstring''' lowercase_ = input_size lowercase_ = mask_patch_size lowercase_ = model_patch_size lowercase_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase_ = self.input_size // self.mask_patch_size lowercase_ = self.mask_patch_size // self.model_patch_size lowercase_ = self.rand_size**2 lowercase_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ): '''simple docstring''' lowercase_ = np.random.permutation(self.token_count )[: self.mask_count] lowercase_ = np.zeros(self.token_count , dtype=UpperCamelCase__ ) lowercase_ = 1 lowercase_ = mask.reshape((self.rand_size, self.rand_size) ) lowercase_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase_ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCAmelCase__ , """decoder_type""" ): lowercase_ = """simmim""" # adapt config lowercase_ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelForMaskedImageModeling.from_config(UpperCAmelCase__ ) if training_args.do_train: lowercase_ = ds["""train"""].column_names else: lowercase_ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase_ = data_args.image_column_name elif "image" in column_names: lowercase_ = """image""" elif "img" in column_names: lowercase_ = """img""" else: lowercase_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase_ = Compose( [ Lambda(lambda UpperCAmelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCAmelCase__ ): lowercase_ = [transforms(UpperCAmelCase__ ) for image in examples[image_column_name]] lowercase_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase_ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase_ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase__ ) # Initialize our trainer lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) if __name__ == "__main__": main()
650
0
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = DebertaVaTokenizer __UpperCAmelCase : Dict = DebertaVaTokenizerFast __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Any = True def __lowercase ( self : int ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _a : Dict = DebertaVaTokenizer(_a ,unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : Optional[Any] ,_a : str ): '''simple docstring''' _a : List[str] = 'this is a test' _a : List[str] = 'this is a test' return input_text, output_text def __lowercase ( self : Dict ): '''simple docstring''' _a : Any = '<pad>' _a : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) ,_a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) ,_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<pad>' ) self.assertEqual(vocab_keys[1] ,'<unk>' ) self.assertEqual(vocab_keys[-1] ,'[PAD]' ) self.assertEqual(len(_a ) ,3_0001 ) def __lowercase ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,3_0000 ) def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = ' \tHeLLo!how \n Are yoU? ' _a : Union[str, Any] = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on _a : Union[str, Any] = DebertaVaTokenizer(_a ,do_lower_case=_a ) _a : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a ,add_special_tokens=_a ) ) self.assertListEqual(_a ,_a ) _a : List[Any] = DebertaVaTokenizerFast(_a ,do_lower_case=_a ) _a : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a ,add_special_tokens=_a ) ) self.assertListEqual(_a ,_a ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def __lowercase ( self : Dict ): '''simple docstring''' pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def __lowercase ( self : int ): '''simple docstring''' pass def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Tuple = 'I was born in 92000, and this is falsé.' _a : Tuple = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _a : List[str] = DebertaVaTokenizer(_a ,split_by_punct=_a ) _a : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a ,add_special_tokens=_a ) ) self.assertListEqual(_a ,_a ) _a : List[str] = DebertaVaTokenizerFast(_a ,split_by_punct=_a ) _a : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a ,add_special_tokens=_a ) ) self.assertListEqual(_a ,_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Tuple = 'I was born in 92000, and this is falsé.' _a : Optional[Any] = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _a : Dict = DebertaVaTokenizer(_a ,do_lower_case=_a ,split_by_punct=_a ) _a : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a ,add_special_tokens=_a ) ) self.assertListEqual(_a ,_a ) _a : str = DebertaVaTokenizerFast(_a ,do_lower_case=_a ,split_by_punct=_a ) _a : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a ,add_special_tokens=_a ) ) self.assertListEqual(_a ,_a ) def __lowercase ( self : int ): '''simple docstring''' _a : Union[str, Any] = 'I was born in 92000, and this is falsé.' _a : Optional[Any] = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _a : Union[str, Any] = DebertaVaTokenizer(_a ,do_lower_case=_a ,split_by_punct=_a ) _a : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a ,add_special_tokens=_a ) ) self.assertListEqual(_a ,_a ) _a : List[str] = DebertaVaTokenizerFast(_a ,do_lower_case=_a ,split_by_punct=_a ) _a : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a ,add_special_tokens=_a ) ) self.assertListEqual(_a ,_a ) def __lowercase ( self : Dict ): '''simple docstring''' _a : List[Any] = 'I was born in 92000, and this is falsé.' _a : str = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _a : Any = DebertaVaTokenizer(_a ,do_lower_case=_a ,split_by_punct=_a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a ,add_special_tokens=_a ) ) self.assertListEqual(_a ,_a ) _a : Optional[Any] = DebertaVaTokenizerFast(_a ,do_lower_case=_a ,split_by_punct=_a ) _a : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a ,add_special_tokens=_a ) ) self.assertListEqual(_a ,_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Optional[int] = ' \tHeLLo!how \n Are yoU? ' _a : Dict = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on _a : Dict = DebertaVaTokenizer(_a ,do_lower_case=_a ,split_by_punct=_a ) _a : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a ,add_special_tokens=_a ) ) self.assertListEqual(_a ,_a ) _a : List[Any] = DebertaVaTokenizerFast(_a ,do_lower_case=_a ,split_by_punct=_a ) _a : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a ,add_special_tokens=_a ) ) self.assertListEqual(_a ,_a ) def __lowercase ( self : Any ): '''simple docstring''' _a : Union[str, Any] = self.get_tokenizer() _a : Any = self.get_rust_tokenizer() _a : Optional[Any] = 'I was born in 92000, and this is falsé.' _a : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a ,add_special_tokens=_a ) ) _a : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a ,add_special_tokens=_a ) ) self.assertListEqual(_a ,_a ) _a : Any = tokenizer.encode(_a ,add_special_tokens=_a ) _a : Tuple = rust_tokenizer.encode(_a ,add_special_tokens=_a ) self.assertListEqual(_a ,_a ) _a : str = self.get_rust_tokenizer() _a : str = tokenizer.encode(_a ) _a : Union[str, Any] = rust_tokenizer.encode(_a ) self.assertListEqual(_a ,_a ) def __lowercase ( self : int ): '''simple docstring''' _a : Tuple = 'This is a test' _a : Any = [13, 1, 4398, 25, 21, 1289] _a : Optional[int] = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] _a : Tuple = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] _a : Union[str, Any] = DebertaVaTokenizer(_a ,keep_accents=_a ) _a : int = DebertaVaTokenizerFast(_a ,keep_accents=_a ) _a : Optional[Any] = tokenizer.encode(_a ,add_special_tokens=_a ) self.assertListEqual(_a ,_a ) _a : str = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : Any = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = rust_tokenizer.encode(_a ,add_special_tokens=_a ) self.assertListEqual(_a ,_a ) _a : int = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : Optional[int] = rust_tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a ,_a ) # fmt: off _a : Optional[int] = 'I was born in 92000, and this is falsé.' _a : Tuple = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _a : Optional[Any] = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] _a : List[str] = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _a : int = tokenizer.encode(_a ,add_special_tokens=_a ) self.assertListEqual(_a ,_a ) _a : int = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a ,_a ) _a : str = rust_tokenizer.encode(_a ,add_special_tokens=_a ) self.assertListEqual(_a ,_a ) _a : Union[str, Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : Any = rust_tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a ,_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = DebertaVaTokenizer(_a ) _a : List[str] = tokenizer.encode('sequence builders' ) _a : str = tokenizer.encode('multi-sequence build' ) _a : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_a ) _a : Optional[int] = tokenizer.build_inputs_with_special_tokens(_a ,_a ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] ,_a ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] ,_a ,) @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Tuple = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a ,model_name='microsoft/deberta-v2-xlarge' ,revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' ,)
229
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = '''gpt_neo''' __UpperCAmelCase : Optional[int] = ['''past_key_values'''] __UpperCAmelCase : Optional[int] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] ,_a : Optional[int]=5_0257 ,_a : Tuple=2048 ,_a : Optional[int]=2048 ,_a : Any=24 ,_a : Tuple=[[["global", "local"], 12]] ,_a : Union[str, Any]=16 ,_a : List[Any]=None ,_a : Optional[int]=256 ,_a : Optional[Any]="gelu_new" ,_a : List[Any]=0.0 ,_a : Optional[int]=0.0 ,_a : List[Any]=0.0 ,_a : Union[str, Any]=0.1 ,_a : Optional[Any]=1E-5 ,_a : Optional[Any]=0.02 ,_a : str=True ,_a : Any=5_0256 ,_a : Tuple=5_0256 ,**_a : List[str] ,): '''simple docstring''' _a : Dict = vocab_size _a : Union[str, Any] = max_position_embeddings _a : List[str] = hidden_size _a : Optional[Any] = num_layers _a : Optional[Any] = num_heads _a : Dict = intermediate_size _a : Any = window_size _a : List[str] = activation_function _a : int = resid_dropout _a : Tuple = embed_dropout _a : int = attention_dropout _a : Dict = classifier_dropout _a : Tuple = layer_norm_epsilon _a : List[str] = initializer_range _a : str = use_cache _a : List[str] = bos_token_id _a : Optional[Any] = eos_token_id _a : Tuple = attention_types _a : Union[str, Any] = self.expand_attention_types_params(_a ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ F"""`config.num_layers = {self.num_layers}`. """ '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=_a ,eos_token_id=_a ,**_a ) @staticmethod def __lowercase ( _a : Dict ): '''simple docstring''' _a : Dict = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def UpperCAmelCase_ (__a : str , __a : Optional[int] , __a : Tuple , __a : Dict ): """simple docstring""" import torch _a : Tuple = input.size() _a : Union[str, Any] = len(__a ) _a : Union[str, Any] = shape[dimension] _a : str = torch.arange(0 , __a , __a ) _a : Optional[Any] = torch.div(sizedim - size , __a , rounding_mode='floor' ) + 1 _a : str = torch.arange(__a ) + low_indices[:min_length][:, None] _a : Optional[Any] = [slice(__a )] * rank _a : Dict = indices _a : List[str] = input[s] _a : Optional[int] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__a ) def UpperCAmelCase_ (__a : str , __a : Optional[int] ): """simple docstring""" import torch _a : List[str] = torch.arange(1 , __a ) _a : int = torch.remainder(__a , __a ) _a : Tuple = remainders == 0 _a : Optional[Any] = candidates[divisor_indices] _a : List[Any] = torch.max(__a ) return largest_divisor, torch.div(__a , __a , rounding_mode='floor' ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" @property def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(_a ,direction='inputs' ) _a : Optional[int] = {0: 'batch', 1: 'past_sequence + sequence'} else: _a : List[str] = {0: 'batch', 1: 'sequence'} return common_inputs @property def __lowercase ( self : List[str] ): '''simple docstring''' return self._config.num_heads def __lowercase ( self : Any ,_a : PreTrainedTokenizer ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional[TensorType] = None ,): '''simple docstring''' _a : Dict = super(_a ,self ).generate_dummy_inputs( _a ,batch_size=_a ,seq_length=_a ,is_pair=_a ,framework=_a ) # We need to order the input in the way they appears in the forward() _a : Union[str, Any] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _a, _a : Dict = common_inputs['input_ids'].shape # Not using the same length for past_key_values _a : Any = seqlen + 2 _a : str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a : Tuple = [ (torch.zeros(_a ), torch.zeros(_a )) for _ in range(self.num_layers ) ] _a : List[str] = common_inputs['attention_mask'] if self.use_past: _a : Optional[int] = ordered_inputs['attention_mask'].dtype _a : Optional[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(_a ,_a ,dtype=_a )] ,dim=1 ) return ordered_inputs @property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return 13
229
1
"""simple docstring""" from __future__ import annotations UpperCamelCase_ : List[Any] = [] def __lowercase ( a : list[list[int]] , a : int , a : int ) -> bool: for i in range(len(a ) ): if board[row][i] == 1: return False for i in range(len(a ) ): if board[i][column] == 1: return False for i, j in zip(range(a , -1 , -1 ) , range(a , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(a , -1 , -1 ) , range(a , len(a ) ) ): if board[i][j] == 1: return False return True def __lowercase ( a : list[list[int]] , a : int ) -> bool: if row >= len(a ): solution.append(a ) printboard(a ) print() return True for i in range(len(a ) ): if is_safe(a , a , a ): __snake_case : int =1 solve(a , row + 1 ) __snake_case : Any =0 return False def __lowercase ( a : list[list[int]] ) -> None: for i in range(len(a ) ): for j in range(len(a ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) UpperCamelCase_ : List[Any] = 8 UpperCamelCase_ : Any = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
701
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __lowercase ( a : Dict ) -> str: return EnvironmentCommand() def __lowercase ( a : Optional[int] ) -> List[Any]: return EnvironmentCommand(args.accelerate_config_file ) class _lowercase ( lowerCAmelCase ): @staticmethod def _UpperCamelCase ( a : ArgumentParser ): """simple docstring""" __snake_case : Optional[int] =parser.add_parser('''env''' ) download_parser.set_defaults(func=a ) download_parser.add_argument( '''--accelerate-config_file''' , default=a , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=a ) def __init__( self : Any , a : str , *a : Any ): """simple docstring""" __snake_case : int =accelerate_config_file def _UpperCamelCase ( self : List[str] ): """simple docstring""" __snake_case : List[str] ='''not installed''' if is_safetensors_available(): import safetensors __snake_case : int =safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors __snake_case : List[Any] =f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __snake_case : Dict ='''not installed''' __snake_case : Optional[Any] ='''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __snake_case : Union[str, Any] =accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(a ): __snake_case : int =load_config_from_file(self._accelerate_config_file ).to_dict() __snake_case : Optional[int] =( '''\n'''.join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(a , a ) else f'''\t{accelerate_config}''' ) __snake_case : int ='''not installed''' __snake_case : Any ='''NA''' if is_torch_available(): import torch __snake_case : Tuple =torch.__version__ __snake_case : Optional[Any] =torch.cuda.is_available() __snake_case : Optional[Any] ='''not installed''' __snake_case : Any ='''NA''' if is_tf_available(): import tensorflow as tf __snake_case : Optional[Any] =tf.__version__ try: # deprecated in v2.1 __snake_case : str =tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __snake_case : List[Any] =bool(tf.config.list_physical_devices('''GPU''' ) ) __snake_case : Optional[int] ='''not installed''' __snake_case : Dict ='''not installed''' __snake_case : List[str] ='''not installed''' __snake_case : Optional[int] ='''NA''' if is_flax_available(): import flax import jax import jaxlib __snake_case : Tuple =flax.__version__ __snake_case : Optional[Any] =jax.__version__ __snake_case : str =jaxlib.__version__ __snake_case : Tuple =jax.lib.xla_bridge.get_backend().platform __snake_case : List[str] ={ '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f'''{safetensors_version}''', '''Accelerate version''': f'''{accelerate_version}''', '''Accelerate config''': f'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': f'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': f'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': f'''{flax_version} ({jax_backend})''', '''Jax version''': f'''{jax_version}''', '''JaxLib version''': f'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(a ) ) return info @staticmethod def _UpperCamelCase ( a : List[str] ): """simple docstring""" return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
497
0
def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or number < 0: raise ValueError("Input must be a non-negative integer" ) A_ = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
86
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = old_name if "patch_embed" in old_name: snake_case_ , snake_case_ , snake_case_ = old_name.split("." ) if layer == "0": snake_case_ = old_name.replace("0" , "convolution1" ) elif layer == "1": snake_case_ = old_name.replace("1" , "batchnorm_before" ) elif layer == "3": snake_case_ = old_name.replace("3" , "convolution2" ) else: snake_case_ = old_name.replace("4" , "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d" , _A ): snake_case_ = R"\b\d{2}\b" if bool(re.search(_A , _A ) ): snake_case_ = re.search(R"\d\.\d\d." , _A ).group() else: snake_case_ = re.search(R"\d\.\d." , _A ).group() if int(match[0] ) < 6: snake_case_ = old_name.replace(_A , "" ) snake_case_ = trimmed_name.replace("network" , match[0] + ".meta4D_layers.blocks." + match[2:-1] ) snake_case_ = "intermediate_stages." + trimmed_name else: snake_case_ = old_name.replace(_A , "" ) if int(match[2] ) < num_meta4D_last_stage: snake_case_ = trimmed_name.replace("network" , "meta4D_layers.blocks." + match[2] ) else: snake_case_ = str(int(match[2] ) - num_meta4D_last_stage ) snake_case_ = trimmed_name.replace("network" , "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: snake_case_ = trimmed_name.replace("norm1" , "layernorm1" ) elif "norm2" in old_name: snake_case_ = trimmed_name.replace("norm2" , "layernorm2" ) elif "fc1" in old_name: snake_case_ = trimmed_name.replace("fc1" , "linear_in" ) elif "fc2" in old_name: snake_case_ = trimmed_name.replace("fc2" , "linear_out" ) snake_case_ = "last_stage." + trimmed_name elif "network" in old_name and re.search(R".\d." , _A ): snake_case_ = old_name.replace("network" , "intermediate_stages" ) if "fc" in new_name: snake_case_ = new_name.replace("fc" , "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): snake_case_ = new_name.replace("norm1" , "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): snake_case_ = new_name.replace("norm2" , "batchnorm_after" ) if "proj" in new_name: snake_case_ = new_name.replace("proj" , "projection" ) if "dist_head" in new_name: snake_case_ = new_name.replace("dist_head" , "distillation_classifier" ) elif "head" in new_name: snake_case_ = new_name.replace("head" , "classifier" ) elif "patch_embed" in new_name: snake_case_ = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": snake_case_ = new_name.replace("norm" , "layernorm" ) snake_case_ = "efficientformer." + new_name else: snake_case_ = "efficientformer.encoder." + new_name return new_name def lowerCamelCase__ ( _A , _A ): '''simple docstring''' for key in checkpoint.copy().keys(): snake_case_ = checkpoint.pop(_A ) snake_case_ = val return checkpoint def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ = Image.open(requests.get(_A , stream=_A ).raw ) return image def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ = torch.load(_A , map_location="cpu" )["model"] snake_case_ = EfficientFormerConfig.from_json_file(_A ) snake_case_ = EfficientFormerForImageClassificationWithTeacher(_A ) snake_case_ = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) snake_case_ = config.depths[-1] - config.num_metaad_blocks + 1 snake_case_ = convert_torch_checkpoint(_A , _A ) model.load_state_dict(_A ) model.eval() snake_case_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image snake_case_ = prepare_img() snake_case_ = 256 snake_case_ = 224 snake_case_ = EfficientFormerImageProcessor( size={"shortest_edge": image_size} , crop_size={"height": crop_size, "width": crop_size} , resample=pillow_resamplings["bicubic"] , ) snake_case_ = processor(images=_A , return_tensors="pt" ).pixel_values # original processing pipeline snake_case_ = Compose( [ Resize(_A , interpolation=pillow_resamplings["bicubic"] ), CenterCrop(_A ), ToTensor(), Normalize(_A , _A ), ] ) snake_case_ = image_transforms(_A ).unsqueeze(0 ) assert torch.allclose(_A , _A ) snake_case_ = model(_A ) snake_case_ = outputs.logits snake_case_ = (1, 1000) if "l1" in model_name: snake_case_ = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28] ) assert torch.allclose(logits[0, :10] , _A , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: snake_case_ = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27] ) assert torch.allclose(logits[0, :10] , _A , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: snake_case_ = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78] ) assert logits.shape == expected_shape else: raise ValueError( f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) processor.save_pretrained(_A ) print(f"Processor successfuly saved at {pytorch_dump_path}" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}" , commit_message="Add model" , use_temp_dir=_A , ) processor.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}" , commit_message="Add image processor" , use_temp_dir=_A , ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) lowercase__ : Optional[Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
376
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def lowerCamelCase__ ( a , a=False ): __snake_case = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __snake_case = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def lowerCamelCase__ ( a , a , a=False ): for i in range(config.num_hidden_layers ): if base_model: __snake_case = '' else: __snake_case = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) __snake_case = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case = in_proj_weight[ : config.hidden_size, : ] __snake_case = in_proj_bias[: config.hidden_size] __snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case = in_proj_weight[ -config.hidden_size :, : ] __snake_case = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( a , a , a ): __snake_case = dct.pop(lowerCamelCase_ ) __snake_case = val def lowerCamelCase__ ( ): __snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' __snake_case = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( a , a ): __snake_case = DeiTConfig() # all deit models have fine-tuned heads __snake_case = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __snake_case = 1000 __snake_case = 'huggingface/label-files' __snake_case = 'imagenet-1k-id2label.json' __snake_case = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) __snake_case = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} __snake_case = int(deit_name[-6:-4] ) __snake_case = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): __snake_case = 192 __snake_case = 768 __snake_case = 12 __snake_case = 3 elif deit_name[9:].startswith('small' ): __snake_case = 384 __snake_case = 1536 __snake_case = 12 __snake_case = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): __snake_case = 1024 __snake_case = 4096 __snake_case = 24 __snake_case = 16 # load original model from timm __snake_case = timm.create_model(lowerCamelCase_ , pretrained=lowerCamelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __snake_case = timm_model.state_dict() __snake_case = create_rename_keys(lowerCamelCase_ , lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # load HuggingFace model __snake_case = DeiTForImageClassificationWithTeacher(lowerCamelCase_ ).eval() model.load_state_dict(lowerCamelCase_ ) # Check outputs on an image, prepared by DeiTImageProcessor __snake_case = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __snake_case = DeiTImageProcessor(size=lowerCamelCase_ , crop_size=config.image_size ) __snake_case = image_processor(images=prepare_img() , return_tensors='pt' ) __snake_case = encoding['pixel_values'] __snake_case = model(lowerCamelCase_ ) __snake_case = timm_model(lowerCamelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase_ , outputs.logits , atol=1E-3 ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _lowercase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
706
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
427
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __a( _a ): """simple docstring""" lowerCAmelCase = (DDIMParallelScheduler,) lowerCAmelCase = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ : Dict = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_ : Tuple = 10, 0.0 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : List[str] = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for t in scheduler.timesteps: UpperCAmelCase_ : Tuple = model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).prev_sample return sample def a__ ( self ) -> Optional[int]: for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : Dict = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : str = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def a__ ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE ,beta_end=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Dict: self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE ,prediction_type=_SCREAMING_SNAKE_CASE ,sample_max_value=_SCREAMING_SNAKE_CASE ,) def a__ ( self ) -> str: for t in [1, 10, 49]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ,num_inference_steps=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[Any]: for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ,eta=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : int = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def a__ ( self ) -> Any: UpperCAmelCase_ : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase_ : Optional[Any] = self.get_scheduler_config() UpperCAmelCase_ : Union[str, Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_ : Any = 10, 0.0 scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = self.dummy_model() UpperCAmelCase_ : Optional[Any] = self.dummy_sample_deter UpperCAmelCase_ : Dict = self.dummy_sample_deter + 0.1 UpperCAmelCase_ : Union[str, Any] = self.dummy_sample_deter - 0.1 UpperCAmelCase_ : Optional[Any] = samplea.shape[0] UpperCAmelCase_ : Any = torch.stack([samplea, samplea, samplea] ,dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.arange(_SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) UpperCAmelCase_ : Optional[Any] = scheduler.batch_step_no_noise(_SCREAMING_SNAKE_CASE ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : List[str] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def a__ ( self ) -> List[str]: UpperCAmelCase_ : str = self.full_loop() UpperCAmelCase_ : Optional[Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def a__ ( self ) -> Tuple: UpperCAmelCase_ : List[Any] = self.full_loop(prediction_type='''v_prediction''' ) UpperCAmelCase_ : Union[str, Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Any = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def a__ ( self ) -> Union[str, Any]: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : List[Any] = self.full_loop(set_alpha_to_one=_SCREAMING_SNAKE_CASE ,beta_start=0.01 ) UpperCAmelCase_ : Optional[Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def a__ ( self ) -> str: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : List[Any] = self.full_loop(set_alpha_to_one=_SCREAMING_SNAKE_CASE ,beta_start=0.01 ) UpperCAmelCase_ : Union[str, Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Any = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
30
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : Any = { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/config.json', # See all XGLM models at https://huggingface.co/models?filter=xglm } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'xglm' SCREAMING_SNAKE_CASE = ['past_key_values'] SCREAMING_SNAKE_CASE = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any]=25_6008 , _SCREAMING_SNAKE_CASE: Dict=2048 , _SCREAMING_SNAKE_CASE: int=1024 , _SCREAMING_SNAKE_CASE: Dict=4096 , _SCREAMING_SNAKE_CASE: Optional[Any]=24 , _SCREAMING_SNAKE_CASE: int=16 , _SCREAMING_SNAKE_CASE: List[str]="gelu" , _SCREAMING_SNAKE_CASE: Optional[Any]=0.1 , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.0 , _SCREAMING_SNAKE_CASE: Any=0.02 , _SCREAMING_SNAKE_CASE: Any=True , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: Any=2 , _SCREAMING_SNAKE_CASE: str=1 , _SCREAMING_SNAKE_CASE: Dict=0 , _SCREAMING_SNAKE_CASE: Dict=2 , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = vocab_size __lowerCAmelCase : int = max_position_embeddings __lowerCAmelCase : Optional[Any] = d_model __lowerCAmelCase : List[Any] = ffn_dim __lowerCAmelCase : int = num_layers __lowerCAmelCase : Any = attention_heads __lowerCAmelCase : int = activation_function __lowerCAmelCase : List[Any] = dropout __lowerCAmelCase : Optional[int] = attention_dropout __lowerCAmelCase : Optional[int] = activation_dropout __lowerCAmelCase : Optional[int] = layerdrop __lowerCAmelCase : Optional[int] = init_std __lowerCAmelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase : Dict = use_cache super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
293
0
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCAmelCase ( lowercase_): """simple docstring""" def __init__( self : int , UpperCamelCase__ : Union[str, "sqlalchemy.sql.Selectable"] , UpperCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , UpperCamelCase__ : Optional[Features] = None , UpperCamelCase__ : str = None , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Tuple , ) -> Dict: super().__init__(features=UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ , **UpperCamelCase__ ) _UpperCamelCase =Sql( cache_dir=UpperCamelCase__ , features=UpperCamelCase__ , sql=UpperCamelCase__ , con=UpperCamelCase__ , **UpperCamelCase__ , ) def UpperCamelCase__ ( self : Dict ) -> str: _UpperCamelCase =None _UpperCamelCase =None _UpperCamelCase =None _UpperCamelCase =None self.builder.download_and_prepare( download_config=UpperCamelCase__ , download_mode=UpperCamelCase__ , verification_mode=UpperCamelCase__ , base_path=UpperCamelCase__ , ) # Build dataset for splits _UpperCamelCase =self.builder.as_dataset( split='''train''' , verification_mode=UpperCamelCase__ , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase__ : Dataset , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , **UpperCamelCase__ : List[Any] , ) -> Optional[int]: if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) _UpperCamelCase =dataset _UpperCamelCase =name _UpperCamelCase =con _UpperCamelCase =batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _UpperCamelCase =num_proc _UpperCamelCase =to_sql_kwargs def UpperCamelCase__ ( self : Dict ) -> int: _UpperCamelCase =self.to_sql_kwargs.pop('''sql''' , UpperCamelCase__ ) _UpperCamelCase =self.to_sql_kwargs.pop('''con''' , UpperCamelCase__ ) _UpperCamelCase =self.to_sql_kwargs.pop('''index''' , UpperCamelCase__ ) _UpperCamelCase =self._write(index=UpperCamelCase__ , **self.to_sql_kwargs ) return written def UpperCamelCase__ ( self : Optional[int] , UpperCamelCase__ : List[Any] ) -> int: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase =args _UpperCamelCase ={**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs _UpperCamelCase =query_table( table=self.dataset.data , key=slice(UpperCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) _UpperCamelCase =batch.to_pandas() _UpperCamelCase =df.to_sql(self.name , self.con , index=UpperCamelCase__ , **UpperCamelCase__ ) return num_rows or len(UpperCamelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : Union[str, Any] ) -> int: _UpperCamelCase =0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _UpperCamelCase , _UpperCamelCase =len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , UpperCamelCase__ , UpperCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
708
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __lowerCamelCase : List[Any] = data_utils.TransfoXLTokenizer __lowerCamelCase : str = data_utils.TransfoXLCorpus __lowerCamelCase : Optional[int] = data_utils __lowerCamelCase : int = data_utils def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__SCREAMING_SNAKE_CASE , '''rb''' ) as fp: _UpperCamelCase =pickle.load(__SCREAMING_SNAKE_CASE , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _UpperCamelCase =pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(f'''Save vocabulary to {pytorch_vocab_dump_path}''' ) _UpperCamelCase =corpus.vocab.__dict__ torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCamelCase =corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , __SCREAMING_SNAKE_CASE ) _UpperCamelCase =pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(f'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _UpperCamelCase =os.path.abspath(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =os.path.abspath(__SCREAMING_SNAKE_CASE ) print(f'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": _UpperCamelCase =TransfoXLConfig() else: _UpperCamelCase =TransfoXLConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) _UpperCamelCase =TransfoXLLMHeadModel(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =load_tf_weights_in_transfo_xl(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model _UpperCamelCase =os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCamelCase =os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(f'''Save PyTorch model to {os.path.abspath(__SCREAMING_SNAKE_CASE )}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) print(f'''Save configuration file to {os.path.abspath(__SCREAMING_SNAKE_CASE )}''' ) with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) __lowerCamelCase : Optional[int] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
271
0
from sklearn.metrics import recall_score import datasets _lowerCAmelCase = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ _lowerCAmelCase = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ _lowerCAmelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def snake_case_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def snake_case_ ( self , A__ , A__ , A__=None , A__=1 , A__="binary" , A__=None , A__="warn" , ): """simple docstring""" UpperCAmelCase_: List[Any] = recall_score( A__ , A__ , labels=A__ , pos_label=A__ , average=A__ , sample_weight=A__ , zero_division=A__ , ) return {"recall": float(A__ ) if score.size == 1 else score}
137
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """microsoft/swinv2-tiny-patch4-window8-256""": ( """https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json""" ), } class UpperCAmelCase__ ( snake_case__ ): snake_case_ = '''swinv2''' snake_case_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , A__=224 , A__=4 , A__=3 , A__=96 , A__=[2, 2, 6, 2] , A__=[3, 6, 12, 24] , A__=7 , A__=4.0 , A__=True , A__=0.0 , A__=0.0 , A__=0.1 , A__="gelu" , A__=False , A__=0.02 , A__=1E-5 , A__=32 , **A__ , ): """simple docstring""" super().__init__(**A__ ) UpperCAmelCase_: List[str] = image_size UpperCAmelCase_: List[str] = patch_size UpperCAmelCase_: str = num_channels UpperCAmelCase_: Optional[int] = embed_dim UpperCAmelCase_: str = depths UpperCAmelCase_: Optional[Any] = len(A__ ) UpperCAmelCase_: Optional[Any] = num_heads UpperCAmelCase_: Dict = window_size UpperCAmelCase_: Dict = mlp_ratio UpperCAmelCase_: Optional[Any] = qkv_bias UpperCAmelCase_: Optional[Any] = hidden_dropout_prob UpperCAmelCase_: Optional[int] = attention_probs_dropout_prob UpperCAmelCase_: int = drop_path_rate UpperCAmelCase_: Union[str, Any] = hidden_act UpperCAmelCase_: Any = use_absolute_embeddings UpperCAmelCase_: Optional[int] = layer_norm_eps UpperCAmelCase_: str = initializer_range UpperCAmelCase_: Tuple = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_: Union[str, Any] = int(embed_dim * 2 ** (len(A__ ) - 1) ) UpperCAmelCase_: str = (0, 0, 0, 0)
137
1
import numpy as np def __lowerCAmelCase ( __lowerCamelCase : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
456
def __lowerCAmelCase ( __lowerCamelCase : int = 3 , __lowerCamelCase : int = 7 , __lowerCamelCase : int = 1000000 ) -> int: __lowerCAmelCase =0 __lowerCAmelCase =1 for current_denominator in range(1 , limit + 1 ): __lowerCAmelCase =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __lowerCAmelCase =current_numerator __lowerCAmelCase =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
456
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _A ( _lowercase ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowerCamelCase (nn.Module ): def __init__( self: Union[str, Any],A_: nn.Module,A_: int ): '''simple docstring''' super().__init__() __UpperCamelCase = module __UpperCamelCase = nn.Sequential( nn.Linear(module.in_features,A_,bias=A_ ),nn.Linear(A_,module.out_features,bias=A_ ),) __UpperCamelCase = (2.0 / (5 * min(module.in_features,module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight,std=A_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def snake_case_ ( self: Optional[Any],A_: int,*A_: Union[str, Any],**A_: str ): '''simple docstring''' return self.module(A_,*A_,**A_ ) + self.adapter(A_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCamelCase (unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _lowercase = """bigscience/bloom-1b7""" # Constant values _lowercase = 2.109659552692574 _lowercase = """Hello my name is""" _lowercase = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) _lowercase = 10 def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained(self.model_name ) class __lowerCamelCase (_a ): def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # Models and tokenizer __UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name,torch_dtype=torch.floataa,device_map='auto' ) __UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.model_abit.config self.assertTrue(hasattr(A_,'quantization_config' ) ) __UpperCamelCase = config.to_dict() __UpperCamelCase = config.to_diff_dict() __UpperCamelCase = config.to_json_string() def snake_case_ ( self: Optional[int] ): '''simple docstring''' from bitsandbytes.nn import Paramsabit __UpperCamelCase = self.model_fpaa.get_memory_footprint() __UpperCamelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit,self.EXPECTED_RELATIVE_DIFFERENCE ) __UpperCamelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def snake_case_ ( self: str ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(A_,torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ) __UpperCamelCase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ),max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0],skip_special_tokens=A_ ),self.EXPECTED_OUTPUTS ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = BitsAndBytesConfig() __UpperCamelCase = True __UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name,quantization_config=A_,device_map='auto' ) __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ) __UpperCamelCase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ),max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0],skip_special_tokens=A_ ),self.EXPECTED_OUTPUTS ) def snake_case_ ( self: List[str] ): '''simple docstring''' with self.assertRaises(A_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BitsAndBytesConfig() with self.assertRaises(A_ ): __UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name,quantization_config=A_,load_in_abit=A_,device_map='auto',bnb_abit_quant_type='nf4',) def snake_case_ ( self: Tuple ): '''simple docstring''' with self.assertRaises(A_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(A_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(A_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(A_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(A_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ) __UpperCamelCase = self.model_fpaa.to(torch.floataa ) __UpperCamelCase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ),max_new_tokens=10 ) # Check this does not throw an error __UpperCamelCase = self.model_fpaa.to('cpu' ) # Check this does not throw an error __UpperCamelCase = self.model_fpaa.half() # Check this does not throw an error __UpperCamelCase = self.model_fpaa.float() def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('t5-small',load_in_abit=A_,device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCamelCase (unittest.TestCase ): @classmethod def snake_case_ ( cls: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 't5-small' __UpperCamelCase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __UpperCamelCase = AutoTokenizer.from_pretrained(cls.model_name ) __UpperCamelCase = 'Translate in German: Hello, my dog is cute' def snake_case_ ( self: Dict ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: List[str] ): '''simple docstring''' from transformers import TaForConditionalGeneration __UpperCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules __UpperCamelCase = None # test with `t5-small` __UpperCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' ) __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ).to(0 ) __UpperCamelCase = model.generate(**A_ ) # test with `flan-t5-small` __UpperCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name,load_in_abit=A_,device_map='auto' ) __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ).to(0 ) __UpperCamelCase = model.generate(**A_ ) __UpperCamelCase = modules def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __UpperCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q,bnb.nn.Linearabit ) ) __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ).to(0 ) __UpperCamelCase = model.generate(**A_ ) # test with `flan-t5-small` __UpperCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name,load_in_abit=A_,device_map='auto' ) __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ).to(0 ) __UpperCamelCase = model.generate(**A_ ) class __lowerCamelCase (_a ): def snake_case_ ( self: Tuple ): '''simple docstring''' super().setUp() # model_name __UpperCamelCase = 'bigscience/bloom-560m' __UpperCamelCase = 't5-small' # Different types of model __UpperCamelCase = AutoModel.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' ) # Sequence classification model __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name,load_in_abit=A_,device_map='auto' ) # CausalLM model __UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' ) # Seq2seq model __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name,load_in_abit=A_,device_map='auto' ) def snake_case_ ( self: Any ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: str ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowerCamelCase (_a ): def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() def snake_case_ ( self: List[str] ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = pipeline( 'text-generation',model=self.model_name,model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa},max_new_tokens=self.MAX_NEW_TOKENS,) # Real second forward pass __UpperCamelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'],self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowerCamelCase (_a ): def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' super().setUp() def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name,load_in_abit=A_,device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ),{0, 1} ) # Check that inference pass works on the model __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ) # Second real batch __UpperCamelCase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ),max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0],skip_special_tokens=A_ ),self.EXPECTED_OUTPUTS ) class __lowerCamelCase (_a ): def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'facebook/opt-350m' super().setUp() def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name,load_in_abit=A_ ) self.assertEqual(set(model.hf_device_map.values() ),{torch.cuda.current_device()} ) for param in model.parameters(): __UpperCamelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __UpperCamelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(A_ ) ): __UpperCamelCase = LoRALayer(module.q_proj,rank=16 ) __UpperCamelCase = LoRALayer(module.k_proj,rank=16 ) __UpperCamelCase = LoRALayer(module.v_proj,rank=16 ) # Step 3: dummy batch __UpperCamelCase = self.tokenizer('Test batch ',return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __UpperCamelCase = model.forward(**A_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(A_,A_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(A_,nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowerCamelCase (_a ): _lowercase = """gpt2-xl""" _lowercase = 3.3191854854152187
1
"""simple docstring""" class _lowerCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = data _SCREAMING_SNAKE_CASE : Tuple = previous _SCREAMING_SNAKE_CASE : Any = next_node def __str__( self ) -> str: return F"""{self.data}""" def A ( self ) -> int: return self.data def A ( self ) -> Dict: return self.next def A ( self ) -> Union[str, Any]: return self.previous class _lowerCAmelCase : def __init__( self , lowerCAmelCase_ ) -> List[str]: _SCREAMING_SNAKE_CASE : List[Any] = head def __iter__( self ) -> Any: return self def A ( self ) -> Dict: if not self.current: raise StopIteration else: _SCREAMING_SNAKE_CASE : Any = self.current.get_data() _SCREAMING_SNAKE_CASE : Dict = self.current.get_next() return value class _lowerCAmelCase : def __init__( self ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = None # First node in list _SCREAMING_SNAKE_CASE : Union[str, Any] = None # Last node in list def __str__( self ) -> Any: _SCREAMING_SNAKE_CASE : str = self.head _SCREAMING_SNAKE_CASE : int = [] while current is not None: nodes.append(current.get_data() ) _SCREAMING_SNAKE_CASE : List[Any] = current.get_next() return " ".join(str(lowerCAmelCase_ ) for node in nodes ) def __contains__( self , lowerCAmelCase_ ) -> Any: _SCREAMING_SNAKE_CASE : Any = self.head while current: if current.get_data() == value: return True _SCREAMING_SNAKE_CASE : int = current.get_next() return False def __iter__( self ) -> str: return LinkedListIterator(self.head ) def A ( self ) -> Dict: if self.head: return self.head.get_data() return None def A ( self ) -> List[Any]: if self.tail: return self.tail.get_data() return None def A ( self , lowerCAmelCase_ ) -> None: if self.head is None: _SCREAMING_SNAKE_CASE : List[Any] = node _SCREAMING_SNAKE_CASE : Dict = node else: self.insert_before_node(self.head , lowerCAmelCase_ ) def A ( self , lowerCAmelCase_ ) -> None: if self.head is None: self.set_head(lowerCAmelCase_ ) else: self.insert_after_node(self.tail , lowerCAmelCase_ ) def A ( self , lowerCAmelCase_ ) -> None: _SCREAMING_SNAKE_CASE : Any = Node(lowerCAmelCase_ ) if self.head is None: self.set_head(lowerCAmelCase_ ) else: self.set_tail(lowerCAmelCase_ ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _SCREAMING_SNAKE_CASE : Optional[Any] = node _SCREAMING_SNAKE_CASE : List[Any] = node.previous if node.get_previous() is None: _SCREAMING_SNAKE_CASE : List[Any] = node_to_insert else: _SCREAMING_SNAKE_CASE : Optional[int] = node_to_insert _SCREAMING_SNAKE_CASE : Any = node_to_insert def A ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _SCREAMING_SNAKE_CASE : Optional[Any] = node _SCREAMING_SNAKE_CASE : Optional[int] = node.next if node.get_next() is None: _SCREAMING_SNAKE_CASE : Tuple = node_to_insert else: _SCREAMING_SNAKE_CASE : Any = node_to_insert _SCREAMING_SNAKE_CASE : List[str] = node_to_insert def A ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _SCREAMING_SNAKE_CASE : List[Any] = 1 _SCREAMING_SNAKE_CASE : str = Node(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.head while node: if current_position == position: self.insert_before_node(lowerCAmelCase_ , lowerCAmelCase_ ) return current_position += 1 _SCREAMING_SNAKE_CASE : List[str] = node.next self.insert_after_node(self.tail , lowerCAmelCase_ ) def A ( self , lowerCAmelCase_ ) -> Node: _SCREAMING_SNAKE_CASE : Tuple = self.head while node: if node.get_data() == item: return node _SCREAMING_SNAKE_CASE : Dict = node.get_next() raise Exception('Node not found' ) def A ( self , lowerCAmelCase_ ) -> int: if (node := self.get_node(lowerCAmelCase_ )) is not None: if node == self.head: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.head.get_next() if node == self.tail: _SCREAMING_SNAKE_CASE : int = self.tail.get_previous() self.remove_node_pointers(lowerCAmelCase_ ) @staticmethod def A ( lowerCAmelCase_ ) -> None: if node.get_next(): _SCREAMING_SNAKE_CASE : List[Any] = node.previous if node.get_previous(): _SCREAMING_SNAKE_CASE : str = node.next _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : List[Any] = None def A ( self ) -> List[str]: return self.head is None def lowercase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
621
0
def lowercase ( __A : list[int] , __A : int ) -> List[Any]: '''simple docstring''' snake_case : Optional[int] = len(__A ) snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): snake_case : int = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): snake_case : Optional[Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: snake_case : Optional[int] = subset[i - 1][j] if arr[i - 1] <= j: snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
702
from __future__ import annotations from collections import Counter from random import random class _A : '''simple docstring''' def __init__( self ): '''simple docstring''' snake_case : Optional[Any] = {} def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : int = {} def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE_ ) if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = probability def snake_case_ ( self ): '''simple docstring''' return list(self.connections ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Union[str, Any] = 0 snake_case : Optional[int] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowercase ( __A : str , __A : list[tuple[str, str, float]] , __A : int ) -> dict[str, int]: '''simple docstring''' snake_case : List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__A , __A , __A ) snake_case : Dict = Counter(graph.get_nodes() ) snake_case : int = start for _ in range(__A ): snake_case : Optional[int] = graph.transition(__A ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
315
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor snake_case = logging.get_logger(__name__) class A_ ( UpperCAmelCase ): """simple docstring""" def __init__( self : str ,*__A : Dict ,**__A : List[Any] ) -> None: warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' ,__A ,) super().__init__(*__A ,**__A )
67
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[int] = logging.get_logger(__name__) __lowercase : Optional[int] = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class __lowercase ( _lowercase ): lowerCamelCase : List[str] = "luke" def __init__(self , A=5_0_2_6_7 , A=5_0_0_0_0_0 , A=7_6_8 , A=2_5_6 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1E-12 , A=True , A=None , A=1 , A=0 , A=2 , **A , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) lowerCamelCase_ : Dict = vocab_size lowerCamelCase_ : List[str] = entity_vocab_size lowerCamelCase_ : Dict = hidden_size lowerCamelCase_ : str = entity_emb_size lowerCamelCase_ : List[str] = num_hidden_layers lowerCamelCase_ : List[Any] = num_attention_heads lowerCamelCase_ : int = hidden_act lowerCamelCase_ : List[str] = intermediate_size lowerCamelCase_ : Tuple = hidden_dropout_prob lowerCamelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase_ : Any = max_position_embeddings lowerCamelCase_ : Any = type_vocab_size lowerCamelCase_ : List[str] = initializer_range lowerCamelCase_ : Any = layer_norm_eps lowerCamelCase_ : Union[str, Any] = use_entity_aware_attention lowerCamelCase_ : Optional[Any] = classifier_dropout
422
0
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata __a = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class __lowercase ( tr.AbstractTransform ): def __init__( self : Any , __lowerCamelCase : str = " " ) -> List[Any]: """simple docstring""" UpperCAmelCase = sentence_delimiter def _lowercase ( self : List[Any] , __lowerCamelCase : str ) -> int: """simple docstring""" return list(__lowerCamelCase ) def _lowercase ( self : str , __lowerCamelCase : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase = [] for sent_idx, sentence in enumerate(__lowerCamelCase ): chars.extend(self.process_string(__lowerCamelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__lowerCamelCase ) - 1: chars.append(self.sentence_delimiter ) return chars __a = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __a = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __a = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ __a = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ __a = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def _lowercase ( self : Tuple ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def _lowercase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]=False ) -> List[str]: """simple docstring""" if concatenate_texts: return jiwer.compute_measures( __lowerCamelCase , __lowerCamelCase , truth_transform=__lowerCamelCase , hypothesis_transform=__lowerCamelCase , )["wer"] UpperCAmelCase = 0 UpperCAmelCase = 0 for prediction, reference in zip(__lowerCamelCase , __lowerCamelCase ): UpperCAmelCase = jiwer.compute_measures( __lowerCamelCase , __lowerCamelCase , truth_transform=__lowerCamelCase , hypothesis_transform=__lowerCamelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
703
import numpy class __lowercase : def __init__( self : Union[str, Any] , __lowerCamelCase : numpy.ndarray , __lowerCamelCase : numpy.ndarray ) -> None: """simple docstring""" UpperCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. UpperCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. UpperCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. UpperCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. UpperCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. UpperCAmelCase = numpy.zeros(output_array.shape ) def _lowercase ( self : List[str] ) -> numpy.ndarray: """simple docstring""" UpperCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. UpperCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. UpperCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def _lowercase ( self : Optional[Any] ) -> None: """simple docstring""" UpperCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) UpperCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) UpperCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _lowercase ( self : Any , __lowerCamelCase : numpy.ndarray , __lowerCamelCase : int , __lowerCamelCase : bool ) -> None: """simple docstring""" for iteration in range(1 , iterations + 1 ): UpperCAmelCase = self.feedforward() self.back_propagation() if give_loss: UpperCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def _lowercase ( self : List[str] , __lowerCamelCase : numpy.ndarray ) -> int: """simple docstring""" UpperCAmelCase = input_arr UpperCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) UpperCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) UpperCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _UpperCamelCase ( lowerCAmelCase_ ) ->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def _UpperCamelCase ( lowerCAmelCase_ ) ->numpy.ndarray: return (value) * (1 - (value)) def _UpperCamelCase ( ) ->int: UpperCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. UpperCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. UpperCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=lowerCAmelCase_ , output_array=lowerCAmelCase_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=lowerCAmelCase_ , iterations=1_0 , give_loss=lowerCAmelCase_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
627
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "gpt_bigcode" lowercase_ = ["past_key_values"] lowercase_ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self : str , UpperCAmelCase_ : Optional[int]=50_257 , UpperCAmelCase_ : List[Any]=1_024 , UpperCAmelCase_ : Tuple=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Union[str, Any]="gelu_pytorch_tanh" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[Any]=1E-5 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=50_256 , UpperCAmelCase_ : List[str]=50_256 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=True , **UpperCAmelCase_ : List[str] , ) ->List[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =vocab_size lowerCamelCase__: List[Any] =n_positions lowerCamelCase__: List[Any] =n_embd lowerCamelCase__: Tuple =n_layer lowerCamelCase__: Optional[Any] =n_head lowerCamelCase__: Any =n_inner lowerCamelCase__: Optional[int] =activation_function lowerCamelCase__: Any =resid_pdrop lowerCamelCase__: Union[str, Any] =embd_pdrop lowerCamelCase__: Union[str, Any] =attn_pdrop lowerCamelCase__: List[str] =layer_norm_epsilon lowerCamelCase__: List[str] =initializer_range lowerCamelCase__: Optional[int] =scale_attn_weights lowerCamelCase__: List[Any] =use_cache lowerCamelCase__: Any =attention_softmax_in_fpaa lowerCamelCase__: Dict =scale_attention_softmax_in_fpaa lowerCamelCase__: List[Any] =multi_query lowerCamelCase__: Optional[int] =bos_token_id lowerCamelCase__: int =eos_token_id super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
59
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: Tuple =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Optional[int] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: List[Any] =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Tuple =tmp_path / "cache" lowerCamelCase__: Optional[Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Dict: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Tuple =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Optional[Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: Tuple =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Tuple =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: List[Any] =features.copy() if features else default_expected_features lowerCamelCase__: int =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Optional[Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Union[str, Any]: """simple docstring""" if split: lowerCamelCase__: Any ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Any ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: str =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" lowerCamelCase__: List[str] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: List[str] =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: List[str] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[str]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: Optional[Any] =Features({"image": Image()} ) lowerCamelCase__: Optional[int] =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Dict =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: Optional[Any] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert get_writer_batch_size(__a ) == expected
59
1
"""simple docstring""" def lowercase ( UpperCamelCase : list[list[int]] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[int] ): """simple docstring""" # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowercase ( UpperCamelCase : list[list[int]] , UpperCamelCase : list[int] , UpperCamelCase : int ): """simple docstring""" # Base Case if curr_ind == len(UpperCamelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(UpperCamelCase ) ): if valid_connection(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): # Insert current vertex into path as next transition A__ : Any =next_ver # Validate created path if util_hamilton_cycle(UpperCamelCase , UpperCamelCase , curr_ind + 1 ): return True # Backtrack A__ : Tuple =-1 return False def lowercase ( UpperCamelCase : list[list[int]] , UpperCamelCase : int = 0 ): """simple docstring""" A__ : List[Any] =[-1] * (len(UpperCamelCase ) + 1) # initialize start and end of path with starting index A__ : List[Any] =start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(UpperCamelCase , UpperCamelCase , 1 ) else []
595
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __lowerCAmelCase ( unittest.TestCase): '''simple docstring''' def _UpperCAmelCase ( self : str ): A__ : Optional[Any] =[ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(UpperCamelCase__ ) ) def _UpperCAmelCase ( self : Optional[int] ): A__ : List[str] =[ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(UpperCamelCase__ ) ) def _UpperCAmelCase ( self : Any ): A__ : Union[str, Any] =[ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(UpperCamelCase__ ) ) def _UpperCAmelCase ( self : Optional[int] ): A__ : int =[ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(UpperCamelCase__ ) ) def _UpperCAmelCase ( self : int ): A__ : List[Any] =[ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(UpperCamelCase__ ) ) def _UpperCAmelCase ( self : List[str] ): A__ : int =[ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] A__ : Dict ="fp16" self.assertTrue(is_safetensors_compatible(UpperCamelCase__ , variant=UpperCamelCase__ ) ) def _UpperCAmelCase ( self : Tuple ): A__ : Optional[Any] =[ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] A__ : Any ="fp16" self.assertTrue(is_safetensors_compatible(UpperCamelCase__ , variant=UpperCamelCase__ ) ) def _UpperCAmelCase ( self : Optional[int] ): # pass variant but use the non-variant filenames A__ : int =[ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] A__ : Dict ="fp16" self.assertTrue(is_safetensors_compatible(UpperCamelCase__ , variant=UpperCamelCase__ ) ) def _UpperCAmelCase ( self : str ): A__ : Dict =[ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] A__ : int ="fp16" self.assertFalse(is_safetensors_compatible(UpperCamelCase__ , variant=UpperCamelCase__ ) ) def _UpperCAmelCase ( self : List[str] ): A__ : Optional[int] =[ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] A__ : Any ="fp16" self.assertTrue(is_safetensors_compatible(UpperCamelCase__ , variant=UpperCamelCase__ ) ) def _UpperCAmelCase ( self : List[Any] ): # pass variant but use the non-variant filenames A__ : int =[ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] A__ : List[str] ="fp16" self.assertTrue(is_safetensors_compatible(UpperCamelCase__ , variant=UpperCamelCase__ ) ) def _UpperCAmelCase ( self : List[str] ): A__ : Optional[int] =[ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] A__ : Tuple ="fp16" self.assertFalse(is_safetensors_compatible(UpperCamelCase__ , variant=UpperCamelCase__ ) )
595
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __lowercase : Tuple = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase : List[Any] ): if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" __lowercase :Union[str, Any] = ["pixel_values"] def __init__( self , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = PILImageResampling.BILINEAR , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = 1 / 255 , UpperCamelCase__ = True , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__(**__lowerCamelCase ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 256} lowerCamelCase_ = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(__lowerCamelCase , param_name='''crop_size''' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = resample lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = offset lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = PILImageResampling.BILINEAR , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' lowerCamelCase_ = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" in size: lowerCamelCase_ = get_resize_output_image_size(__lowerCamelCase , size['''shortest_edge'''] , default_to_square=__lowerCamelCase ) elif "height" in size and "width" in size: lowerCamelCase_ = (size['height'], size['width']) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Any: '''simple docstring''' lowerCamelCase_ = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(__lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=__lowerCamelCase , **__lowerCamelCase ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = image.astype(np.floataa ) if offset: lowerCamelCase_ = image - (scale / 2) return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , ) -> Union[str, Any]: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowerCamelCase_ = to_numpy_array(__lowerCamelCase ) if do_resize: lowerCamelCase_ = self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) if do_center_crop: lowerCamelCase_ = self.center_crop(__lowerCamelCase , size=__lowerCamelCase ) if do_rescale: lowerCamelCase_ = self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase , offset=__lowerCamelCase ) if do_normalize: lowerCamelCase_ = self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) lowerCamelCase_ = to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) return image def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = offset if offset is not None else self.offset lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(__lowerCamelCase , param_name='''crop_size''' ) if not valid_images(__lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowerCamelCase_ = make_batched(__lowerCamelCase ) lowerCamelCase_ = [ [ self._preprocess_image( image=__lowerCamelCase , do_resize=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , do_center_crop=__lowerCamelCase , crop_size=__lowerCamelCase , do_rescale=__lowerCamelCase , rescale_factor=__lowerCamelCase , offset=__lowerCamelCase , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , data_format=__lowerCamelCase , ) for img in video ] for video in videos ] lowerCamelCase_ = {'pixel_values': videos} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
142
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class lowercase_ ( lowerCAmelCase_ ): def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : Tuple = tempfile.mkdtemp() snake_case__ : Dict = 8 # DPR tok snake_case__ : Any = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] snake_case__ : Optional[int] = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) snake_case__ : Tuple = os.path.join(__lowerCamelCase , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok snake_case__ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] snake_case__ : str = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) snake_case__ : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] snake_case__ : Any = {'unk_token': '<unk>'} snake_case__ : List[str] = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) snake_case__ : Dict = os.path.join(__lowerCamelCase , BART_VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ : int = os.path.join(__lowerCamelCase , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__lowerCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__lowerCamelCase ) ) def _lowerCAmelCase ( self : Optional[int] ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def _lowerCAmelCase ( self : Union[str, Any] ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def _lowerCAmelCase ( self : Any ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def _lowerCAmelCase ( self : int ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self : str ): snake_case__ : int = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _lowerCAmelCase ( self : Any ): snake_case__ : List[str] = self.get_dummy_dataset() snake_case__ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: snake_case__ : Optional[Any] = dataset snake_case__ : List[Any] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _lowerCAmelCase ( self : List[Any] , __lowerCamelCase : bool ): snake_case__ : Union[str, Any] = self.get_dummy_dataset() snake_case__ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: snake_case__ : List[Any] = os.path.join(self.tmpdirname , 'dataset' ) snake_case__ : List[str] = os.path.join(self.tmpdirname , 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) ) del dataset snake_case__ : Optional[int] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: snake_case__ : Union[str, Any] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __lowerCamelCase ) , ) return retriever def _lowerCAmelCase ( self : Tuple ): snake_case__ : Dict = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case__ : List[str] = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) ) snake_case__ : Optional[int] = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' ) snake_case__ : Optional[Any] = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(__lowerCamelCase , open(__lowerCamelCase , 'wb' ) ) snake_case__ : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) snake_case__ : List[str] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _lowerCAmelCase ( self : List[Any] ): snake_case__ : List[str] = 1 snake_case__ : int = self.get_dummy_canonical_hf_index_retriever() snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ : int = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : List[str] ): snake_case__ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: snake_case__ : Union[str, Any] = self.get_dummy_dataset() retriever.save_pretrained(__lowerCamelCase ) snake_case__ : List[Any] = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) snake_case__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Tuple = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCAmelCase ( self : int ): snake_case__ : Any = 1 snake_case__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) snake_case__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ : List[str] = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : int ): snake_case__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCamelCase ) snake_case__ : int = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : List[str] = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCAmelCase ( self : List[str] ): snake_case__ : Any = 1 snake_case__ : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) snake_case__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ : List[Any] = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCamelCase ) snake_case__ : int = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) snake_case__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : List[Any] = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCAmelCase ( self : int ): snake_case__ : Tuple = 1 snake_case__ : Tuple = self.get_dummy_legacy_index_retriever() snake_case__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ : List[str] = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : Union[str, Any] ): snake_case__ : Any = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCamelCase ) snake_case__ : Dict = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) snake_case__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : List[Any] = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _lowerCAmelCase ( self : Any ): import torch snake_case__ : Optional[Any] = 1 snake_case__ : int = self.get_dummy_canonical_hf_index_retriever() snake_case__ : List[Any] = [[5, 7], [10, 11]] snake_case__ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Any = retriever(__lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase ) snake_case__ , snake_case__ , snake_case__ : Any = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , np.ndarray ) snake_case__ : Dict = retriever( __lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase , return_tensors='pt' , ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[Any] = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__lowerCamelCase , torch.Tensor ) self.assertIsInstance(__lowerCamelCase , torch.Tensor ) self.assertIsInstance(__lowerCamelCase , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : List[Any] = self.get_dpr_ctx_encoder_tokenizer() snake_case__ : List[Any] = 1 snake_case__ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) retriever.set_ctx_encoder_tokenizer(__lowerCamelCase ) snake_case__ : Optional[int] = [[5, 7], [10, 11]] snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Tuple = retriever(__lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase ) self.assertEqual( len(__lowerCamelCase ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , __lowerCamelCase ) # check for doc token related keys in dictionary.
270
0
'''simple docstring''' from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): '''simple docstring''' _A = """dandelin/vilt-b32-finetuned-vqa""" _A = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) _A = """image_qa""" _A = AutoProcessor _A = AutoModelForVisualQuestionAnswering _A = ["""image""", """text"""] _A = ["""text"""] def __init__( self , *lowercase__ , **lowercase__ ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*lowercase__ , **lowercase__ ) def __lowerCamelCase ( self , lowercase__ , lowercase__ ): """simple docstring""" return self.pre_processor(lowercase__ , lowercase__ , return_tensors="pt" ) def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" with torch.no_grad(): return self.model(**lowercase__ ).logits def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
717
'''simple docstring''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def __lowerCamelCase ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
68
0
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() def A ( self : List[Any]): _A : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') _A : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') _A : Tuple = 'xvjiarui/stable-diffusion-2-inpainting' _A , _A : List[Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE) _A : Dict = 'Face of a yellow cat, high resolution, sitting on a park bench' _A : Any = jax.random.PRNGKey(0) _A : List[str] = 50 _A : Union[str, Any] = jax.device_count() _A : Union[str, Any] = num_samples * [prompt] _A : List[Any] = num_samples * [init_image] _A : Dict = num_samples * [mask_image] _A , _A , _A : List[Any] = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) # shard inputs and rng _A : Union[str, Any] = replicate(SCREAMING_SNAKE_CASE) _A : List[Any] = jax.random.split(SCREAMING_SNAKE_CASE , jax.device_count()) _A : List[str] = shard(SCREAMING_SNAKE_CASE) _A : List[str] = shard(SCREAMING_SNAKE_CASE) _A : Union[str, Any] = shard(SCREAMING_SNAKE_CASE) _A : Dict = pipeline( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , jit=SCREAMING_SNAKE_CASE) _A : Tuple = output.images.reshape(SCREAMING_SNAKE_CASE , 512 , 512 , 3) _A : Union[str, Any] = images[0, 253:256, 253:256, -1] _A : Dict = jnp.asarray(jax.device_get(image_slice.flatten())) _A : List[Any] = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084]) print(F'output_slice: {output_slice}') assert jnp.abs(output_slice - expected_slice).max() < 1e-2
128
'''simple docstring''' import re def lowerCAmelCase__ ( lowerCamelCase : str ): if len(re.findall('[ATCG]' ,lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' ,'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
128
1
import math import sys def __lowerCAmelCase ( __lowerCamelCase : str ) -> str: __lowerCAmelCase ="""""" try: with open(__lowerCamelCase , """rb""" ) as binary_file: __lowerCAmelCase =binary_file.read() for dat in data: __lowerCAmelCase =f"""{dat:08b}""" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def __lowerCAmelCase ( __lowerCamelCase : str ) -> str: __lowerCAmelCase ={"""0""": """0""", """1""": """1"""} __lowerCAmelCase , __lowerCAmelCase ="""""", """""" __lowerCAmelCase =len(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __lowerCAmelCase =lexicon[curr_string] result += last_match_id __lowerCAmelCase =last_match_id + """0""" if math.loga(__lowerCamelCase ).is_integer(): __lowerCAmelCase ={} for curr_key in list(__lowerCamelCase ): __lowerCAmelCase =lexicon.pop(__lowerCamelCase ) __lowerCAmelCase =new_lex __lowerCAmelCase =last_match_id + """1""" index += 1 __lowerCAmelCase ="""""" return result def __lowerCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : str ) -> None: __lowerCAmelCase =8 try: with open(__lowerCamelCase , """wb""" ) as opened_file: __lowerCAmelCase =[ to_write[i : i + byte_length] for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__lowerCamelCase , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def __lowerCAmelCase ( __lowerCamelCase : str ) -> str: __lowerCAmelCase =0 for letter in data_bits: if letter == "1": break counter += 1 __lowerCAmelCase =data_bits[counter:] __lowerCAmelCase =data_bits[counter + 1 :] return data_bits def __lowerCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : str ) -> None: __lowerCAmelCase =read_file_binary(__lowerCamelCase ) __lowerCAmelCase =remove_prefix(__lowerCamelCase ) __lowerCAmelCase =decompress_data(__lowerCamelCase ) write_file_binary(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
456
def __lowerCAmelCase ( __lowerCamelCase : int ) -> None: __lowerCAmelCase =generate_pascal_triangle(__lowerCamelCase ) for row_idx in range(__lowerCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def __lowerCAmelCase ( __lowerCamelCase : int ) -> list[list[int]]: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __lowerCAmelCase =[] for current_row_idx in range(__lowerCamelCase ): __lowerCAmelCase =populate_current_row(__lowerCamelCase , __lowerCamelCase ) triangle.append(__lowerCamelCase ) return triangle def __lowerCAmelCase ( __lowerCamelCase : list[list[int]] , __lowerCamelCase : int ) -> list[int]: __lowerCAmelCase =[-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __lowerCAmelCase , __lowerCAmelCase =1, 1 for current_col_idx in range(1 , __lowerCamelCase ): calculate_current_element( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return current_row def __lowerCAmelCase ( __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[int] , __lowerCamelCase : int , __lowerCamelCase : int , ) -> None: __lowerCAmelCase =triangle[current_row_idx - 1][current_col_idx - 1] __lowerCAmelCase =triangle[current_row_idx - 1][current_col_idx] __lowerCAmelCase =above_to_left_elt + above_to_right_elt def __lowerCAmelCase ( __lowerCamelCase : int ) -> list[list[int]]: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __lowerCAmelCase =[[1]] for row_index in range(1 , __lowerCamelCase ): __lowerCAmelCase =[0] + result[-1] + [0] __lowerCAmelCase =row_index + 1 # Calculate the number of distinct elements in a row __lowerCAmelCase =sum(divmod(__lowerCamelCase , 2 ) ) __lowerCAmelCase =[ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __lowerCAmelCase =row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __lowerCAmelCase =row_first_half + row_second_half result.append(__lowerCamelCase ) return result def __lowerCAmelCase ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCamelCase : Callable , __lowerCamelCase : int ) -> None: __lowerCAmelCase =f"""{func.__name__}({value})""" __lowerCAmelCase =timeit(f"""__main__.{call}""" , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCamelCase , __lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
456
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = sd_pipe.prepare_inputs(UpperCamelCase_ ) lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=25 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowercase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = '''stabilityai/stable-diffusion-2''' lowercase__ , lowercase__ = FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCamelCase_ , subfolder='''scheduler''' ) lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( UpperCamelCase_ , scheduler=UpperCamelCase_ , revision='''bf16''' , dtype=jnp.bfloataa , ) lowercase__ = scheduler_params lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = sd_pipe.prepare_inputs(UpperCamelCase_ ) lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=25 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowercase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = """ibert""" def __init__( self : List[Any] , lowerCAmelCase : Any=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : str=12 , lowerCAmelCase : str=12 , lowerCAmelCase : str=3072 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : int=0.1 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Tuple=512 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Optional[Any]=1E-12 , lowerCAmelCase : Any=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : str="absolute" , lowerCAmelCase : Any=False , lowerCAmelCase : Optional[Any]="none" , **lowerCAmelCase : Optional[int] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[str] = vocab_size _snake_case : Tuple = hidden_size _snake_case : int = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : Union[str, Any] = hidden_act _snake_case : str = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[Any] = attention_probs_dropout_prob _snake_case : str = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : int = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : Tuple = position_embedding_type _snake_case : Union[str, Any] = quant_mode _snake_case : List[Any] = force_dequant class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Tuple) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
477
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = None , lowercase_ = None ) -> None: """simple docstring""" if start is None: __UpperCamelCase = 0 if end is None: __UpperCamelCase = len(lowercase_ ) - 1 if start >= end: return __UpperCamelCase = (start + end) // 2 slowsort(lowercase_ , lowercase_ , lowercase_ ) slowsort(lowercase_ , mid + 1 , lowercase_ ) if sequence[end] < sequence[mid]: __UpperCamelCase , __UpperCamelCase = sequence[mid], sequence[end] slowsort(lowercase_ , lowercase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
375
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : Any = "" lowerCAmelCase__ : Any = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self : str , snake_case : Optional[DatasetInfo] = None , snake_case : Optional[str] = None , **snake_case : List[Any] , ): super().__init__(self , **snake_case ) __UpperCamelCase = repo_info __UpperCamelCase = token __UpperCamelCase = None def snake_case ( self : List[Any] ): if self.dir_cache is None: __UpperCamelCase = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __UpperCamelCase = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(snake_case ): {'''name''': str(snake_case ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def snake_case ( self : Dict , snake_case : str , snake_case : str = "rb" , **snake_case : Union[str, Any] , ): if not isinstance(self.repo_info , snake_case ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) __UpperCamelCase = hf_hub_url(self.repo_info.id , snake_case , revision=self.repo_info.sha ) return fsspec.open( snake_case , mode=snake_case , headers=get_authentication_headers_for_url(snake_case , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def snake_case ( self : Optional[Any] , snake_case : Tuple , **snake_case : List[Any] ): self._get_dirs() __UpperCamelCase = self._strip_protocol(snake_case ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(snake_case ) def snake_case ( self : List[str] , snake_case : int , snake_case : Tuple=False , **snake_case : Dict ): self._get_dirs() __UpperCamelCase = PurePosixPath(path.strip('''/''' ) ) __UpperCamelCase = {} for p, f in self.dir_cache.items(): __UpperCamelCase = PurePosixPath(p.strip('''/''' ) ) __UpperCamelCase = p.parent if root == path: __UpperCamelCase = f __UpperCamelCase = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
375
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[Any] = """vit_msn""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Optional[int]=7_68 , lowerCamelCase__ :List[str]=12 , lowerCamelCase__ :Optional[Any]=12 , lowerCamelCase__ :Tuple=30_72 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :Any=0.0 , lowerCamelCase__ :List[str]=0.0 , lowerCamelCase__ :str=0.02 , lowerCamelCase__ :str=1e-06 , lowerCamelCase__ :Tuple=2_24 , lowerCamelCase__ :Any=16 , lowerCamelCase__ :int=3 , lowerCamelCase__ :List[str]=True , **lowerCamelCase__ :Union[str, Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :str = hidden_size UpperCamelCase__ :Optional[int] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :str = intermediate_size UpperCamelCase__ :Optional[int] = hidden_act UpperCamelCase__ :Any = hidden_dropout_prob UpperCamelCase__ :str = attention_probs_dropout_prob UpperCamelCase__ :Optional[Any] = initializer_range UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Any = image_size UpperCamelCase__ :Tuple = patch_size UpperCamelCase__ :Union[str, Any] = num_channels UpperCamelCase__ :Tuple = qkv_bias
45
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_=7 )-> Optional[Any]: """simple docstring""" UpperCamelCase = None if token is not None: UpperCamelCase = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} # The id of a workflow (not of a workflow run) UpperCamelCase = "636036" UpperCamelCase = F"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" UpperCamelCase = requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).json() return result["workflow_runs"] def lowerCamelCase__ ( UpperCAmelCase_ )-> Any: """simple docstring""" UpperCamelCase = get_daily_ci_runs(UpperCAmelCase_ ) UpperCamelCase = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": UpperCamelCase = workflow_run["id"] break return workflow_run_id def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> int: """simple docstring""" UpperCamelCase = get_last_daily_ci_runs(UpperCAmelCase_ ) if workflow_run_id is not None: UpperCamelCase = get_artifacts_links(worflow_run_id=UpperCAmelCase_ , token=UpperCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: UpperCamelCase = artifacts_links[artifact_name] download_artifact( artifact_name=UpperCAmelCase_ , artifact_url=UpperCAmelCase_ , output_dir=UpperCAmelCase_ , token=UpperCAmelCase_ ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Optional[int]: """simple docstring""" get_last_daily_ci_artifacts(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = {} for artifact_name in artifact_names: UpperCamelCase = os.path.join(UpperCAmelCase_ , F"{artifact_name}.zip" ) if os.path.isfile(UpperCAmelCase_ ): UpperCamelCase = {} with zipfile.ZipFile(UpperCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCAmelCase_ ): # read the file with z.open(UpperCAmelCase_ ) as f: UpperCamelCase = f.read().decode("UTF-8" ) return results
554
0
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __A : Dict = logging.getLogger() __A : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase ( _lowerCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] , __lowerCamelCase : Dict ) -> Optional[int]: '''simple docstring''' os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) lowerCamelCase__ = {"source": "What is love ?", "target": "life"} lowerCamelCase__ = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCamelCase__ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__lowerCamelCase , f'''{split}.{field}''' ) , "w" ) as f: f.write(__lowerCamelCase ) def a__ ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : str = "pytorch" ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = self.get_auto_remove_tmp_dir() lowerCamelCase__ = os.path.join(__lowerCamelCase , "output" ) lowerCamelCase__ = os.path.join(__lowerCamelCase , "data" ) self._create_dummy_data(data_dir=__lowerCamelCase ) lowerCamelCase__ = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) lowerCamelCase__ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__lowerCamelCase , env=self.get_env() ) lowerCamelCase__ = os.path.join(__lowerCamelCase , "metrics.json" ) with open(__lowerCamelCase ) as f: lowerCamelCase__ = json.load(__lowerCamelCase ) return result @require_torch_gpu def a__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def a__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def a__ ( self : int ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def a__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowerCamelCase__ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
187
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Tuple = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
187
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class lowercase_ ( a_ ): __magic_name__ : int = """git_vision_model""" def __init__( self : Tuple , _lowercase : Union[str, Any]=7_6_8 , _lowercase : int=3_0_7_2 , _lowercase : int=1_2 , _lowercase : str=1_2 , _lowercase : Tuple=3 , _lowercase : List[str]=2_2_4 , _lowercase : Union[str, Any]=1_6 , _lowercase : List[str]="quick_gelu" , _lowercase : Optional[Any]=1e-5 , _lowercase : List[Any]=0.0 , _lowercase : List[str]=0.02 , **_lowercase : Any , ): super().__init__(**_lowercase ) lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : Tuple = num_channels lowerCAmelCase__ : Tuple = patch_size lowerCAmelCase__ : List[Any] = image_size lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : Any = attention_dropout lowerCAmelCase__ : Union[str, Any] = layer_norm_eps lowerCAmelCase__ : Optional[int] = hidden_act @classmethod def _lowerCAmelCase ( cls : Optional[Any] , _lowercase : Union[str, os.PathLike] , **_lowercase : int ): cls._set_token_in_kwargs(_lowercase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": lowerCAmelCase__ : int = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class lowercase_ ( a_ ): __magic_name__ : Dict = """git""" def __init__( self : Dict , _lowercase : str=None , _lowercase : int=3_0_5_2_2 , _lowercase : int=7_6_8 , _lowercase : Union[str, Any]=6 , _lowercase : Union[str, Any]=1_2 , _lowercase : Any=3_0_7_2 , _lowercase : Tuple="gelu" , _lowercase : Optional[int]=0.1 , _lowercase : Any=0.1 , _lowercase : Optional[int]=1_0_2_4 , _lowercase : Union[str, Any]=0.02 , _lowercase : Optional[int]=1e-1_2 , _lowercase : Union[str, Any]=0 , _lowercase : Optional[int]="absolute" , _lowercase : List[str]=True , _lowercase : Any=False , _lowercase : List[str]=1_0_1 , _lowercase : List[Any]=1_0_2 , _lowercase : int=None , **_lowercase : int , ): super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , pad_token_id=_lowercase , **_lowercase ) if vision_config is None: lowerCAmelCase__ : Union[str, Any] = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) lowerCAmelCase__ : Any = GitVisionConfig(**_lowercase ) lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : str = hidden_size lowerCAmelCase__ : Tuple = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : Any = max_position_embeddings lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : Tuple = position_embedding_type lowerCAmelCase__ : List[Any] = use_cache lowerCAmelCase__ : List[str] = tie_word_embeddings lowerCAmelCase__ : str = num_image_with_embedding lowerCAmelCase__ : Optional[Any] = bos_token_id lowerCAmelCase__ : int = eos_token_id def _lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : List[Any] = self.vision_config.to_dict() lowerCAmelCase__ : Dict = self.__class__.model_type return output
308
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def lowercase__ ( lowerCamelCase : Tuple , lowerCamelCase : Dict=False , lowerCamelCase : Any=False ) -> Union[str, Any]: lowerCAmelCase__ : str = "backbone." if is_semantic else "" lowerCAmelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", "beit.embeddings.cls_token"), (F"{prefix}patch_embed.proj.weight", "beit.embeddings.patch_embeddings.projection.weight"), (F"{prefix}patch_embed.proj.bias", "beit.embeddings.patch_embeddings.projection.bias"), (F"{prefix}pos_embed", "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowercase__ ( lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : int=False , lowerCamelCase : Union[str, Any]=False ) -> List[str]: for i in range(config.num_hidden_layers ): lowerCAmelCase__ : Optional[int] = "backbone." if is_semantic else "" # queries, keys and values lowerCAmelCase__ : Any = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ : List[Any] = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) lowerCAmelCase__ : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) lowerCAmelCase__ : Tuple = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Optional[Any] = q_bias lowerCAmelCase__ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : List[Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCAmelCase__ : Optional[Any] = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) lowerCAmelCase__ : Optional[Any] = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) lowerCAmelCase__ : Union[str, Any] = gamma_a lowerCAmelCase__ : Optional[Any] = gamma_a def lowercase__ ( lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple ) -> List[Any]: lowerCAmelCase__ : Dict = dct.pop(lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = val def lowercase__ ( ) -> Any: lowerCAmelCase__ : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ : Tuple = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def lowercase__ ( lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : List[str]=False ) -> int: lowerCAmelCase__ : Optional[int] = False if "rvlcdip" in checkpoint_url else True lowerCAmelCase__ : Any = BeitConfig(use_absolute_position_embeddings=lowerCamelCase , use_mask_token=lowerCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCAmelCase__ : Optional[Any] = 1_0_2_4 lowerCAmelCase__ : Any = 4_0_9_6 lowerCAmelCase__ : int = 2_4 lowerCAmelCase__ : Tuple = 1_6 # labels if "rvlcdip" in checkpoint_url: lowerCAmelCase__ : Optional[Any] = 1_6 lowerCAmelCase__ : str = "huggingface/label-files" lowerCAmelCase__ : List[str] = "rvlcdip-id2label.json" lowerCAmelCase__ : Tuple = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ : Tuple = {int(lowerCamelCase ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[Any] = idalabel lowerCAmelCase__ : Any = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : int = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location="cpu" )["model"] lowerCAmelCase__ : Union[str, Any] = create_rename_keys(lowerCamelCase , has_lm_head=lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_q_k_v(lowerCamelCase , lowerCamelCase , has_lm_head=lowerCamelCase ) # load HuggingFace model lowerCAmelCase__ : Union[str, Any] = BeitForMaskedImageModeling(lowerCamelCase ) if has_lm_head else BeitForImageClassification(lowerCamelCase ) model.eval() model.load_state_dict(lowerCamelCase ) # Check outputs on an image lowerCAmelCase__ : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCamelCase ) lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : List[str] = image_processor(images=lowerCamelCase , return_tensors="pt" ) lowerCAmelCase__ : Any = encoding["pixel_values"] lowerCAmelCase__ : Optional[Any] = model(lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = outputs.logits # verify logits lowerCAmelCase__ : str = [1, 1_6] if "rvlcdip" in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(lowerCamelCase ), "Shape of logits not as expected" Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: if has_lm_head: lowerCAmelCase__ : List[Any] = "dit-base" if "base" in checkpoint_url else "dit-large" else: lowerCAmelCase__ : Tuple = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=lowerCamelCase , ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __UpperCAmelCase = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
308
1
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( _a ): '''simple docstring''' __UpperCAmelCase = (PNDMScheduler,) __UpperCAmelCase = (("""num_inference_steps""", 50),) def lowercase_ (self , **lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**snake_case_ ) return config def lowercase_ (self , lowerCAmelCase__=0 , **lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Tuple = dict(self.forward_default_kwargs ) _UpperCamelCase : str = kwargs.pop("num_inference_steps" , snake_case_ ) _UpperCamelCase : Dict = self.dummy_sample _UpperCamelCase : Dict = 0.1 * sample _UpperCamelCase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _UpperCamelCase : Dict = self.get_scheduler_config(**snake_case_ ) _UpperCamelCase : Optional[Any] = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals _UpperCamelCase : Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) _UpperCamelCase : Dict = scheduler_class.from_pretrained(snake_case_ ) new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals _UpperCamelCase : int = dummy_past_residuals[:] _UpperCamelCase : Dict = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample _UpperCamelCase : str = new_scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _UpperCamelCase : int = scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample _UpperCamelCase : List[str] = new_scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase_ (self ): '''simple docstring''' pass def lowercase_ (self , lowerCAmelCase__=0 , **lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : List[Any] = dict(self.forward_default_kwargs ) _UpperCamelCase : List[Any] = kwargs.pop("num_inference_steps" , snake_case_ ) _UpperCamelCase : Union[str, Any] = self.dummy_sample _UpperCamelCase : Dict = 0.1 * sample _UpperCamelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _UpperCamelCase : List[str] = self.get_scheduler_config() _UpperCamelCase : List[Any] = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals (must be after setting timesteps) _UpperCamelCase : List[str] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) _UpperCamelCase : Optional[Any] = scheduler_class.from_pretrained(snake_case_ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residual (must be after setting timesteps) _UpperCamelCase : str = dummy_past_residuals[:] _UpperCamelCase : List[str] = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample _UpperCamelCase : Optional[Any] = new_scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _UpperCamelCase : Tuple = scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample _UpperCamelCase : List[str] = new_scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase_ (self , **lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.scheduler_classes[0] _UpperCamelCase : Dict = self.get_scheduler_config(**snake_case_ ) _UpperCamelCase : Union[str, Any] = scheduler_class(**snake_case_ ) _UpperCamelCase : int = 10 _UpperCamelCase : Union[str, Any] = self.dummy_model() _UpperCamelCase : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.prk_timesteps ): _UpperCamelCase : Optional[int] = model(snake_case_ , snake_case_ ) _UpperCamelCase : int = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _UpperCamelCase : Optional[int] = model(snake_case_ , snake_case_ ) _UpperCamelCase : Optional[int] = scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ ).prev_sample return sample def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Optional[int] = dict(self.forward_default_kwargs ) _UpperCamelCase : Union[str, Any] = kwargs.pop("num_inference_steps" , snake_case_ ) for scheduler_class in self.scheduler_classes: _UpperCamelCase : int = self.get_scheduler_config() _UpperCamelCase : Optional[int] = scheduler_class(**snake_case_ ) _UpperCamelCase : str = self.dummy_sample _UpperCamelCase : Optional[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case_ , "set_timesteps" ): scheduler.set_timesteps(snake_case_ ) elif num_inference_steps is not None and not hasattr(snake_case_ , "set_timesteps" ): _UpperCamelCase : Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCamelCase : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _UpperCamelCase : int = dummy_past_residuals[:] _UpperCamelCase : List[str] = scheduler.step_prk(snake_case_ , 0 , snake_case_ , **snake_case_ ).prev_sample _UpperCamelCase : Any = scheduler.step_prk(snake_case_ , 1 , snake_case_ , **snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _UpperCamelCase : List[str] = scheduler.step_plms(snake_case_ , 0 , snake_case_ , **snake_case_ ).prev_sample _UpperCamelCase : Optional[int] = scheduler.step_plms(snake_case_ , 1 , snake_case_ , **snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase_ (self ): '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=snake_case_ ) def lowercase_ (self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=snake_case_ ) _UpperCamelCase : Any = self.scheduler_classes[0] _UpperCamelCase : Tuple = self.get_scheduler_config(steps_offset=1 ) _UpperCamelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def lowercase_ (self ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def lowercase_ (self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case_ ) def lowercase_ (self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def lowercase_ (self ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=snake_case_ ) def lowercase_ (self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=snake_case_ ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : int = 27 for scheduler_class in self.scheduler_classes: _UpperCamelCase : str = self.dummy_sample _UpperCamelCase : str = 0.1 * sample _UpperCamelCase : str = self.get_scheduler_config() _UpperCamelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _UpperCamelCase : List[str] = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ ).prev_sample def lowercase_ (self ): '''simple docstring''' with self.assertRaises(snake_case_ ): _UpperCamelCase : Optional[Any] = self.scheduler_classes[0] _UpperCamelCase : Tuple = self.get_scheduler_config() _UpperCamelCase : List[Any] = scheduler_class(**snake_case_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Tuple = self.full_loop() _UpperCamelCase : Tuple = torch.sum(torch.abs(snake_case_ ) ) _UpperCamelCase : str = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : int = self.full_loop(prediction_type="v_prediction" ) _UpperCamelCase : List[str] = torch.sum(torch.abs(snake_case_ ) ) _UpperCamelCase : List[str] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Tuple = self.full_loop(set_alpha_to_one=snake_case_ , beta_start=0.01 ) _UpperCamelCase : str = torch.sum(torch.abs(snake_case_ ) ) _UpperCamelCase : Union[str, Any] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : str = self.full_loop(set_alpha_to_one=snake_case_ , beta_start=0.01 ) _UpperCamelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _UpperCamelCase : int = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
720
"""simple docstring""" class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self ): '''simple docstring''' _UpperCamelCase : Any = "" _UpperCamelCase : Union[str, Any] = "" _UpperCamelCase : Dict = [] def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _UpperCamelCase : List[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _UpperCamelCase : Optional[int] = self.__min_dist_top_down_dp(lowerCAmelCase__ , n - 1 ) _UpperCamelCase : Any = self.__min_dist_top_down_dp(m - 1 , lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) _UpperCamelCase : List[str] = 1 + min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return self.dp[m][n] def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Tuple = worda _UpperCamelCase : List[str] = worda _UpperCamelCase : Union[str, Any] = [[-1 for _ in range(len(lowerCAmelCase__ ) )] for _ in range(len(lowerCAmelCase__ ) )] return self.__min_dist_top_down_dp(len(lowerCAmelCase__ ) - 1 , len(lowerCAmelCase__ ) - 1 ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Any = worda _UpperCamelCase : Optional[int] = worda _UpperCamelCase : Tuple = len(lowerCAmelCase__ ) _UpperCamelCase : Tuple = len(lowerCAmelCase__ ) _UpperCamelCase : Any = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _UpperCamelCase : List[Any] = j elif j == 0: # second string is empty _UpperCamelCase : Optional[int] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _UpperCamelCase : Tuple = self.dp[i - 1][j - 1] else: _UpperCamelCase : List[str] = self.dp[i][j - 1] _UpperCamelCase : Any = self.dp[i - 1][j] _UpperCamelCase : Optional[int] = self.dp[i - 1][j - 1] _UpperCamelCase : Optional[Any] = 1 + min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return self.dp[m][n] if __name__ == "__main__": _SCREAMING_SNAKE_CASE = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() _SCREAMING_SNAKE_CASE = input("""Enter the first string: """).strip() _SCREAMING_SNAKE_CASE = input("""Enter the second string: """).strip() print() print(f'The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}') print(f'The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}') print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
239
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a : Any = logging.get_logger(__name__) a : Optional[int] = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __UpperCamelCase ( a__ ): lowerCamelCase : List[Any] ="""gpt_neox""" def __init__( self , lowerCAmelCase__=5_0432 , lowerCAmelCase__=6144 , lowerCAmelCase__=44 , lowerCAmelCase__=64 , lowerCAmelCase__=2_4576 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.25 , lowerCAmelCase__=1_0000 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=2048 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=True , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Optional[Any]: super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) a : List[str] = vocab_size a : Any = max_position_embeddings a : Tuple = hidden_size a : Dict = num_hidden_layers a : List[Any] = num_attention_heads a : Optional[Any] = intermediate_size a : List[str] = hidden_act a : str = rotary_pct a : Any = rotary_emb_base a : int = attention_dropout a : Union[str, Any] = hidden_dropout a : Tuple = classifier_dropout a : Any = initializer_range a : Any = layer_norm_eps a : Optional[int] = use_cache a : Optional[int] = tie_word_embeddings a : str = use_parallel_residual a : Any = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def __a ( self ) -> int: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) a : int = self.rope_scaling.get("type" , lowerCAmelCase__ ) a : Any = self.rope_scaling.get("factor" , lowerCAmelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
633
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ) ->Dict: '''simple docstring''' a : Any = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] a : str = True if "large" in model_name or "huge" in model_name else False a : Optional[Any] = True if "large" in model_name or "huge" in model_name else False a : Dict = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a : Union[str, Any] = [3, 3, 3, 3] a : List[str] = [5, 5, 5, 5] elif "fl4" in model_name: a : Any = [4, 4, 4, 4] a : Optional[Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a : Dict = [3, 3, 3, 3] if "lrf" in model_name: a : Optional[int] = [3, 3, 3, 3] else: a : Tuple = [2, 2, 2, 2] if "tiny" in model_name: a : List[str] = 96 elif "small" in model_name: a : Union[str, Any] = 96 elif "base" in model_name: a : Dict = 128 elif "large" in model_name: a : Union[str, Any] = 192 elif "xlarge" in model_name: a : Tuple = 256 elif "huge" in model_name: a : List[str] = 352 # set label information a : List[Any] = "huggingface/label-files" if "large" in model_name or "huge" in model_name: a : Optional[int] = "imagenet-22k-id2label.json" else: a : List[str] = "imagenet-1k-id2label.json" a : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="dataset" ) , "r" ) ) a : str = {int(_lowercase ): v for k, v in idalabel.items()} a : List[str] = {v: k for k, v in idalabel.items()} a : Dict = FocalNetConfig( embed_dim=_lowercase , depths=_lowercase , focal_levels=_lowercase , focal_windows=_lowercase , use_conv_embed=_lowercase , idalabel=_lowercase , labelaid=_lowercase , use_post_layernorm=_lowercase , use_layerscale=_lowercase , ) return config def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->List[Any]: '''simple docstring''' if "patch_embed.proj" in name: a : Any = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a : List[str] = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: a : List[Any] = "encoder." + name if "encoder.layers" in name: a : int = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: a : Any = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: a : str = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a : Union[str, Any] = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a : Dict = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a : Any = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": a : str = "layernorm.weight" if name == "norm.bias": a : Optional[Any] = "layernorm.bias" if "head" in name: a : Tuple = name.replace("head" , "classifier" ) else: a : int = "focalnet." + name return name def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : Tuple=False ) ->str: '''simple docstring''' a : List[Any] = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on a : str = model_name_to_url[model_name] print("Checkpoint URL: " , _lowercase ) a : Any = torch.hub.load_state_dict_from_url(_lowercase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): a : Any = state_dict.pop(_lowercase ) a : Any = val a : Any = get_focalnet_config(_lowercase ) a : Optional[int] = FocalNetForImageClassification(_lowercase ) model.eval() # load state dict model.load_state_dict(_lowercase ) # verify conversion a : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" a : Optional[int] = BitImageProcessor( do_resize=_lowercase , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_lowercase , crop_size=224 , do_normalize=_lowercase , image_mean=_lowercase , image_std=_lowercase , ) a : int = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) a : Dict = processor(images=_lowercase , return_tensors="pt" ) a : Optional[int] = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a : str = image_transforms(_lowercase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _lowercase , atol=1E-4 ) a : Dict = model(**_lowercase ) a : List[str] = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a : Union[str, Any] = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a : Union[str, Any] = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a : Dict = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a : Dict = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a : Any = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a : str = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": a : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) a : Tuple = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
633
1
def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] ="" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" return data[1:] + data[0] def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] ="" for i in range(len(__a ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =int("0b" + data[0] + data[-1] , 2 ) lowerCamelCase__: List[str] =int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> List[str]: """simple docstring""" lowerCamelCase__: Optional[Any] =message[:4] lowerCamelCase__: str =message[4:] lowerCamelCase__: Dict =apply_table(__a , __a ) lowerCamelCase__: List[str] =xor(__a , __a ) lowerCamelCase__: Optional[int] =apply_sbox(__a , temp[:4] ) # noqa: E741 lowerCamelCase__: Tuple =apply_sbox(__a , temp[4:] ) lowerCamelCase__: List[str] ="0" * (2 - len(__a )) + l # noqa: E741 lowerCamelCase__: List[str] ="0" * (2 - len(__a )) + r lowerCamelCase__: Dict =apply_table(l + r , __a ) lowerCamelCase__: List[str] =xor(__a , __a ) return temp + right if __name__ == "__main__": __A = input("Enter 10 bit key: ") __A = input("Enter 8 bit message: ") __A = [6, 3, 7, 4, 8, 5, 10, 9] __A = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __A = [2, 4, 3, 1] __A = [2, 6, 3, 1, 4, 8, 5, 7] __A = [4, 1, 3, 5, 7, 2, 8, 6] __A = [4, 1, 2, 3, 2, 3, 4, 1] __A = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __A = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __A = apply_table(key, paa_table) __A = temp[:5] __A = temp[5:] __A = left_shift(left) __A = left_shift(right) __A = apply_table(left + right, pa_table) __A = left_shift(left) __A = left_shift(right) __A = left_shift(left) __A = left_shift(right) __A = apply_table(left + right, pa_table) # encryption __A = apply_table(message, IP) __A = function(expansion, sa, sa, keya, temp) __A = temp[4:] + temp[:4] __A = function(expansion, sa, sa, keya, temp) __A = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __A = apply_table(CT, IP) __A = function(expansion, sa, sa, keya, temp) __A = temp[4:] + temp[:4] __A = function(expansion, sa, sa, keya, temp) __A = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
717
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(UpperCAmelCase_ , "tf_padding")) self.parent.assertTrue(hasattr(UpperCAmelCase_ , "depth_multiplier")) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : Any=0.25 , UpperCAmelCase_ : int=8 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : Any=6 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Dict="relu6" , UpperCAmelCase_ : Optional[int]=1_280 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[Any]=10 , UpperCAmelCase_ : Optional[int]=None , ) ->Dict: '''simple docstring''' lowerCamelCase__: Any =parent lowerCamelCase__: Optional[Any] =batch_size lowerCamelCase__: List[str] =num_channels lowerCamelCase__: Dict =image_size lowerCamelCase__: Tuple =depth_multiplier lowerCamelCase__: Tuple =depth_divisible_by lowerCamelCase__: List[str] =min_depth lowerCamelCase__: List[str] =expand_ratio lowerCamelCase__: Union[str, Any] =tf_padding lowerCamelCase__: Optional[Any] =output_stride lowerCamelCase__: Tuple =first_layer_is_expansion lowerCamelCase__: Any =finegrained_output lowerCamelCase__: Union[str, Any] =hidden_act lowerCamelCase__: Union[str, Any] =last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier) lowerCamelCase__: int =classifier_dropout_prob lowerCamelCase__: List[str] =use_labels lowerCamelCase__: Any =is_training lowerCamelCase__: Dict =num_labels lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: List[Any] =scope def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__: Dict =None lowerCamelCase__: int =None if self.use_labels: lowerCamelCase__: List[str] =ids_tensor([self.batch_size] , self.num_labels) lowerCamelCase__: List[Any] =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) lowerCamelCase__: Any =self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[int]: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]) ->int: '''simple docstring''' lowerCamelCase__: List[str] =MobileNetVaModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Dict =model(UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__: int =self.num_labels lowerCamelCase__: Optional[int] =MobileNetVaForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Tuple =model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.num_labels lowerCamelCase__: List[str] =MobileNetVaForSemanticSegmentation(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Any =model(UpperCAmelCase_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase__: List[str] =model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =config_and_inputs lowerCamelCase__: Tuple ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ = ( { "feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification, "image-segmentation": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =MobileNetVaModelTester(self) lowerCamelCase__: Union[str, Any] =MobileNetVaConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds") def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings") def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not output attentions") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__: Tuple =[*signature.parameters.keys()] lowerCamelCase__: Union[str, Any] =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str): lowerCamelCase__: List[str] =model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): lowerCamelCase__: Any =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) lowerCamelCase__: Optional[Any] =outputs.hidden_states lowerCamelCase__: List[str] =16 self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Union[str, Any] =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__: Optional[int] =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->List[Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]: '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: Optional[int] =MobileNetVaModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" lowerCamelCase__: List[Any] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[str]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224") if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224").to(UpperCAmelCase_) lowerCamelCase__: Dict =self.default_image_processor lowerCamelCase__: str =prepare_img() lowerCamelCase__: int =image_processor(images=UpperCAmelCase_ , return_tensors="pt").to(UpperCAmelCase_) # forward pass with torch.no_grad(): lowerCamelCase__: str =model(**UpperCAmelCase_) # verify the logits lowerCamelCase__: Optional[Any] =torch.Size((1, 1_001)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) lowerCamelCase__: List[str] =torch.tensor([0.2445, -1.1993, 0.1905]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4)) @slow def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") lowerCamelCase__: str =model.to(UpperCAmelCase_) lowerCamelCase__: List[Any] =MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") lowerCamelCase__: int =prepare_img() lowerCamelCase__: int =image_processor(images=UpperCAmelCase_ , return_tensors="pt").to(UpperCAmelCase_) # forward pass with torch.no_grad(): lowerCamelCase__: str =model(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =outputs.logits # verify the logits lowerCamelCase__: Optional[int] =torch.Size((1, 21, 65, 65)) self.assertEqual(logits.shape , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=UpperCAmelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase_ , atol=1E-4))
437
0